SlideShare uma empresa Scribd logo
1 de 46
Baixar para ler offline
UNIVERSIDADE DO OESTE DE SANTA CATARINA – UNOESC
ÁREA DAS CIÊNCIAS EXATAS E DA TERRA
CURSO: ENGENHARIA CIVIL
DISCIPLINA: ANÁLISE MATRICIAL DE ESTRUTURAS
PROFESSOR: JACKSON ANTONIO CARELLI
ANÁLISE MATRICIAL
DE ESTRUTURAS
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli i

SUMÁRIO

LISTA DE FIGURAS .............................................................................................................iv
LISTA DE TABELAS.............................................................................................................. v
1 INTRODUÇÃO ................................................................................................................ 1
1.1 Análise estrutural............................................................................................................ 1
1.2 Análise matricial de estruturas ....................................................................................... 1
1.3 Idealização estrutural...................................................................................................... 2
1.3.1 Definições............................................................................................................. 2
1.4 Divisão em elementos .................................................................................................... 3
1.5 Sistemas de coordenadas................................................................................................ 4
1.6 Método das forças e método dos deslocamentos ........................................................... 4
1.6.1 Método das forças (método da flexibilidade)....................................................... 4
1.6.2 Método dos deslocamentos (método da rigidez).................................................. 5
2 MATRIZES DE RIGIDEZ E FLEXIBILIDADE......................................................... 6
2.1 Relação entre ações e deslocamentos............................................................................. 6
2.1.1 Equação da força em termos do deslocamento .................................................... 6
2.1.2 Equação do deslocamento em termos da força .................................................... 6
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli ii
2.1.3 Relação entre rigidez e flexibilidade.................................................................... 7
2.2 Definições....................................................................................................................... 8
2.3 Exemplo de discretização de uma barra contínua composta por duas hastes e solicitada por
esforço normal................................................................................................................ 9
2.3.1 Forças em função dos deslocamentos .................................................................. 9
2.3.2 Obtenção da matriz de rigidez da estrutura........................................................ 10
2.3.3 Deslocamentos em função das forças................................................................. 11
2.3.4 Obtenção da matriz de flexibilidade da estrutura............................................... 12
2.3.5 Obtenção da matriz de rigidez mediante discretização da estrutura .................. 13
2.4 Obtenção da matriz de rigidez de um elemento de pórtico plano ................................ 14
2.4.1 Cálculo dos coeficientes da matriz de rigidez.................................................... 15
3 MÉTODO DA RIGIDEZ............................................................................................... 22
3.1 Matriz de rotação de um elemento de pórtico plano .................................................... 22
3.2 Matriz de rigidez de um elemento no sistema global - SG ........................................... 24
3.3 Vetor de ações nodais equivalentes.............................................................................. 25
3.4 Sistema de equações de equilíbrio para estrutura não-restritingida (sem apoios)........ 28
3.5 Montagem da matriz de rigidez da estrutura................................................................ 29
3.5.1 Regra da correspondência .................................................................................. 30
3.6 Montagem do vetor de ações da estrutura.................................................................... 33
3.7 Sistema de equações de equilíbrio para a estrutura restringida.................................... 36
3.7.1 Técnica da reordenação...................................................................................... 36
3.8 Cálculo dos esforços nas extremidades dos elementos................................................ 39
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli iii
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli iv

LISTA DE FIGURAS

Figura 1.1 – Estrutura contínua e discretizada ........................................................................... 3
Figura 1.2 – Inserção de nó fictício............................................................................................ 3
Figura 2.1 – Coeficientes de rigidez em barra composta por duas hastes e solicitada por
esforço normal.................................................................................................................... 9
Figura 3.1 – Ações locais de engastamento perfeito - ALEP (elemento de viga)...................... 26
Figura 3.2 – Ações nodais equivalentes – (-ALEP) ................................................................... 27
Figura 3.3 – Exemplo de montagem de matriz de rigidez (pórtico plano)............................... 29
Figura 3.4 – Exemplo regra da correspondência (pórtico plano)............................................. 31
Figura 3.5 – Exemplo montagem vetor de ações da estrutura ................................................. 34
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli v

LISTA DE TABELAS

Tabela 2.1 – Matrizes de rigidez elementares.......................................................................... 21
Tabela 3.1 – correspondência entre sistemas para elemento 3................................................. 31
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 1
1 INTRODUÇÃO
1.1 Análise estrutural
Definido o sistema construtivo e o material a ser empregado, a análise estrutural e a
primeira etapa de um projeto estrutural.
O objetivo da análise estrutural e, à partir de uma estrutura, com características
geométricas e mecânicas conhecidas, submetida a ações (cargas ou deformações impostas),
determinar os deslocamentos (translações e /ou rotações) de todos os seus pontos, os esforços
internos e as reações de apoio.
A análise estrutural é classificada como linear, quando a estrutura tem comportamento
linear, e não-linear, em caso contrário. Para que uma estrutura tenha comportamento linear,
ela deve sofrer pequenos deslocamentos e deformações específicas e seu material deve ser
elástico-linear (validade da Lei de Hooke). Isto permite a aplicação do princípio da
“superposição dos efeitos”.
1.2 Análise matricial de estruturas
A análise matricial de estruturas é um tópico da análise estrutural, em que as equações
que regem o problema a resolver são formuladas matricialmente, sejam equações de equilíbrio
de forças ou de compatibilidade de deformações, dependendo do método utilizado (método
das forças ou método dos deslocamentos), sendo o método dos deslocamentos o mais
adequado para implementação computacional.
O objetivo desta disciplina é a modelagem e análise estática linear de estruturas
reticuladas(constituídas por elementos onde uma dimensão predomina em relação às outras
duas – barras), utilizando principalmente o método dos deslocamentos com formulação
matricial, capacitando os alunos a utilizar de maneira racional os programas de análise
estrutural e a desenvolverem seus próprios programas.
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 2
1.3 Idealização estrutural
1.3.1 Definições
⇒ Graus de liberdade
São as variáveis envolvidas no processo de análise de uma estrutura. Quando se trata do
método dos deslocamento, por exemplo, os graus de liberdade são as deformações
(deslocamentos e/ou rotações) dos nós da estrutura.
⇒ Sistemas contínuos
Sistemas contínuos são aqueles compostos por uma infinidade de pontos materiais e que
possuem portanto um número infinito de graus de liberdade.
⇒ Sistemas discretos
Sistemas discretos são aqueles que possuem um número finito de pontos materiais e
portanto um número finito de graus de liberdade.
A maioria das estruturas consistem de uma montagem de diferentes elementos
estruturais conectados entre si por ligações contínuas ou discretas. O passo mais importante
na análise matricial de estruturas é a formulação de um modelo matemático de elementos
discretos equivalente à estrutura contínua real. Este modelo é necessário a fim de se obter um
sistema com um número finito de variáveis (graus de liberdade) nos quais as operações de
álgebra matricial poderão ser realizadas. À formulação de tal modelo chama-se de idealização
estrutural.
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 3
Estrutura contínua Estrutura discretizada
Figura 1.1 – Estrutura contínua e discretizada
1.4 Divisão em elementos
As estruturas estudadas nesta disciplina serão divididas em elementos de dimensão
finita, ligados entre si por pontos nodais (nós) aonde se supõem concentradas todas as forças
de ligação entre elementos. As ações e deslocamentos serão discretizados nos nós e a
composição destes elementos para constituir a estrutura resultará em um sistema de equações
algébricas que será tratado matricialmente.
Em geral um nó é constituído pelas ligações entre barras, extremidades livres, pontos
de vinculação, no entanto, um nó fictício poderá, por conveniência do problema, ser inserido
em qualquer ponto da estrutura, por exemplo no meio de uma barra qualquer (neste caso
estaríamos dividindo a barra em duas).
Figura 1.2 – Inserção de nó fictício
5
6
4 Nó fictício
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 4
1.5 Sistemas de coordenadas
Com o fim de identificar e ordenar matricialmente as ações mecânicas (forças e
momentos) e os deslocamentos (lineares ou angulares) existentes nos nós de uma estrutura
integrada (montada, contínua) ou nas extremidades de um elemento (isolado, quando
subdividida a estrutura – “estrutura discretizada”), torna-se imprescindível a determinação de
um sistema de coordenadas arbitrário.
Na verdade, serão necessários dois sistemas de coordenadas chamados de Sistema de
Coordenadas Globais e Sistema de Coordenadas Locais.
O sistema de coordenadas globais refere-se aos graus de liberdade da estrutura como um
todo, ou seja estrutura montada, já o sistema de coordenadas locais refere-se aos graus de
liberdade dos elementos discretizados, ou seja, das partes da estrutura.
1.6 Método das forças e método dos deslocamentos
1.6.1 Método das forças (método da flexibilidade)
No método das forças determinam-se diretamente os esforços (forças) e indiretamente,
isto é, a partir destes, os deslocamentos.
Este método pode ser usado para analisar qualquer estrutura hiperestática, ou seja,
qualquer estrutura estaticamente indeterminada.
A estrutura é modificada por meio de liberações ou cortes, tornado-a isostática (este
sistema é chamado de principal)
O sistema de equações que resolve o problema á constituído por equações de
compatibilidade de deformações; as incógnitas são os esforços nas liberações ou cortes.
O número de equações (incógnitas) é igual ao grau de hiperestaticidade da estrutura.
Para analisar uma estrutura podem ser adotados uma infinidade de sistemas principais. A a
escolha do sistema mais conveniente depende da experiência do analista.
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 5
1.6.2 Método dos deslocamentos (método da rigidez)
Neste método determina-se inicialmente os deslocamentos e indiretamente, por meio
destes, os esforços.
Este método pode ser usado para analisar qualquer estrutura isostática ou hiperestática.
A única estrutura que não pode ser resolvida por este método é a composta de uma única barra
bi-engastada.
A estrutura é modificada introduzindo-se fixações de forma a torná-la cinematicamente
determinada (sistema principal).
O sistema de equações que resolve o problema é constituído por equações de equilíbrio
de forças em torno destas fixações. As incógnitas são os respectivos deslocamentos (rotações
e/ou translações).
No caso de estruturas reticuladas, o único sistema principal possível é obtido pela
fixação de todos os deslocamentos possíveis dos nós (denominados graus de liberdade).
O número de equações é igual ao grau de indeterminação da estrutura, ou seja, é igula
ao número de graus de liberdade da estrutura.
Adotando-se este sistema principal único desaparece o problema da escolha do sistema
principal do Método das Forças, por este motivo o Método dos Deslocamentos é o mais
adequado, e praticamente o único utilizado para implementação computacional em Análise de
Estruturas.
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 6
2 MATRIZES DE RIGIDEZ E FLEXIBILIDADE
2.1 Relação entre ações e deslocamentos
2.1.1 Equação da força em termos do deslocamento
(2.1)
Onde a rigidez da mola (k) é a força por unidade de deslocamento, ou seja, é a força
requerida para produzir um deslocamento unitário na mola.
2.1.2 Equação do deslocamento em termos da força
(2.2)
u=δδδδ
Fu ⋅⋅⋅⋅==== δδδδ
ukF ⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 7
Onde δ é a deformabilidade da mola, geralmente chamada de flexibilidade, sendo o
deslocamento por unidade de força, ou seja, é o deslocamento produzido pela aplicação de
uma força de valor unitário.
2.1.3 Relação entre rigidez e flexibilidade
(2.3)
Se ao invés de uma mola tivermos uma barra contínua (como a viga de um edifício, por
exemplo), porém discretizada, ou seja, com um número finito de graus de liberdade (neste
caso apenas um) de acordo com a resistência dos materiais podemos dizer:
(2.4)
(2.5)
Comparando-se (2.4) com (2.5) tem-se:
(2.6)
(2.7)
Substituindo-se (2.7) em (2.6) tem-se:
(2.8)
k
1
====δδδδ
εεεεσσσσ ⋅⋅⋅⋅==== E
A
F
====σσσσ
εεεε⋅⋅⋅⋅==== E
A
F
L
u
l
l
====
∆∆∆∆
====
0
εεεε
L
u
E
A
F
⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 8
Ou:
(2.9)
Comparando-se (2.9) com (2.1) conclui-se que o coeficiente de rigidez da barra é:
(2.10)
Logo, o coeficiente de flexibilidade da barra é dado por:
(2.11)
Nesta disciplina será adotada a seguinte notação: o termo coeficiente de rigidez será
indicado pela letra “S” e o coeficiente de flexibilidade pela letra “C”
2.2 Definições
⇒ Sij – Coeficiente de rigidez:
Representa a ação (força) na direção i causado por um deslocamento unitário na direção
j (enquanto todos os outros deslocamentos são impostos como nulos).
⇒ Cij – Coeficiente de flexibilidade:
Representa o deslocamento na direção i causado por uma ação (força) de valor unitário
na direção j (enquanto todas as outras são nulas).
u
L
AE
F ⋅⋅⋅⋅
⋅⋅⋅⋅
====
L
AE
k
⋅⋅⋅⋅
====
AE
L
⋅⋅⋅⋅
====δδδδ
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 9
2.3 Exemplo de discretização de uma barra contínua composta por duas hastes e
solicitada por esforço normal
2.3.1 Forças em função dos deslocamentos
Figura 2.1 – Coeficientes de rigidez em barra composta por duas hastes e solicitada por
esforço normal
Neste caso são conhecidas as ações que atuam nas coordenadas 1 e 2 (A1 e A2) e os
coeficientes de rigidez (S11, S12, S21 e S22), que devem ser obtidos previamente, desejando-se
obter os deslocamento nas coordenadas 1 e 2 (u1 e u2).
Para que o nó da coordenada 1 esteja em equilíbrio a força externa deve ser igual ao
somatório das forças internas resultantes dos deslocamentos ocorridos ao longo da estrutura,
ou seja:
(2.12)
O mesmo pode ser dito com relação ao nó da coordenada 2:
(2.13)
E2A2L2
S11
S22
S12
S21
u1=1
u2=0
u2=1
u1=0
Sistema de
coordenadas globais
Coeficientes de
rigidez (Sij)
Coeficientes de
rigidez (Sij)
2121111 uSuSA ⋅⋅⋅⋅++++⋅⋅⋅⋅====
2221212 uSuSA ⋅⋅⋅⋅++++⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 10
Unindo as equações (2.12) e (2.13), pode-se, matricialmente escrever:
(2.14)
onde:
{A} é o vetor das ações externas (solicitações);
{u} é o vetor dos deslocamentos nos GL’s 1 e 2;
[S] é a matriz de rigidez da estrutura em estudo, de dimensões (2x2),
correspondente ao número de coordenadas utilizadas. A matriz de rigidez é uma matriz de
transformação linear: transforma o vetor dos deslocamentos no vetor das ações.
2.3.2 Obtenção da matriz de rigidez da estrutura
A matriz de rigidez da estrutura pode ser obtida pela conceituação de seus coeficientes,
e das relações existentes na haste submetida à carregamentos axiais.
S11 - é a força na coordenada 1 decorrente da imposição de um deslocamento unitário
também na coordenada 1, mantendo-se as demais coordenadas restringidas.
S21 - é a força na coordenada 2 decorrente da imposição de um deslocamento unitário na
coordenada 1, mantendo-se as demais coordenadas restringidas.
{{{{ }}}} [[[[ ]]]] {{{{ }}}}uSA
u
u
SS
SS
A
A
⋅⋅⋅⋅====⇒⇒⇒⇒






