SlideShare uma empresa Scribd logo
1 de 101
Baixar para ler offline
INSTITUTO FEDERAL SUL-RIO-GRANDENSE
CURSO TÉCNICO DE ELETROTÉCNICA
APOSTILA DE TRANSFORMADORES I
PROF. ADILSON MELCHEQUE TAVARES
PROF. RODRIGO MOTTA DE AZEVEDO
2011
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
2
NOME:_____________________________________________________________
TURMA:_____________________MÓDULO/SEMESTRE:__________________
ENDEREÇO:________________________________________________________
TELEFONE:_________________________________________________________
E-MAIL:____________________________________________________________
PROVAS:
1° ETAPA:
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
2° ETAPA:
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
TRABALHOS:
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
ANOTAÇÕES:
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
Transformadores / Prof. Rodrigo Motta de Azevedo
3
Sumário
CAPÍTULO I – FUNDAMENTOS DE TRANSFORMADORES.............................................6
1. INTRODUÇÃO ..............................................................................................................6
1.1 PRINCÍPIO DE FUNCIONAMENTO ..........................................................................8
1.2 RELAÇÕES NO TRANSFORMADOR IDEAL..........................................................10
1.3 TRANSFORMADOR REAL......................................................................................16
1.3.1 PERMEABILIDADE E PERDAS NO NÚCLEO.....................................................16
1.3.2 FLUXOS DISPERSOS E RESISTÊNCIAS DOS ENROLAMENTOS ...................18
1.3.3 SATURAÇÃO MAGNÉTICA .................................................................................19
1.3.4 CORRENTE DE INRUSH.....................................................................................20
1.3.5 DIAGRAMAS FASORIAIS ....................................................................................21
1.3.6 REGULAÇÃO DE TENSÃO..................................................................................23
1.3.7 RENDIMENTO......................................................................................................24
1.4 TRANSFORMADORES COM MÚLTIPLOS ENROLAMENTOS..............................25
LISTA DE EXERCÍCIOS....................................................................................................27
1.5 ENSAIOS A VAZIO E EM CURTO-CIRCUITO........................................................32
1.5.1 INTRODUÇÃO TEÓRICA.....................................................................................32
1.5.2 ENSAIO A VAZIO.................................................................................................33
1.5.3 ENSAIO DE CURTO-CIRCUITO..........................................................................35
1.5.4 RESULTADO FINAL.............................................................................................37
CAPÍTULO II – TRANSFORMADORES TRIFÁSICOS......................................................38
2. INTRODUÇÃO ............................................................................................................38
2.1 LIGAÇÕES TRIÂNGULO E ESTRELA ....................................................................40
2.1.1 CARACTERÍSTICAS DO AGRUPAMENTO ESTRELA-ESTRELA (Y-Y).............43
2.1.2 CARACTERÍSTICAS DO AGRUPAMENTO TRIÂNGULO-TRIÂNGULO (∆ - ∆) .44
2.1.3 CARACTERÍSTICAS DOS AGRUPAMENTOS COM TRIÂNGULO E ESTRELA 46
2.2 LIGAÇÃO ZIGUE-ZAGUE (ZIGUEZAGUE OU ZIG-ZAG) .......................................47
2.3 LIGAÇÃO TRIÂNGULO ABERTO OU V..................................................................50
LISTA DE EXERCÍCOS.....................................................................................................53
CAPÍTULO III – PRINCIPAIS CARACTERÍSTICAS CONSTRUTIVAS .............................55
3. INTRODUÇÃO ............................................................................................................55
3.1 POTÊNCIAS NOMINAIS NORMALIZADAS ............................................................55
3.2 CONFIGURAÇÕES DE NÚCLEOS E ENROLAMENTOS.......................................56
3.2.1 NÚCLEOS ENVOLVIDOS E NÚCLEOS ENVOLVENTES...................................56
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
4
3.2.2 ENROLAMENTOS................................................................................................57
3.2.2.1 TIPOS DE ENROLAMENTOS...........................................................................58
3.3 REFRIGERAÇÃO, ISOLAÇÃO E CLASSES DE PROTEÇÃO ................................60
3.3.1 LÍQUIDOS ISOLANTES .......................................................................................60
3.3.1.1 TANQUES.........................................................................................................61
3.3.2 TIPOS DE RESFRIAMENTO................................................................................63
3.3.3 CLASSES DE PROTEÇÃO ..................................................................................64
3.4 ACESSÓRIOS DE UM TRANSFORMADOR...........................................................65
3.4.1 RESPIRADOR......................................................................................................65
3.4.2 SECADOR DE AR................................................................................................65
3.4.3 CONSERVADOR DE ÓLEO OU TANQUE DE EXPANSÃO................................66
3.4.4 INDICADOR DE NÍVEL ........................................................................................68
3.4.5 TERMÔMETRO....................................................................................................69
3.4.6 BUJÃO DE DRENAGEM ......................................................................................71
3.4.7 TERMINAL DE LIGAÇÃO A TERRA ....................................................................71
3.4.8 COMUTADOR ......................................................................................................72
3.4.9 ISOLADORES ......................................................................................................72
3.4.10 PLACA DE IDENTIFICAÇÃO ............................................................................73
3.4.11 ALÇAS DE SUSPENSÃO .................................................................................74
3.4.12 RADIADORES...................................................................................................75
3.4.13 RELÉ DE GÁS (BUCHHOLZ) ...........................................................................76
3.4.14 DISPOSITIVO DE ALÍVIO DE PRESSÃO.........................................................77
3.4.15 RELÉ DE PRESSÃO SÚBITA...........................................................................78
CAPÍTULO IV – PROJETOS DE PEQUENOS TRANSFORMADORES MONOFÁSICOS82
4. INTRODUÇÃO ............................................................................................................82
4.1 CONDUTORES, ISOLAMENTO E DISPOSIÇÃO DAS BOBINAS ..........................82
4.2 LÂMINAS PADRONIZADAS....................................................................................84
4.3 DADOS PARA CÁLCULO........................................................................................87
4.4 CÁLCULO DAS CORRENTES PRIMÁRIAS E SECUNDÁRIAS .............................87
4.5 CÁLCULO DA SEÇÃO DOS CONDUTORES .........................................................87
4.6 CÁLCULO DA SEÇÃO GEOMÉTRICA DO NÚCLEO .............................................89
4.7 CÁLCULO DA SEÇÃO MAGNÉTICA DO NÚCLEO ................................................89
4.8 ESCOLHA DO NÚCLEO..........................................................................................90
4.9 CÁLCULOS DO NÚMERO DE ESPIRAS................................................................91
4.10 POSSIBILIDADE DE EXECUÇÃO (mm2
).............................................................92
4.11 PESO DO FERRO................................................................................................92
4.12 PESO DO COBRE.....................................................................................................93
LISTA DE EXERCÍCIOS....................................................................................................94
Transformadores / Prof. Rodrigo Motta de Azevedo
5
CAPÍTULO V – AUTOTRANSFORMADORES..................................................................95
5. O AUTOTRANSFORMADOR .....................................................................................95
5.1 FUNCIONAMENTO DO AUTOTRANSFORMADOR ...............................................96
5.1.1 A VAZIO ...............................................................................................................96
5.1.2 COM CARGA........................................................................................................97
5.2 VANTAGENS DO AUTOTRANSFORMADOR EM RELAÇÃO AO
TRANSFORMADOR..........................................................................................................98
5.3 DESVANTAGENS DO AUTOTRANSFORMADOR EM RELAÇÃO AO
TRANSFORMADOR..........................................................................................................98
5.4 APLICAÇÕES DE AUTOTRANSFORMADORES ...................................................98
LISTA DE EXERCÍCIOS..................................................................................................100
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
6
CAPÍTULO I – FUNDAMENTOS DE TRANSFORMADORES
1. INTRODUÇÃO
O transformador é um dispositivo eletromagnético estático que recebe energia elétrica em
corrente alternada, com certos níveis de tensão e corrente, e fornece essa energia com outros níveis
de tensão e de corrente. A freqüência se mantém constante.
Conforme a alteração feita na tensão, o transformador é classificado como elevador ou
rebaixador. Uma das grandes aplicações do transformador na área de Eletrotécnica está no sistema
de geração, transmissão, distribuição e utilização de energia elétrica, onde a tensão é elevada e
rebaixada diversas vezes. Os níveis de tensão utilizados no sistema elétrico são bastante
diversificados, podendo ser divididos da seguinte forma (Cotrim, Manual de Instalações Elétricas):
EAT (Extra Alta Tensão) - tensões superiores a 242 kV até 800 kV, inclusive;
AT (Alta Tensão) - tensões maiores que 72,5 kV até 242 kV, inclusive;
MT (Média Tensão) - tensões maiores que 1 kV até 72,5 kV, inclusive;
BT (Baixa Tensão) - tensões superiores a 50 V até 1 kV, inclusive;
EBT (Extra Baixa Tensão) – tensões até 50 V, inclusive.
A estrutura atual básica do sistema elétrico está representada na figura 1.1 onde se destacam
as etapas de geração, transmissão, distribuição e utilização.
Figura 1.1 – Esquema básico de um sistema elétrico
Transformadores / Prof. Rodrigo Motta de Azevedo
7
A energia elétrica é gerada nas centrais elétricas (usinas) em MT, por facilidade de isolação.
A tensão de saída dos geradores é ampliada a níveis mais altos por meio dos transformadores das
subestações elevadores das usinas. A transmissão de energia é feita em AT ou EAT. Isto ocorre
porque a potência transmitida é muito alta, de modo que com AT ou EAT diminui-se a corrente
elétrica (I=S/( 3 V) no sistema trifásico), e possibilita-se o uso de cabos condutores de bitolas
relativamente pequenas, com adequados níveis de perdas joule e de queda de tensão ao longo das
linhas de transmissão. Com o aumento da tensão, aumenta também o nível de isolação necessário.
As linhas de transmissão (torres e cabos) deveriam situar-se fora das regiões urbanas. Elas
alimentam subestações rebaixadoras que distribuem a energia às cidades bem como as subestações
de indústrias de grande porte. As linhas de subtransmissão operam com níveis mais baixos de
tensão, tal como 69 kV, e alimentam subestações rebaixadoras de menor porte.
Os transformadores das subestações elevadoras e rebaixadoras são denominados
transformadores de potência ou transformadores de força.
Das subestações rebaixadoras derivam as redes de distribuição primárias, em MT, para a
zona urbana e a zona rural. Grandes prédios e indústrias de médio porte são alimentados
diretamente pelas redes de distribuição primárias. Dos transformadores de distribuição, localizados
nos postes da região urbana, derivam as redes de distribuição secundária, em BT, para alimentação
de pequenos consumidores residenciais e comerciais. Junto aos consumidores a tensão é rebaixada
para que os equipamentos elétricos possam utilizados com menor risco.
Exemplo 1.1 – Deseja-se transmitir uma potência de 50 MVA através de uma linha de transmissão
trifásica. Calcule a corrente nos cabos da linha para cada uma das seguintes tensões:
a) 69 kV;
b) 138 kV;
c) 230 kV.
O transformador também é utilizado, por exemplo, nas seguintes aplicações:
Fontes de alimentação de equipamentos eletrônicos;
Casamento de impedâncias entre dois circuitos, para máxima transferência de potência (será
visto posteriormente);
Isolação de circuitos mantendo o nível de tensão, por questão de segurança (será visto
posteriormente);
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
8
1.1 PRINCÍPIO DE FUNCIONAMENTO
Considere-se, para um estudo inicial, o transformador monofásico apresentado na figura 1.2.
Ele é constituído por dois enrolamentos colocados nas colunas de um núcleo ferromagnético. O
enrolamento que recebe energia da fonte CA é denominado primário e o enrolamento que está
conectado na carga (consumidor) de impedância Z é denominado secundário. A tensão do primário
e a tensão do secundário são, respectivamente, V1 e V2.
Figura 1.2 – Princípio de funcionamento do transformador
O funcionamento está baseado na indutância mútua entre os enrolamentos. A corrente
alternada que percorre o enrolamento primário cria um fluxo magnético variável. A maior parte
deste fluxo fica confinada ao núcleo ferromagnético e atravessa também o enrolamento secundário
(fluxo mútuo mφ ). Uma pequena parcela de fluxo se fecha pelo ar (fluxo disperso 1dφ ). Conforme a
lei de Faraday, devido à variação de fluxo é induzida uma tensão no secundário, cujo valor eficaz
depende do seu número de espiras. A relação entre as tensões do primário e do secundário é dada,
de forma aproximada, por:
2
1
2
1
N
N
V
V
a == (1.1)
onde “a” é a relação de transformação, “N1” é o número de espiras do primário e “N2“ é o número
de espiras do secundário.
Se o número de espiras do secundário é menor que o número de espiras do primário, como
aparece na figura 1.2, a tensão do secundário é menor do que a tensão do primário e o
transformador é rebaixador. Caso contrário, o transformador é elevador.
Transformadores / Prof. Rodrigo Motta de Azevedo
9
É importante observar que, para existir a variação do fluxo magnético, o transformador
deve alimentado com tensão alternada. Como a taxa de variação do fluxo é a mesma para os dois
enrolamentos, a freqüência permanece inalterada. Ou seja, a freqüência do secundário é igual à
freqüência do primário.
O transformador é um equipamento que possui rendimento muito alto, ou seja, a potência de
saída é aproximadamente igual à potência de entrada. Desta forma, a variação de tensão é
acompanhada de uma variação, de forma inversa, da corrente. Isto significa que, por exemplo,
houver uma elevação de tensão, haverá uma redução de corrente. As seções dos condutores dos
enrolamentos são proporcionais às respectivas correntes.
Exemplo 1.2 – Complete a tabela abaixo (com as palavras maior, menor e igual) de modo a resumir
as características básicas de um transformador (Rebaixador e Elevador) .
Enrolamento Primário Enrolamento Secundário
Tensão
Número de espiras
Corrente
Seção do condutor
Freqüência
Considerações adicionais sobre a construção de transformadores
1) Características do Núcleo
O núcleo ferromagnético deve apresentar as seguintes características:
Alta permeabilidade magnética para altas induções (1,0 a 1,5 T), de modo que a corrente
necessária à criação de fluxo (corrente de magnetização) seja relativamente pequena;
Baixas perdas por histerese;
Baixas perdas por correntes parasitas.
Para atender os requisitos citados acima, o núcleo geralmente é feito de chapas de aço-silício
isoladas entre si.
Também existem transformadores com núcleo de ar ou com núcleo de ferrite, usados em
altas freqüências, típicos de circuitos de comunicação.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
10
1.2 RELAÇÕES NO TRANSFORMADOR IDEAL
Para começar uma análise mais detalhada sobre funcionamento do transformador é
conveniente adotar algumas simplificações, que caracterizam o transformador como sendo ideal. O
transformador ideal possui as seguintes características:
As resistências dos enrolamentos são desprezíveis;
Todo o fluxo está confinado ao núcleo, ou seja, não há fluxo disperso;
Não há perdas por histerese e por correntes de Foucault no núcleo;
O núcleo tem característica linear, ou seja, não há saturação magnética.
A permeabilidade do núcleo é tão alta que apenas uma corrente insignificante é necessária
para criar o fluxo.
A figura 1.5 mostra a representação simplificada de um transformador ideal, suficiente para
a análise desta seção. Os sentidos convencionados como positivos para as grandezas envolvidas no
funcionamento estão apresentados nessa figura.
Figura 1.5 – Transformador ideal
Com a fonte senoidal alimentando o primário em com a chave S aberta, a corrente que
circula no primário tem a função de magnetizar o núcleo. Esta corrente é denominada corrente de
magnetização e tem valor desprezível devido á altíssima permeabilidade do núcleo:
01 ≅= mII (1.2)
A corrente de magnetização cria um fluxo que varia senoidalmente no tempo (figura 1.6).
Transformadores / Prof. Rodrigo Motta de Azevedo
11
Figura 1.6 – Fluxo no núcleo magnético
O fluxo atravessa os dois enrolamentos (fluxo mútuo mφ ) e induz forças eletromotrizes em
ambos. Os pontos indicados nos terminais superiores na figura 1.5 são as marcas de polaridade e
representam os terminais para onde ambas as forças eletromotrizes apontam num dado instante de
tempo. Posteriormente será desenvolvido um estudo mais detalhado sobre as polaridades (sentidos
de fems) dos enrolamentos de transformadores.
A força eletromotriz induzida no primário é chamada de força contra-eletromotriz por
muitos autores, pois ela funciona como uma oposição à corrente no primário. Com o secundário em
aberto o transformador ideal funciona como um indutor puro alimentado por uma fonte senoidal. A
força contra-eletromotriz é tratada na teoria de circuitos de corrente alternada como uma queda de
tensão na reatância indutiva do enrolamento, e esta funciona como o limitador da corrente. Como a
permeabilidade do núcleo é suposta altíssima, a reatância indutiva também é muito alta e, por esta
razão, a corrente de magnetização é desprezível. Se a permeabilidade for considerada infinita, a
corrente de magnetização será nula.
De acordo com a lei de Faraday, a força eletromotriz média induzida no primário é dada por:
t
m
med NE
∆
∆
=
φ
11
(1.3)
onde mφ∆ é a variação do fluxo mútuo e t∆ é o intervalo de tempo correspondente.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
12
Para o intervalo de tempo indicado na figura 1.6, igual à quarta parte do período T da onda
de fluxo ( 4/Tt =∆ ), a variação de fluxo mútuo é igual ao fluxo máximo ( maxφφ =∆ m ).
Desenvolvendo-se a equação (1.3), obtém-se:
Τ
=
Τ
∆
=
1
4
4
111 máx
m
med NNE φ
φ (1.4)
fNE máxmed φ11 4= (1.5)
onde f é a freqüência da tensão de alimentação do transformador.
Para uma forma de onda senoidal, a relação entre o valor médio e o valor máximo da força
eletromotriz no intervalo de tempo considerado é expressa por:
máxmed EE 11
2
π
= ou medmáx EE 11
2
π
=
(1.6)
Substituindo-se a equação (1.5) na equação (1.6), obtém-se:
)4(
2
11 fNE máxmáx φ
π
=
(1.7)
fNE máxmáx φπ 11 2= (1.8)
A relação entre o valor máximo e o valor eficaz, representado por E1, é:
2
1
1
máxE
E =
(1.9)
Substituindo-se a equação (1.8) na equação (1.9), chega-se na força eletromotriz eficaz do
primário:
2
2 1
1
fN
E máxφπ
=
(1.10)
fNE máxφ11 44,4= (1.11)
Transformadores / Prof. Rodrigo Motta de Azevedo
13
Pode-se provar, por processo análogo, que a força eletromotriz eficaz no secundário é:
fNE máxφ22 44,4= (1.12)
A força eletromotriz induzida em qualquer bobina, submetida a um fluxo que varia
senoidalmente no tempo, pode determinada pela mesma equação usada para as forças
eletromotrizes do transformador.
Como as resistências dos enrolamentos e os fluxos dispersos são desprezíveis no
transformador ideal, as tensões nos terminais dos enrolamentos são iguais a forças eletromotrizes
induzidas nos mesmos:
fNEV máxφ111 44,4== (1.13)
fNEV máxφ222 44,4== (1.14)
Das equações (1.13) e (1.14) obtém-se uma relação fundamental para o transformador ideal:
a
N
N
E
E
V
V
===
2
1
2
1
2
1
(1.15)
Portanto, a tensão e a força eletromotriz em cada enrolamento são proporcionais ao número
de espiras do enrolamento.
Isolando-se o fluxo máximo na equação (1.13) obtém-se:
fN
V
máx
1
1
44,4
=φ
(1.16)
A equação acima mostra que o fluxo máximo no núcleo é determinado pela tensão aplicada
ao primário do transformador. Portanto, se esta tensão for mantida constante, o mesmo acontecerá
com o valor máximo do fluxo. Evidentemente, supõe-se que a freqüência e o número de espiras são
constantes. Como já foi dito anteriormente, a corrente de magnetização e a força magnetomotriz
associadas a este fluxo são desprezíveis.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
14
Com a chave S fechada, circula uma corrente no secundário, expressa por:
cZ
V
I 2
2 =
(1.17)
A circulação de corrente no secundário dá origem a uma força magnetomotriz N2I2 que
tende a alterar o fluxo máximo no núcleo. Se isto acontecesse, o equilíbrio entre a tensão aplicada e
a força contra-eletromotriz seria quebrado, contrariando a equação (1.16). Para que isto não ocorra,
aumenta a corrente absorvida pelo primário de forma que a sua forma magnetomotriz N1I1 anule a
força magnetomotriz do secundário. Assim, a força magnetomotriz resultante permanece
praticamente nula, como também acontecia com o transformador ideal a vazio:
02211 =− ININ (1.18)
Este mecanismo é que faz o primário “perceber” a existência de carga no secundário. Um
aumento de corrente no secundário, devido a um aumento de carga, é acompanhado também por um
aumento da corrente no primário. A equação (1.18) pode ser remanejada, resultando em:
a
N
N
I
I
==
2
1
1
2
(1.19)
A equação (1.19) mostra que a relação entre as correntes é invertida se comparada com a
relação entre as quantidades de espiras. Portanto, o enrolamento que possui mais espiras, e maior
tensão, possui menor corrente e vice-versa. Este efeito está diretamente relacionado com o princípio
da conservação de energia, como era de se esperar. Como o transformador ideal não apresenta
perdas nem dispersão magnética, a potência aparente de entrada é igual à potência aparente de
saída:
221121 IVIVSS =⇒= (1.20)
Devido à existência do transformador localizado entre a fonte e a impedância, a fonte
“enxerga” a impedância com valor diferente do seu valor real. Esta impedância está representada
por Zc’ na figura 1.7 e pode ser determinada da seguinte forma:
Transformadores / Prof. Rodrigo Motta de Azevedo
15
1
1
´
I
V
Zc =
(1.21)
2
2
2
2
1
2
1
2
2
2
1
´
I
V
N
N
I
N
N
V
N
N
ZC 