⋅⋅⋅⋅





====






2
1
2221
1211
2
1





 ⋅⋅⋅⋅
++++




 ⋅⋅⋅⋅
====⇒⇒⇒⇒



====
====
2
22
1
11
11
2
1
0
1
L
AE
L
AE
S
u
u





 ⋅⋅⋅⋅
−−−−====⇒⇒⇒⇒



====
====
2
22
21
2
1
0
1
L
AE
S
u
u
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 11
S12 - é a força na coordenada 1 decorrente da imposição de um deslocamento unitário na
coordenada 2, mantendo-se as demais coordenadas restringidas.
S22 - é a força na coordenada 2 decorrente da imposição de um deslocamento unitário na
coordenada 2, mantendo-se as demais coordenadas restringidas.
Obtendo-se assim a matriz de rigidez da estrutura:
2.3.3 Deslocamentos em função das forças
No item 2.3.1 foram determinadas as forças (ou ações) da estrutura em estudo em
função dos deslocamentos. De forma análoga pode-se determinar os deslocamentos em
função das forças. Neste caso, ao invés da imposição de um deslocamento unitário com
posterior determinação das forças equivalentes, deve-se impor uma força unitária com
posterior determinação dos deslocamentos equivalentes. Desta forma chega-se às
seguintes equações de equilíbrio para os nós da estrutura:
(2.15)
(2.16)





 ⋅⋅⋅⋅
−−−−====⇒⇒⇒⇒



====
====
2
22
12
2
1
1
0
L
AE
S
u
u





 ⋅⋅⋅⋅
====⇒⇒⇒⇒



====
====
2
22
22
2
1
1
0
L
AE
S
u
u
[[[[ ]]]]












⋅⋅⋅⋅⋅⋅⋅⋅
−−−−
⋅⋅⋅⋅
−−−−




 ⋅⋅⋅⋅
++++
⋅⋅⋅⋅
====
2
22
2
22
2
22
2
22
1
11
L
AE
L
AE
L
AE
L
AE
L
AE
S
2121111 ACACu ⋅⋅⋅⋅++++⋅⋅⋅⋅====
2221212 ACACu ⋅⋅⋅⋅++++⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 12
Unindo as equações (2.15) e (2.16), pode-se, matricialmente escrever:
(2.17)
onde:
{A} é o vetor das ações externas (solicitações);
{u} é o vetor dos deslocamentos nos GL’s 1 e 2;
[C] é a matriz de flexibilidade da estrutura em estudo, de dimensões (2x2),
correspondente ao número de coordenadas utilizadas.
2.3.4 Obtenção da matriz de flexibilidade da estrutura
A matriz de flexibilidade da estrutura pode ser obtida de forma análoga ao apresentado
no item 2.3.2, ou seja, pela conceituação de seus coeficientes, ou pela inversão da matriz de
rigidez, já encontrada.
Invertendo-se a matriz de rigidez (S), obtém-se a matriz de flexibilidade da estrutura:
Muitas vezes é mais fácil determinar inicialmente a matriz de flexibilidade para em
seguida, através da inversão desta, obter a matriz de rigidez, caso por exemplo da
determinação da matriz de rigidez de uma barra com inércia variável.
{{{{ }}}} [[[[ ]]]] {{{{ }}}}ACu
A
A
CC
CC
u
u
⋅⋅⋅⋅====⇒⇒⇒⇒






⋅⋅⋅⋅





====






2
1
2221
1211
2
1
[[[[ ]]]]


















⋅⋅⋅⋅
++++
⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
====
22
2
11
1
11
1
11
1
11
1
AE
L
AE
L
AE
L
AE
L
AE
L
C
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 13
2.3.5 Obtenção da matriz de rigidez mediante discretização da estrutura
A mesma matriz de rigidez já encontrada para a estrutura em questão poderia também
ser obtida mediante analise de cada uma das barras isoladamente, conforme seque.
⇒ Análise da primeira barra
Como a primeira barra apresenta apenas um grau de liberdade coincidente com os graus
de liberdade da estrutura original sua matriz de rigidez será 1 x 1:
⇒ Análise da segunda barra
u1 = 1 ; u2 = 0
u1 = 0 ; u2 = 1
E1A1L1
S11
u1=1
1
11
11
11
111
1 1
L
AE
S
AE
LS
u
⋅⋅⋅⋅
====
====
⋅⋅⋅⋅
⋅⋅⋅⋅
====





 ⋅⋅⋅⋅
====
1
11
1
L
AE
S
E2A2L2
S11
u1=1
S21
2
22
11
22
211
1 1
L
AE
S
AE
LS
u
⋅⋅⋅⋅
====
====
⋅⋅⋅⋅
⋅⋅⋅⋅
====
2
22
21
2111 0
0
L
AE
S
SS
xSii
⋅⋅⋅⋅
−−−−====
====++++
====ΣΣΣΣ
S12
E2A2L2
u2=1
S22
2
22
22
22
222
2 1
L
AE
S
AE
LS
u
⋅⋅⋅⋅
====
====
⋅⋅⋅⋅
⋅⋅⋅⋅
====
2
22
12
2212 0
0
L
AE
S
SS
xSii
⋅⋅⋅⋅
−−−−====
====++++
====ΣΣΣΣ
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 14
Como a segunda barra apresenta dois grau de liberdade coincidentes com os graus de
liberdade da estrutura original sua matriz de rigidez será 2 x 2:
Somando-se as matrizes de rigidez da primeira e da segunda barras tem-se:
Ou seja, chega-se ao mesmo resultado.
Para este exemplo simples talvez a primeira forma para determinação da matriz de
rigidez seja mais simples, porém, para estruturas com grande número de graus de liberdade a
segunda maneira (dividir a estrutura em elementos simples) é, sem dúvida, a melhor opção.
2.4 Obtenção da matriz de rigidez de um elemento de pórtico plano
Um elemento de pórtico plano é na verdade uma barra que possui um nó em cada uma
de suas extremidades. Cada um dos nós de um elemento de pórtico plano apresenta três graus
de liberdade, uma translação vertical, uma translação horizontal e uma rotação. A matriz de
rigidez do elemento será referenciada à um sistema de coordenadas locais, onde o eixo “XL”
coincide com o eixo do elemento, o eixo “YL” é perpendicular à “XL” e o eixo “ZL” é
perpendicular ao plano formado por “XL” e “YL”.












⋅⋅⋅⋅⋅⋅⋅⋅
−−−−
⋅⋅⋅⋅
−−−−
⋅⋅⋅⋅
====
2
22
2
22
2
22
2
22
2
L
AE
L
AE
L
AE
L
AE
S












⋅⋅⋅⋅⋅⋅⋅⋅
−−−−
⋅⋅⋅⋅
−−−−




 ⋅⋅⋅⋅
++++
⋅⋅⋅⋅
====












⋅⋅⋅⋅⋅⋅⋅⋅
−−−−
⋅⋅⋅⋅
−−−−
⋅⋅⋅⋅
++++







 ⋅⋅⋅⋅
====++++
2
22
2
22
2
22
2
22
1
11
2
22
2
22
2
22
2
22
1
11
21
00
0
L
AE
L
AE
L
AE
L
AE
L
AE
L
AE
L
AE
L
AE
L
AE
L
AE
SS
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 15
Sistema local é definido pela incidência do elemento: eiso “XL” de J para K.
Vetor de deslocamentos no sistema local: [uL](6x1)
Ações devido aos deslocamento nodais: [AL] = [SL].[uL]
2.4.1 Cálculo dos coeficientes da matriz de rigidez
Seja o elemento restringido abaixo. Inicialmente vamos determinar as equações que
regem os deslocamentos em uma das extremidades do elemento. Para tanto deve-se considerar
a extremidade em questão não restringida e a partir daí, com auxílio do método da carga
unitária serão definidas as equações.
Liberando os deslocamentos do nó J,
XL
YL
ZL
(i)
uL1
uL4
uL2
uL5
uL3
uL6
J
K
Elemento (i)
nó inicial – J
nó final – K
uL1
uL4
E-A-I
uL5uL2
uL6uL3
LJ K
uL1
uL4
E-A-I
uL5uL2
uL6uL3
L KJ
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 16
cujos graus de liberdade são “uL1, uL2, e uL3”, tem-se:
Aplicando-se cargas unitárias nas direções agora liberadas tem-se os seguintes
diagramas de momentos fletores (DMF’s) e diagramas de esforços normais (DEN’s):
Comparando-se os diagramas obtém-se:
Como não existe carregamento externo na estrutura, os termos δ10, δ20 e δ30 são nulos,
ficando o sistema da seguinte forma:
F1=1
DMF (1)
nulo F1=1 DEN (1)
1
-
DMF (2) nulo
DEN (2)
LF2=1 F2=1
+
1
F3=1
DMF (3)
nulo
DEN (2)
L
-
F3=1
0
0
0
0
00
110
3113
2112
11
====
⋅⋅⋅⋅
++++========
====
⋅⋅⋅⋅
++++
⋅⋅⋅⋅
========
⋅⋅⋅⋅
====
⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
++++
⋅⋅⋅⋅
====
AE
AEIE
AE
L
AE
L
IE
δδδδδδδδ
δδδδδδδδ
δδδδ
IE
L
IE
L
IE
L
IE
LL
IE
L
IE
LLL
⋅⋅⋅⋅
====++++
⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
====
⋅⋅⋅⋅⋅⋅⋅⋅
−−−−====++++
⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
========
⋅⋅⋅⋅⋅⋅⋅⋅
====++++
⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
====
0
11
2
0
2
1
3
0
3
33
2
3223
3
22
δδδδ
δδδδδδδδ
δδδδ
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 17
Lembrando que um coeficiente de rigidez é na verdade uma força que aplicada na
direção de um grau de liberdade causa uma deformação unitária nesta direção, mantidas todas
as demais fixas. Assim, basta impor uma deformação unitária em cada uma das equações
acima mantendo as outras duas nulas e serão obtidos alguns dos coeficientes de rigidez de
rigidez do elemento (a condição de deformações nulas nas direções uL4, uL5 e uL6 é assegurada
pelo engaste).
Impondo uL1 = 1; uL2 = 0 e uL3 = 0; obtém-se: S1 = EA/L; S2 = 0; S3 = 0
Estes coeficientes são devidos à imposição de um deslocamento unitário na direção uL1,
portanto pode-se escrever em lugar de S1, S11, em lugar de S2, S21 e em lugar de S3, S31.
Impondo uL1 = 0; uL2 = 1 e uL3 = 0; obtém-se: S1 = 0; S2 = 12EI/L3
; S3 = 6EI/L2
Ou, de forma análoga, S12 = 0; S22 = 12EI/L3
; S32 = 6EI/L2
, pois estes coeficientes
são devidos à um deslocamento unitário na direção uL2.









====⋅⋅⋅⋅
⋅⋅⋅⋅
++++⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
====⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
++++⋅⋅⋅⋅
====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅
⋅⋅⋅⋅









====⋅⋅⋅⋅
⋅⋅⋅⋅
++++⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
−−−−⋅⋅⋅⋅++++
====⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
++++⋅⋅⋅⋅++++
====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅
⋅⋅⋅⋅
++++





====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅++++
====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅++++
====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅++++
332
2
1
23
2
2
3
1
1321
332
2
1
23
2
2
3
1
1321
333323213130
232322212120
131321211110
2
0
23
0
00
2
00
23
00
000
L
L
L
L
L
L
L
L
L
uS
IE
L
S
IE
L
S
uS
IE
L
S
IE
L
S
uSSS
AE
L
uS
IE
L
S
IE
L
S
uS
IE
L
S
IE
L
S
uSSS
AE
L
uSSS
uSSS
uSSS
δδδδδδδδδδδδδδδδ
δδδδδδδδδδδδδδδδ
δδδδδδδδδδδδδδδδ
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 18
Impondo uL1 = 0; uL2 = 0 e uL3 = 1; obtém-se: S1 = 0; S2 = 6EI/L2
; S3 = 4EI/L
Ou: S13 = 0; S23 = 6EI/L2
; S33 = 4EI/L
Assim ficam determinados todos os coeficientes chamados SJJ, ou seja, os coeficientes
que surgem no nó “J” (esforços) devido à imposição de deformações unitárias neste mesmo
nó.
Resta agora determinar os coeficientes que surgem no nó “K” devido à imposição de
deformações unitárias no nó “J”, ou SKJ, os coeficientes que surgem no nó “K” devido à
imposição de deformações unitárias no nó “K”, ou SKK, e os coeficientes que surgem no nó
“J” devido à imposição de deformações unitárias no nó “K”, ou SJK.
Antes porém, alguns comentários são importantes. Analisando os coeficientes já
determinados pode-se observar que os efeitos causados por deformações axiais interferem nos
efeitos causados por deformações de flexão, e vice-versa, ou seja, as deformações axiais e de
flexão são independentes, desde que sejam verificados pequenos deslocamentos na estrutura
(caso contrário a estrutura apresentará efeitos de segunda ordem, não contemplados no estudo
desta disciplina).
Outra observação que se faz é com relação à simetria dos coeficientes, S23 = S32. Esta é
uma característica das matrizes de rigidez (e de flexibilidade também) em geral, elas são
simétricas, portanto pode-se dizer que SJK = SKJ.
Com estas observações pode-se prosseguir na determinação dos demais coeficientes de
rigidez, da seguinte maneira: inicialmente, por equilíbrio do elemento serão determinados os
coeficientes SJK, na seqüência, por simetria serão determinados os coeficientes SKJ e por fim,
novamente por equilíbrio serão determinados os coeficientes SKK.
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 19
Por equilíbrio encontram-se os coeficientes SKJ à partir de SJJ: (mais 09 coeficientes):
SL41 = - SL11
SL42 = 0
SL43 = 0
SL51 = 0
SL52 = - SL22
SL53 = - SL23
SL61 = 0
SL62 = - SL32 + SL22.L
SL63 = - SL33 + SL23.L
SL5J SL6JSL4J
E-A-I
SL32
SL12
uL2=1
SL42
SL52SL22
SL62
K
J
L
SL65
SL35
SL15
K
J L
E-A-I
SL55SL25
uL5=1
SL45
SL13 SL43
E-A-I
SL53SL23
SL63
SL33
L KJ uL3=1 SL16 SL46
E-A-I
SL56SL26
SL66SL36
L K
J
uL6=1
SL64SL34
SL14
uL4=1
SL44
E-A-I
SL54SL24
L KJ
SL11
uL1=1
SL41
E-A-I
SL51SL21
SL61SL31
L KJ
uL1 = 1 uL4 = 1
uL2 = 1 uL5 = 1
uL3 = 1 uL6 = 1
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 20
Por simetria encontram-se os coeficientes SJK = SKJ: (mais 09 coeficientes):
Por equilíbrio encontram-se os coeficientes SKK à partir de SJK: (mais 09 coeficientes):
Assim, fica determinada a matriz de rigidez de um elemento de pórtico plano:
Para este elemento pode-se agora definir uma correlação entre ações (forças) e
deslocamentos:
SL14 = SL41
SL15 = SL51
SL16 = SL61
SL24 = SL42
SL25 = SL52
SL26 = SL62
SL34 = SL43
SL35 = SL53
SL36 = SL63
SL2K SL3KSL1K
SL44 = - SL14
SL45 = 0
SL46 = 0
SL54 = 0
SL55 = - SL25
SL56 = - SL26
SL64 = 0
SL65 = - SL35 + SL25.L
SL66 = - SL36 + SL26.L
SL5K SL6KSL4K
[[[[ ]]]]






























−−−−
−−−−−−−−−−−−
−−−−
−−−−
−−−−
−−−−
====
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EA
L
EA
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EA
L
EA
S
46
0
26
0
612
0
612
0
0000
26
0
46
0
612
0
612
0
0000
22
2323
22
2323
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 21
(2.18)
Apesar de deduzido para o sistema de coordenadas locais, esta expressão é geral,
portanto válida também para o sistema de coordenadas globais assim como para outros
elementos.
Com o mesmo procedimento adotado, ou então calculando inicialmente a matriz de
flexibilidade e posteriormente invertendo-a pode-se determinar as matrizes de rigidez de
outros elementos estruturais, como o de uma viga, o de uma treliça, entre outros, como pode
ser observado na Tabela 2.1
Tabela 2.1 – Matrizes de rigidez elementares
TRELIÇA
VIGA
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]uSA ⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 22
3 MÉTODO DA RIGIDEZ
3.1 Matriz de rotação de um elemento de pórtico plano
Até agora os tópicos vistos limitaram-se ao sistema de coordenadas locais. Entretanto,
nas estruturas em geral os elementos constituintes não possuem uma mesma inclinação (vigas
e pilares, por exemplo) o que faz com que o sistema local de um não coincida com o sistema
local de outro, sendo então necessário rescrever as matrizes de rigidez dos elementos em
função de um único sistema de coordenadas, o global. Isto será feito com auxílio de uma
matriz chamada matriz de rotação, que será deduzida a seguir, para um elemento de pórtico
plano.
Seja, portanto, um elemento de pórtico plano, cujos nós tem, conforme já citado, três
graus de liberdade, representado abaixo:
Onde θ é o ângulo do eixo global para o eixo local, positivo no sentido anti-horário;
[uL] é o vetor de deslocamentos nodais do elemento no sistema local e
[uG] é o vetor de deslocamentos nodais do elemento no sistema global.
Decompondo [uG] na direção [uL], tem-se:
XG
YG
uG1
uG2
uG3
J
uG4
uG5
uG6
K
Sistema Local Sistema Global
uL4
uL5
uL6
KYL
uL1
uL2
uL3
J
θθθθ(+)
XL
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 23
Estas equações pode ser escritas de forma matricial conforme segue:
ou,
(3.1)
onde [R] é a matriz de rotação do elemento do sistema global para o local.
À partir de (3.1) é possível escrever:
como [R] é uma matriz ortogonal:
logo,
(3.2)
G3L3
G2G1L2
G2G1L1
u=u
cosusenu-=u
sucosu=u
:JnóoPara
θθθθθθθθ
θθθθθθθθ
⋅⋅⋅⋅++++⋅⋅⋅⋅
⋅⋅⋅⋅++++⋅⋅⋅⋅ en
G6L6
G5G4L5
G5G4L4
u=u
cosusenu-=u
sucosu=u
:KnóoPara
θθθθθθθθ
θθθθθθθθ
⋅⋅⋅⋅++++⋅⋅⋅⋅
⋅⋅⋅⋅++++⋅⋅⋅⋅ en


















⋅⋅⋅⋅


















−−−−
−−−−
====


















G6
G5
G4
G3
G2
G1
L6
L5
L4
L3
L2
L1
u
u
u
u
u
u
100000
0cos000
0cos000
000100
0000cos
0000cos
u
u
u
u
u
u
θθθθθθθθ
θθθθθθθθ
θθθθθθθθ
θθθθθθθθ
sen
sen
sen
sen
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL uRu ⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]L
1-
G uRu ⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]]T1-
RR ====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]L
T
G uRu ⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 24
O mesmo resutado obtido com a utilização da matriz de rotação inversa ou transposta
poderá ser obtido com a simples utilização da matriz de rotação, desde que se considere o
ângulo com sinal negativo (- θθθθ)
3.2 Matriz de rigidez de um elemento no sistema global - SG
À partir da expressão dada em (2.18) que informa as ações nas extremidades do
elemento devido aos deslocamentos nodais, apenas (supondo o elemento sem carga), pode-se
dizer que:
(3.3)
e
(3.4)
Assim como os deslocamentos globais e locais, as ações locais e globais também
correlacionam-se pela matriz de rotação [R] pelas seguintes expressões:
(3.5)
(3.6)
Substituindo (3.1) em (3.3) tem-se:
(3.7)
Pré-multiplicando (3.7) por [RT
], tem-se:
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LLL uSA ⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GGG uSA ⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL ARA ⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]L
T
G ARA ⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL uRSA L ⋅⋅⋅⋅⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 25
(3.8)
como,
(3.9)
Substituindo (3.4) em (3.9) tem-se:
(3.10)
Simplificando a expressão (3.10) resulta:
(3.11)
3.3 Vetor de ações nodais equivalentes
Até o presente momento estudou-se a correlação entre deslocamentos nodais e ações
aplicadas nos nós de um elemento estrutural. Esta correlação é expressa no sistema local,
conforme já citado, da seguinte forma:
Ou seja, conhecidos os deslocamentos dos nós é possível determinar as ações atuantes
nestes nós e vice-versa.
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]G
T
L
T
uRSRAR L ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL
T
AAR ====⋅⋅⋅⋅
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]G
T
G uRSRA L ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]G
T
GG uRSRuS L ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]RSRS L
T
G ⋅⋅⋅⋅⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LL uSA L ⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 26
No entanto, toda a dedução até aqui apresentada não levou em consideração a existência
de carregamentos (distribuídos ou concentrados) aplicados ao longo dos elementos. Nestes
casos será necessário calcular as chamadas ações nodais equivalentes e aplicar o princípio da
superposição dos efeitos.
Seja por exemplo o elemento de viga mostrado na Figura 3.1. Nesta figura estão
indicadas as ações (ou reações) de engastamento perfeito do elemento submetido à um
carregamento uniformemente distribuído. Estas ações de engastamento perfeito atuam nas
extremidades do elemento e compõem, juntamente com a parcela de esfoços devidos aos
deslocamentos nodais, as ações totais na extremidade do elemento, conforme indica a equação
(3.12), onde [ALEP] é o vetor de Ações Locais Engastamento Perfeito.
Figura 3.1 – Ações locais de engastamento perfeito - ALEP (elemento de viga)
(3.12)
onde:
[AL] - é o vetor de Ações Locais aplicadas diretamente nos nós;
[ALEP] - é o vetor de Ações Locais de Engastamento Perfeito nas extremidades
do elemento;
[SL]. [uL] - é o vetor de Ações Locais devido aos deslocamentos nodais nas
extremidades do elemento.
A igualdade entre os dois membros indica o equilíbrio entre forças aplicadas nos nós e
forças aplicadas nas extremidades dos elementos.
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LLLEP uSAAL ⋅⋅⋅⋅++++====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 27
Como no processo de resolução de uma estrutura [AL] e [ALEP] são valores conhecidos
e [uL] é a incógnita, é interessante deixar os termos conhecidos no mesmo lados da equação,
que resulta:
(3.13)
Ou seja, passando [ALEP] para o outro lado da equação, obtém-se -[ALEP], que
corresponde a passar as ações das extremidades do elemento para os nós do elemento,
obtendo assim as ações nodais equivalentes, conforme mostra a Figura 3.2
Figura 3.2 – Ações nodais equivalentes – (-ALEP)
Entretanto, a equação de equilíbrio dos nós não é feita no sistema local, e sim no global,
ou seja, deve-se transformar o vetor ações de engastamento perfeito. Esta transformação nada
mais é do que uma rotação do elemento do sistema local para o global, realizada com o
auxílio da matriz de rotação transposta [RT
], definida no item 3.1 para elemento de pórtico
plano.
(3.14)
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LLLEP uSAAL ⋅⋅⋅⋅====−−−−
Ações nos
nós:
(-ALEP)
Ações nos
nós:
(-ALEP)
Ações nas extremidades
do elemento:
(ALEP)
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LEPGEP ARA T
⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 28
O vetor de ações de engastamento perfeito da estrutura [A*
EP] deve ser montado
considerando a influência de todos os elementos constituintes, ou seja:
(3.15)
onde, “nelm” corresponde ao número de elementos da estrutura.
3.4 Sistema de equações de equilíbrio para estrutura não-restritingida (sem apoios)
O sistema de equações de equilíbrio de uma estrutura pode ser escrito como na equação
(3.12), porém agora não mais no sistema local, mas sim de uma forma geral:
(3.16)
onde:
[A] - é o vetor de ações aplicadas nos nós;
[AEP] - é o vetor de ações engastamento perfeito nas extremidades dos
elementos;
[S] - é a matriz de rigidez da estrutura;
[D] - é o vetor de deslocamentos nodais da estrutura;
[S]. [D] - é o vetor de ações devido aos deslocamentos nodais.
A equação (3.16) pode ser rescrita para a estrutura não restringida (sem apoios):
(3.17)
Estes sistemas de equações devem ser considerados no sistema global em relação aos
GL dos nós da estrutura, que devem ser numerados seqüencialmente.
[[[[ ]]]] ∑∑∑∑
====



====
nelm
1i
(i)*
EP GEP
AA
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]DSAA EP ⋅⋅⋅⋅++++====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]****
DSAA EP
⋅⋅⋅⋅++++



====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 29
A montagem da matriz de rigidez da estrutura deve levar em consideração a influência
da matriz de rigidez de todos os elementos no sistema global. A relação entre os GL dos
elementos e os GL da estrutura será feita através da Regra da Correspondência.
3.5 Montagem da matriz de rigidez da estrutura
A matriz de rigidez de uma estrutura é montada a partir das matrizes de rigidez no
sistema global dos elementos que compõem esta estrutura:
(3.18)
onde: “nelm” é o número de elementos da estrutura.
Exemplo: pórtico plano com 04 elementos e 05 nós, portanto, com um total de 15 graus
de liberdade, ou seja, uma matriz de rigidez de15 x 15.
Figura 3.3 – Exemplo de montagem de matriz de rigidez (pórtico plano)
No nó 5 por exemplo, concorrem três elementos, (2), (3) e (4). Destes, o elemento (4)
apresenta sistema local coincidindo com global, os demais necessitam de uma transformação
do vetor de deslocamentos do sistema local para o sistema global.
A direção do GL 15 da estrutura (D15, que é o terceiro grau de liberdade do nó 5),
correspondem as direções:
- 6 do elemento (2); - 3 do elemento (3); - 6 do elemento (4).
[[[[ ]]]] [[[[ ]]]]∑∑∑∑∑∑∑∑
========
⋅⋅⋅⋅



⋅⋅⋅⋅



====



====
nelm
1i
(i)(i)T(i)
nelm
1i
(i)*
RSRSS LG
1 2 3
4 5
1
4
2 3
D2
D1
D3
D5
D6
D4
D14
D13
D15
D11
D12
D10
D8
D7
D9
Z
X
Y
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 30
A direção do GL 13 da estrutura (D13, que é o primeiro grau de liberdade do nó 5),
correspondem as direções:
- 4 do elemento (2); - 1 do elemento (3); - 4 do elemento (4).
Ou seja, o coeficiente S*
15,13 da estrutura corresponde à soma das parcelas SG6,4 do
elemento (2), SG3,1 do elemento (3) e SG6,4 do elemento (4), ou seja:
3.5.1 Regra da correspondência
A regra da correspondência correlaciona a numeração dos deslocamentos das
extremidades dos elementos ( [uG] ), com a numeração dos deslocamentos nodais da estrutura
( [D] ). Em cada elemento (i) os deslocamentos são numerados de 1 ate 2 vezes o número de
graus de liberdade de um nó. Por exemplo, cada nó de um elemento de pórtico plano possui
três graus de liberdade, portanto os deslocamentos são numerados de 1 até 2 x 3, ou seja de 1
até 6.
Nesta disciplina o número de graus de liberdade de um nó será designado por “NGL”,
logo, cada elemento (i) terá seus deslocamentos numerados de 1 até 2 x NGL, sendo que os
deslocamentos do nó inicial “J” serão numerados de 1 até NGL e os do nó final “K” serão
numerados de NGL + 1 até 2 x NGL. Portanto, para um elemento de pórtico plano os
deslocamentos do nó “J” serão numerados de 1 até 3 e os do nó “K” serão numerados de
4 até 6.
Na estrutura, os deslocamentos são numerados na ordem dos nós sendo que, em cada nó
há “NGL” deslocamentos em ordem determinada pelos eixos do sistema global.
Assim, no nó 1 do exemplo da Figura 3.3 (pórtico plano - NGL = 3) os deslocamentos
serão uG1, uG2 e uG3, no nó 2, serão uG4, uG5 e uG6, e assim por diante. No nó 5, portanto, os
deslocamentos serão uG13, uG14 e uG15, conforme pode ser observado na Figura 3.3.
Exemplo – regra da correspondência: pórtico plano
(4)
G
(3)
G
(2)
G
*
15,13 643164
SSSS ++++++++====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 31
Figura 3.4 – Exemplo regra da correspondência (pórtico plano)
Tomando-se como exemplo o elemento 3 que liga o nó J=5 ao nó K=3, tem-se:
Tabela 3.1 – correspondência entre sistemas para elemento 3
GL da estrutura ( [D*
] )
GL do elemento (i) ( [uG] )
(ligando J(i)
a K(i)
)
3J(i) – 2 = 13 1
3J(i) – 1 = 14 2
3J(i) = 15 3
3K(i) – 2 = 7 4
3K(i) – 1 = 8 5
3K(i) = 9 6
Por esta correlação pode-se dizer por exemplo que o coeficiente uG2,6 do elemento
corresponde ao coeficiente S*
14,9 da estrutura, assim como que o coeficiente uG3,1 do elemento
corresponde ao coeficiente S*
15,13 da estrutura, conforme já se havia citado no item 3.5.
Desta forma é possível fazer uso de um vetor que faça a correspondência entre os graus
de liberdade do elemento e da estrutura. Este vetor será chamado de JK e, como já indicado na
Tabela 3.1, é dado por:
1
1
4
X
2
2
4
5
3
3
D11
D12
D10
D14
D15
D13
D5
D6
D4 D7
D8
D9
D2
D3
D1 X
Z
Y
uG3
uG2
J uG1
K
3
uG4
uG6
uG5
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 32
Para montagem da matriz de rigidez de um pórtico plano, pode-se, como sugestão,
adotar o algoritmo apresentado à seguir:
[[[[ ]]]]
(i)
(i),6
(i)
(i),5
(i)
(i),4
(i)
(i),3
(i)
(i),2
(i)
(i),1
(i)
(i)
(i)
(i)
(i)
(i)
(i)
K3JK
1K3JK
2K3JK
J3JK
1J3JK
2J3JK
K3
1K3
2K3
J3
1J3
2J3
JK
⋅⋅⋅⋅====
−−−−⋅⋅⋅⋅====
−−−−⋅⋅⋅⋅====
⋅⋅⋅⋅====
−−−−⋅⋅⋅⋅====
−−−−⋅⋅⋅⋅====
⇒⇒⇒⇒




















⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
====
DE I=1 ATÉ NGL FAZER
DE J=1 ATÉ NGL FAZER
S*
(I,J) = 0
FIM
DE I=1 ATÉ NELM FAZER
MONTAR MATRIZ DE ROTAÇÃO DO ELEMENTO ([R])
MONTAR MATRIZ DE RIGIDEZ LOCAL DO ELEMENTO ([SL])
MONTAR MATRIZ DE RIGIDEZ GLOBAL DO ELEMENTO ([SG])
MONTAR VETOR “JK” DO ELEMENTO ([JK])
DE M=1 ATÉ 6 FAZER
DE N=1 ATÉ 6 FAZER
S*
(JK(I,M),JK(I,N) = S*
(JK(I,M),JK(I,N) + SG (M,N)
FIM
Inicialmente deve-se
varrer a estrutura
zerando a matriz de
rigidez
Um elemento S*
(I,J) é igual a ele mesmo mais a parcela SG
correspondente ao elemento em análise. Isto ocorre porque mais de
um elemento pode contribuir para o termo S*
(I,J),
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 33
Exemplo regra da correspondência: viga contínua – NGL = 2
3.6 Montagem do vetor de ações da estrutura
O vetor de ações da estrutura é constituído pela soma de dois outros vetores, [A*
] (ações
aplicadas diretamente nos nós) e -[A*
EP] (ações provenientes de cargas aplicadas nos
elementos - ações nodais equivalentes).
O vetor [A*
] que está no sistema global está relacionado aos nós da estrutura não
estando vinculado a nenhum elemento específico, já o vetor -[A*
EP] é obtido levando-se em
conta a contribuição de todos os elementos, somando-se os coeficientes [AGEP] dos elementos
que concorrem em um mesmo nó, correspondentes ao mesmo GL deste nó.
A montagem do vetor -[A*
EP] pode ser realizada de forma similar ao apresentado para
montagem da matriz de rigidez (item 3.5), ou seja, com auxílio da regra da correspondência,
através dos vetores JK dos elementos. Assim, para um certo GL “L” do elemento, tem-se que
AGEP(L) vai contribuir para [A*
EP(JK(L))].
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 34
Exemplo: pórtico plano
Considerando o elemento 3 do exemplo do item 3.5.1, agora com carregamento
aplicado no elemento, de acordo com a Figura 3.5.
Figura 3.5 – Exemplo montagem vetor de ações da estrutura
Tem-se:
Supondo o ângulo θ = 315º teríamos como [A(3)
GEP]:
3
J = 5
K = 3
θ
XG
XL
L
qL2/12
q
qL2/12
ql/2
qL/2
3
[ALEP]
AGEP1
AGEP2
AGEP3
AGEP4AGEP5
AGEP6
[AGEP]
3
[[[[ ]]]]


















⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
====
12Lq-
2Lq
0
12Lq
2Lq
0
A
2
2
(3)
LEP
[[[[ ]]]] [[[[ ]]]][[[[ ]]]]


















⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅


















−−−−
−−−−
========
12Lq-
2Lq
0
12Lq
2Lq
0
100000
0cos000
0cos000
000100
0000cos
0000cos
ARA
2
2
(3)
LEP
T(3)
GEP
θθθθθθθθ
θθθθθθθθ
θθθθθθθθ
θθθθθθθθ
sen
sen
sen
sen
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 35
De acordo com o item 3.5.1 o vetor JK deste elemento seria (J = 5; K = 3):
Ou seja, o coeficiente A(3)
GEP1 irá contribuir para o coeficiente A*
EP13 assim como
A(3)
GEP2 contribuirá para A*
EP14, A(3)
GEP3 contribuirá para A*
EP15, A(3)
GEP4 contribuirá para
A*
EP7, A(3)
GEP5 contribuirá para A*
EP8 e A(3)
GEP6 contribuirá para A*
EP9.
Não se pode esquecer que um coeficiente do vetor [A*
EP] deve contemplar os
coeficientes A(i)
GEP de todos os elementos que concorrem naquele nó e naquele grau de
liberdade (cumulatividade).
[[[[ ]]]] [[[[ ]]]][[[[ ]]]]
[[[[ ]]]]


















⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒


















⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
====


















⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅


















−−−−
−−−−
========
6
5
4
3
2
1
12Lq-
2Lq0,707
2Lq0,707
12Lq
2Lq0,707
2Lq0,707
A
12Lq-
2Lq
0
12Lq
2Lq
0
100000
0707,0707,0000
0707,0707,0000
000100
0000707,0707,0
0000707,0707,0
ARA
2
2
(3)
GEP
2
2
(3)
LEP
T(3)
GEP
[[[[ ]]]]


















⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒


















====


















⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
====




















⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
−−−−⋅⋅⋅⋅
====
6
5
4
3
2
1
9
8
7
15
14
13
33
133
233
53
153
253
K3
1K3
2K3
J3
1J3
2J3
JK
(3)
(3)
(3)
(3)
(3)
(3)
(3)
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 36
3.7 Sistema de equações de equilíbrio para a estrutura restringida
3.7.1 Técnica da reordenação
Consiste em renumerar todas as direções de deslocamentos nodais, começando pelas
direções livres e deixando para o final as direções restringidas.
Para utilização desta técnica será necessário estabelecer um índice para direções
restringidas e livres, que será:
direção livre – índice ( 1 )
direção restringida – índice ( 0 )
Será necessário ainda estabelecer para todo sistema o número de direções livres,
chamado NDL, e para cada direção em estudo um Índice de Restrição Acumulado, aqui
chamado IRA. O IRA de uma dada direção é o seu índice de restrição (0 ou 1) somado aos
índices de restrição das direções anteriores.
Assim, as novas direções são:
Direção Nova Livre = Direção Antiga Livre – IRA
Direção Nova Restringida = NDL + IRA
Exemplo: pórtico plano (mesmo exemplo do item 3.5, agora porém, com apoios)
NDL = 7
D2 D5
D1
D3 D6
D4
D8 D9
D9
D7 D8
D10
D11
D10
D12
D14
D13
D15
D14
D12
D11
D15
D13
D1
D2
D3
D4
D5
D6
D7
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 37
A partir deste momento, as linhas e colunas da matriz de rigidez da estrutura, [S*
],
devem ser trocadas, deixando as direções livres no início e as restringidas no final. As novas
direções deverão ser armazenadas em um vetor que as correlacione com as antigas. Como
sugestão este novo vetor poderia chamar-se ND.
Neste ponto torna-se importante salientar que a numeração dos GL’s da estrutura foi
alterada, o que torna necessária a alteração dos vetores JK dos elementos, adequando-os à
nova numeração, pois estes vetores serão utilizados no futuro para determinação dos esforços
nas extremidades dos elementos.
Após isso, o sistema de equações (3.17) pode ser rescrito da seguinte forma:
(3.19)
ou então:
(3.20)
onde:
Direção Antiga Índice de Restrição IRA Direção Nova
1 1 1 7 + 1 = 8
2 1 2 7 + 2 = 9
3 1 3 7 + 3 = 10
4 1 4 7 + 4 = 11
5 1 5 7 + 5 = 12
6 0 5 6 - 5 = 1
7 1 6 7 + 6 = 13
8 1 7 7 + 7 = 14
9 1 8 7 + 8 = 15
10 0 8 10 - 8 = 2
11 0 8 11 - 8 = 3
12 0 8 12 - 8 = 4
13 0 8 13 - 8 = 5
14 0 8 14 - 8 = 6
15 0 8 15 - 8 = 7
[[[[ ]]]] [[[[ ]]]]
[[[[ ]]]] [[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]] 







−−−−








====








⋅⋅⋅⋅








REP,
DEP,
R
D
R
D
RRRD
DRDD
A
A
A
A
D
D
SS
SS
[[[[ ]]]] [[[[ ]]]]
[[[[ ]]]] [[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]]
[[[[ ]]]] 







−−−−








====








⋅⋅⋅⋅








REP,
EP
RRRRD
DR
A
A
Re
A
D
D
SS
SS
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 38
[SDD] ou [S] é a matriz de rigidez da estrutura restringida, com apoios;
[SDR] é a sub-matriz de [S*
] que contém os coeficientes de influência dos deslocamentos
dos nós restringidos sobre as ações nos nós deslocáveis ou livres;
[SRD] é a sub-matriz de [S*
] que contém os coeficientes de influência dos deslocamentos
dos nós livres sobre as reações nos nós restringidos;
[SRR] é a sub-matriz de [S*
] que contém os coeficientes de influência dos deslocamentos
dos nós restringidos sobre as reações nos nós restringidos.
Nos casos práticos mais comuns, ou seja, sem deslocamentos de apoios, com [DR] = 0,
o sistema de equações (3.20) pode ser simplificado e escrito de explicitamente da seguinte
forma:
(3.21)
(3.22)
Resolvendo o sistema de equações (3.21) obtém-se os deslocamentos nodais:
(3.23)
e, a partir destes, obtém-se as reações de apoio:
(3.24)
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]


−−−−====⋅⋅⋅⋅
−−−−====⋅⋅⋅⋅
REP,RD
EP
AReDS
AADS
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]](((( ))))EP
1-
AASD −−−−⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]REP,RD ADSRe ++++⋅⋅⋅⋅====
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 39
3.8 Cálculo dos esforços nas extremidades dos elementos
Estando resolvida a equação (3.23), ou seja, sendo determinados os deslocamentos
globais da estrutura, podem então ser determinados os deslocamentos nodais no sistema
global de cada um dos elementos, portanto “uG”. Para tanto, deve-se utilizar o vetor JK que
correlaciona os deslocamento nodais da estrutura com os deslocamentos nodais (no sistema
global) dos elementos. Antes porém, é necessário que se faça uma alteração dos vetores JK,
adequando-os às novas direções da estrutura, que foram modificadas no momento da
reordenação. Isto pode ser feito com auxílio do vetor ND que correlaciona as novas direções
(após a reordenação) com as antigas (após a reordenação).
Seja por exemplo o elemento 3 do pórtico da Figura 3.3, cujo vetor JK dado na Tabela
3.1 é composto pelos seguintes coeficientes:
JK3
= [13, 14, 15, 7, 8, 9]
O vetor ND da estrutura (obtido após reordenação) é dado pelos seguintes coeficientes:
ND = [8, 9, 10, 11, 12, 1, 13, 14, 15, 2, 3, 4, 5, 6, 7]
ou seja, o GL 13 da estrutura tornou-se, após a reordenação, o GL 5, o GL 14 tornou-se 6 e os
GL’s 15, 7, 8 e 9 tornaram-se respectivamente 7, 13, 14 e 15, portanto, o novo vetor JK do
elemento 3 será composto pelos seguintes elementos:
JK3
= [5, 6, 7, 13, 14, 15]
Assim, o vetor de deslocamento globais do elemento 3 será constituído pelos
deslocamentos D5, D6, D7 ,D13, D14 e D15 da estrutura, ou seja:
uG
3
= [D5, D6, D7 ,D13, D14 e D15]
Análise Matricial de Estruturas
Professor: Jackson Antonio Carelli 40
pois o deslocamento de um nó da estrutura em uma dada direção é igual aos deslocamentos
globais de todos elementos neste mesma direção.
Computacionalmente, a determinação do vetor uG de um determinado elemento pode
ser feita variando-se os graus de liberdade do elemento, L, de 1 a 2NGL e efetuando-se à cada
variação o seguinte cálculo:
uG(L) = D (JK(L))
Obtido o vetor uG do elemento, pode-se agora obter os esforços totais em suas
extremidades no sistema local, AL. Para tanto, deve-se utilizar a equação (3.7) com a devida
adição das ações locais de engastamento perfeito, ou seja:
(equação (3.7))
adicionando-se a esta expressão o vetor de ações de engastamento perfeito [ALEP], tem-se:
(3.25)
Para que todas as operações mencionadas e necessárias ao desenvolvimento de um
programa sejam de realização possível, alguns vetores e algumas matrizes, como por
exemplo, [ALEP], [SL] x [R], [JK], e outros(as), deverão ser armazenadas em memória ou em
disco (em arquivos), sendo a segunda opção mais interessante em função da economia de
memória.
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL uRSA L ⋅⋅⋅⋅⋅⋅⋅⋅====
[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LEPGL AuRSA L ++++⋅⋅⋅⋅⋅⋅⋅⋅====

Mais conteúdo relacionado

Mais procurados

Apostila eng2031
Apostila eng2031Apostila eng2031
Apostila eng2031Rosa Faria
 
Exercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulicaExercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulicaSérgio Lessa
 
Resistencia dos materiais tensão e deformação
Resistencia dos materiais   tensão e deformaçãoResistencia dos materiais   tensão e deformação
Resistencia dos materiais tensão e deformaçãoDouglas Mota
 
Solução listaexercicios 1º bimestre_2-2016_concretoii
Solução listaexercicios 1º bimestre_2-2016_concretoiiSolução listaexercicios 1º bimestre_2-2016_concretoii
Solução listaexercicios 1º bimestre_2-2016_concretoiiroger forte
 
Manual-de-Boas-Praticas-Montagem-Armaduras-Estruturas-Concreto-Armado-1ed-V2.pdf
Manual-de-Boas-Praticas-Montagem-Armaduras-Estruturas-Concreto-Armado-1ed-V2.pdfManual-de-Boas-Praticas-Montagem-Armaduras-Estruturas-Concreto-Armado-1ed-V2.pdf
Manual-de-Boas-Praticas-Montagem-Armaduras-Estruturas-Concreto-Armado-1ed-V2.pdfFabioGomes457158
 
resumao resistencia dos materiais
resumao resistencia dos materiaisresumao resistencia dos materiais
resumao resistencia dos materiaisEclys Montenegro
 
Apostila resistencia dos_materiais_parte_1
Apostila resistencia dos_materiais_parte_1Apostila resistencia dos_materiais_parte_1
Apostila resistencia dos_materiais_parte_1Hudson Luiz Pissini
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidoswedson Oliveira
 
Apostila aeroportos ufsc
Apostila aeroportos ufscApostila aeroportos ufsc
Apostila aeroportos ufscFabricio Daiany
 
8 tensoes principais(cargas combinadas)
8 tensoes principais(cargas combinadas)8 tensoes principais(cargas combinadas)
8 tensoes principais(cargas combinadas)Keliane Pires
 
Exercícios de torque
Exercícios de torqueExercícios de torque
Exercícios de torqueRobsoncn
 
Tabela de conversao de unidades
Tabela de conversao de unidadesTabela de conversao de unidades
Tabela de conversao de unidadesCaesar Davinci
 
Resistência dos materiais r. c. hibbeler
Resistência dos materiais   r. c. hibbelerResistência dos materiais   r. c. hibbeler
Resistência dos materiais r. c. hibbelerMeireles01
 
Resistência dos materiais
Resistência dos materiaisResistência dos materiais
Resistência dos materiaisAndrew Cass
 
Apostila Teoria das Estruturas
Apostila Teoria das EstruturasApostila Teoria das Estruturas
Apostila Teoria das EstruturasEngenheiro Civil
 

Mais procurados (20)

Apostila eng2031
Apostila eng2031Apostila eng2031
Apostila eng2031
 
Exercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulicaExercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulica
 
Resistencia dos materiais tensão e deformação
Resistencia dos materiais   tensão e deformaçãoResistencia dos materiais   tensão e deformação
Resistencia dos materiais tensão e deformação
 
Solução listaexercicios 1º bimestre_2-2016_concretoii
Solução listaexercicios 1º bimestre_2-2016_concretoiiSolução listaexercicios 1º bimestre_2-2016_concretoii
Solução listaexercicios 1º bimestre_2-2016_concretoii
 