==
(1.22)
CC Z
N
N
Z
2
2
1
´ 





=
(1.23)
Figura 1.7 – Impedância da carga, refletida ou referida para o primário
Portanto, a impedância da carga refletida, ou referida, para o primário é proporcional ao
quadrado da relação de espiras.
É importante destacar que o fator de potência da carga permanece inalterado, ou seja:
CC COSCOS ϕϕ =´ (1.24)
Exemplo 1.3 – Certo transformador, que pode ser considerado como ideal, possui um enrolamento
com 1600 espiras e o outro enrolamento com 200 espiras. O enrolamento com menor número de
espiras é alimentado com 30V/60Hz e o outro enrolamento é conectado a uma impedância de 192 .
Determine:
a) a relação de transformação e diga se o transformador é elevador ou rebaixador;
b) a tensão e a corrente no secundário;
c) a corrente no primário;
d) a impedância da carga referida ao primário;
e) as potências aparentes, absorvida pelo primário e fornecida pelo secundário;
f) a corrente no primário com a carga desligada.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
16
1.3 TRANSFORMADOR REAL
O circuito equivalente de um transformador real é obtido adicionando-se alguns
componentes ideais de circuitos (resistores e indutores) ao transformador ideal estudado na seção
anterior. Com isto, os efeitos desprezados no transformador ideal são levados em consideração.
1.3.1 PERMEABILIDADE E PERDAS NO NÚCLEO
A lei de Hopkinson, aplicada a valores instantâneos, mostra que o fluxo no núcleo é
diretamente proporcional ao número de espiras ( 1N ) e a corrente de magnetização ( 1i ) no primário,
e inversamente proporcional a relutância (ℜ) do núcleo:
ℜ
= m
m
iN1
φ
(1.25)
A relutância representa uma oposição ao fluxo magnético e depende dos seguintes fatores:
permeabilidade do ferro ( µ ); comprimento médio do núcleo (l ); área da seção transversal do
núcleo ( S ). Estas grandezas estão relacionadas da seguinte forma:
S
l
µ
=ℜ
(1.26)
Portanto, no transformador ideal, que tem um núcleo de altíssima permeabilidade, a
relutância é muito baixa, ou seja, desprezível (equação 1.26). Por isto, a corrente de magnetização
também é desprezível (equação 1.25).
Num transformador real a permeabilidade do núcleo não é tão alta como no transformador
ideal, portanto a corrente de magnetização não é, a princípio, desprezível. Para levar em
consideração a corrente de magnetização, coloca-se um indutor puro em paralelo com o
enrolamento primário do transformador ideal, conforme mostra a figura 1.10. A reatância deste
indutor é denominada de reatância de magnetização (Xm). Utiliza-se um indutor ao invés de um
resistor porque a potência para magnetização do núcleo é uma potência reativa.
Transformadores / Prof. Rodrigo Motta de Azevedo
17
Figura 1.10 – Circuito equivalente incluindo efeito da permeabilidade e das perdas no núcleo
Para levar em consideração as perdas no ferro, coloca-se um resistor puro em paralelo com o
enrolamento primário do transformador ideal, conforme mostra a figura 1.10. A resistência deste
resistor é denominada de resistência de perdas no núcleo (Rn). A potência dissipada nesse resistor é
igual à potência perdida no núcleo por correntes de Foucault e por histerese magnética. A parcela de
corrente associada às perdas no núcleo é designada por “In” e depende da tensão aplicada ao
primário. Deve-se lembrar que o fluxo no núcleo depende da tensão primária.
A soma fasorial da corrente de magnetização com a corrente de perdas no núcleo é a
corrente de excitação:
mn III &&& +=0
(1.27)
Com a chave S aberta na figura 1.10, a corrente no primário “ 1I& ” é igual à corrente de
excitação “ 0I& ”, a qual depende da tensão aplicada ao primário. A corrente de excitação
normalmente fica na faixa entre 2 e 6% da corrente nominal do primário.
Com a chave S fechada, circula pelo secundário uma corrente “ 2I& ” que tende a alterar o
fluxo no núcleo. Com isto, surge no enrolamento primário uma corrente “ '1I& “, cuja força
magnetomotriz que serve anular a força magnetomotriz do secundário, mantendo inalterado o fluxo
no núcleo. Esta parcela de corrente no primário devido à existência de carga no secundário é
denominada corrente primária de carga ( '1I& ). A relação entre a corrente primária de carga e a
corrente no secundário, conforme já foi mostrado para o transformador ideal, é:
1
2
2
1 '
N
N
I
I
=
&
& (1.28)
Portanto, a corrente total nos terminais do primário do transformador com carga é:
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
18
'' 1011 IIIIII mn
&&&&&& +=++= (1.29)
1.3.2 FLUXOS DISPERSOS E RESISTÊNCIAS DOS ENROLAMENTOS
O fluxo total que atravessa cada enrolamento é composto de duas parcelas. A primeira é
referente ao fluxo mútuo, ou seja, o fluxo comum a ambos os enrolamentos, que determina as forças
eletromotrizes “ 1E ” e “ 2E ” consideradas no transformador ideal. A segunda parcela é composta
pelo fluxo disperso enlaça somente o enrolamento que o produziu. Como o caminho deste fluxo, na
sua maior parte, é o ar, a força eletromotriz por ele gerada varia aproximadamente na mesma
proporção da corrente no enrolamento. Portanto, esta força eletromotriz pode tratada como uma
queda numa reatância, denominada reatância de dispersão.
Para levar em consideração o efeito da dispersão magnética, o circuito equivalente da figura
1.11 possui duas reatâncias “ 1dX ” e “ 2dX ”, denominadas, respectivamente, reatância de dispersão
do primário e reatância de dispersão do secundário.
As resistências “ 1R ” e “ 2R ” da figura 1.11 servem para se levar em consideração as
resistências ôhmicas dos enrolamentos, primário e secundário, do transformador.
Na operação sob carga nominal a queda de tensão total, na resistência e na reatância de
dispersão, é bem menor do que a tensão nominal do respectivo enrolamento.
Devido a estas quedas, tem-se uma diferença entre a tensão terminal de cada enrolamento e
a força eletromotriz no mesmo:
11111 )( IjXREV d
&&& ++= (1.30)
22222 )( IjXREV d
&&& +−= (1.31)
Note-se que há uma diferença nos sinais das quedas de tensão nos enrolamentos. Esta
diferença é devido à diferença no sentido do fluxo de energia. A energia vai da fonte para o
enrolamento primário e do secundário para a impedância de carga, ou seja, no primário a corrente
entra pelo terminal positivo e no secundário a corrente sai pelo terminal positivo.
Transformadores / Prof. Rodrigo Motta de Azevedo
19
Figura 1.11 – Circuito equivalente completo do transformador real
Como as quedas de tensão na resistência e na reatância de dispersão do primário são baixas,
a fem induzida no primário é aproximadamente igual à tensão aplicada. Assim, tem-se:
0)( 111 ≅+ IjXR d
&
11 EV && ≅
fNV max11 44,4 φ≅
fN
V
1
1
max
44,4
≅φ (1.32)
Portanto, o fluxo no núcleo é aproximadamente independente da carga. Ele depende da
tensão aplicada ao enrolamento primário, no número de espiras e da freqüência, de forma
semelhante ao que foi demonstrado para o transformador ideal.
1.3.3 SATURAÇÃO MAGNÉTICA
A existência da saturação magnética faz com que ocorra uma deformação na corrente de
excitação do transformador. Uma corrente não senoidal pode ser decomposta matematicamente em
uma soma de infinitas correntes senoidais, denominadas correntes harmônicas, cada uma com
determinada amplitude e determinada freqüência. Na prática, observa-se que as harmônicas mais
significativas (com maior amplitude) são a primeira e a terceira, que possuem freqüências iguais a
uma vez e três vezes, respectivamente, a freqüência da forma de onda original não senoidal. As
harmônicas são indesejáveis, pois prejudicam o desempenho do sistema elétrico.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
20
A figura 1.12 mostra o aspecto aproximado da corrente de excitação de um transformador
real. Uma análise mais detalhada deste assunto foge do escopo do presente texto, sendo tratado mais
detalhadamente em cursos de graduação e pós-graduação.
Figura 1.12 – Corrente de excitação devido a não linearidade do ferro
1.3.4 CORRENTE DE INRUSH
A corrente de inrush é o valor máximo da corrente de excitação do transformador, no
momento em que ele é energizado, atingindo valores de 4 a 20 vezes a corrente nominal. O tempo
de duração do processo de magnetização inicial é considerado em torno de 0,1s. A corrente de
inrush depende do ponto da senóide de tensão em que ocorre a energização e do valor do fluxo
residual no núcleo. Este assunto é tratado mais detalhadamente em cursos de graduação e pós-
graduação.
Transformadores / Prof. Rodrigo Motta de Azevedo
21
1.3.5 DIAGRAMAS FASORIAIS
a) Operação a Vazio
Considere que no circuito equivalente da figura 1.11 a chave S está aberta, ou seja, o
transformador está a vazio. Para efeito de traçado do diagrama fasorial da figura 1.13, considere um
transformador elevador.
Como não há corrente no secundário ( 02 =I& ), não há quedas de tensão na resistência e na
reatância de dispersão do secundário ( 0)( 222 =+ IjXR d
& ) e, portanto, a força eletromotriz induzida
e a tensão no secundário são iguais ( 22 EV && = ).
A força eletromotriz induzida no primário ( 1E& ) está em fase com a força eletromotriz
induzida no secundário ( 2E& ), pois ambas são geradas pelo fluxo mútuo. Supondo-se um
transformador elevador, tem-se que 1E < 2E . Como transformador está a vazio, a corrente no
primário é baixa e as quedas de tensão quedas de tensão na resistência e na reatância de dispersão
do secundário podem ser desprezadas ( 0)( 111 ≅+ IjXR d
& ). Portanto, a força eletromotriz induzida e
a tensão no primário são aproximadamente iguais ( 11 EV && ≅ ).
A corrente que circula pelo primário tem duas funções:
- magnetizar o núcleo – componente mI& , atrasada de 90º em relação a força eletromotriz induzida
no primário;
- suprir as perdas no núcleo – componente nI& , em fase com a força eletromotriz induzida no
primário.
A corrente de excitação ( 0I& ), ou corrente a vazio, é obtida pela soma fasorial da corrente de
perdas no núcleo com a corrente de magnetização (equação 1.27), e normalmente fica
compreendida entre 2 e 6% da corrente nominal do primário. Na operação a vazio o fator de
potência do transformador é muito baixo.
Figura 1.13 – Diagrama fasorial para operação a vazio
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
22
b) Operação com Carga
Quando a chave S no circuito equivalente da figura 1.11 é fechada o transformador passa a
alimentar a carga de impedância “ cZ ”. Para efeito de traçado do diagrama fasorial da figura 1.14,
considere que transformador elevador fornece potência nominal para uma carga com teor indutivo.
Devido ao fator de potência indutivo da carga ( 2cosϕ ), a corrente no secundário ( 2I& ) está
atrasada em relação a tensão nos terminais do secundário. A circulação de corrente no secundário
produz quedas de tensão na resistência do enrolamento, em fase com a corrente, e na reatância de
dispersão, adiantada de 90º da corrente. A soma fasorial da tensão nos terminais do secundário com
as quedas de tensão no enrolamento fornece a força eletromotriz induzida no secundário, pois
22222 )( IjXRVE d
&&& ++= .
Conforme já foi mencionado, a força eletromotriz induzida no primário ( 1E& ) está em fase
com a força eletromotriz induzida no secundário ( 2E& ), pois ambas são geradas pelo fluxo mútuo.
Supondo-se um transformador elevador, tem-se que 1E < 2E . A existência de corrente no secundário
dá origem a uma corrente de carga primária ( '1I& ), em fase com a corrente do secundário.
A corrente total no primário é formada pela soma fasorial da corrente de excitação e da
corrente de carga primária: '101 III &&& += .
A soma fasorial da força eletromotriz induzida no primário com as quedas de tensão no
enrolamento fornece a tensão nos terminais do primário, pois 11111 )( IjXREV d
&&& ++= .
Figura 1.14 – Diagrama fasorial para operação com carga
Obs.: as quedas de tensão estão ampliadas para melhorar a visualização
Transformadores / Prof. Rodrigo Motta de Azevedo
23
1.3.6 REGULAÇÃO DE TENSÃO
A regulação de tensão de um transformador representa a diferença entre a tensão de saída
sem carga e a tensão de saída sob carga. Esta diferença é expressa em percentual da tensão
secundária sob carga. Como a tensão nos terminais do secundário sem carga é igual a força
eletromotriz induzida no secundário, tem-se:
%100%
2
22
V
VE
R
−
=
(1.33)
onde %R é a regulação de tensão.
De modo geral, deseja-se que o transformador tenha pequena regulação de tensão, ou seja,
que a tensão no secundário não seja muito afetada pelas variações de carga.
A tabela 1.1 apresenta os valores de regulação em função da carga, incluindo o seu fator de
potência.
Tabela 1.1 - Regulação em função da carga e do fator de potência.
Fator de potência da carga Carga (%) Regulação (%)
0,8 ind.
25
50
75
100
0,8876
1,775
2,662
3,550
0,9 ind.
25
50
75
100
0,7416
1,483
2,225
2,966
1,0
25
50
75
100
0,3037
0,6074
0,9112
1,214
Fonte: Informações Técnicas DT-11 - WEG
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
24
Exemplo 1.4 – A força eletromotriz induzida no enrolamento secundário de certo transformador
sob carga nominal é 250V. Considerando que a sua regulação de tensão é 4%, calcule a tensão nos
terminais de saída na operação sob carga nominal.
1.3.7 RENDIMENTO
O transformador é um equipamento estático que transfere energia de um circuito para outro
por indução eletromagnética. Como já foi visto, neste processo ocorrem perdas de potência no
núcleo ferromagnético (perdas no ferro, nP ) e nas resistências ôhmicas dos enrolamentos (perdas no
cobre, 1JP e 2JP ):
2
nnn IRP =
2
111 IRPJ =
2
222 IRPJ =
(1.34)
O rendimento (η ) é a relação entre a potência ativa fornecida pelo secundário ( 2P ) e a
potência ativa absorvida pelo primário ( 1P ):
%100
1
2
P
P
=η
(1.35)
Comparado com as máquinas elétricas girantes, como o motor e o gerador, o transformador
possui altíssimo rendimento, podendo chegar, em alguns transformadores de alta potência, a 99%.
A tabela 1.2 apresenta os valores típicos de rendimento para transformadores monofásicos
operando sob carga nominal e fator de potência 0,85 indutivo.
Transformadores / Prof. Rodrigo Motta de Azevedo
25
Tabelas 1.2 - Valores típicos de rendimento para transformadores monofásicos operando sob carga
nominal e fator de potência 0,85 indutivo.
Transformadores Monofásicos - Rendimentos
Potência
(kVA)
5 10 15 25 37,5 50 75 100
Classe
(kV)
15 96,26 96,92 97,18 97,52 97,76 98,02 98,15 98,21
25,8 95,94 96,59 96,88 97,25 97,52 97,68 98,00 98,15
38 95,94 96,59 96,88 97,25 97,52 97,68 98,00 98,15
Fonte: Informações Técnicas DT-11 – WEG
1.4 TRANSFORMADORES COM MÚLTIPLOS ENROLAMENTOS
Muitos transformadores monofásicos possuem enrolamentos fracionados em duas partes
iguais, de forma que podem ser ligados em série ou paralelo, propiciando duas tensões nominais.
Considere, por exemplo, um transformador monofásico com três enrolamentos, divididos da
seguinte forma: dois enrolamentos de 110 V e um enrolamento de 12 V. Este transformador pode
ser alimentado em 220 V, se os dois enrolamentos de 110 V forem ligados em série, e também pode
ser alimentado em 110 V, se os dois enrolamentos de 110 V forem ligados em paralelo. Em
qualquer dos casos a tensão do secundário será 12 V.
Porém, é necessária atenção ao se ligar enrolamentos de transformadores em série ou em
paralelo. As polaridades dos enrolamentos devem ser determinadas antes de se efetuar a ligação.
Na figura 1.15 as setas representam os sentidos das forças eletromotrizes induzidas nos
enrolamentos num dado instante de tempo. O valor numérico ao lado representa o valor eficaz da
fem. Na figura 1.15(a) a ligação está efetuada de forma correta, pois as forças eletromotrizes estão
no mesmo sentido e se somam. A corrente no primário resulta com baixo valor e a fem induzida no
secundário é 12V. Na figura 1.15(b) a ligação está efetuada de forma incorreta, pois as forças
eletromotrizes estão em sentidos contrários e se anulam. Com isto a corrente no primário resulta
muito alta e não há fem induzida no secundário, pois os fluxos se anulam.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
26
(a) (b)
Figura 1.15 – ligação de enrolamentos em série: (a) correto e (b) incorreto
Costuma-se dizer que as ligações devem ser feitas da seguinte forma:
Ligação série - conecta-se o final de uma bobina com o início de outra bobina;
Ligação paralela - conecta-se o final de uma bobina com o final de outra bobina e conecta-se
o início de uma bobina com o início de outra bobina.
O problema é saber onde estão os inícios e onde estão os finais de bobinas. Para tanto, pode-
se proceder da seguinte forma (figura 1.16):
1º) Com um multímetro na escala de resistência determina-se os terminais dos enrolamentos
mediante testes de continuidade.
2º) Os enrolamentos de maior tensão apresentam maior resistência, pois são feitos com mais espiras
de fio mais fino.
3º) Conecta-se um terminal de um enrolamento com um terminal de outro enrolamento.
4º) Aplica-se uma tensão alternada baixa em um dos enrolamentos e mede-se a tensão resultante da
associação.
5º) Interpreta-se o resultado – se a tensão resultante for maior do que a tensão aplicada a ligação
está correta. Caso contrário, basta inverter uma das bobinas.
Figura 1.16 – Teste para identificação de inícios e finais de enrolamentos
Transformadores / Prof. Rodrigo Motta de Azevedo
27
LISTA DE EXERCÍCIOS
Seção 1.1
1.1.1. O transformador é um equipamento fundamental no sistema elétrico. Observando a figura
abaixo, descreva cada um dos itens numeradas de 1 a 6, destacando as funções dos transformadores
no sistema.
Figura 1.8 – Ver exercício 1.1.1
1.1.2. Deseja-se transmitir uma potência de 200 kVA através de uma rede de distribuição. Calcule a
corrente nos cabos da rede para cada um dos seguintes casos:
a) 13,8 kV, rede trifásica;
b) 6,6 kV, rede trifásica;
c) 6,6 kV, rede monofásica.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
28
Seção 1.2
1.2.1. Descreva o princípio de funcionamento de um transformador.
1.2.2. Complete as tabelas abaixo (com as palavras maior, menor e igual) de modo a resumir as
características básicas do transformador elevador e do transformador rebaixador.
a) TRANSFORMADOR ELEVADOR
Primário Secundário
Tensão
Número de espiras
Corrente
Seção do condutor
Freqüência
Resistência
Indutância
b) TRANSFORMADOR REBAIXADOR
Primário Secundário
Tensão
Número de espiras
Corrente
Seção do condutor
Freqüência
Resistência
Indutância
1.2.3. Apresente o esboço de um transformador de núcleo envolvido e enrolamentos alternados.
Seção 1.3
1.3.1. Cite as características do transformador ideal.
Transformadores / Prof. Rodrigo Motta de Azevedo
29
1.3.2. Explique o que é a corrente de magnetização de um transformador. Qual o seu valor para um
transformador ideal? Justifique.
1.3.3. Um transformador ideal de 220 V/ 20 V tem 50 espiras no seu enrolamento de baixa tensão.
Calcule:
a) o número de espiras do enrolamento de alta tensão;
b) a relação de transformação se utilizado como transformador rebaixador;
c) a relação de transformação se utilizado como transformador elevador.
1.3.4. Há 1000 espiras no enrolamento primário de um transformador ideal. Calcule o fluxo no
núcleo para cada uma das seguintes alimentações:
a) 1000 V / 60 Hz;
b) 1500 V / 60 Hz;
a) 1500 V / 50 Hz.
1.3.5. O lado de alta tensão de um transformador ideal tem 750 espiras e o enrolamento de baixa
tensão tem 50 espiras. Quando a AT é ligada a uma rede de 120 V/60 Hz, e uma carga absorve 40 A
do enrolamento de BT, calcule:
a) a relação de transformação;
b) a tensão secundária;
c) a impedância da carga;
d) a potência aparente transferida do primário para o secundário.
1.3.6. Uma carga de 10 solicita uma corrente de 20 A do lado de alta tensão de um transformador
ideal, cuja relação de transformação é 1:8. Determine:
a) a tensão secundária;
b) a tensão primária;
c) a corrente primária;
d) a potência aparente transferida do primário para o secundário.
1.3.7. Um transformador deve ser usado para transformar uma impedância de 8 em uma
impedância de 75 . Calcule a relação de transformação necessária, supondo que o transformador
seja ideal.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
30
1.3.8. Considere o circuito abaixo, onde o transformador é ideal.
Figura 1.9 – Ver exercício 1.3.8
Pede-se:
a) calcule a reatância indutiva refletida para o primário e redesenhe o circuito;
b) calcule as correntes no primário (I1) e no secundário (I2);
c) calcule as forças eletromotrizes no primário (E1) e no secundário (E2).
1.3.9. Explique, com o auxílio de equações, o mecanismo pelo qual o primário “percebe” uma
variação de carga no secundário e varia a sua corrente de acordo com a corrente secundária.
Seção 1.4.
1.4.1. Descreva, de acordo com a lei de Hopkinson, os fatores determinam a corrente necessária
para magnetizar o núcleo de um transformador.
1.4.2. Explique o que é a reatância de magnetização de um transformador.
1.4.3. Explique o que é a resistência de perdas no núcleo.
1.4.4. Descreva qual é a relação aproximada entre corrente de excitação e a corrente nominal do
primário.
1.4.5. A corrente no secundário de um transformador é 20 A. Sabendo-se que a sua relação de
transformação é 5:1, Calcule a componente da corrente primária devido a carga no secundário.
1.4.6. Descreva a relação entre a tensão terminal e a força eletromotriz induzida, tanto para o
primário como para o secundário.
Transformadores / Prof. Rodrigo Motta de Azevedo
31
1.4.7. Um transformador possui as seguintes características:
o secundário tem o dobro do número de espiras do primário;
R1=0,3 ; R2=1,2 ; Xd1=0,9 ; Xd2=3,6 ; Rn=70 ; Xm=20 ;
A carga é alimentada com 400 V e absorve 50 A, com fator de potência 0,80 indutivo.
a) Trace o diagrama fasorial adotando as seguintes escala: 1cm/40 V e 1 cm/10A.
b) Baseando-se no diagrama fasorial, determine as seguintes grandezas do primário: tensão
aplicada, corrente nos terminais, corrente de excitação e fator de potência.
Observação: os valores de resistências e reatâncias dos enrolamentos são maiores que os valores
encontrados nos transformadores reais com o objetivo de facilitar a visualização de quedas de
tensão no diagrama fasorial.
1.4.8. Refaça o diagrama fasorial considerando que o transformador é alimentado com 380V e
opera sem carga. Despreze as quedas de tensão no primário.
1.4.9. Explique o que é a regulação de tensão de um transformador.
1.4.10. Um transformador rebaixador monofásico opera com tensão secundária de 240V, fornece
50kVA para uma carga com fator de potência 0,866 indutivo e a corrente absorvida da rede de
alimentação é 21 A. As perdas no ferro são de 190W e as resistências dos enrolamentos são 0,72 e
0,007 . Calcule o rendimento do transformador sob esta condição de operação.
Seção 1.5.
1.5.1. Um pequeno transformador possui um enrolamento primário de 220V e dois enrolamentos
secundários de 12V/1A cada um.
a) Explique como se deve proceder para identificar as polaridades dos enrolamentos de 12V.
b) Calcule a tensão, a corrente e a potência disponíveis no secundário se os dois enrolamentos
forem ligados em série.
c) Calcule a tensão, a corrente e a potência disponíveis no secundário se os dois enrolamentos forem
ligados em paralelo.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
32
1.5 ENSAIOS A VAZIO E EM CURTO-CIRCUITO
1.5.1 INTRODUÇÃO TEÓRICA
O circuito equivalente do transformador real está apresentado na figura 1.18.
Figura 1.18 - Circuito equivalente do transformador real
Qualquer grandeza de um enrolamento pode ser refletida para o outro enrolamento. Assim, é
possível refletir as grandezas do secundário para o primário, utilizando-se as equações vistas na
seção 1.3:
22
2
1
12 ' EaE
N
N
EE &&&& ===
(1.36)
22
1
2
1
1
' I
a
I
N
N
I &&& ==
(1.37)
22
1
2
1
1
' I
a
I
N
N
I &&& ==
(1.38)
2
2
2
2
2
1
2 ' RaR
N
N
R =