Manual-de-Boas-Praticas-Montagem-Armaduras-Estruturas-Concreto-Armado-1ed-V2.pdf
Manual-de-Boas-Praticas-Montagem-Armaduras-Estruturas-Concreto-Armado-1ed-V2.pdfManual-de-Boas-Praticas-Montagem-Armaduras-Estruturas-Concreto-Armado-1ed-V2.pdf
Manual-de-Boas-Praticas-Montagem-Armaduras-Estruturas-Concreto-Armado-1ed-V2.pdf
 
resumao resistencia dos materiais
resumao resistencia dos materiaisresumao resistencia dos materiais
resumao resistencia dos materiais
 
Lajes
LajesLajes
Lajes
 
Apostila resistencia dos_materiais_parte_1
Apostila resistencia dos_materiais_parte_1Apostila resistencia dos_materiais_parte_1
Apostila resistencia dos_materiais_parte_1
 
Resistência dos Materiais II
Resistência dos Materiais IIResistência dos Materiais II
Resistência dos Materiais II
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidos
 
Apostila aeroportos ufsc
Apostila aeroportos ufscApostila aeroportos ufsc
Apostila aeroportos ufsc
 
8 tensoes principais(cargas combinadas)
8 tensoes principais(cargas combinadas)8 tensoes principais(cargas combinadas)
8 tensoes principais(cargas combinadas)
 
Exercícios de torque
Exercícios de torqueExercícios de torque
Exercícios de torque
 
172023544 vigas
172023544 vigas172023544 vigas
172023544 vigas
 
Tabela de conversao de unidades
Tabela de conversao de unidadesTabela de conversao de unidades
Tabela de conversao de unidades
 
Tabela derivadas e integrais
Tabela derivadas e integraisTabela derivadas e integrais
Tabela derivadas e integrais
 
Resistência dos materiais r. c. hibbeler
Resistência dos materiais   r. c. hibbelerResistência dos materiais   r. c. hibbeler
Resistência dos materiais r. c. hibbeler
 
Resistência dos materiais
Resistência dos materiaisResistência dos materiais
Resistência dos materiais
 
Apostila Teoria das Estruturas
Apostila Teoria das EstruturasApostila Teoria das Estruturas
Apostila Teoria das Estruturas
 
VIGAS-Flexao simples-exemplo completo
VIGAS-Flexao simples-exemplo completoVIGAS-Flexao simples-exemplo completo
VIGAS-Flexao simples-exemplo completo
 

Semelhante a Apostila de análise matricial de estruturas (1)

Semelhante a Apostila de análise matricial de estruturas (1) (20)

Análise estrutural i
Análise estrutural iAnálise estrutural i
Análise estrutural i
 
Nao linear 2016
Nao linear 2016Nao linear 2016
Nao linear 2016
 
Dinamica (1)
Dinamica (1)Dinamica (1)
Dinamica (1)
 
Analise estrutural marcos
Analise estrutural marcosAnalise estrutural marcos
Analise estrutural marcos
 
Aeer análise elástica de estruturas reticuladas
Aeer   análise elástica de estruturas reticuladasAeer   análise elástica de estruturas reticuladas
Aeer análise elástica de estruturas reticuladas
 
Analise de Estruturas
Analise de Estruturas Analise de Estruturas
Analise de Estruturas
 
Wxt
WxtWxt
Wxt
 
Mecânica básica i (3a. edição)
Mecânica básica i (3a. edição)Mecânica básica i (3a. edição)
Mecânica básica i (3a. edição)
 
Talita resmin
Talita resmin Talita resmin
Talita resmin
 
Fenômenos de transporte mecânica dos fluidos e da transferência de calor
Fenômenos de transporte   mecânica dos fluidos e da transferência de calorFenômenos de transporte   mecânica dos fluidos e da transferência de calor
Fenômenos de transporte mecânica dos fluidos e da transferência de calor
 
Apostila ft-2008-pucmg
Apostila ft-2008-pucmgApostila ft-2008-pucmg
Apostila ft-2008-pucmg
 
Paalga
PaalgaPaalga
Paalga
 
Dissertation: Genetic Algorithms as a pre processing strategy for imbalanced ...
Dissertation: Genetic Algorithms as a pre processing strategy for imbalanced ...Dissertation: Genetic Algorithms as a pre processing strategy for imbalanced ...
Dissertation: Genetic Algorithms as a pre processing strategy for imbalanced ...
 
Dissertação Mestrado
Dissertação MestradoDissertação Mestrado
Dissertação Mestrado
 
Apostila estatistica
Apostila estatisticaApostila estatistica
Apostila estatistica
 
Ap
ApAp
Ap
 
Apostila_de_Resistencia_dos_Materiais.pdf
Apostila_de_Resistencia_dos_Materiais.pdfApostila_de_Resistencia_dos_Materiais.pdf
Apostila_de_Resistencia_dos_Materiais.pdf
 
Fismat apostila
Fismat apostilaFismat apostila
Fismat apostila
 
Residuos
ResiduosResiduos
Residuos
 
101545233 exercicios-resolvidos-de-sinais-e-sistemas
101545233 exercicios-resolvidos-de-sinais-e-sistemas101545233 exercicios-resolvidos-de-sinais-e-sistemas
101545233 exercicios-resolvidos-de-sinais-e-sistemas
 

Apostila de análise matricial de estruturas (1)

  • 1. UNIVERSIDADE DO OESTE DE SANTA CATARINA – UNOESC ÁREA DAS CIÊNCIAS EXATAS E DA TERRA CURSO: ENGENHARIA CIVIL DISCIPLINA: ANÁLISE MATRICIAL DE ESTRUTURAS PROFESSOR: JACKSON ANTONIO CARELLI ANÁLISE MATRICIAL DE ESTRUTURAS
  • 2. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli i  SUMÁRIO  LISTA DE FIGURAS .............................................................................................................iv LISTA DE TABELAS.............................................................................................................. v 1 INTRODUÇÃO ................................................................................................................ 1 1.1 Análise estrutural............................................................................................................ 1 1.2 Análise matricial de estruturas ....................................................................................... 1 1.3 Idealização estrutural...................................................................................................... 2 1.3.1 Definições............................................................................................................. 2 1.4 Divisão em elementos .................................................................................................... 3 1.5 Sistemas de coordenadas................................................................................................ 4 1.6 Método das forças e método dos deslocamentos ........................................................... 4 1.6.1 Método das forças (método da flexibilidade)....................................................... 4 1.6.2 Método dos deslocamentos (método da rigidez).................................................. 5 2 MATRIZES DE RIGIDEZ E FLEXIBILIDADE......................................................... 6 2.1 Relação entre ações e deslocamentos............................................................................. 6 2.1.1 Equação da força em termos do deslocamento .................................................... 6 2.1.2 Equação do deslocamento em termos da força .................................................... 6
  • 3. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli ii 2.1.3 Relação entre rigidez e flexibilidade.................................................................... 7 2.2 Definições....................................................................................................................... 8 2.3 Exemplo de discretização de uma barra contínua composta por duas hastes e solicitada por esforço normal................................................................................................................ 9 2.3.1 Forças em função dos deslocamentos .................................................................. 9 2.3.2 Obtenção da matriz de rigidez da estrutura........................................................ 10 2.3.3 Deslocamentos em função das forças................................................................. 11 2.3.4 Obtenção da matriz de flexibilidade da estrutura............................................... 12 2.3.5 Obtenção da matriz de rigidez mediante discretização da estrutura .................. 13 2.4 Obtenção da matriz de rigidez de um elemento de pórtico plano ................................ 14 2.4.1 Cálculo dos coeficientes da matriz de rigidez.................................................... 15 3 MÉTODO DA RIGIDEZ............................................................................................... 22 3.1 Matriz de rotação de um elemento de pórtico plano .................................................... 22 3.2 Matriz de rigidez de um elemento no sistema global - SG ........................................... 24 3.3 Vetor de ações nodais equivalentes.............................................................................. 25 3.4 Sistema de equações de equilíbrio para estrutura não-restritingida (sem apoios)........ 28 3.5 Montagem da matriz de rigidez da estrutura................................................................ 29 3.5.1 Regra da correspondência .................................................................................. 30 3.6 Montagem do vetor de ações da estrutura.................................................................... 33 3.7 Sistema de equações de equilíbrio para a estrutura restringida.................................... 36 3.7.1 Técnica da reordenação...................................................................................... 36 3.8 Cálculo dos esforços nas extremidades dos elementos................................................ 39
  • 4. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli iii
  • 5. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli iv  LISTA DE FIGURAS  Figura 1.1 – Estrutura contínua e discretizada ........................................................................... 3 Figura 1.2 – Inserção de nó fictício............................................................................................ 3 Figura 2.1 – Coeficientes de rigidez em barra composta por duas hastes e solicitada por esforço normal.................................................................................................................... 9 Figura 3.1 – Ações locais de engastamento perfeito - ALEP (elemento de viga)...................... 26 Figura 3.2 – Ações nodais equivalentes – (-ALEP) ................................................................... 27 Figura 3.3 – Exemplo de montagem de matriz de rigidez (pórtico plano)............................... 29 Figura 3.4 – Exemplo regra da correspondência (pórtico plano)............................................. 31 Figura 3.5 – Exemplo montagem vetor de ações da estrutura ................................................. 34
  • 6. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli v  LISTA DE TABELAS  Tabela 2.1 – Matrizes de rigidez elementares.......................................................................... 21 Tabela 3.1 – correspondência entre sistemas para elemento 3................................................. 31
  • 7. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 1 1 INTRODUÇÃO 1.1 Análise estrutural Definido o sistema construtivo e o material a ser empregado, a análise estrutural e a primeira etapa de um projeto estrutural. O objetivo da análise estrutural e, à partir de uma estrutura, com características geométricas e mecânicas conhecidas, submetida a ações (cargas ou deformações impostas), determinar os deslocamentos (translações e /ou rotações) de todos os seus pontos, os esforços internos e as reações de apoio. A análise estrutural é classificada como linear, quando a estrutura tem comportamento linear, e não-linear, em caso contrário. Para que uma estrutura tenha comportamento linear, ela deve sofrer pequenos deslocamentos e deformações específicas e seu material deve ser elástico-linear (validade da Lei de Hooke). Isto permite a aplicação do princípio da “superposição dos efeitos”. 1.2 Análise matricial de estruturas A análise matricial de estruturas é um tópico da análise estrutural, em que as equações que regem o problema a resolver são formuladas matricialmente, sejam equações de equilíbrio de forças ou de compatibilidade de deformações, dependendo do método utilizado (método das forças ou método dos deslocamentos), sendo o método dos deslocamentos o mais adequado para implementação computacional. O objetivo desta disciplina é a modelagem e análise estática linear de estruturas reticuladas(constituídas por elementos onde uma dimensão predomina em relação às outras duas – barras), utilizando principalmente o método dos deslocamentos com formulação matricial, capacitando os alunos a utilizar de maneira racional os programas de análise estrutural e a desenvolverem seus próprios programas.
  • 8. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 2 1.3 Idealização estrutural 1.3.1 Definições ⇒ Graus de liberdade São as variáveis envolvidas no processo de análise de uma estrutura. Quando se trata do método dos deslocamento, por exemplo, os graus de liberdade são as deformações (deslocamentos e/ou rotações) dos nós da estrutura. ⇒ Sistemas contínuos Sistemas contínuos são aqueles compostos por uma infinidade de pontos materiais e que possuem portanto um número infinito de graus de liberdade. ⇒ Sistemas discretos Sistemas discretos são aqueles que possuem um número finito de pontos materiais e portanto um número finito de graus de liberdade. A maioria das estruturas consistem de uma montagem de diferentes elementos estruturais conectados entre si por ligações contínuas ou discretas. O passo mais importante na análise matricial de estruturas é a formulação de um modelo matemático de elementos discretos equivalente à estrutura contínua real. Este modelo é necessário a fim de se obter um sistema com um número finito de variáveis (graus de liberdade) nos quais as operações de álgebra matricial poderão ser realizadas. À formulação de tal modelo chama-se de idealização estrutural.
  • 9. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 3 Estrutura contínua Estrutura discretizada Figura 1.1 – Estrutura contínua e discretizada 1.4 Divisão em elementos As estruturas estudadas nesta disciplina serão divididas em elementos de dimensão finita, ligados entre si por pontos nodais (nós) aonde se supõem concentradas todas as forças de ligação entre elementos. As ações e deslocamentos serão discretizados nos nós e a composição destes elementos para constituir a estrutura resultará em um sistema de equações algébricas que será tratado matricialmente. Em geral um nó é constituído pelas ligações entre barras, extremidades livres, pontos de vinculação, no entanto, um nó fictício poderá, por conveniência do problema, ser inserido em qualquer ponto da estrutura, por exemplo no meio de uma barra qualquer (neste caso estaríamos dividindo a barra em duas). Figura 1.2 – Inserção de nó fictício 5 6 4 Nó fictício
  • 10. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 4 1.5 Sistemas de coordenadas Com o fim de identificar e ordenar matricialmente as ações mecânicas (forças e momentos) e os deslocamentos (lineares ou angulares) existentes nos nós de uma estrutura integrada (montada, contínua) ou nas extremidades de um elemento (isolado, quando subdividida a estrutura – “estrutura discretizada”), torna-se imprescindível a determinação de um sistema de coordenadas arbitrário. Na verdade, serão necessários dois sistemas de coordenadas chamados de Sistema de Coordenadas Globais e Sistema de Coordenadas Locais. O sistema de coordenadas globais refere-se aos graus de liberdade da estrutura como um todo, ou seja estrutura montada, já o sistema de coordenadas locais refere-se aos graus de liberdade dos elementos discretizados, ou seja, das partes da estrutura. 1.6 Método das forças e método dos deslocamentos 1.6.1 Método das forças (método da flexibilidade) No método das forças determinam-se diretamente os esforços (forças) e indiretamente, isto é, a partir destes, os deslocamentos. Este método pode ser usado para analisar qualquer estrutura hiperestática, ou seja, qualquer estrutura estaticamente indeterminada. A estrutura é modificada por meio de liberações ou cortes, tornado-a isostática (este sistema é chamado de principal) O sistema de equações que resolve o problema á constituído por equações de compatibilidade de deformações; as incógnitas são os esforços nas liberações ou cortes. O número de equações (incógnitas) é igual ao grau de hiperestaticidade da estrutura. Para analisar uma estrutura podem ser adotados uma infinidade de sistemas principais. A a escolha do sistema mais conveniente depende da experiência do analista.
  • 11. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 5 1.6.2 Método dos deslocamentos (método da rigidez) Neste método determina-se inicialmente os deslocamentos e indiretamente, por meio destes, os esforços. Este método pode ser usado para analisar qualquer estrutura isostática ou hiperestática. A única estrutura que não pode ser resolvida por este método é a composta de uma única barra bi-engastada. A estrutura é modificada introduzindo-se fixações de forma a torná-la cinematicamente determinada (sistema principal). O sistema de equações que resolve o problema é constituído por equações de equilíbrio de forças em torno destas fixações. As incógnitas são os respectivos deslocamentos (rotações e/ou translações). No caso de estruturas reticuladas, o único sistema principal possível é obtido pela fixação de todos os deslocamentos possíveis dos nós (denominados graus de liberdade). O número de equações é igual ao grau de indeterminação da estrutura, ou seja, é igula ao número de graus de liberdade da estrutura. Adotando-se este sistema principal único desaparece o problema da escolha do sistema principal do Método das Forças, por este motivo o Método dos Deslocamentos é o mais adequado, e praticamente o único utilizado para implementação computacional em Análise de Estruturas.
  • 12. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 6 2 MATRIZES DE RIGIDEZ E FLEXIBILIDADE 2.1 Relação entre ações e deslocamentos 2.1.1 Equação da força em termos do deslocamento (2.1) Onde a rigidez da mola (k) é a força por unidade de deslocamento, ou seja, é a força requerida para produzir um deslocamento unitário na mola. 2.1.2 Equação do deslocamento em termos da força (2.2) u=δδδδ Fu ⋅⋅⋅⋅==== δδδδ ukF ⋅⋅⋅⋅====
  • 13. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 7 Onde δ é a deformabilidade da mola, geralmente chamada de flexibilidade, sendo o deslocamento por unidade de força, ou seja, é o deslocamento produzido pela aplicação de uma força de valor unitário. 2.1.3 Relação entre rigidez e flexibilidade (2.3) Se ao invés de uma mola tivermos uma barra contínua (como a viga de um edifício, por exemplo), porém discretizada, ou seja, com um número finito de graus de liberdade (neste caso apenas um) de acordo com a resistência dos materiais podemos dizer: (2.4) (2.5) Comparando-se (2.4) com (2.5) tem-se: (2.6) (2.7) Substituindo-se (2.7) em (2.6) tem-se: (2.8) k 1 ====δδδδ εεεεσσσσ ⋅⋅⋅⋅==== E A F ====σσσσ εεεε⋅⋅⋅⋅==== E A F L u l l ==== ∆∆∆∆ ==== 0 εεεε L u E A F ⋅⋅⋅⋅====
  • 14. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 8 Ou: (2.9) Comparando-se (2.9) com (2.1) conclui-se que o coeficiente de rigidez da barra é: (2.10) Logo, o coeficiente de flexibilidade da barra é dado por: (2.11) Nesta disciplina será adotada a seguinte notação: o termo coeficiente de rigidez será indicado pela letra “S” e o coeficiente de flexibilidade pela letra “C” 2.2 Definições ⇒ Sij – Coeficiente de rigidez: Representa a ação (força) na direção i causado por um deslocamento unitário na direção j (enquanto todos os outros deslocamentos são impostos como nulos). ⇒ Cij – Coeficiente de flexibilidade: Representa o deslocamento na direção i causado por uma ação (força) de valor unitário na direção j (enquanto todas as outras são nulas). u L AE F ⋅⋅⋅⋅ ⋅⋅⋅⋅ ==== L AE k ⋅⋅⋅⋅ ==== AE L ⋅⋅⋅⋅ ====δδδδ
  • 15. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 9 2.3 Exemplo de discretização de uma barra contínua composta por duas hastes e solicitada por esforço normal 2.3.1 Forças em função dos deslocamentos Figura 2.1 – Coeficientes de rigidez em barra composta por duas hastes e solicitada por esforço normal Neste caso são conhecidas as ações que atuam nas coordenadas 1 e 2 (A1 e A2) e os coeficientes de rigidez (S11, S12, S21 e S22), que devem ser obtidos previamente, desejando-se obter os deslocamento nas coordenadas 1 e 2 (u1 e u2). Para que o nó da coordenada 1 esteja em equilíbrio a força externa deve ser igual ao somatório das forças internas resultantes dos deslocamentos ocorridos ao longo da estrutura, ou seja: (2.12) O mesmo pode ser dito com relação ao nó da coordenada 2: (2.13) E2A2L2 S11 S22 S12 S21 u1=1 u2=0 u2=1 u1=0 Sistema de coordenadas globais Coeficientes de rigidez (Sij) Coeficientes de rigidez (Sij) 2121111 uSuSA ⋅⋅⋅⋅++++⋅⋅⋅⋅==== 2221212 uSuSA ⋅⋅⋅⋅++++⋅⋅⋅⋅====
  • 16. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 10 Unindo as equações (2.12) e (2.13), pode-se, matricialmente escrever: (2.14) onde: {A} é o vetor das ações externas (solicitações); {u} é o vetor dos deslocamentos nos GL’s 1 e 2; [S] é a matriz de rigidez da estrutura em estudo, de dimensões (2x2), correspondente ao número de coordenadas utilizadas. A matriz de rigidez é uma matriz de transformação linear: transforma o vetor dos deslocamentos no vetor das ações. 2.3.2 Obtenção da matriz de rigidez da estrutura A matriz de rigidez da estrutura pode ser obtida pela conceituação de seus coeficientes, e das relações existentes na haste submetida à carregamentos axiais. S11 - é a força na coordenada 1 decorrente da imposição de um deslocamento unitário também na coordenada 1, mantendo-se as demais coordenadas restringidas. S21 - é a força na coordenada 2 decorrente da imposição de um deslocamento unitário na coordenada 1, mantendo-se as demais coordenadas restringidas. {{{{ }}}} [[[[ ]]]] {{{{ }}}}uSA u u SS SS A A ⋅⋅⋅⋅====⇒⇒⇒⇒       ⋅⋅⋅⋅      ====       2 1 2221 1211 2 1       ⋅⋅⋅⋅ ++++      ⋅⋅⋅⋅ ====⇒⇒⇒⇒    ==== ==== 2 22 1 11 11 2 1 0 1 L AE L AE S u u       ⋅⋅⋅⋅ −−−−====⇒⇒⇒⇒    ==== ==== 2 22 21 2 1 0 1 L AE S u u