=
(1.39)
2
2
2
2
2
1
2 ' ddd XaX
N
N
X =





=
(1.40)
Com estas transformações o circuito equivalente pode ser representado com todas as
grandezas refletidas para o primário, conforme mostra a figura 1.19.
Transformadores / Prof. Rodrigo Motta de Azevedo
33
Figura 1.19 - Circuito equivalente com todas as grandezas refletidas para o primário
Todos os parâmetros do circuito equivalente (resistências e reatâncias) podem ser
determinados através de dois ensaios: ensaio a vazio e ensaio de curto-circuito. A seguir, estes dois
ensaios são descritos para um transformador específico do laboratório de Transformadores do curso
de Eletrotécnica. Porém, o desenvolvimento apresentado também pode ser utilizado para outros
transformadores monofásicos.
1.5.2 ENSAIO A VAZIO
Material necessário:
transformador Italvolt monofásico, 220V/110V, 5 kVA, 60 Hz;
autotransformador variável (variac) monofásico - 0-240V/6,3A;
mili-amperímetro de ferro móvel - 300mA/600mA;
amperímetro de ferro móvel - 6A;
wattímetro eletrodinâmico - 5A/48V-240V;
multímetro (para ser usado como voltímetro CA).
1. Verifique se a bancada está desligada e execute as ligações indicadas a seguir.
Figura 1.20 – Esquema de ligações para ensaio a vazio
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
34
2. Ajuste a escala do multímetro para 250 VAC (ou outra escala aproximadamente igual) e conecte-
o entre os dois bornes de AT do transformador sob teste. Ajuste a escala do wattímetro para 240V.
3. Ligue a bancada e alimente o primário do transformador com tensão nominal. Execute as
medições e complete a tabela abaixo.
V1= I0= P0=
4. Conecte o multímetro no secundário, meça a tensão, e calcule a relação de espiras.
V2= a =
5. Como a corrente de excitação I0 é muito baixa, tanto a queda de tensão na impedância do
primário como a perda de potência na resistência do enrolamento podem ser desprezadas. Assim, o
circuito equivalente toma a seguinte forma aproximada.
Figura 1.21 – Circuito equivalente simplificado para operação a vazio
6. A potência ativa medida é praticamente igual à perda no ferro, que é dissipada no resistor Rn do
circuito equivalente. Portanto, calcule o valor da resistência de perdas no núcleo.
7. Calcule a corrente de magnetização Im, em função da corrente de perdas no núcleo e da corrente
de excitação.
8. Sabendo-se a corrente de magnetização, calcule a reatância de magnetização.
9. Calcule o fator de potência para operação do transformador a vazio.
Transformadores / Prof. Rodrigo Motta de Azevedo
35
1.5.3 ENSAIO DE CURTO-CIRCUITO
1. Para realização do ensaio de curto-circuito deve-se curto-circuitar o enrolamento secundário e
aumentar cautelosamente a tensão aplicada no primário, até que a corrente atinja o seu valor
nominal.
Observação: devido à capacidade dos equipamentos disponíveis no laboratório (wattímetro e
variac), a tensão será aumentada até que a corrente atinja 5A no primário.
2. Verifique se a bancada está desligada, substitua o mili-amperímetro pelo amperímetro de 6A e
feche os terminais do secundário em curto-circuito.
3. Ajuste o variac para a posição 0V.
4. Ligue a bancada e aumente lentamente a tensão aplicada no primário, até que a corrente no
primário seja 5A. Complete a tabela abaixo.
V1= I1= P1=
5. Como a tensão aplicada é muito baixa, a corrente de excitação pode ser desprezada. Observe que
este baixo valor de tensão aplicado aos valores de resistência de perdas no núcleo e reatância de
magnetização, que foram calculadas anteriormente, produz correntes desprezíveis. Assim, o circuito
equivalente toma a forma aproximada da figura abaixo.
Figura 1.22 – Circuito equivalente simplificado para operação em curto-circuito
6. A potência ativa medida é praticamente igual à perda no cobre, que é dissipada no resistor
equivalente Req do primário e do secundário. Calcule o valor desta resistência.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
36
7. A resistência do primário e a resistência do secundário refletida para o primário são
aproximadamente iguais. Portanto, calcule os valores destas resistências.
8. Calcule o valor verdadeiro da resistência do secundário.
9. Calcule a impedância equivalente do circuito.
10. Calcule a reatância de dispersão equivalente do circuito.
11. A reatância de dispersão do primário e a reatância de dispersão do secundário refletida para o
primário são aproximadamente iguais. Portanto, calcule os valores destas reatâncias de dispersão.
12. Calcule o valor verdadeiro da reatância de dispersão do secundário.
Transformadores / Prof. Rodrigo Motta de Azevedo
37
1.5.4 RESULTADO FINAL
Apresente, nas figuras abaixo, os parâmetros obtidos para o circuito equivalente do
transformador sob teste.
(a)
(b)
Figura 1.23 – Circuitos equivalentes com os parâmetros determinados
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
38
CAPÍTULO II – TRANSFORMADORES TRIFÁSICOS
2. INTRODUÇÃO
Os sistemas elétricos que envolvem potências altas são normalmente trifásicos. As
alterações de níveis de tensão em sistemas trifásicos podem ser feitas mediante três transformadores
monofásicos ou com um transformador trifásico, que é o caso mais comum.
Na figura 2.1 mostra-se um exemplo de três transformadores monofásicos com os
enrolamentos de alta tensão ligados em triângulo e com os enrolamentos de baixa tensão ligados em
estrela. Os terminais de alta tensão são designados por H1, H2 e H3 e os terminais de baixa tensão
são designados por X0 (neutro), X1, X2 e X3.
Figura 2.1 - Três transformadores monofásicos com ligação triângulo na AT e estrela na BT
Pode-se construir um transformador trifásico agrupando-se três transformadores
monofásicos num mesmo núcleo, conforme está representado na figura 2.3(a). Com uma
alimentação simétrica e equilibrada no primário as correntes de magnetização criam três fluxos
senoidais ( 1, 2 e 3) de mesma amplitude e freqüência mas defasados entre si de 120º. A soma
fasorial dos três fluxos é nula, portanto, não há necessidade de utilização da coluna central do
núcleo, ou seja, cada coluna serve de caminho de retorno para o fluxo das outras colunas. O núcleo
magnético deve ser laminado, e como não necessita da coluna central, fica com o aspecto mostrado
na figura 2.3(b), que é perfeitamente simétrico.
Transformadores / Prof. Rodrigo Motta de Azevedo
39
(a) (b)
Figura 2.3 – (a) Três transformadores monofásicos num mesmo núcleo; (b) Núcleo magnético
laminado e perfeitamente simétrico
O transformador trifásico apresentado na figura 2.3 é perfeitamente simétrico, porém, o
núcleo é de construção difícil e normalmente não é usado. Quase a totalidade dos transformadores
trifásicos tem a forma apresentada na figura 2.4. As três colunas estão no mesmo plano e estão
interligadas por duas travessas, uma inferior e outra superior. Cada coluna possui um enrolamento
de alta tensão e outro de baixa tensão (núcleo envolvido). Normalmente os enrolamentos são
concêntricos e sobrepostos, o enrolamento externo é de alta tensão e o interno de baixa tensão. As
ligações mais comuns são estrela e triângulo.
A relutância da coluna central é menor do que a relutância das colunas laterais, pois possui
menor comprimento, de forma que a corrente de magnetização é menor no enrolamento da coluna
central em relação aos outros dois enrolamentos.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
40
Figura 2.4 – Configuração típica da parte ativa (núcleo e enrolamentos) de transformadores
trifásicos.
Comparação: transformador trifásico versus banco de transformadores monofásicos
1º. O transformador trifásico é mais barato do que o banco de três transformadores monofásicos.
Além da menor quantidade de ferro, o número de acessórios também é menor.
2º. O transformador trifásico ocupa menos espaço do que os três transformadores monofásicos.
3º. Algumas subestações de grande porte usam três transformadores monofásicos e têm um quarto
transformador monofásico de reserva, para um caso de defeito ou manutenção programada de um
dos transformadores. Se o transformador for trifásico, qualquer defeito no mesmo tira a subestação
de operação. No caso de transformadores monofásicos há ainda a possibilidade de operação em
triângulo aberto (ver próxima seção).
2.1 LIGAÇÕES TRIÂNGULO E ESTRELA
As ligações mais comuns em transformadores trifásicos são as ligações triângulo e estrela.
Conforme estudado na teoria de circuitos trifásicos, as relações entre as grandezas de linha e de fase
para estas ligações são as seguintes:
Ligação Estrela (Y)
fl VV 3=
fl II =
(2.1)
(2.2)
Transformadores / Prof. Rodrigo Motta de Azevedo
41
Ligação Triângulo (∆)
fl VV =
fl II 3=
(2.3)
(2.4)
As tensões de linha e de fase são representadas, respectivamente, por Vl e Vf, enquanto que
as correntes de linha e de fase são, respectivamente, Il e If. Freqüentemente são adicionados os
índices 1 e 2 para identificar se a grandeza refere-se ao primário ou ao secundário (Vl1, Vf2, If1, Il2,
etc).
As combinações possíveis são as seguintes: ∆- ∆, Y-Y, ∆-Y e Y- ∆. A figura 2.5 apresenta
todas estas ligações.
∆- ∆ Y-Y
∆-Y Y- ∆
Figura 2.5 - Ligações ∆- ∆, Y-Y, ∆-Y e Y- ∆ em transformadores trifásicos
Alguns transformadores possuem o enrolamento de cada fase dividido em duas partes iguais.
Estas duas partes podem ser ligadas em série ou em paralelo, dependendo dos valores de tensão e de
corrente desejáveis. A figura 2.6 apresenta as ligações em série (a) e em paralelo (b) entre as duas
H1 H2 H3
X1 X2 X3X0
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
42
metades (ou duas bobinas). As ligações das fases entre si não estão apresentadas, podendo ser
estrela ou em triângulo.
(a) (b)
Figura 2.6 - Ligações em série (a) e em paralelo (b) entre as duas metades (bobinas) de cada fase
Por simples inspeção se obtém as relações entre as grandezas de fase e de bobina (meia
fase):
Ligação em série
bf VV 2=
bf II =
(2.5)
(2.6)
Ligação em paralelo
bf VV =
bf II 2=
(2.7)
(2.8)
Exemplo 2.1: Um transformador trifásico, na configuração ∆-Ysérie, alimenta no secundário uma
carga trifásica equilibrada de 400 kVA com tensão de linha de 380 V. O transformador pode ser
considerado como ideal e a relação de espiras entre um enrolamento de AT e um de BT é 62,7.
Pede-se:
a) represente as ligações na AT e na BT;
b) calcule a corrente de linha, a corrente de fase e a corrente de bobina no secundário;
c) calcule a tensão de fase e a tensão de bobina no secundário e a tensão de fase no primário;
d) calcule a tensão de linha no primário;
e) calcule a corrente de linha e a corrente de fase no primário.
Transformadores / Prof. Rodrigo Motta de Azevedo
43
H1 H2 H3
X1 X2 X3X0
As seções 2.1.1 até 2.1.3 apresentam, de forma resumida, as características das ligações
estrela e triângulo. As citações a respeito de harmônicas são puramente informativas, pois um
estudo aprofundado foge do objetivo de uma disciplina de transformadores de nível técnico.
2.1.1 CARACTERÍSTICAS DO AGRUPAMENTO ESTRELA-ESTRELA (Y-Y)
Para análise da operação do agrupamento Y-Y com carga desequilibrada, considere a figura
2.7 onde há uma carga de impedância Zc conectada entre a fase X1 e o neutro X0.
(a) Sem neutro primário (b) Com neutro primário
Figura 2.7 - Agrupamento Y-Y alimentando uma carga desequilibrada
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
44
Com a chave S aberta, circulam pelos enrolamentos primários três correntes de pequeno
valor, aproximadamente iguais, e defasadas de 120º, com o objetivo de magnetizar o núcleo e suprir
as perdas no ferro. Quando a chave S é fechada, circula uma corrente de carga I2 que provoca o
surgimento de uma corrente primária de carga I1’ que tenda restabelecer o valor original de fluxo no
núcleo.
Se o primário não possui neutro, como na figura 2.7(a), a corrente primária de carga é
forçada a voltar para a rede pelos outro dois enrolamentos, o que produz uma alteração da força
magneto-motriz destes enrolamentos, desequilibrando os fluxos nas três colunas do transformador.
Com isto, as tensões de fase, tanto no primário como no secundário, ficam desequilibradas. As
tensões de linha permanecem praticamente equilibradas, a não ser por pequenas quedas de tensão.
Se o primário possui neutro, como na figura 2.7(b), a corrente primária de carga volta para a
rede pelo condutor neutro, e não pelos outros enrolamentos, mantendo os fluxos equilibrados nas
três colunas do transformador. Com isto, as tensões de fase, tanto no primário como no secundário,
permanecem equilibradas.
Portanto, o agrupamento Y-Y sem neutro primário deve ser utilizado somente para cargas
equilibradas.
Por outro lado, como a tensão de cada enrolamento é menor do que a tensão de linha (
3/lf VV = ), o agrupamento Y-Y é economicamente vantajoso para altas tensões de linha, pois
requer menor isolação nos enrolamentos em relação à ligação triângulo. Por outro lado, como a
corrente de linha e a corrente de fase são iguais ( lf II = ), o agrupamento Y-Y é adequado para
baixas correntes.
Se o agrupamento Y-Y não possui neutro surgem tensões de 3º harmônico indesejáveis.
2.1.2 CARACTERÍSTICAS DO AGRUPAMENTO TRIÂNGULO-TRIÂNGULO (∆ - ∆)
A figura 2.8 apresenta o agrupamento ∆-∆ com uma carga de impedância Zc conectada entre
as fases X1 e X2. A ligação triângulo impõe que a tensão de fase e a tensão de linha no primário
sejam iguais. A mesma afirmativa é válida para o secundário.
Transformadores / Prof. Rodrigo Motta de Azevedo
45
Figura 2.8 - Agrupamento ∆-∆ alimentando uma carga desequilibrada
Quando a chave S é fechada, a corrente de carga I2 circula somente pelo enrolamento que
está entre os terminais X1 e X2, ou seja, no enrolamento da coluna central. Assim, a corrente
primária de carga I1’ também percorre o enrolamento da coluna central. Como o enrolamento da
coluna central está ligado diretamente entre os terminais H1 e H2 da rede, I1’ não percorre os outros
enrolamentos e os fluxos permanecem equilibrados nas três colunas do transformador. Com isto, as
tensões de fase, bem como as tensões de linha, no secundário permanecem equilibradas. Portanto, o
agrupamento ∆-∆ pode ser utilizado com cargas desequilibradas.
O agrupamento ∆-∆ apresenta a vantagem da possibilidade de operação em triângulo aberto,
conforme será estudado na seção 2.4.
Outro fator positivo é que as tensões de 3º harmônico são eliminadas com a ligação
triângulo.
Como a corrente de cada enrolamento é menor do que a corrente de linha ( 3/lf II = ), e a
tensão de fase é igual a tensão de linha ( lf VV = ), o agrupamento ∆-∆ é economicamente vantajosa
para altas correntes de linha e baixas tensões de linha.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
46
2.1.3 CARACTERÍSTICAS DOS AGRUPAMENTOS COM TRIÂNGULO E ESTRELA
Considere a figura 2.9, onde o agrupamento é ∆-Y e há uma carga de impedância Zc
conectada entre a fase X1 e o neutro X0.
Figura 2.9 – Agrupamento ∆-Y alimentando uma carga desequilibrada
Quando a chave S é fechada, a corrente primária de carga circula somente pelo enrolamento
que está entre os terminais H1 e H3. Como I1’ não percorre os outros enrolamentos, os fluxos
permanecem equilibrados nas três colunas do transformador. Com isto, as tensões de fase, bem
como as tensões de linha, no secundário permanecem equilibradas. Portanto, o agrupamento ∆-Y
pode ser utilizado com cargas desequilibradas.
Devido à existência do neutro secundário, e da operação satisfatória com carga
desequilibrada, o agrupamento ∆-Y é muito utilizado nos transformadores de redes de distribuição
de energia.
O agrupamento ∆-Y sem neutro também é utilizado nos transformadores elevadores das
subestações que estão localizadas junto às centrais geradoras. O enrolamento de menor tensão
possui maior corrente e está ligado em triângulo. A corrente de fase é menor do que a corrente de