  • 17. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 11 S12 - é a força na coordenada 1 decorrente da imposição de um deslocamento unitário na coordenada 2, mantendo-se as demais coordenadas restringidas. S22 - é a força na coordenada 2 decorrente da imposição de um deslocamento unitário na coordenada 2, mantendo-se as demais coordenadas restringidas. Obtendo-se assim a matriz de rigidez da estrutura: 2.3.3 Deslocamentos em função das forças No item 2.3.1 foram determinadas as forças (ou ações) da estrutura em estudo em função dos deslocamentos. De forma análoga pode-se determinar os deslocamentos em função das forças. Neste caso, ao invés da imposição de um deslocamento unitário com posterior determinação das forças equivalentes, deve-se impor uma força unitária com posterior determinação dos deslocamentos equivalentes. Desta forma chega-se às seguintes equações de equilíbrio para os nós da estrutura: (2.15) (2.16)       ⋅⋅⋅⋅ −−−−====⇒⇒⇒⇒    ==== ==== 2 22 12 2 1 1 0 L AE S u u       ⋅⋅⋅⋅ ====⇒⇒⇒⇒    ==== ==== 2 22 22 2 1 1 0 L AE S u u [[[[ ]]]]             ⋅⋅⋅⋅⋅⋅⋅⋅ −−−− ⋅⋅⋅⋅ −−−−      ⋅⋅⋅⋅ ++++ ⋅⋅⋅⋅ ==== 2 22 2 22 2 22 2 22 1 11 L AE L AE L AE L AE L AE S 2121111 ACACu ⋅⋅⋅⋅++++⋅⋅⋅⋅==== 2221212 ACACu ⋅⋅⋅⋅++++⋅⋅⋅⋅====
  • 18. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 12 Unindo as equações (2.15) e (2.16), pode-se, matricialmente escrever: (2.17) onde: {A} é o vetor das ações externas (solicitações); {u} é o vetor dos deslocamentos nos GL’s 1 e 2; [C] é a matriz de flexibilidade da estrutura em estudo, de dimensões (2x2), correspondente ao número de coordenadas utilizadas. 2.3.4 Obtenção da matriz de flexibilidade da estrutura A matriz de flexibilidade da estrutura pode ser obtida de forma análoga ao apresentado no item 2.3.2, ou seja, pela conceituação de seus coeficientes, ou pela inversão da matriz de rigidez, já encontrada. Invertendo-se a matriz de rigidez (S), obtém-se a matriz de flexibilidade da estrutura: Muitas vezes é mais fácil determinar inicialmente a matriz de flexibilidade para em seguida, através da inversão desta, obter a matriz de rigidez, caso por exemplo da determinação da matriz de rigidez de uma barra com inércia variável. {{{{ }}}} [[[[ ]]]] {{{{ }}}}ACu A A CC CC u u ⋅⋅⋅⋅====⇒⇒⇒⇒       ⋅⋅⋅⋅      ====       2 1 2221 1211 2 1 [[[[ ]]]]                   ⋅⋅⋅⋅ ++++ ⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ==== 22 2 11 1 11 1 11 1 11 1 AE L AE L AE L AE L AE L C
  • 19. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 13 2.3.5 Obtenção da matriz de rigidez mediante discretização da estrutura A mesma matriz de rigidez já encontrada para a estrutura em questão poderia também ser obtida mediante analise de cada uma das barras isoladamente, conforme seque. ⇒ Análise da primeira barra Como a primeira barra apresenta apenas um grau de liberdade coincidente com os graus de liberdade da estrutura original sua matriz de rigidez será 1 x 1: ⇒ Análise da segunda barra u1 = 1 ; u2 = 0 u1 = 0 ; u2 = 1 E1A1L1 S11 u1=1 1 11 11 11 111 1 1 L AE S AE LS u ⋅⋅⋅⋅ ==== ==== ⋅⋅⋅⋅ ⋅⋅⋅⋅ ====       ⋅⋅⋅⋅ ==== 1 11 1 L AE S E2A2L2 S11 u1=1 S21 2 22 11 22 211 1 1 L AE S AE LS u ⋅⋅⋅⋅ ==== ==== ⋅⋅⋅⋅ ⋅⋅⋅⋅ ==== 2 22 21 2111 0 0 L AE S SS xSii ⋅⋅⋅⋅ −−−−==== ====++++ ====ΣΣΣΣ S12 E2A2L2 u2=1 S22 2 22 22 22 222 2 1 L AE S AE LS u ⋅⋅⋅⋅ ==== ==== ⋅⋅⋅⋅ ⋅⋅⋅⋅ ==== 2 22 12 2212 0 0 L AE S SS xSii ⋅⋅⋅⋅ −−−−==== ====++++ ====ΣΣΣΣ
  • 20. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 14 Como a segunda barra apresenta dois grau de liberdade coincidentes com os graus de liberdade da estrutura original sua matriz de rigidez será 2 x 2: Somando-se as matrizes de rigidez da primeira e da segunda barras tem-se: Ou seja, chega-se ao mesmo resultado. Para este exemplo simples talvez a primeira forma para determinação da matriz de rigidez seja mais simples, porém, para estruturas com grande número de graus de liberdade a segunda maneira (dividir a estrutura em elementos simples) é, sem dúvida, a melhor opção. 2.4 Obtenção da matriz de rigidez de um elemento de pórtico plano Um elemento de pórtico plano é na verdade uma barra que possui um nó em cada uma de suas extremidades. Cada um dos nós de um elemento de pórtico plano apresenta três graus de liberdade, uma translação vertical, uma translação horizontal e uma rotação. A matriz de rigidez do elemento será referenciada à um sistema de coordenadas locais, onde o eixo “XL” coincide com o eixo do elemento, o eixo “YL” é perpendicular à “XL” e o eixo “ZL” é perpendicular ao plano formado por “XL” e “YL”.             ⋅⋅⋅⋅⋅⋅⋅⋅ −−−− ⋅⋅⋅⋅ −−−− ⋅⋅⋅⋅ ==== 2 22 2 22 2 22 2 22 2 L AE L AE L AE L AE S             ⋅⋅⋅⋅⋅⋅⋅⋅ −−−− ⋅⋅⋅⋅ −−−−      ⋅⋅⋅⋅ ++++ ⋅⋅⋅⋅ ====             ⋅⋅⋅⋅⋅⋅⋅⋅ −−−− ⋅⋅⋅⋅ −−−− ⋅⋅⋅⋅ ++++         ⋅⋅⋅⋅ ====++++ 2 22 2 22 2 22 2 22 1 11 2 22 2 22 2 22 2 22 1 11 21 00 0 L AE L AE L AE L AE L AE L AE L AE L AE L AE L AE SS
  • 21. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 15 Sistema local é definido pela incidência do elemento: eiso “XL” de J para K. Vetor de deslocamentos no sistema local: [uL](6x1) Ações devido aos deslocamento nodais: [AL] = [SL].[uL] 2.4.1 Cálculo dos coeficientes da matriz de rigidez Seja o elemento restringido abaixo. Inicialmente vamos determinar as equações que regem os deslocamentos em uma das extremidades do elemento. Para tanto deve-se considerar a extremidade em questão não restringida e a partir daí, com auxílio do método da carga unitária serão definidas as equações. Liberando os deslocamentos do nó J, XL YL ZL (i) uL1 uL4 uL2 uL5 uL3 uL6 J K Elemento (i) nó inicial – J nó final – K uL1 uL4 E-A-I uL5uL2 uL6uL3 LJ K uL1 uL4 E-A-I uL5uL2 uL6uL3 L KJ
  • 22. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 16 cujos graus de liberdade são “uL1, uL2, e uL3”, tem-se: Aplicando-se cargas unitárias nas direções agora liberadas tem-se os seguintes diagramas de momentos fletores (DMF’s) e diagramas de esforços normais (DEN’s): Comparando-se os diagramas obtém-se: Como não existe carregamento externo na estrutura, os termos δ10, δ20 e δ30 são nulos, ficando o sistema da seguinte forma: F1=1 DMF (1) nulo F1=1 DEN (1) 1 - DMF (2) nulo DEN (2) LF2=1 F2=1 + 1 F3=1 DMF (3) nulo DEN (2) L - F3=1 0 0 0 0 00 110 3113 2112 11 ==== ⋅⋅⋅⋅ ++++======== ==== ⋅⋅⋅⋅ ++++ ⋅⋅⋅⋅ ======== ⋅⋅⋅⋅ ==== ⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ++++ ⋅⋅⋅⋅ ==== AE AEIE AE L AE L IE δδδδδδδδ δδδδδδδδ δδδδ IE L IE L IE L IE LL IE L IE LLL ⋅⋅⋅⋅ ====++++ ⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ==== ⋅⋅⋅⋅⋅⋅⋅⋅ −−−−====++++ ⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ======== ⋅⋅⋅⋅⋅⋅⋅⋅ ====++++ ⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ==== 0 11 2 0 2 1 3 0 3 33 2 3223 3 22 δδδδ δδδδδδδδ δδδδ
  • 23. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 17 Lembrando que um coeficiente de rigidez é na verdade uma força que aplicada na direção de um grau de liberdade causa uma deformação unitária nesta direção, mantidas todas as demais fixas. Assim, basta impor uma deformação unitária em cada uma das equações acima mantendo as outras duas nulas e serão obtidos alguns dos coeficientes de rigidez de rigidez do elemento (a condição de deformações nulas nas direções uL4, uL5 e uL6 é assegurada pelo engaste). Impondo uL1 = 1; uL2 = 0 e uL3 = 0; obtém-se: S1 = EA/L; S2 = 0; S3 = 0 Estes coeficientes são devidos à imposição de um deslocamento unitário na direção uL1, portanto pode-se escrever em lugar de S1, S11, em lugar de S2, S21 e em lugar de S3, S31. Impondo uL1 = 0; uL2 = 1 e uL3 = 0; obtém-se: S1 = 0; S2 = 12EI/L3 ; S3 = 6EI/L2 Ou, de forma análoga, S12 = 0; S22 = 12EI/L3 ; S32 = 6EI/L2 , pois estes coeficientes são devidos à um deslocamento unitário na direção uL2.          ====⋅⋅⋅⋅ ⋅⋅⋅⋅ ++++⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ====⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ++++⋅⋅⋅⋅ ====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅ ⋅⋅⋅⋅          ====⋅⋅⋅⋅ ⋅⋅⋅⋅ ++++⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ −−−−⋅⋅⋅⋅++++ ====⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ++++⋅⋅⋅⋅++++ ====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅ ⋅⋅⋅⋅ ++++      ====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅++++ ====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅++++ ====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅++++ 332 2 1 23 2 2 3 1 1321 332 2 1 23 2 2 3 1 1321 333323213130 232322212120 131321211110 2 0 23 0 00 2 00 23 00 000 L L L L L L L L L uS IE L S IE L S uS IE L S IE L S uSSS AE L uS IE L S IE L S uS IE L S IE L S uSSS AE L uSSS uSSS uSSS δδδδδδδδδδδδδδδδ δδδδδδδδδδδδδδδδ δδδδδδδδδδδδδδδδ
  • 24. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 18 Impondo uL1 = 0; uL2 = 0 e uL3 = 1; obtém-se: S1 = 0; S2 = 6EI/L2 ; S3 = 4EI/L Ou: S13 = 0; S23 = 6EI/L2 ; S33 = 4EI/L Assim ficam determinados todos os coeficientes chamados SJJ, ou seja, os coeficientes que surgem no nó “J” (esforços) devido à imposição de deformações unitárias neste mesmo nó. Resta agora determinar os coeficientes que surgem no nó “K” devido à imposição de deformações unitárias no nó “J”, ou SKJ, os coeficientes que surgem no nó “K” devido à imposição de deformações unitárias no nó “K”, ou SKK, e os coeficientes que surgem no nó “J” devido à imposição de deformações unitárias no nó “K”, ou SJK. Antes porém, alguns comentários são importantes. Analisando os coeficientes já determinados pode-se observar que os efeitos causados por deformações axiais interferem nos efeitos causados por deformações de flexão, e vice-versa, ou seja, as deformações axiais e de flexão são independentes, desde que sejam verificados pequenos deslocamentos na estrutura (caso contrário a estrutura apresentará efeitos de segunda ordem, não contemplados no estudo desta disciplina). Outra observação que se faz é com relação à simetria dos coeficientes, S23 = S32. Esta é uma característica das matrizes de rigidez (e de flexibilidade também) em geral, elas são simétricas, portanto pode-se dizer que SJK = SKJ. Com estas observações pode-se prosseguir na determinação dos demais coeficientes de rigidez, da seguinte maneira: inicialmente, por equilíbrio do elemento serão determinados os coeficientes SJK, na seqüência, por simetria serão determinados os coeficientes SKJ e por fim, novamente por equilíbrio serão determinados os coeficientes SKK.
  • 25. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 19 Por equilíbrio encontram-se os coeficientes SKJ à partir de SJJ: (mais 09 coeficientes): SL41 = - SL11 SL42 = 0 SL43 = 0 SL51 = 0 SL52 = - SL22 SL53 = - SL23 SL61 = 0 SL62 = - SL32 + SL22.L SL63 = - SL33 + SL23.L SL5J SL6JSL4J E-A-I SL32 SL12 uL2=1 SL42 SL52SL22 SL62 K J L SL65 SL35 SL15 K J L E-A-I SL55SL25 uL5=1 SL45 SL13 SL43 E-A-I SL53SL23 SL63 SL33 L KJ uL3=1 SL16 SL46 E-A-I SL56SL26 SL66SL36 L K J uL6=1 SL64SL34 SL14 uL4=1 SL44 E-A-I SL54SL24 L KJ SL11 uL1=1 SL41 E-A-I SL51SL21 SL61SL31 L KJ uL1 = 1 uL4 = 1 uL2 = 1 uL5 = 1 uL3 = 1 uL6 = 1
  • 26. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 20 Por simetria encontram-se os coeficientes SJK = SKJ: (mais 09 coeficientes): Por equilíbrio encontram-se os coeficientes SKK à partir de SJK: (mais 09 coeficientes): Assim, fica determinada a matriz de rigidez de um elemento de pórtico plano: Para este elemento pode-se agora definir uma correlação entre ações (forças) e deslocamentos: SL14 = SL41 SL15 = SL51 SL16 = SL61 SL24 = SL42 SL25 = SL52 SL26 = SL62 SL34 = SL43 SL35 = SL53 SL36 = SL63 SL2K SL3KSL1K SL44 = - SL14 SL45 = 0 SL46 = 0 SL54 = 0 SL55 = - SL25 SL56 = - SL26 SL64 = 0 SL65 = - SL35 + SL25.L SL66 = - SL36 + SL26.L SL5K SL6KSL4K [[[[ ]]]]                               −−−− −−−−−−−−−−−− −−−− −−−− −−−− −−−− ==== L EI L EI L EI L EI L EI L EI L EI L EI L EA L EA L EI L EI L EI L EI L EI L EI L EI L EI L EA L EA S 46 0 26 0 612 0 612 0 0000 26 0 46 0 612 0 612 0 0000 22 2323 22 2323
  • 27. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 21 (2.18) Apesar de deduzido para o sistema de coordenadas locais, esta expressão é geral, portanto válida também para o sistema de coordenadas globais assim como para outros elementos. Com o mesmo procedimento adotado, ou então calculando inicialmente a matriz de flexibilidade e posteriormente invertendo-a pode-se determinar as matrizes de rigidez de outros elementos estruturais, como o de uma viga, o de uma treliça, entre outros, como pode ser observado na Tabela 2.1 Tabela 2.1 – Matrizes de rigidez elementares TRELIÇA VIGA [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]uSA ⋅⋅⋅⋅====
  • 28. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 22 3 MÉTODO DA RIGIDEZ 3.1 Matriz de rotação de um elemento de pórtico plano Até agora os tópicos vistos limitaram-se ao sistema de coordenadas locais. Entretanto, nas estruturas em geral os elementos constituintes não possuem uma mesma inclinação (vigas e pilares, por exemplo) o que faz com que o sistema local de um não coincida com o sistema local de outro, sendo então necessário rescrever as matrizes de rigidez dos elementos em função de um único sistema de coordenadas, o global. Isto será feito com auxílio de uma matriz chamada matriz de rotação, que será deduzida a seguir, para um elemento de pórtico plano. Seja, portanto, um elemento de pórtico plano, cujos nós tem, conforme já citado, três graus de liberdade, representado abaixo: Onde θ é o ângulo do eixo global para o eixo local, positivo no sentido anti-horário; [uL] é o vetor de deslocamentos nodais do elemento no sistema local e [uG] é o vetor de deslocamentos nodais do elemento no sistema global. Decompondo [uG] na direção [uL], tem-se: XG YG uG1 uG2 uG3 J uG4 uG5 uG6 K Sistema Local Sistema Global uL4 uL5 uL6 KYL uL1 uL2 uL3 J θθθθ(+) XL
  • 29. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 23 Estas equações pode ser escritas de forma matricial conforme segue: ou, (3.1) onde [R] é a matriz de rotação do elemento do sistema global para o local. À partir de (3.1) é possível escrever: como [R] é uma matriz ortogonal: logo, (3.2) G3L3 G2G1L2 G2G1L1 u=u cosusenu-=u sucosu=u :JnóoPara θθθθθθθθ θθθθθθθθ ⋅⋅⋅⋅++++⋅⋅⋅⋅ ⋅⋅⋅⋅++++⋅⋅⋅⋅ en G6L6 G5G4L5 G5G4L4 u=u cosusenu-=u sucosu=u :KnóoPara θθθθθθθθ θθθθθθθθ ⋅⋅⋅⋅++++⋅⋅⋅⋅ ⋅⋅⋅⋅++++⋅⋅⋅⋅ en                   ⋅⋅⋅⋅                   −−−− −−−− ====                   G6 G5 G4 G3 G2 G1 L6 L5 L4 L3 L2 L1 u u u u u u 100000 0cos000 0cos000 000100 0000cos 0000cos u u u u u u θθθθθθθθ θθθθθθθθ θθθθθθθθ θθθθθθθθ sen sen sen sen [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL uRu ⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]L 1- G uRu ⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]]T1- RR ==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]L T G uRu ⋅⋅⋅⋅====
  • 30. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 24 O mesmo resutado obtido com a utilização da matriz de rotação inversa ou transposta poderá ser obtido com a simples utilização da matriz de rotação, desde que se considere o ângulo com sinal negativo (- θθθθ) 3.2 Matriz de rigidez de um elemento no sistema global - SG À partir da expressão dada em (2.18) que informa as ações nas extremidades do elemento devido aos deslocamentos nodais, apenas (supondo o elemento sem carga), pode-se dizer que: (3.3) e (3.4) Assim como os deslocamentos globais e locais, as ações locais e globais também correlacionam-se pela matriz de rotação [R] pelas seguintes expressões: (3.5) (3.6) Substituindo (3.1) em (3.3) tem-se: (3.7) Pré-multiplicando (3.7) por [RT ], tem-se: [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LLL uSA ⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GGG uSA ⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL ARA ⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]L T G ARA ⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL uRSA L ⋅⋅⋅⋅⋅⋅⋅⋅====
  • 31. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 25 (3.8) como, (3.9) Substituindo (3.4) em (3.9) tem-se: (3.10) Simplificando a expressão (3.10) resulta: (3.11) 3.3 Vetor de ações nodais equivalentes Até o presente momento estudou-se a correlação entre deslocamentos nodais e ações aplicadas nos nós de um elemento estrutural. Esta correlação é expressa no sistema local, conforme já citado, da seguinte forma: Ou seja, conhecidos os deslocamentos dos nós é possível determinar as ações atuantes nestes nós e vice-versa. [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]G T L T uRSRAR L ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅ [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL T AAR ====⋅⋅⋅⋅ [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]G T G uRSRA L ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]G T GG uRSRuS L ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅ [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]RSRS L T G ⋅⋅⋅⋅⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LL uSA L ⋅⋅⋅⋅====
  • 32. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 26 No entanto, toda a dedução até aqui apresentada não levou em consideração a existência de carregamentos (distribuídos ou concentrados) aplicados ao longo dos elementos. Nestes casos será necessário calcular as chamadas ações nodais equivalentes e aplicar o princípio da superposição dos efeitos. Seja por exemplo o elemento de viga mostrado na Figura 3.1. Nesta figura estão indicadas as ações (ou reações) de engastamento perfeito do elemento submetido à um carregamento uniformemente distribuído. Estas ações de engastamento perfeito atuam nas extremidades do elemento e compõem, juntamente com a parcela de esfoços devidos aos deslocamentos nodais, as ações totais na extremidade do elemento, conforme indica a equação (3.12), onde [ALEP] é o vetor de Ações Locais Engastamento Perfeito. Figura 3.1 – Ações locais de engastamento perfeito - ALEP (elemento de viga) (3.12) onde: [AL] - é o vetor de Ações Locais aplicadas diretamente nos nós; [ALEP] - é o vetor de Ações Locais de Engastamento Perfeito nas extremidades do elemento; [SL]. [uL] - é o vetor de Ações Locais devido aos deslocamentos nodais nas extremidades do elemento. A igualdade entre os dois membros indica o equilíbrio entre forças aplicadas nos nós e forças aplicadas nas extremidades dos elementos. [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LLLEP uSAAL ⋅⋅⋅⋅++++====