linha ( 3/lf II = ), portanto a ligação triângulo é economicamente vantajosa para altas correntes
de linha, pois requer condutores de menor seção em relação à ligação estrela. Já a ligação do
enrolamento de maior tensão é estrela, que é adequada para altas tensões e baixas correntes.
Transformadores / Prof. Rodrigo Motta de Azevedo
47
Por outro lado, o agrupamento Y-∆ é adequado para transformadores de subestações
rebaixadoras, ou seja, na extremidade final de uma linha de transmissão. Porém, no funcionamento
com carga desequilibrada ocorre o mesmo problema do agrupamento Y-Y sem neutro.
Assim como no agrupamento ∆-∆ as tensões de 3º harmônico são eliminadas, tanto para o
agrupamento ∆-Y como para Y-∆, graças à existência da ligação triângulo.
Alguns transformadores de subestações de grande porte utilizam o agrupamento Y-Y com
terciário em triângulo para eliminação das tensões de 3º harmônico nos outros enrolamentos e
também para alimentação de circuitos auxiliares.
2.2 LIGAÇÃO ZIGUE-ZAGUE (ZIGUEZAGUE OU ZIG-ZAG)
A figura 2.10 apresenta um enrolamento de baixa tensão com a ligação zigue-zague, que
pode ser considerada como uma variação da ligação estrela série. O enrolamento de cada fase é
dividido em duas metades, denominadas de duas meias fases ou duas bobinas. A bobina de uma
coluna é ligada em série com a bobina de outra coluna, porém, com polaridade invertida.
Esta ligação serve para eliminar as tensões de terceiro harmônico do enrolamento de baixa
tensão, bem como produzir uma operação satisfatória com carga desequilibrada. Há ainda a
possibilidade de utilização do condutor neutro para levar dois níveis de tensão até a carga (tensão
entre fases e tensão entre fase e neutro).
Figura 2.10 - Enrolamento de baixa tensão a ligação zigue-zague
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
48
Aplicando-se a 2ª lei de Kirchhoff à malha que inclui X0 e X1 obtém-se:
0'3101 =−+− XXXX VVV &&&
'3101 XXXX VVV &&& −=
)'( 3101 XXXX VVV &&& −+=
(2.9)
Adotando-se o mesmo procedimento para as outras fases obtém-se:
)'( 1202 XXXX VVV &&& −+=
)'( 2303 XXXX VVV &&& −+=
(2.10)
(2.11)
Com base nas equações (2.9) a (2.10) obtém-se os diagramas fasoriais envolvendo as
tensões de bobina ( ',,',,', 332211 XXXXXX VVVVVV &&&&&& ) e as tensões de fase ( 030201 ,, XXXXXX VVV &&& ),
conforme mostra a figura 2.11 (a) e (b).
As equações (2.9) a (2.10) podem ser desenvolvidas para obter-se uma forma de
apresentação mais prática. Tomando-se o módulo de cada tensão de fase como Vf (eficaz) e o
módulo de cada tensão de bobina como Vb (eficaz), tem-se o seguinte desenvolvimento
trigonométrico:
o
b
o
bf VVV 30cos30cos +=
2
3
230cos2 b
o
bf VVV ==
bf VV 3=
(2.12)
Portanto, a tensão de fase e a tensão de bobina estão relacionadas por um fator 3 . Isto
decorre da defasagem de 60º existente entre as duas tensões de bobina que compõem a tensão de
fase. Na verdade as tensões de bobina de colunas diferentes estão defasadas de 120º, mas a inversão
da ligação entre elas produz um efeito de defasagem de 60º.
Transformadores / Prof. Rodrigo Motta de Azevedo
49
(a) (b) (c)
Figura 2.11 - Diagramas fasoriais para a ligação zigue-zague
As tensões de linha ( 133221 ,, XXXXXX VVV &&& ) são obtidas como numa ligação estrela comum, a
partir das tensões de fase resultantes:
2121 XXXX VVV &&& −=
3232 XXXX VVV &&& −=
1313 XXXX VVV &&& −=
(2.13)
(2.14)
(2.15)
A figura 2.11(c) mostra o diagrama fasorial com as tensões de linha e as tensões de fase.
Assim como na ligação estrela tem-se a seguinte relação entre os valores eficazes da tensão de linha
Vl e da tensão de fase Vf:
fl VV 3= (2.16)
Uma análise simples do esquema da figura 2.10 mostra que a corrente de bobina, a corrente
de fase e a corrente de linha são iguais na ligação zigue-zague:
lfb III == (2.17)
Conhecendo-se as relações das tensões e das correntes nas ligações zigue-zague e estrela
série, é possível comparar as quantidades de cobre necessárias para cada ligação, conforme o
exemplo a seguir.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
50
Exemplo 2.2: O secundário de um transformador de distribuição possui cada enrolamento de BT
dividido em duas metades, cada uma delas projetada para 110V e 114A. Pede-se:
a) Calcule a tensão de linha e a potência, disponíveis no secundário, se a ligação for zigue-zague.
b) Calcule a tensão de linha e a potência, disponíveis no secundário, se a ligação for estrela série.
c) Que alteração deve ser feita no transformador para que na ligação zigue-zague obtenha-se a
mesma tensão e a mesma potência que na ligação estrela série.
2.3 LIGAÇÃO TRIÂNGULO ABERTO OU V
Considere um banco de três transformadores monofásicos com o agrupamento ∆-∆
conforme mostrado na figura 2.12.
Figura 2.12 - Banco de três transformadores monofásicos com o agrupamento ∆-∆
Se um dos transformadores monofásicos for retirado, a ligação resultante é denominada de
triângulo aberto ou V (figura 2.13). Tem-se assim um agrupamento denominado de V-V.
Figura 2.13 - Agrupamento V-V
Transformadores / Prof. Rodrigo Motta de Azevedo
51
Facilmente percebe-se que as os primários dos dois transformadores monofásicos
permanecem recebendo a mesma tensão que recebiam na ligação triângulo ( 21HHV& e 32HHV& ). A
tensão 13HHV& é imposta pela rede trifásica e também independe da existência do terceiro
transformador. As tensões 21XXV& e 32 XXV& do secundário também permanecem iguais, pois elas
dependem das tensões primárias 21HHV& e 32HHV& , bem como da relação de transformador de cada
transformador monofásico. Como 21XXV& e 32 XXV& possuem mesmo valor eficaz, e estão defasadas de
120º, a tensão resultante entre elas, que é 13XXV& , tem o mesmo valor eficaz das outras duas e está
defasada 120º das mesmas, conforme mostra o diagrama fasorial da figura 2.13 onde o fasor 13XXV&
está representado tracejado.
Portanto, conclui-se que o agrupamento V-V mantém as mesmas tensões em relação ao
agrupamento ∆-∆, ou seja, em termos de tensão a ausência do terceiro transformador não é
percebida.
Por outro lado, há uma alteração em termos de capacidade de corrente e de potência do
agrupamento. Na ligação triângulo com carga equilibrada, a corrente eficaz disponível na linha ( ∆lI
) é maior do que a corrente eficaz de cada transformador monofásico ( fI ):
fl II 3=∆
(2.18)
A figura 2.14 apresenta as correntes envolvidas na alimentação de uma carga trifásica
equilibrada. Como a carga é equilibrada, e recebe alimentação de três tensões iguais e defasadas de
120º, as correntes na linha de alimentação ( 321 ,, XXX III &&& ) também são iguais e defasadas de 120º.
Observa-se, facilmente, na figura 2.14 que as correntes nos terminais de X1 e X3, que são correntes
de linha, são iguais as correntes que circulam nos enrolamentos secundários ( 121 XXX II && = e
323 XXX II && = ), que são correntes de fase. A corrente na linha de X2 é, na verdade, resultado da soma
fasorial das correntes nos enrolamentos secundários.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
52
Figura 2.14 – Agrupamento V-V com carga trifásica equilibrada
Tratando-se apenas de valores eficazes, tem-se:
flV II = (2.19)
Assim, a relação entre as correntes de linha disponíveis nas duas ligações é:
577,0
3
1
3
===
∆ f
f
l
lV
I
I
I
I
∆= llV II 577,0
(2.20)
Portanto, no agrupamento V-V a corrente de linha disponível fica reduzida a 57,7% da
corrente de linha disponível no agrupamento ∆-∆. Conseqüentemente, a potência disponível
também fica reduzida a 57,7%:
∆= SSV 577,0 (2.21)
O agrupamento V-V pode ser utilizado quando um dos transformadores monofásicos de um
agrupamento ∆-∆ estiver com algum defeito. Porém, a capacidade de potência fica reduzida.
Transformadores / Prof. Rodrigo Motta de Azevedo
53
LISTA DE EXERCÍCOS
Seção 2.1
2.1.1. Execute a ligação Y entre os enrolamentos de AT e ∆ na BT para o banco de transformadores
monofásicos abaixo.
2.1.2. Explique porque a coluna central do transformador da figura 2.3(a) pode ser eliminada.
2.1.3. Explique porque as correntes de magnetização não são perfeitamente equilibradas no
transformador da figura 2.4. O mesmo acontece para os transformadores da figura 2.3? Justifique.
2.1.4. Explique porque o transformador trifásico é mais utilizado do que o banco de
transformadores monofásicos.
Seção 2.2
2.2.1. [Kosow] Uma fábrica drena 100 A, com cosφ=0,7 indutivo, do secundário de um
transformador de distribuição de 60 kVA, 2300V/230V, ligado em Y-∆. Calcule:
a) a potência ativa (kW) e a potência aparente (kVA); (28kW; 40kVA)
b) as tensões e correntes nominais secundárias, de fase e de linha; (87A; 150A)
c) o percentual de carregamento do transformador (pot.fornecida/pot.nominal); (67%)
d) as tensões e correntes primárias, de fase e de linha. (10A)
2.2.2. {Kosow] Refaça o exercício anterior considerando um agrupamento ∆-∆ e anote conclusões.
(28kW; 40kVA; 87A; 150A; 67%; 10A; 17,3 A)
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
54
2.2.3. Um transformador de distribuição trifásico possui um enrolamento secundário dividido em
duas metades iguais. Dados: Vb2 = 127 V, Ib2 = 394 A, Vf1 = 13200 V. Calcule as correntes, as
tensões e a potência aparente deste transformador trifásico para cada uma das ligações abaixo.
a) ∆-Y série;
b) ∆-Y paralelo;
c) Y-∆ paralelo;
2.2.4. Explique porque a ligação Y-Y sem neutro primário não é adequada para alimentação de
cargas desequilibradas.
2.2.5. Explique porque a ligação ∆-Y pode ser utilizada com cargas desequilibradas.
2.2.6. Considerando os agrupamentos ∆-Y e Y-∆, explique qual é mais adequado economicamente
para cada um dos seguintes casos:
a) subestações elevadoras das usinas elétricas;
b) subestações rebaixadoras próximas dos centros de consumo.
Seção 2.3
2.3.1. (a) Refaça o exercício 2.2.3 para um agrupamento triângulo-ziguezague (∆-Z). (b) Apresente
um esquema com as ligações. (c) Compare com os resultados do agrupamento ∆-Y série e anote
conclusões.
2.3.2. Cite características positivas e negativas da ligação zigue-zague.
Seção 2.4
2.4.1. Dispõe-se de três transformadores monofásicos idênticos, cada um deles com as seguintes
características nominais: 26 kV / 2,3 kV; 200 kVA. Determine as características nominais
resultantes dos seguintes agrupamentos: a) ∆- ∆; b) V-V.
Transformadores / Prof. Rodrigo Motta de Azevedo
55
CAPÍTULO III – PRINCIPAIS CARACTERÍSTICAS CONSTRUTIVAS
3. INTRODUÇÃO
- Núcleo
Parte ativa - Enrolamentos
- Material isolante sólido
Transformadores: Liquido isolante ou resina
Carcaça
Acessórios
3.1 POTÊNCIAS NOMINAIS NORMALIZADAS
Potência nominal é o valor de potência aparente que serve de base para o projeto, ensaios e
ainda determina a corrente nominal que circulará sob tensão nominal.
As potências nominais para os transformadores de distribuição são as seguintes:
1. Transformadores monofásicos para instalação em postes:
( 3, 5, 10, 15, 25, 50, 75 e 100 ) KVA.
2. Transformadores trifásicos para instalação em postes:
( 15, 30, 45, 75, 112, 5 e 150) KVA.
3. Transformadores trifásicos para instalação em plataforma:
( 225 e 300 ) KVA.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
56
Há também outras potências já consagradas pelo uso: ( 500, 750 e 1000 )KVA.
A norma PB- 1515/90 padroniza como transformadores de força as potências de 225, 300, 500,
750, 1000, 2500, 3000 e 3750 KVA, porém há outras potências maiores que não são
padronizadas.
3.2 CONFIGURAÇÕES DE NÚCLEOS E ENROLAMENTOS
3.2.1 NÚCLEOS ENVOLVIDOS E NÚCLEOS ENVOLVENTES
O núcleo é feito geralmente de uma liga de ferro-silicio, em formato laminar, possuindo suas
partículas elementares orientada, reduzindo assim a sua relutância. Tem as funções de concentrar as
linhas de força e reduzir ao máximo a oposição à passagem das mesmas.
Na prática existem dois tipos de circuitos magnéticos para transformadores, isto é, os de
núcleo envolvido e os de núcleo envolvente.
O núcleo envolvido possui a forma indicada na figura 3.1 (a). Nesse tipo de núcleo os
enrolamentos são colocados sobre as colunas e envolvem o respectivo circuito magnético, sem ser
envolvidos por este.
O núcleo envolvente, pelo contrário, adquire a forma indicada na figura 3.1 (b). Neste tipo de
núcleo os enrolamentos a envolvem o respectivo circuito magnético, ficando porem envolvidos por
este.
(a) Núcleo Envolvido
Transformadores / Prof. Rodrigo Motta de Azevedo
57
(b) Núcleo Envolvente
Figura 3.1- Núcleo Envolvente e Núcleo Envolvido
3.2.2 ENROLAMENTOS
Os enrolamentos são constituídos de fios de cobre, de seção retangular ou circular, isolados
com esmalte ou papel. Os enrolamentos de BT e AT, figura 3.2, normalmente são concêntricos,
onde a BT ocupa a parte interna e a AT a parte externa, sendo estes fracionados em bobinas de
menor número de espiras, chamadas, por motivo de isolação, facilidade de manutenção e retirada
das derivações para conexão ao comutador.
Figura 3.2- Enrolamento de BT (a) e Enrolamento de AT (b)
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
58
3.2.2.1 TIPOS DE ENROLAMENTOS
Qualquer que seja o tipo de construção do transformador, os dois enrolamentos de alta
tensão (A.T.) e baixa tensão (B.T.) da mesma fase são em geral colocados sobre a mesma coluna.
Nos transformadores monofásicos de colunas, é possível colocar o enrolamento de A.T. sobre uma
coluna e o enrolamento de B.T. sobre outra. Este critério, porém, não é muito aplicado pelo fato de
dar origem a dispersões magnéticas notáveis, pois uma grande parte do fluxo gerado pelo
enrolamento primário se fecha no ar sem chegar a concatenar-se com o secundário. Nos
transformadores industriais há varias maneiras de se disporem as bobinas a fim de se diminuir a
dispersão magnética. Conforme a posição relativa em que são dispostas as A.T. e B.T., obtêm-se os
dois tipos de enrolamentos que são de bobinas concêntricas ou tubulares e de bobinas alternadas ou
de discos.
Figura 3.3- Enrolamentos de disco (panquecas) e enrolamentos concêntricos
A- Enrolamentos concêntricos ou tubulares
Esta construção realiza-se dispondo-se sobre cada coluna, os dois enrolamento o de alta e
de baixa tensão, concêntricos(tem o mesmo centro), separados entre si por meio de material
isolante.
Para maior segurança, perto da coluna coloca-se o enrolamento de BT separado da mesma
por meio de um tubo de material isolante.
Transformadores / Prof. Rodrigo Motta de Azevedo
59
Figura 3.4- Enrolamento Concêntrico
B- Enrolamento com bobinas alternadas ou de discos
Esta construção é realizada executando-se ambos os enrolamentos AT e BT com várias
bobinas de comprimento axial pequeno (discos) e sobrepondo-se as bobinas AT e BT
alternadamente. Para tornar mais fácil o isolamento contra a cabeça do núcleo, as bobinas são
divididas de maneira que as extremas pertençam ao enrolamento de BT. Para diminuir a dispersão,
estas duas bobinas devem possuir a metade da espessura das bobinas de BT. O isolamento entre as
bobinas sobrepostas e obtidas com a interposição de coroas isolantes.
No enrolamento de AT, o problema fundamental é o do isolamento, enquanto que no de
BT surgem dificuldades de execução. O enrolamento de AT tem em geral elevado numero de
espiras com seção relativamente pequena, enquanto o enrolamento de BT, pelo contrario, tem
poucas espiras com grandes seções.
Figura 3.5- Enrolamento Alternado
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
60
3.3 REFRIGERAÇÃO, ISOLAÇÃO E CLASSES DE PROTEÇÃO
3.3.1 LÍQUIDOS ISOLANTES
Os transformadores de distribuição, com tensão acima de 1,2 KV, são construídos de maneira
a trabalharem imersos em óleos isolantes.
O liquido de um transformador exerce duas funções distintas:
- Uma é de natureza isolante;
- A outra é de transferir para as paredes do tanque, o calor produzido, pelas perdas, na
parte ativa do aparelho.
Para que o óleo possa cumprir satisfatoriamente as duas condições acima, deve estar
perfeitamente livre de umidade e outras impurezas, garantindo assim elevada rigidez dielétrica e
boa fluidez.
Os óleos mais utilizados em transformadores são os minerais, que são obtidos na refinação do
petróleo.
O de base parafinica (tipo B) é recomendado para equipamentos com tensão igual ou inferior a
34,5 KV, e os de base naftênica (tipo A) para equipamentos com tensão superior a 34,5KV.
Existem também os fluidos isolantes a base de silicone recomendados para áreas de alto grau
de segurança. Ao contrario dos óleos minerais, esse tipo de fluido possui baixa inflamabilidade,
reduzindo sensivelmente uma eventual propagação de incêndio.
Mais recente ainda as empresas começaram a utilizar o liquide isolante vegetal, passando os
transformadores a ser chamado de transformadores verde.
O grande diferencial do óleo vegetal é que ele se biodegrada na atmosfera em poucos meses ao
contrário dos óleos minerais que são derivados do petróleo.
Fatores que danificam o óleo: Água, oxigênio e calor.
É importante citar que na maioria dos casos, os líquidos isolantes são tratados e reutilizados
novamente.
Transformadores / Prof. Rodrigo Motta de Azevedo
61
Existem também transformadores que trabalham sem o liquido isolante, na qual chamamos de
TRANSFORMADORES A SECO. Neste caso, ocorre o encapsulamento das bobinas de AT e BT
sob vácuo e sob a injeção de uma resina epóxi, conferindo ao transformador características elétricas
e mecânicas que atendem os requisitos conforme os transformadores selados.
Figura 3.6- Transformadores a Seco
3.3.1.1 TANQUES
O tanque do transformador, além de ser o recipiente que contem as partes ativas, isoladores e
óleo, é o elemento que transmite para o ar o calor produzido pelas perdas.
O formato do tanque varia de redondo para os transformadores de distribuição cuja potencia
máxima é da ordem de 150 KVA, a oval e retangular para os transformadores de média e grande
potencias.
De acordo com a quantidade de calor que deve ser liberado, os transformadores têm o tanque
liso, nervurado ou equipados de radiadores.
As figuras abaixo mostram exemplos de tanques de transformadores de distribuição e de
força, monofásico e trifásico.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
62
Figura 3.7- Tanque de Transformadores de Distribuição Trifásicos e monofásicos
Figura 3.8- Tanque de Transformadores de Força
Transformadores / Prof. Rodrigo Motta de Azevedo
63
3.3.2 TIPOS DE RESFRIAMENTO
Os tipos de resfriamento utilizados nos transformadores são os seguintes:
Métodos de Resfriamento
Natureza do Meio de Resfriamento Símbolo
Óleo
Líquido Isolante Sintético Não Inflamável
Gás
Água
Ar
O
L
G
W
A
Natureza da Circulação Símbolo
Natural
Forçada(no caso de óleo, fluxo não dirigido)
Forçada com Fluxo de Óleo Dirigido
N
F
D
Ordem dos símbolos
1ª Letra 2ª Letra 3ª Letra 4ª Letra
Meio de resfriamento em contato direto com o
enrolamento
Meio de resfriamento em contato com o sistema
externo de resfriamento
Natureza do Meio Natureza de
Circulação
Natureza do Meio Natureza de
Circulação
Exemplos:
ONAN – Transformador imerso em óleo com resfriamento a ar natural
ODAF – Transformador imerso em óleo com fluxo dirigido, com resfriamento a ar forçado
ONAN/ONAF/ONAF – Transformador imerso em óleo sem fluxo dirigido, com ventilação a ar
natural com opção de ventilação forçada, com um estágio de ventiladores e com dois estágios de
ventiladores.
ANAN – Transformador seco com invólucro protetor vedado com resfriamento natural a ar
internamente e externamente.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
64
3.3.3 CLASSES DE PROTEÇÃO
É importante salientar que, além das características elétricas, os transformadores devem ser
projetados ou escolhidos de acordo com uma classe de proteção. O que vem ser a classe de
proteção? As características de trabalho dos transformadores são importantíssimas, mas de igual
importância é o ambiente em que esse transformador irá desenvolver esse trabalho e que proteções
operacionais ele deve possuir.
Para mensurar essas características temos as classes de proteção indicadas pelos índices de
proteção IP. Esse índice é construído com dois algarismos, conforme a tabela abaixo.
Tabela grau de Proteção IP
Transformadores / Prof. Rodrigo Motta de Azevedo
65
A coluna da esquerda se refere a graus de proteção contra penetração de objetos sólidos
estranhos. Já a coluna da direita indica o grau de proteção contra a penetração de água.
Por exemplo, um transformador cujo grau de proteção é IP21 que dizer que ele é protegido sobre
a inserção de corpos sólidos maiores que 12mm e protegido mecanicamente contra quedas de água
na vertical.
3.4 ACESSÓRIOS DE UM TRANSFORMADOR
3.4.1 RESPIRADOR
É uma válvula sobre o tanque de expansão, possuindo as seguintes funções:
- Permitir a entrada ou saída de ar sempre que houver dilatação ou contração do óleo;
- Serve como meio de abastecimento do óleo.
3.4.2 SECADOR DE AR
Os transformadores sofrem variações da pressão interna devido às mudanças de temperatura.
Os transformadores de potência, dotados de tanque de expansão tem uma comunicação entre o
mesmo e o ambiente, por onde respiram. Para evitar a entrada de umidade existe na passagem do ar
um recipiente chamado de secador de ar contendo cristais de sílica-gel o qual é muito higroscópico
sendo capaz de absorver água em até 40% de seu peso. Enquanto estiver seca a sua cor é azul
celeste, porém torna-se róseo quando estiver saturado de umidade.
O ar ao passar pela sílica gel deixará na mesma a umidade, fazendo que a sílica gel troque de
coloração, até a sua saturação conforme indicado abaixo:
- Coloração laranja: Sílica gel seca;
- Coloração amarela: Sílica gel com aproximadamente 20% da umidade absorvida;
- Coloração amarelo-claro: Sílica gel com 100% de umidade absorvida (saturada);
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
66
Podemos encontrar também a sílica-gel quando estiver seca na cor azul celeste, porém
torna-se róseo quando estiver saturado de umidade.
Para regeneração da sílica gel recomenda-se colocar em estufa com temperatura máxima de
120°C de 2 a 4 horas.
Figura 3.9-Secadores de Ar
3.4.3 CONSERVADOR DE ÓLEO OU TANQUE DE EXPANSÃO
Consiste de um tanque de menor capacidade colocado acima de um tanque principal de
transformadores com potencia acima de 1000 KVA. Os dois tanques são unidos por uma tubulação.
Nessa tubulação pode ser colocado, quando a potencia do transformador exigir (acima de
5000KVA), o relé detector de gás (relé BUCHHOLZ) o tanque de expansão deve ter a capacidade
de suportar as variações de volume do óleo, em função da temperatura sem extravasar ou ao
contrário ficar vazio , deixando entrar ar ate o relé BUCHHOLZ podendo ate desligar o
transformador.
O tanque de expansão tem as funções de:
- Permitir as variações do nível do óleo pela temperatura sem forçar o tanque;
- Possibilitar a instalação do relé BUCHHOLZ ;
Transformadores / Prof. Rodrigo Motta de Azevedo
67
- Não deixar o ar frio entrar em contato com a parte ativa (núcleo e enrolamentos) quente.
Figura 3.10 – Transformadores de Força com Tanque de Expansão
Conservador com bolsa de borracha
A bolsa de borracha utilizada nos conservadores de óleo dos transformadores é um acessório
opcional. Tem como objetivo evitar o contato do líquido isolante com a atmosfera, preservando-o
da umidade e oxidação.
A ligação da bolsa com a atmosfera é feita através do secador de ar com sílica-gel, que
mantém o ar seco em seu interior, permitindo que a bolsa se encha e esvazie com as variações de
volume do líquido isolante.
O ar existente entre a bolsa de borracha e suas adjacências, deverá ser eliminado no local da
instalação, durante o enchimento de óleo. O óleo devidamente preparado é introduzido no tanque
até a bolsa de borracha ficar vazia. Exceto quando houver determinação especial, a temperatura
deverá estar entre 5°C e 35°C, e a umidade relativa do ar entre 45 e 85%, durante os ensaios. Além
disso, deverá ser evitada corrente de ar para que não haja variação de temperatura e umidade
relativa, prejudicando assim os resultados. Deverá resistir ao ensaio de estanqueidade com
colocação de ar seco a pressão de 0,1kgf/cm2. Não deverá apresentar nenhum vazamento durante o
ensaio.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
68
Figura 3.11 – Conservador de Óleo com Bolsão de Borracha
3.4.4 INDICADOR DE NÍVEL
Os transformadores sem tanque de expansão (selados) possuem um indicador de nível no seu
interior, constando de uma lista de tinta ou de um cordão de solda conforme mostra a figura abaixo.
Figura 3.12 – Indicação do nível de Óleo em transformadores selados sem tanque de expansão
Transformadores / Prof. Rodrigo Motta de Azevedo
69
Já os transformadores com o tanque de expansão podem ter o nível indicado por um tubo de
vidro que se visualiza o óleo ou por um indicador magnético de nível. Esse indicador transmite a
posição da bóia colocada dentro do tanque, para o indicador externo por meio de um imã para não
ter ponto de passagem de umidade.
Figura 3.13 – Indicador de Nível de Óleo
3.4.5 TERMÔMETRO
O termômetro é utilizado para indicação da temperatura do óleo. Instalado na parte superior
do tanque mede continuamente a temperatura no topo do óleo (zona mais quente, abaixo da tampa)
podendo emitir sinais de alarme.
O termômetro possui, além do ponteiro de indicação de temperatura instantânea, dois ou três
ponteiros controláveis externamente para ligação do sistema de proteção e ventilação forçada
(VF, alarme e desligamento) e um ponteiro de arraste para indicação de temperatura máxima do
período.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
70
Para o ponteiro indicador de temperatura máxima do período, após a inspeção periódica do
termômetro, deve-se voltar o mesmo até encostar-se ao ponteiro principal através do controle
externo.
Figura 3.14- Termômetros
Existem também os controladores microprocessados de temperatura. Os controladores
eletrônicos de temperatura foram desenvolvidos para substituir, com vantagens da tecnologia
microprocessada, os termômetros de óleo e enrolamento tradicionais, utilizados em transformadores
e reatores de potência. O principio de funcionamento é todo através de sensores e dispositivos
eletrônicos.
Os controladores microprocessados são necessários quando o cliente solicita indicação
digital de temperatura no transformador, pois os termômetros usuais são analógicos. Podem possuir
saídas analógicas para transdutores ou indicadores instalados remotamente e ainda protocolo de
comunicação
Figura 3.15- Controladores Microprocessados de Temperatura
Transformadores / Prof. Rodrigo Motta de Azevedo
71
3.4.6 BUJÃO DE DRENAGEM
É um tampão por onde se retira o óleo isolante e fica localizado na parte inferior do tanque.
Figura 3.16- Bujão de Drenagem
3.4.7 TERMINAL DE LIGAÇÃO A TERRA
É um parafuso soldado na carcaça que faz a conexão elétrica desta a terra. Por medida de
segurança mantém nula a d.d.p. da carcaça em relação à terra .
Figura 3.17- Aterramento da Carcaça
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
72
3.4.8 COMUTADOR
Conectado ao primário, tem a função de regular a tensão fornecida no secundário isto é
conseguido com a variação do número de espiras do primário. O comutador pode ser comandado
internamente ou externamente ao tanque.
Figura 3.18- Comutadores
3.4.9 ISOLADORES
São acessórios feitos de porcelana, com a periferia vitrificada para impermeabilizá-los. Os
transformadores têm isoladores de alta e baixa tensão.
Funções:
- Possibilitar a passagem aos terminais dos enrolamentos através da tampa, com isolação
elétrica entre ambos;
- Servir de ponto de ligação dar rede, ao transformador em sua extremidade externa. São
chamados, também de buchas.
Transformadores / Prof. Rodrigo Motta de Azevedo
73
Figura 3.19- Isoladores
3.4.10 PLACA DE IDENTIFICAÇÃO
Nela são gravadas as principais características do transformador tais como:
- Nome e demais dados do fabricante;
- Número de série;
- Mês e ano de fabricação;
- Potencia em KVA;
- Norma utilizada na fabricação;
- Impedância de curto circuito;
- Tipo de óleo isolante;
- Tensões nominais do primário;
- Tensões nominais do secundário;
- Diagramas de ligação do primário e secundário com identificação das derivações;
- Indicação do diagrama fasorial quando se tratar de transformadores trifásicos e polaridade quando
monofásicos;
- Volume total do liquido isolante em litros;
- Massa total em kg;
- Número da placa de identificação.
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
74
Figura 3.20- Placa de Identificação
3.4.11 ALÇAS DE SUSPENSÃO
São alças metálicas na carcaça do transformador que servem para suspensão do mesmo.
Figura 3.21- Transformadores de Distribuição
Transformadores / Prof. Rodrigo Motta de Azevedo
75
3.4.12 RADIADORES
Todo calor gerado na parte ativa se propaga através do óleo e dissipado no tanque. As
elevações de temperatura do óleo e dos enrolamentos são normalizadas e devem ser limitadas para
evitar a deterioração do isolamento e do próprio óleo. Dependendo da potencia do transformador,
isto é, das perdas, a área da superfície externa deve ser aumentada para melhor dissipar o calor. Para
tal usam-se radiadores.
Figura 3.22- Radiadores, Transformador de Força com Radiadores e circulação do óleo
IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica
76
3.4.13 RELÉ DE GÁS (BUCHHOLZ)
O relé de gás tem a função de proteger aparelhos elétricos que trabalhem imersos em líquidos
isolante, geralmente transformadores.
Os defeitos pode ser perda do óleo, descargas internas, isolação defeituosa dos enrolamentos,
do ferro ou mesmo contra terra em transformadores equipados apenas com relé de máxima corrente.
O relé de gás é instalado na tubulação que liga o tanque principal ao tanque de expansão. Tem
a capacidade de capitar em seu interior bolhas de gás que se formam no interior do tanque principal
e se dirigem ao tanque de expansão pela diferença de densidade.
A formação de gás dentro do relé diminui o nível do óleo, fazendo com que as bóias (duas)
sejam inclinadas. As bóias estão em alturas (níveis) diferentes. Assim a primeira deve fechar o
contato de alarme e a segunda deve desligar o equipamento.
Os contatos são feitos de ampolas de vidro com mercúrio em seu interior para fazer o
fechamento do circuito elétrico. O relé também possui uma válvula para retirar o ar contido em seu
interior.
O relé BUCHHOLZ é instalado em transformadores para, em tempo hábil, indicar por meio de
alarme ou desligamento do transformador, defeitos como os acima citados e, deste modo,
possibilitar sua recuperação.
Figura 3.23- Relé de Gás
Transformadores / Prof. Rodrigo Motta de Azevedo
77
3.4.14 DISPOSITIVO DE ALÍVIO DE PRESSÃO
Os dispositivos de alívio de pressão são instalados em transformadores imersos em líquido
isolante com a finalidade de protegê-los contra possíveis deformações ou ruptura do tanque, em
casos de defeito interno, com aparecimento de pressão elevada. Podem ser divididos em dois tipos
básicos:
a) Tipo Membrana:
Conhecido também como tubo de explosão, no qual o alívio de pressão ocorrerá pelo
rompimento da membrana. Sempre que o transformador for submetido a vácuo, essa
membrana deve ser isolada do tanque, e, quando manuseada, devem ser tomados os devidos
cuidados para não danificá-la. Observar que é usual utilizar-se uma proteção para a
membrana durante o transporte, devendo, obrigatoriamente, ser retirada antes do inicio do
funcionamento do transformador;
Figura 3.24- Transformador de força com dispositivo de alívio de pressão tipo membrana.
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos
Transformadores: fundamentos e projetos