  • 33. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 27 Como no processo de resolução de uma estrutura [AL] e [ALEP] são valores conhecidos e [uL] é a incógnita, é interessante deixar os termos conhecidos no mesmo lados da equação, que resulta: (3.13) Ou seja, passando [ALEP] para o outro lado da equação, obtém-se -[ALEP], que corresponde a passar as ações das extremidades do elemento para os nós do elemento, obtendo assim as ações nodais equivalentes, conforme mostra a Figura 3.2 Figura 3.2 – Ações nodais equivalentes – (-ALEP) Entretanto, a equação de equilíbrio dos nós não é feita no sistema local, e sim no global, ou seja, deve-se transformar o vetor ações de engastamento perfeito. Esta transformação nada mais é do que uma rotação do elemento do sistema local para o global, realizada com o auxílio da matriz de rotação transposta [RT ], definida no item 3.1 para elemento de pórtico plano. (3.14) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LLLEP uSAAL ⋅⋅⋅⋅====−−−− Ações nos nós: (-ALEP) Ações nos nós: (-ALEP) Ações nas extremidades do elemento: (ALEP) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LEPGEP ARA T ⋅⋅⋅⋅====
  • 34. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 28 O vetor de ações de engastamento perfeito da estrutura [A* EP] deve ser montado considerando a influência de todos os elementos constituintes, ou seja: (3.15) onde, “nelm” corresponde ao número de elementos da estrutura. 3.4 Sistema de equações de equilíbrio para estrutura não-restritingida (sem apoios) O sistema de equações de equilíbrio de uma estrutura pode ser escrito como na equação (3.12), porém agora não mais no sistema local, mas sim de uma forma geral: (3.16) onde: [A] - é o vetor de ações aplicadas nos nós; [AEP] - é o vetor de ações engastamento perfeito nas extremidades dos elementos; [S] - é a matriz de rigidez da estrutura; [D] - é o vetor de deslocamentos nodais da estrutura; [S]. [D] - é o vetor de ações devido aos deslocamentos nodais. A equação (3.16) pode ser rescrita para a estrutura não restringida (sem apoios): (3.17) Estes sistemas de equações devem ser considerados no sistema global em relação aos GL dos nós da estrutura, que devem ser numerados seqüencialmente. [[[[ ]]]] ∑∑∑∑ ====    ==== nelm 1i (i)* EP GEP AA [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]DSAA EP ⋅⋅⋅⋅++++==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]**** DSAA EP ⋅⋅⋅⋅++++    ====
  • 35. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 29 A montagem da matriz de rigidez da estrutura deve levar em consideração a influência da matriz de rigidez de todos os elementos no sistema global. A relação entre os GL dos elementos e os GL da estrutura será feita através da Regra da Correspondência. 3.5 Montagem da matriz de rigidez da estrutura A matriz de rigidez de uma estrutura é montada a partir das matrizes de rigidez no sistema global dos elementos que compõem esta estrutura: (3.18) onde: “nelm” é o número de elementos da estrutura. Exemplo: pórtico plano com 04 elementos e 05 nós, portanto, com um total de 15 graus de liberdade, ou seja, uma matriz de rigidez de15 x 15. Figura 3.3 – Exemplo de montagem de matriz de rigidez (pórtico plano) No nó 5 por exemplo, concorrem três elementos, (2), (3) e (4). Destes, o elemento (4) apresenta sistema local coincidindo com global, os demais necessitam de uma transformação do vetor de deslocamentos do sistema local para o sistema global. A direção do GL 15 da estrutura (D15, que é o terceiro grau de liberdade do nó 5), correspondem as direções: - 6 do elemento (2); - 3 do elemento (3); - 6 do elemento (4). [[[[ ]]]] [[[[ ]]]]∑∑∑∑∑∑∑∑ ======== ⋅⋅⋅⋅    ⋅⋅⋅⋅    ====    ==== nelm 1i (i)(i)T(i) nelm 1i (i)* RSRSS LG 1 2 3 4 5 1 4 2 3 D2 D1 D3 D5 D6 D4 D14 D13 D15 D11 D12 D10 D8 D7 D9 Z X Y
  • 36. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 30 A direção do GL 13 da estrutura (D13, que é o primeiro grau de liberdade do nó 5), correspondem as direções: - 4 do elemento (2); - 1 do elemento (3); - 4 do elemento (4). Ou seja, o coeficiente S* 15,13 da estrutura corresponde à soma das parcelas SG6,4 do elemento (2), SG3,1 do elemento (3) e SG6,4 do elemento (4), ou seja: 3.5.1 Regra da correspondência A regra da correspondência correlaciona a numeração dos deslocamentos das extremidades dos elementos ( [uG] ), com a numeração dos deslocamentos nodais da estrutura ( [D] ). Em cada elemento (i) os deslocamentos são numerados de 1 ate 2 vezes o número de graus de liberdade de um nó. Por exemplo, cada nó de um elemento de pórtico plano possui três graus de liberdade, portanto os deslocamentos são numerados de 1 até 2 x 3, ou seja de 1 até 6. Nesta disciplina o número de graus de liberdade de um nó será designado por “NGL”, logo, cada elemento (i) terá seus deslocamentos numerados de 1 até 2 x NGL, sendo que os deslocamentos do nó inicial “J” serão numerados de 1 até NGL e os do nó final “K” serão numerados de NGL + 1 até 2 x NGL. Portanto, para um elemento de pórtico plano os deslocamentos do nó “J” serão numerados de 1 até 3 e os do nó “K” serão numerados de 4 até 6. Na estrutura, os deslocamentos são numerados na ordem dos nós sendo que, em cada nó há “NGL” deslocamentos em ordem determinada pelos eixos do sistema global. Assim, no nó 1 do exemplo da Figura 3.3 (pórtico plano - NGL = 3) os deslocamentos serão uG1, uG2 e uG3, no nó 2, serão uG4, uG5 e uG6, e assim por diante. No nó 5, portanto, os deslocamentos serão uG13, uG14 e uG15, conforme pode ser observado na Figura 3.3. Exemplo – regra da correspondência: pórtico plano (4) G (3) G (2) G * 15,13 643164 SSSS ++++++++====
  • 37. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 31 Figura 3.4 – Exemplo regra da correspondência (pórtico plano) Tomando-se como exemplo o elemento 3 que liga o nó J=5 ao nó K=3, tem-se: Tabela 3.1 – correspondência entre sistemas para elemento 3 GL da estrutura ( [D* ] ) GL do elemento (i) ( [uG] ) (ligando J(i) a K(i) ) 3J(i) – 2 = 13 1 3J(i) – 1 = 14 2 3J(i) = 15 3 3K(i) – 2 = 7 4 3K(i) – 1 = 8 5 3K(i) = 9 6 Por esta correlação pode-se dizer por exemplo que o coeficiente uG2,6 do elemento corresponde ao coeficiente S* 14,9 da estrutura, assim como que o coeficiente uG3,1 do elemento corresponde ao coeficiente S* 15,13 da estrutura, conforme já se havia citado no item 3.5. Desta forma é possível fazer uso de um vetor que faça a correspondência entre os graus de liberdade do elemento e da estrutura. Este vetor será chamado de JK e, como já indicado na Tabela 3.1, é dado por: 1 1 4 X 2 2 4 5 3 3 D11 D12 D10 D14 D15 D13 D5 D6 D4 D7 D8 D9 D2 D3 D1 X Z Y uG3 uG2 J uG1 K 3 uG4 uG6 uG5
  • 38. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 32 Para montagem da matriz de rigidez de um pórtico plano, pode-se, como sugestão, adotar o algoritmo apresentado à seguir: [[[[ ]]]] (i) (i),6 (i) (i),5 (i) (i),4 (i) (i),3 (i) (i),2 (i) (i),1 (i) (i) (i) (i) (i) (i) (i) K3JK 1K3JK 2K3JK J3JK 1J3JK 2J3JK K3 1K3 2K3 J3 1J3 2J3 JK ⋅⋅⋅⋅==== −−−−⋅⋅⋅⋅==== −−−−⋅⋅⋅⋅==== ⋅⋅⋅⋅==== −−−−⋅⋅⋅⋅==== −−−−⋅⋅⋅⋅==== ⇒⇒⇒⇒                     ⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ==== DE I=1 ATÉ NGL FAZER DE J=1 ATÉ NGL FAZER S* (I,J) = 0 FIM DE I=1 ATÉ NELM FAZER MONTAR MATRIZ DE ROTAÇÃO DO ELEMENTO ([R]) MONTAR MATRIZ DE RIGIDEZ LOCAL DO ELEMENTO ([SL]) MONTAR MATRIZ DE RIGIDEZ GLOBAL DO ELEMENTO ([SG]) MONTAR VETOR “JK” DO ELEMENTO ([JK]) DE M=1 ATÉ 6 FAZER DE N=1 ATÉ 6 FAZER S* (JK(I,M),JK(I,N) = S* (JK(I,M),JK(I,N) + SG (M,N) FIM Inicialmente deve-se varrer a estrutura zerando a matriz de rigidez Um elemento S* (I,J) é igual a ele mesmo mais a parcela SG correspondente ao elemento em análise. Isto ocorre porque mais de um elemento pode contribuir para o termo S* (I,J),
  • 39. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 33 Exemplo regra da correspondência: viga contínua – NGL = 2 3.6 Montagem do vetor de ações da estrutura O vetor de ações da estrutura é constituído pela soma de dois outros vetores, [A* ] (ações aplicadas diretamente nos nós) e -[A* EP] (ações provenientes de cargas aplicadas nos elementos - ações nodais equivalentes). O vetor [A* ] que está no sistema global está relacionado aos nós da estrutura não estando vinculado a nenhum elemento específico, já o vetor -[A* EP] é obtido levando-se em conta a contribuição de todos os elementos, somando-se os coeficientes [AGEP] dos elementos que concorrem em um mesmo nó, correspondentes ao mesmo GL deste nó. A montagem do vetor -[A* EP] pode ser realizada de forma similar ao apresentado para montagem da matriz de rigidez (item 3.5), ou seja, com auxílio da regra da correspondência, através dos vetores JK dos elementos. Assim, para um certo GL “L” do elemento, tem-se que AGEP(L) vai contribuir para [A* EP(JK(L))].
  • 40. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 34 Exemplo: pórtico plano Considerando o elemento 3 do exemplo do item 3.5.1, agora com carregamento aplicado no elemento, de acordo com a Figura 3.5. Figura 3.5 – Exemplo montagem vetor de ações da estrutura Tem-se: Supondo o ângulo θ = 315º teríamos como [A(3) GEP]: 3 J = 5 K = 3 θ XG XL L qL2/12 q qL2/12 ql/2 qL/2 3 [ALEP] AGEP1 AGEP2 AGEP3 AGEP4AGEP5 AGEP6 [AGEP] 3 [[[[ ]]]]                   ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ==== 12Lq- 2Lq 0 12Lq 2Lq 0 A 2 2 (3) LEP [[[[ ]]]] [[[[ ]]]][[[[ ]]]]                   ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅                   −−−− −−−− ======== 12Lq- 2Lq 0 12Lq 2Lq 0 100000 0cos000 0cos000 000100 0000cos 0000cos ARA 2 2 (3) LEP T(3) GEP θθθθθθθθ θθθθθθθθ θθθθθθθθ θθθθθθθθ sen sen sen sen
  • 41. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 35 De acordo com o item 3.5.1 o vetor JK deste elemento seria (J = 5; K = 3): Ou seja, o coeficiente A(3) GEP1 irá contribuir para o coeficiente A* EP13 assim como A(3) GEP2 contribuirá para A* EP14, A(3) GEP3 contribuirá para A* EP15, A(3) GEP4 contribuirá para A* EP7, A(3) GEP5 contribuirá para A* EP8 e A(3) GEP6 contribuirá para A* EP9. Não se pode esquecer que um coeficiente do vetor [A* EP] deve contemplar os coeficientes A(i) GEP de todos os elementos que concorrem naquele nó e naquele grau de liberdade (cumulatividade). [[[[ ]]]] [[[[ ]]]][[[[ ]]]] [[[[ ]]]]                   ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒                   ⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅ ====                   ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅                   −−−− −−−− ======== 6 5 4 3 2 1 12Lq- 2Lq0,707 2Lq0,707 12Lq 2Lq0,707 2Lq0,707 A 12Lq- 2Lq 0 12Lq 2Lq 0 100000 0707,0707,0000 0707,0707,0000 000100 0000707,0707,0 0000707,0707,0 ARA 2 2 (3) GEP 2 2 (3) LEP T(3) GEP [[[[ ]]]]                   ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒                   ====                   ⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ====                     ⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ −−−−⋅⋅⋅⋅ ==== 6 5 4 3 2 1 9 8 7 15 14 13 33 133 233 53 153 253 K3 1K3 2K3 J3 1J3 2J3 JK (3) (3) (3) (3) (3) (3) (3)
  • 42. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 36 3.7 Sistema de equações de equilíbrio para a estrutura restringida 3.7.1 Técnica da reordenação Consiste em renumerar todas as direções de deslocamentos nodais, começando pelas direções livres e deixando para o final as direções restringidas. Para utilização desta técnica será necessário estabelecer um índice para direções restringidas e livres, que será: direção livre – índice ( 1 ) direção restringida – índice ( 0 ) Será necessário ainda estabelecer para todo sistema o número de direções livres, chamado NDL, e para cada direção em estudo um Índice de Restrição Acumulado, aqui chamado IRA. O IRA de uma dada direção é o seu índice de restrição (0 ou 1) somado aos índices de restrição das direções anteriores. Assim, as novas direções são: Direção Nova Livre = Direção Antiga Livre – IRA Direção Nova Restringida = NDL + IRA Exemplo: pórtico plano (mesmo exemplo do item 3.5, agora porém, com apoios) NDL = 7 D2 D5 D1 D3 D6 D4 D8 D9 D9 D7 D8 D10 D11 D10 D12 D14 D13 D15 D14 D12 D11 D15 D13 D1 D2 D3 D4 D5 D6 D7
  • 43. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 37 A partir deste momento, as linhas e colunas da matriz de rigidez da estrutura, [S* ], devem ser trocadas, deixando as direções livres no início e as restringidas no final. As novas direções deverão ser armazenadas em um vetor que as correlacione com as antigas. Como sugestão este novo vetor poderia chamar-se ND. Neste ponto torna-se importante salientar que a numeração dos GL’s da estrutura foi alterada, o que torna necessária a alteração dos vetores JK dos elementos, adequando-os à nova numeração, pois estes vetores serão utilizados no futuro para determinação dos esforços nas extremidades dos elementos. Após isso, o sistema de equações (3.17) pode ser rescrito da seguinte forma: (3.19) ou então: (3.20) onde: Direção Antiga Índice de Restrição IRA Direção Nova 1 1 1 7 + 1 = 8 2 1 2 7 + 2 = 9 3 1 3 7 + 3 = 10 4 1 4 7 + 4 = 11 5 1 5 7 + 5 = 12 6 0 5 6 - 5 = 1 7 1 6 7 + 6 = 13 8 1 7 7 + 7 = 14 9 1 8 7 + 8 = 15 10 0 8 10 - 8 = 2 11 0 8 11 - 8 = 3 12 0 8 12 - 8 = 4 13 0 8 13 - 8 = 5 14 0 8 14 - 8 = 6 15 0 8 15 - 8 = 7 [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]         −−−−         ====         ⋅⋅⋅⋅         REP, DEP, R D R D RRRD DRDD A A A A D D SS SS [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]         −−−−         ====         ⋅⋅⋅⋅         REP, EP RRRRD DR A A Re A D D SS SS
  • 44. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 38 [SDD] ou [S] é a matriz de rigidez da estrutura restringida, com apoios; [SDR] é a sub-matriz de [S* ] que contém os coeficientes de influência dos deslocamentos dos nós restringidos sobre as ações nos nós deslocáveis ou livres; [SRD] é a sub-matriz de [S* ] que contém os coeficientes de influência dos deslocamentos dos nós livres sobre as reações nos nós restringidos; [SRR] é a sub-matriz de [S* ] que contém os coeficientes de influência dos deslocamentos dos nós restringidos sobre as reações nos nós restringidos. Nos casos práticos mais comuns, ou seja, sem deslocamentos de apoios, com [DR] = 0, o sistema de equações (3.20) pode ser simplificado e escrito de explicitamente da seguinte forma: (3.21) (3.22) Resolvendo o sistema de equações (3.21) obtém-se os deslocamentos nodais: (3.23) e, a partir destes, obtém-se as reações de apoio: (3.24) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]   −−−−====⋅⋅⋅⋅ −−−−====⋅⋅⋅⋅ REP,RD EP AReDS AADS [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]](((( ))))EP 1- AASD −−−−⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]REP,RD ADSRe ++++⋅⋅⋅⋅====
  • 45. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 39 3.8 Cálculo dos esforços nas extremidades dos elementos Estando resolvida a equação (3.23), ou seja, sendo determinados os deslocamentos globais da estrutura, podem então ser determinados os deslocamentos nodais no sistema global de cada um dos elementos, portanto “uG”. Para tanto, deve-se utilizar o vetor JK que correlaciona os deslocamento nodais da estrutura com os deslocamentos nodais (no sistema global) dos elementos. Antes porém, é necessário que se faça uma alteração dos vetores JK, adequando-os às novas direções da estrutura, que foram modificadas no momento da reordenação. Isto pode ser feito com auxílio do vetor ND que correlaciona as novas direções (após a reordenação) com as antigas (após a reordenação). Seja por exemplo o elemento 3 do pórtico da Figura 3.3, cujo vetor JK dado na Tabela 3.1 é composto pelos seguintes coeficientes: JK3 = [13, 14, 15, 7, 8, 9] O vetor ND da estrutura (obtido após reordenação) é dado pelos seguintes coeficientes: ND = [8, 9, 10, 11, 12, 1, 13, 14, 15, 2, 3, 4, 5, 6, 7] ou seja, o GL 13 da estrutura tornou-se, após a reordenação, o GL 5, o GL 14 tornou-se 6 e os GL’s 15, 7, 8 e 9 tornaram-se respectivamente 7, 13, 14 e 15, portanto, o novo vetor JK do elemento 3 será composto pelos seguintes elementos: JK3 = [5, 6, 7, 13, 14, 15] Assim, o vetor de deslocamento globais do elemento 3 será constituído pelos deslocamentos D5, D6, D7 ,D13, D14 e D15 da estrutura, ou seja: uG 3 = [D5, D6, D7 ,D13, D14 e D15]
  • 46. Análise Matricial de Estruturas Professor: Jackson Antonio Carelli 40 pois o deslocamento de um nó da estrutura em uma dada direção é igual aos deslocamentos globais de todos elementos neste mesma direção. Computacionalmente, a determinação do vetor uG de um determinado elemento pode ser feita variando-se os graus de liberdade do elemento, L, de 1 a 2NGL e efetuando-se à cada variação o seguinte cálculo: uG(L) = D (JK(L)) Obtido o vetor uG do elemento, pode-se agora obter os esforços totais em suas extremidades no sistema local, AL. Para tanto, deve-se utilizar a equação (3.7) com a devida adição das ações locais de engastamento perfeito, ou seja: (equação (3.7)) adicionando-se a esta expressão o vetor de ações de engastamento perfeito [ALEP], tem-se: (3.25) Para que todas as operações mencionadas e necessárias ao desenvolvimento de um programa sejam de realização possível, alguns vetores e algumas matrizes, como por exemplo, [ALEP], [SL] x [R], [JK], e outros(as), deverão ser armazenadas em memória ou em disco (em arquivos), sendo a segunda opção mais interessante em função da economia de memória. [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]GL uRSA L ⋅⋅⋅⋅⋅⋅⋅⋅==== [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]LEPGL AuRSA L ++++⋅⋅⋅⋅⋅⋅⋅⋅====