Mais conteúdo relacionado

Mais procurados

Maquinas elétricas ( Senai )
Maquinas elétricas ( Senai )Maquinas elétricas ( Senai )
Maquinas elétricas ( Senai )Ricardo Akerman
 
3 Métodos para calcular a corrente de curto circuito (1) (7)
3 Métodos para calcular a corrente de curto circuito (1) (7)3 Métodos para calcular a corrente de curto circuito (1) (7)
3 Métodos para calcular a corrente de curto circuito (1) (7)Sala da Elétrica
 
motores trifasicos de ca
  motores trifasicos de ca  motores trifasicos de ca
motores trifasicos de caRenato Campos
 
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...Paulo H Bueno
 
Apostila comandos eletricos
Apostila comandos eletricosApostila comandos eletricos
Apostila comandos eletricosEdson Lopes
 
Porque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicosPorque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicosAlex Davoglio
 
Relatório ensaios em transformadores
Relatório ensaios em transformadoresRelatório ensaios em transformadores
Relatório ensaios em transformadoresVictor Said
 
Barramento de subestações
Barramento de subestações   Barramento de subestações
Barramento de subestações nuno17718
 
Apostila procedimentos para testes e ensaios de motores elétricos franklin
Apostila procedimentos para testes e ensaios de motores elétricos franklinApostila procedimentos para testes e ensaios de motores elétricos franklin
Apostila procedimentos para testes e ensaios de motores elétricos franklinFranklin Arisson Rodrigues dos Santos
 
Livro de comando eletricos-antonio inacio ferraz, eletronica-agropecuária-col...
Livro de comando eletricos-antonio inacio ferraz, eletronica-agropecuária-col...Livro de comando eletricos-antonio inacio ferraz, eletronica-agropecuária-col...
Livro de comando eletricos-antonio inacio ferraz, eletronica-agropecuária-col...ANTONIO INACIO FERRAZ
 
Transformadores - Proteção de Equipamentos e Sistemas Elétricos.
Transformadores - Proteção de Equipamentos e Sistemas Elétricos.Transformadores - Proteção de Equipamentos e Sistemas Elétricos.
Transformadores - Proteção de Equipamentos e Sistemas Elétricos.Fred Pacheco
 
Curso ensaios eletricos
Curso ensaios eletricosCurso ensaios eletricos
Curso ensaios eletricosfabiofds
 

Mais procurados (20)

Terrometro
TerrometroTerrometro
Terrometro
 
Apostila comandos eletricos
Apostila comandos eletricosApostila comandos eletricos
Apostila comandos eletricos
 
Maquinas elétricas ( Senai )
Maquinas elétricas ( Senai )Maquinas elétricas ( Senai )
Maquinas elétricas ( Senai )
 
3 Métodos para calcular a corrente de curto circuito (1) (7)
3 Métodos para calcular a corrente de curto circuito (1) (7)3 Métodos para calcular a corrente de curto circuito (1) (7)
3 Métodos para calcular a corrente de curto circuito (1) (7)
 
motores trifasicos de ca
  motores trifasicos de ca  motores trifasicos de ca
motores trifasicos de ca
 
Corrente nominal de motores trifásicos 220v
Corrente nominal de motores trifásicos 220vCorrente nominal de motores trifásicos 220v
Corrente nominal de motores trifásicos 220v
 
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
 
Apostila comandos eletricos
Apostila comandos eletricosApostila comandos eletricos
Apostila comandos eletricos
 
Instalações Elétricas Residenciais
Instalações Elétricas ResidenciaisInstalações Elétricas Residenciais
Instalações Elétricas Residenciais
 
Porque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicosPorque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicos
 
Relatório ensaios em transformadores
Relatório ensaios em transformadoresRelatório ensaios em transformadores
Relatório ensaios em transformadores
 
Spda
SpdaSpda
Spda
 
Eletricidade Vol. 1 - Senai
Eletricidade Vol. 1 - SenaiEletricidade Vol. 1 - Senai
Eletricidade Vol. 1 - Senai
 
Barramento de subestações
Barramento de subestações   Barramento de subestações
Barramento de subestações
 
Apostila procedimentos para testes e ensaios de motores elétricos franklin
Apostila procedimentos para testes e ensaios de motores elétricos franklinApostila procedimentos para testes e ensaios de motores elétricos franklin
Apostila procedimentos para testes e ensaios de motores elétricos franklin
 
Instalacoes eletricas 1
Instalacoes eletricas 1Instalacoes eletricas 1
Instalacoes eletricas 1
 
Livro de comando eletricos-antonio inacio ferraz, eletronica-agropecuária-col...
Livro de comando eletricos-antonio inacio ferraz, eletronica-agropecuária-col...Livro de comando eletricos-antonio inacio ferraz, eletronica-agropecuária-col...
Livro de comando eletricos-antonio inacio ferraz, eletronica-agropecuária-col...
 
Transformadores - Proteção de Equipamentos e Sistemas Elétricos.
Transformadores - Proteção de Equipamentos e Sistemas Elétricos.Transformadores - Proteção de Equipamentos e Sistemas Elétricos.
Transformadores - Proteção de Equipamentos e Sistemas Elétricos.
 
Eletricidade
EletricidadeEletricidade
Eletricidade
 
Curso ensaios eletricos
Curso ensaios eletricosCurso ensaios eletricos
Curso ensaios eletricos
 

Semelhante a Transformadores: fundamentos e projetos

Eletricista predial
Eletricista predialEletricista predial
Eletricista predialmjmcreatore
 
Comandos elétricos 1
Comandos elétricos 1Comandos elétricos 1
Comandos elétricos 1Ederson Silva
 
Iel eletrônica
Iel eletrônicaIel eletrônica
Iel eletrônicaBanda Arte
 
Apostila refrigeração
Apostila refrigeraçãoApostila refrigeração
Apostila refrigeraçãoGabriel Pardo
 
Eletricistainstaladorpredial 121103175549-phpapp01-131229183128-phpapp02
Eletricistainstaladorpredial 121103175549-phpapp01-131229183128-phpapp02Eletricistainstaladorpredial 121103175549-phpapp01-131229183128-phpapp02
Eletricistainstaladorpredial 121103175549-phpapp01-131229183128-phpapp02Marcos Roberto
 
Relatório tfc caio eduardo silva - implementação de um sistema de aquisição...
Relatório tfc   caio eduardo silva - implementação de um sistema de aquisição...Relatório tfc   caio eduardo silva - implementação de um sistema de aquisição...
Relatório tfc caio eduardo silva - implementação de um sistema de aquisição...Caio Eduardo Silva
 
Eletrônica de Potência 2020 - Cefet-MG
Eletrônica de Potência 2020 - Cefet-MGEletrônica de Potência 2020 - Cefet-MG
Eletrônica de Potência 2020 - Cefet-MGRubens Santos
 
16 maq 001-cfaq i-m 2013
16 maq 001-cfaq i-m 201316 maq 001-cfaq i-m 2013
16 maq 001-cfaq i-m 2013Fabio Dos Anjos
 
49902008 apostila-maquinas-eletricas-1-cefet-sc
49902008 apostila-maquinas-eletricas-1-cefet-sc49902008 apostila-maquinas-eletricas-1-cefet-sc
49902008 apostila-maquinas-eletricas-1-cefet-scacacioee
 
Eletronica analogica
Eletronica analogicaEletronica analogica
Eletronica analogicajailtonrleite
 
Apostila eletronica analogica
Apostila eletronica analogicaApostila eletronica analogica
Apostila eletronica analogicaCarlos Medeiros
 
Controle digital de Temperatura e Vazão de um Chuveiro
Controle digital de Temperatura e Vazão de um ChuveiroControle digital de Temperatura e Vazão de um Chuveiro
Controle digital de Temperatura e Vazão de um ChuveiroLauro Pilatti
 
Elementos de eletrotecnica
Elementos de eletrotecnicaElementos de eletrotecnica
Elementos de eletrotecnicaPaulo Chaves
 
M O T O R D C
M O T O R  D CM O T O R  D C
M O T O R D Csamuelob
 
Manutenc3a7c3a3o elc3a9trica-industrial
Manutenc3a7c3a3o elc3a9trica-industrialManutenc3a7c3a3o elc3a9trica-industrial
Manutenc3a7c3a3o elc3a9trica-industrialMarcos Kakka
 
Manutenc3a7c3a3o elc3a9trica-industrial
Manutenc3a7c3a3o elc3a9trica-industrialManutenc3a7c3a3o elc3a9trica-industrial
Manutenc3a7c3a3o elc3a9trica-industrialMarcos Kakka
 

Semelhante a Transformadores: fundamentos e projetos (20)

Eletricista instalador predial
Eletricista instalador predialEletricista instalador predial
Eletricista instalador predial
 
Eletricista predial web
Eletricista predial webEletricista predial web
Eletricista predial web
 
Eletricista predial
Eletricista predialEletricista predial
Eletricista predial
 
Comandos elétricos 1
Comandos elétricos 1Comandos elétricos 1
Comandos elétricos 1
 
Iel eletrônica
Iel eletrônicaIel eletrônica
Iel eletrônica
 
Apostila refrigeração
Apostila refrigeraçãoApostila refrigeração
Apostila refrigeração
 
Eletricistainstaladorpredial 121103175549-phpapp01-131229183128-phpapp02
Eletricistainstaladorpredial 121103175549-phpapp01-131229183128-phpapp02Eletricistainstaladorpredial 121103175549-phpapp01-131229183128-phpapp02
Eletricistainstaladorpredial 121103175549-phpapp01-131229183128-phpapp02
 
Relatório tfc caio eduardo silva - implementação de um sistema de aquisição...
Relatório tfc   caio eduardo silva - implementação de um sistema de aquisição...Relatório tfc   caio eduardo silva - implementação de um sistema de aquisição...
Relatório tfc caio eduardo silva - implementação de um sistema de aquisição...
 
Atlas de Energia Elétrica do Brasil
Atlas de Energia Elétrica do BrasilAtlas de Energia Elétrica do Brasil
Atlas de Energia Elétrica do Brasil
 
Eletrônica de Potência 2020 - Cefet-MG
Eletrônica de Potência 2020 - Cefet-MGEletrônica de Potência 2020 - Cefet-MG
Eletrônica de Potência 2020 - Cefet-MG
 
16 maq 001-cfaq i-m 2013
16 maq 001-cfaq i-m 201316 maq 001-cfaq i-m 2013
16 maq 001-cfaq i-m 2013
 
49902008 apostila-maquinas-eletricas-1-cefet-sc
49902008 apostila-maquinas-eletricas-1-cefet-sc49902008 apostila-maquinas-eletricas-1-cefet-sc
49902008 apostila-maquinas-eletricas-1-cefet-sc
 
Eletronica analogica
Eletronica analogicaEletronica analogica
Eletronica analogica
 
Apostila eletronica analogica
Apostila eletronica analogicaApostila eletronica analogica
Apostila eletronica analogica
 
Controle digital de Temperatura e Vazão de um Chuveiro
Controle digital de Temperatura e Vazão de um ChuveiroControle digital de Temperatura e Vazão de um Chuveiro
Controle digital de Temperatura e Vazão de um Chuveiro
 
Elementos de eletrotecnica
Elementos de eletrotecnicaElementos de eletrotecnica
Elementos de eletrotecnica
 
M O T O R D C
M O T O R  D CM O T O R  D C
M O T O R D C
 
Apostila completa eletricidade
Apostila completa eletricidadeApostila completa eletricidade
Apostila completa eletricidade
 
Manutenc3a7c3a3o elc3a9trica-industrial
Manutenc3a7c3a3o elc3a9trica-industrialManutenc3a7c3a3o elc3a9trica-industrial
Manutenc3a7c3a3o elc3a9trica-industrial
 
Manutenc3a7c3a3o elc3a9trica-industrial
Manutenc3a7c3a3o elc3a9trica-industrialManutenc3a7c3a3o elc3a9trica-industrial
Manutenc3a7c3a3o elc3a9trica-industrial
 

Último

10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptxVagner Soares da Costa
 
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptxVagner Soares da Costa
 
Apresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMApresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMdiminutcasamentos
 
Calculo vetorial - eletromagnetismo, calculo 3
Calculo vetorial - eletromagnetismo, calculo 3Calculo vetorial - eletromagnetismo, calculo 3
Calculo vetorial - eletromagnetismo, calculo 3filiperigueira1
 
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdfPROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdfdanielemarques481
 
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxTRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxFlvioDadinhoNNhamizi
 
Tipos de Cargas - Conhecendo suas Características e Classificações.pdf
Tipos de Cargas - Conhecendo suas Características e Classificações.pdfTipos de Cargas - Conhecendo suas Características e Classificações.pdf
Tipos de Cargas - Conhecendo suas Características e Classificações.pdfMarcos Boaventura
 

Último (7)

10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
 
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
 
Apresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMApresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPM
 
Calculo vetorial - eletromagnetismo, calculo 3
Calculo vetorial - eletromagnetismo, calculo 3Calculo vetorial - eletromagnetismo, calculo 3
Calculo vetorial - eletromagnetismo, calculo 3
 
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdfPROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
 
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxTRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
 
Tipos de Cargas - Conhecendo suas Características e Classificações.pdf
Tipos de Cargas - Conhecendo suas Características e Classificações.pdfTipos de Cargas - Conhecendo suas Características e Classificações.pdf
Tipos de Cargas - Conhecendo suas Características e Classificações.pdf
 

Transformadores: fundamentos e projetos

  • 1. INSTITUTO FEDERAL SUL-RIO-GRANDENSE CURSO TÉCNICO DE ELETROTÉCNICA APOSTILA DE TRANSFORMADORES I PROF. ADILSON MELCHEQUE TAVARES PROF. RODRIGO MOTTA DE AZEVEDO 2011
  • 2. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 2 NOME:_____________________________________________________________ TURMA:_____________________MÓDULO/SEMESTRE:__________________ ENDEREÇO:________________________________________________________ TELEFONE:_________________________________________________________ E-MAIL:____________________________________________________________ PROVAS: 1° ETAPA: ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2° ETAPA: ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ TRABALHOS: ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ANOTAÇÕES: ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
  • 3. Transformadores / Prof. Rodrigo Motta de Azevedo 3 Sumário CAPÍTULO I – FUNDAMENTOS DE TRANSFORMADORES.............................................6 1. INTRODUÇÃO ..............................................................................................................6 1.1 PRINCÍPIO DE FUNCIONAMENTO ..........................................................................8 1.2 RELAÇÕES NO TRANSFORMADOR IDEAL..........................................................10 1.3 TRANSFORMADOR REAL......................................................................................16 1.3.1 PERMEABILIDADE E PERDAS NO NÚCLEO.....................................................16 1.3.2 FLUXOS DISPERSOS E RESISTÊNCIAS DOS ENROLAMENTOS ...................18 1.3.3 SATURAÇÃO MAGNÉTICA .................................................................................19 1.3.4 CORRENTE DE INRUSH.....................................................................................20 1.3.5 DIAGRAMAS FASORIAIS ....................................................................................21 1.3.6 REGULAÇÃO DE TENSÃO..................................................................................23 1.3.7 RENDIMENTO......................................................................................................24 1.4 TRANSFORMADORES COM MÚLTIPLOS ENROLAMENTOS..............................25 LISTA DE EXERCÍCIOS....................................................................................................27 1.5 ENSAIOS A VAZIO E EM CURTO-CIRCUITO........................................................32 1.5.1 INTRODUÇÃO TEÓRICA.....................................................................................32 1.5.2 ENSAIO A VAZIO.................................................................................................33 1.5.3 ENSAIO DE CURTO-CIRCUITO..........................................................................35 1.5.4 RESULTADO FINAL.............................................................................................37 CAPÍTULO II – TRANSFORMADORES TRIFÁSICOS......................................................38 2. INTRODUÇÃO ............................................................................................................38 2.1 LIGAÇÕES TRIÂNGULO E ESTRELA ....................................................................40 2.1.1 CARACTERÍSTICAS DO AGRUPAMENTO ESTRELA-ESTRELA (Y-Y).............43 2.1.2 CARACTERÍSTICAS DO AGRUPAMENTO TRIÂNGULO-TRIÂNGULO (∆ - ∆) .44 2.1.3 CARACTERÍSTICAS DOS AGRUPAMENTOS COM TRIÂNGULO E ESTRELA 46 2.2 LIGAÇÃO ZIGUE-ZAGUE (ZIGUEZAGUE OU ZIG-ZAG) .......................................47 2.3 LIGAÇÃO TRIÂNGULO ABERTO OU V..................................................................50 LISTA DE EXERCÍCOS.....................................................................................................53 CAPÍTULO III – PRINCIPAIS CARACTERÍSTICAS CONSTRUTIVAS .............................55 3. INTRODUÇÃO ............................................................................................................55 3.1 POTÊNCIAS NOMINAIS NORMALIZADAS ............................................................55 3.2 CONFIGURAÇÕES DE NÚCLEOS E ENROLAMENTOS.......................................56 3.2.1 NÚCLEOS ENVOLVIDOS E NÚCLEOS ENVOLVENTES...................................56
  • 4. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 4 3.2.2 ENROLAMENTOS................................................................................................57 3.2.2.1 TIPOS DE ENROLAMENTOS...........................................................................58 3.3 REFRIGERAÇÃO, ISOLAÇÃO E CLASSES DE PROTEÇÃO ................................60 3.3.1 LÍQUIDOS ISOLANTES .......................................................................................60 3.3.1.1 TANQUES.........................................................................................................61 3.3.2 TIPOS DE RESFRIAMENTO................................................................................63 3.3.3 CLASSES DE PROTEÇÃO ..................................................................................64 3.4 ACESSÓRIOS DE UM TRANSFORMADOR...........................................................65 3.4.1 RESPIRADOR......................................................................................................65 3.4.2 SECADOR DE AR................................................................................................65 3.4.3 CONSERVADOR DE ÓLEO OU TANQUE DE EXPANSÃO................................66 3.4.4 INDICADOR DE NÍVEL ........................................................................................68 3.4.5 TERMÔMETRO....................................................................................................69 3.4.6 BUJÃO DE DRENAGEM ......................................................................................71 3.4.7 TERMINAL DE LIGAÇÃO A TERRA ....................................................................71 3.4.8 COMUTADOR ......................................................................................................72 3.4.9 ISOLADORES ......................................................................................................72 3.4.10 PLACA DE IDENTIFICAÇÃO ............................................................................73 3.4.11 ALÇAS DE SUSPENSÃO .................................................................................74 3.4.12 RADIADORES...................................................................................................75 3.4.13 RELÉ DE GÁS (BUCHHOLZ) ...........................................................................76 3.4.14 DISPOSITIVO DE ALÍVIO DE PRESSÃO.........................................................77 3.4.15 RELÉ DE PRESSÃO SÚBITA...........................................................................78 CAPÍTULO IV – PROJETOS DE PEQUENOS TRANSFORMADORES MONOFÁSICOS82 4. INTRODUÇÃO ............................................................................................................82 4.1 CONDUTORES, ISOLAMENTO E DISPOSIÇÃO DAS BOBINAS ..........................82 4.2 LÂMINAS PADRONIZADAS....................................................................................84 4.3 DADOS PARA CÁLCULO........................................................................................87 4.4 CÁLCULO DAS CORRENTES PRIMÁRIAS E SECUNDÁRIAS .............................87 4.5 CÁLCULO DA SEÇÃO DOS CONDUTORES .........................................................87 4.6 CÁLCULO DA SEÇÃO GEOMÉTRICA DO NÚCLEO .............................................89 4.7 CÁLCULO DA SEÇÃO MAGNÉTICA DO NÚCLEO ................................................89 4.8 ESCOLHA DO NÚCLEO..........................................................................................90 4.9 CÁLCULOS DO NÚMERO DE ESPIRAS................................................................91 4.10 POSSIBILIDADE DE EXECUÇÃO (mm2 ).............................................................92 4.11 PESO DO FERRO................................................................................................92 4.12 PESO DO COBRE.....................................................................................................93 LISTA DE EXERCÍCIOS....................................................................................................94
  • 5. Transformadores / Prof. Rodrigo Motta de Azevedo 5 CAPÍTULO V – AUTOTRANSFORMADORES..................................................................95 5. O AUTOTRANSFORMADOR .....................................................................................95 5.1 FUNCIONAMENTO DO AUTOTRANSFORMADOR ...............................................96 5.1.1 A VAZIO ...............................................................................................................96 5.1.2 COM CARGA........................................................................................................97 5.2 VANTAGENS DO AUTOTRANSFORMADOR EM RELAÇÃO AO TRANSFORMADOR..........................................................................................................98 5.3 DESVANTAGENS DO AUTOTRANSFORMADOR EM RELAÇÃO AO TRANSFORMADOR..........................................................................................................98 5.4 APLICAÇÕES DE AUTOTRANSFORMADORES ...................................................98 LISTA DE EXERCÍCIOS..................................................................................................100
  • 6. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 6 CAPÍTULO I – FUNDAMENTOS DE TRANSFORMADORES 1. INTRODUÇÃO O transformador é um dispositivo eletromagnético estático que recebe energia elétrica em corrente alternada, com certos níveis de tensão e corrente, e fornece essa energia com outros níveis de tensão e de corrente. A freqüência se mantém constante. Conforme a alteração feita na tensão, o transformador é classificado como elevador ou rebaixador. Uma das grandes aplicações do transformador na área de Eletrotécnica está no sistema de geração, transmissão, distribuição e utilização de energia elétrica, onde a tensão é elevada e rebaixada diversas vezes. Os níveis de tensão utilizados no sistema elétrico são bastante diversificados, podendo ser divididos da seguinte forma (Cotrim, Manual de Instalações Elétricas): EAT (Extra Alta Tensão) - tensões superiores a 242 kV até 800 kV, inclusive; AT (Alta Tensão) - tensões maiores que 72,5 kV até 242 kV, inclusive; MT (Média Tensão) - tensões maiores que 1 kV até 72,5 kV, inclusive; BT (Baixa Tensão) - tensões superiores a 50 V até 1 kV, inclusive; EBT (Extra Baixa Tensão) – tensões até 50 V, inclusive. A estrutura atual básica do sistema elétrico está representada na figura 1.1 onde se destacam as etapas de geração, transmissão, distribuição e utilização. Figura 1.1 – Esquema básico de um sistema elétrico
  • 7. Transformadores / Prof. Rodrigo Motta de Azevedo 7 A energia elétrica é gerada nas centrais elétricas (usinas) em MT, por facilidade de isolação. A tensão de saída dos geradores é ampliada a níveis mais altos por meio dos transformadores das subestações elevadores das usinas. A transmissão de energia é feita em AT ou EAT. Isto ocorre porque a potência transmitida é muito alta, de modo que com AT ou EAT diminui-se a corrente elétrica (I=S/( 3 V) no sistema trifásico), e possibilita-se o uso de cabos condutores de bitolas relativamente pequenas, com adequados níveis de perdas joule e de queda de tensão ao longo das linhas de transmissão. Com o aumento da tensão, aumenta também o nível de isolação necessário. As linhas de transmissão (torres e cabos) deveriam situar-se fora das regiões urbanas. Elas alimentam subestações rebaixadoras que distribuem a energia às cidades bem como as subestações de indústrias de grande porte. As linhas de subtransmissão operam com níveis mais baixos de tensão, tal como 69 kV, e alimentam subestações rebaixadoras de menor porte. Os transformadores das subestações elevadoras e rebaixadoras são denominados transformadores de potência ou transformadores de força. Das subestações rebaixadoras derivam as redes de distribuição primárias, em MT, para a zona urbana e a zona rural. Grandes prédios e indústrias de médio porte são alimentados diretamente pelas redes de distribuição primárias. Dos transformadores de distribuição, localizados nos postes da região urbana, derivam as redes de distribuição secundária, em BT, para alimentação de pequenos consumidores residenciais e comerciais. Junto aos consumidores a tensão é rebaixada para que os equipamentos elétricos possam utilizados com menor risco. Exemplo 1.1 – Deseja-se transmitir uma potência de 50 MVA através de uma linha de transmissão trifásica. Calcule a corrente nos cabos da linha para cada uma das seguintes tensões: a) 69 kV; b) 138 kV; c) 230 kV. O transformador também é utilizado, por exemplo, nas seguintes aplicações: Fontes de alimentação de equipamentos eletrônicos; Casamento de impedâncias entre dois circuitos, para máxima transferência de potência (será visto posteriormente); Isolação de circuitos mantendo o nível de tensão, por questão de segurança (será visto posteriormente);
  • 8. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 8 1.1 PRINCÍPIO DE FUNCIONAMENTO Considere-se, para um estudo inicial, o transformador monofásico apresentado na figura 1.2. Ele é constituído por dois enrolamentos colocados nas colunas de um núcleo ferromagnético. O enrolamento que recebe energia da fonte CA é denominado primário e o enrolamento que está conectado na carga (consumidor) de impedância Z é denominado secundário. A tensão do primário e a tensão do secundário são, respectivamente, V1 e V2. Figura 1.2 – Princípio de funcionamento do transformador O funcionamento está baseado na indutância mútua entre os enrolamentos. A corrente alternada que percorre o enrolamento primário cria um fluxo magnético variável. A maior parte deste fluxo fica confinada ao núcleo ferromagnético e atravessa também o enrolamento secundário (fluxo mútuo mφ ). Uma pequena parcela de fluxo se fecha pelo ar (fluxo disperso 1dφ ). Conforme a lei de Faraday, devido à variação de fluxo é induzida uma tensão no secundário, cujo valor eficaz depende do seu número de espiras. A relação entre as tensões do primário e do secundário é dada, de forma aproximada, por: 2 1 2 1 N N V V a == (1.1) onde “a” é a relação de transformação, “N1” é o número de espiras do primário e “N2“ é o número de espiras do secundário. Se o número de espiras do secundário é menor que o número de espiras do primário, como aparece na figura 1.2, a tensão do secundário é menor do que a tensão do primário e o transformador é rebaixador. Caso contrário, o transformador é elevador.
  • 9. Transformadores / Prof. Rodrigo Motta de Azevedo 9 É importante observar que, para existir a variação do fluxo magnético, o transformador deve alimentado com tensão alternada. Como a taxa de variação do fluxo é a mesma para os dois enrolamentos, a freqüência permanece inalterada. Ou seja, a freqüência do secundário é igual à freqüência do primário. O transformador é um equipamento que possui rendimento muito alto, ou seja, a potência de saída é aproximadamente igual à potência de entrada. Desta forma, a variação de tensão é acompanhada de uma variação, de forma inversa, da corrente. Isto significa que, por exemplo, houver uma elevação de tensão, haverá uma redução de corrente. As seções dos condutores dos enrolamentos são proporcionais às respectivas correntes. Exemplo 1.2 – Complete a tabela abaixo (com as palavras maior, menor e igual) de modo a resumir as características básicas de um transformador (Rebaixador e Elevador) . Enrolamento Primário Enrolamento Secundário Tensão Número de espiras Corrente Seção do condutor Freqüência Considerações adicionais sobre a construção de transformadores 1) Características do Núcleo O núcleo ferromagnético deve apresentar as seguintes características: Alta permeabilidade magnética para altas induções (1,0 a 1,5 T), de modo que a corrente necessária à criação de fluxo (corrente de magnetização) seja relativamente pequena; Baixas perdas por histerese; Baixas perdas por correntes parasitas. Para atender os requisitos citados acima, o núcleo geralmente é feito de chapas de aço-silício isoladas entre si. Também existem transformadores com núcleo de ar ou com núcleo de ferrite, usados em altas freqüências, típicos de circuitos de comunicação.
  • 10. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 10 1.2 RELAÇÕES NO TRANSFORMADOR IDEAL Para começar uma análise mais detalhada sobre funcionamento do transformador é conveniente adotar algumas simplificações, que caracterizam o transformador como sendo ideal. O transformador ideal possui as seguintes características: As resistências dos enrolamentos são desprezíveis; Todo o fluxo está confinado ao núcleo, ou seja, não há fluxo disperso; Não há perdas por histerese e por correntes de Foucault no núcleo; O núcleo tem característica linear, ou seja, não há saturação magnética. A permeabilidade do núcleo é tão alta que apenas uma corrente insignificante é necessária para criar o fluxo. A figura 1.5 mostra a representação simplificada de um transformador ideal, suficiente para a análise desta seção. Os sentidos convencionados como positivos para as grandezas envolvidas no funcionamento estão apresentados nessa figura. Figura 1.5 – Transformador ideal Com a fonte senoidal alimentando o primário em com a chave S aberta, a corrente que circula no primário tem a função de magnetizar o núcleo. Esta corrente é denominada corrente de magnetização e tem valor desprezível devido á altíssima permeabilidade do núcleo: 01 ≅= mII (1.2) A corrente de magnetização cria um fluxo que varia senoidalmente no tempo (figura 1.6).
  • 11. Transformadores / Prof. Rodrigo Motta de Azevedo 11 Figura 1.6 – Fluxo no núcleo magnético O fluxo atravessa os dois enrolamentos (fluxo mútuo mφ ) e induz forças eletromotrizes em ambos. Os pontos indicados nos terminais superiores na figura 1.5 são as marcas de polaridade e representam os terminais para onde ambas as forças eletromotrizes apontam num dado instante de tempo. Posteriormente será desenvolvido um estudo mais detalhado sobre as polaridades (sentidos de fems) dos enrolamentos de transformadores. A força eletromotriz induzida no primário é chamada de força contra-eletromotriz por muitos autores, pois ela funciona como uma oposição à corrente no primário. Com o secundário em aberto o transformador ideal funciona como um indutor puro alimentado por uma fonte senoidal. A força contra-eletromotriz é tratada na teoria de circuitos de corrente alternada como uma queda de tensão na reatância indutiva do enrolamento, e esta funciona como o limitador da corrente. Como a permeabilidade do núcleo é suposta altíssima, a reatância indutiva também é muito alta e, por esta razão, a corrente de magnetização é desprezível. Se a permeabilidade for considerada infinita, a corrente de magnetização será nula. De acordo com a lei de Faraday, a força eletromotriz média induzida no primário é dada por: t m med NE ∆ ∆ = φ 11 (1.3) onde mφ∆ é a variação do fluxo mútuo e t∆ é o intervalo de tempo correspondente.
  • 12. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 12 Para o intervalo de tempo indicado na figura 1.6, igual à quarta parte do período T da onda de fluxo ( 4/Tt =∆ ), a variação de fluxo mútuo é igual ao fluxo máximo ( maxφφ =∆ m ). Desenvolvendo-se a equação (1.3), obtém-se: Τ = Τ ∆ = 1 4 4 111 máx m med NNE φ φ (1.4) fNE máxmed φ11 4= (1.5) onde f é a freqüência da tensão de alimentação do transformador. Para uma forma de onda senoidal, a relação entre o valor médio e o valor máximo da força eletromotriz no intervalo de tempo considerado é expressa por: máxmed EE 11 2 π = ou medmáx EE 11 2 π = (1.6) Substituindo-se a equação (1.5) na equação (1.6), obtém-se: )4( 2 11 fNE máxmáx φ π = (1.7) fNE máxmáx φπ 11 2= (1.8) A relação entre o valor máximo e o valor eficaz, representado por E1, é: 2 1 1 máxE E = (1.9) Substituindo-se a equação (1.8) na equação (1.9), chega-se na força eletromotriz eficaz do primário: 2 2 1 1 fN E máxφπ = (1.10) fNE máxφ11 44,4= (1.11)
  • 13. Transformadores / Prof. Rodrigo Motta de Azevedo 13 Pode-se provar, por processo análogo, que a força eletromotriz eficaz no secundário é: fNE máxφ22 44,4= (1.12) A força eletromotriz induzida em qualquer bobina, submetida a um fluxo que varia senoidalmente no tempo, pode determinada pela mesma equação usada para as forças eletromotrizes do transformador. Como as resistências dos enrolamentos e os fluxos dispersos são desprezíveis no transformador ideal, as tensões nos terminais dos enrolamentos são iguais a forças eletromotrizes induzidas nos mesmos: fNEV máxφ111 44,4== (1.13) fNEV máxφ222 44,4== (1.14) Das equações (1.13) e (1.14) obtém-se uma relação fundamental para o transformador ideal: a N N E E V V === 2 1 2 1 2 1 (1.15) Portanto, a tensão e a força eletromotriz em cada enrolamento são proporcionais ao número de espiras do enrolamento. Isolando-se o fluxo máximo na equação (1.13) obtém-se: fN V máx 1 1 44,4 =φ (1.16) A equação acima mostra que o fluxo máximo no núcleo é determinado pela tensão aplicada ao primário do transformador. Portanto, se esta tensão for mantida constante, o mesmo acontecerá com o valor máximo do fluxo. Evidentemente, supõe-se que a freqüência e o número de espiras são constantes. Como já foi dito anteriormente, a corrente de magnetização e a força magnetomotriz associadas a este fluxo são desprezíveis.
  • 14. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 14 Com a chave S fechada, circula uma corrente no secundário, expressa por: cZ V I 2 2 = (1.17) A circulação de corrente no secundário dá origem a uma força magnetomotriz N2I2 que tende a alterar o fluxo máximo no núcleo. Se isto acontecesse, o equilíbrio entre a tensão aplicada e a força contra-eletromotriz seria quebrado, contrariando a equação (1.16). Para que isto não ocorra, aumenta a corrente absorvida pelo primário de forma que a sua forma magnetomotriz N1I1 anule a força magnetomotriz do secundário. Assim, a força magnetomotriz resultante permanece praticamente nula, como também acontecia com o transformador ideal a vazio: 02211 =− ININ (1.18) Este mecanismo é que faz o primário “perceber” a existência de carga no secundário. Um aumento de corrente no secundário, devido a um aumento de carga, é acompanhado também por um aumento da corrente no primário. A equação (1.18) pode ser remanejada, resultando em: a N N I I == 2 1 1 2 (1.19) A equação (1.19) mostra que a relação entre as correntes é invertida se comparada com a relação entre as quantidades de espiras. Portanto, o enrolamento que possui mais espiras, e maior tensão, possui menor corrente e vice-versa. Este efeito está diretamente relacionado com o princípio da conservação de energia, como era de se esperar. Como o transformador ideal não apresenta perdas nem dispersão magnética, a potência aparente de entrada é igual à potência aparente de saída: 221121 IVIVSS =⇒= (1.20) Devido à existência do transformador localizado entre a fonte e a impedância, a fonte “enxerga” a impedância com valor diferente do seu valor real. Esta impedância está representada por Zc’ na figura 1.7 e pode ser determinada da seguinte forma:
  • 15. Transformadores / Prof. Rodrigo Motta de Azevedo 15 1 1 ´ I V Zc = (1.21) 2 2 2 2 1 2 1 2 2 2 1 ´ I V N N I N N V N N ZC       == (1.22) CC Z N N Z 2 2 1 ´       = (1.23) Figura 1.7 – Impedância da carga, refletida ou referida para o primário Portanto, a impedância da carga refletida, ou referida, para o primário é proporcional ao quadrado da relação de espiras. É importante destacar que o fator de potência da carga permanece inalterado, ou seja: CC COSCOS ϕϕ =´ (1.24) Exemplo 1.3 – Certo transformador, que pode ser considerado como ideal, possui um enrolamento com 1600 espiras e o outro enrolamento com 200 espiras. O enrolamento com menor número de espiras é alimentado com 30V/60Hz e o outro enrolamento é conectado a uma impedância de 192 . Determine: a) a relação de transformação e diga se o transformador é elevador ou rebaixador; b) a tensão e a corrente no secundário; c) a corrente no primário; d) a impedância da carga referida ao primário; e) as potências aparentes, absorvida pelo primário e fornecida pelo secundário; f) a corrente no primário com a carga desligada.
  • 16. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 16 1.3 TRANSFORMADOR REAL O circuito equivalente de um transformador real é obtido adicionando-se alguns componentes ideais de circuitos (resistores e indutores) ao transformador ideal estudado na seção anterior. Com isto, os efeitos desprezados no transformador ideal são levados em consideração. 1.3.1 PERMEABILIDADE E PERDAS NO NÚCLEO A lei de Hopkinson, aplicada a valores instantâneos, mostra que o fluxo no núcleo é diretamente proporcional ao número de espiras ( 1N ) e a corrente de magnetização ( 1i ) no primário, e inversamente proporcional a relutância (ℜ) do núcleo: ℜ = m m iN1 φ (1.25) A relutância representa uma oposição ao fluxo magnético e depende dos seguintes fatores: permeabilidade do ferro ( µ ); comprimento médio do núcleo (l ); área da seção transversal do núcleo ( S ). Estas grandezas estão relacionadas da seguinte forma: S l µ =ℜ (1.26) Portanto, no transformador ideal, que tem um núcleo de altíssima permeabilidade, a relutância é muito baixa, ou seja, desprezível (equação 1.26). Por isto, a corrente de magnetização também é desprezível (equação 1.25). Num transformador real a permeabilidade do núcleo não é tão alta como no transformador ideal, portanto a corrente de magnetização não é, a princípio, desprezível. Para levar em consideração a corrente de magnetização, coloca-se um indutor puro em paralelo com o enrolamento primário do transformador ideal, conforme mostra a figura 1.10. A reatância deste indutor é denominada de reatância de magnetização (Xm). Utiliza-se um indutor ao invés de um resistor porque a potência para magnetização do núcleo é uma potência reativa.
  • 17. Transformadores / Prof. Rodrigo Motta de Azevedo 17 Figura 1.10 – Circuito equivalente incluindo efeito da permeabilidade e das perdas no núcleo Para levar em consideração as perdas no ferro, coloca-se um resistor puro em paralelo com o enrolamento primário do transformador ideal, conforme mostra a figura 1.10. A resistência deste resistor é denominada de resistência de perdas no núcleo (Rn). A potência dissipada nesse resistor é igual à potência perdida no núcleo por correntes de Foucault e por histerese magnética. A parcela de corrente associada às perdas no núcleo é designada por “In” e depende da tensão aplicada ao primário. Deve-se lembrar que o fluxo no núcleo depende da tensão primária. A soma fasorial da corrente de magnetização com a corrente de perdas no núcleo é a corrente de excitação: mn III &&& +=0 (1.27) Com a chave S aberta na figura 1.10, a corrente no primário “ 1I& ” é igual à corrente de excitação “ 0I& ”, a qual depende da tensão aplicada ao primário. A corrente de excitação normalmente fica na faixa entre 2 e 6% da corrente nominal do primário. Com a chave S fechada, circula pelo secundário uma corrente “ 2I& ” que tende a alterar o fluxo no núcleo. Com isto, surge no enrolamento primário uma corrente “ '1I& “, cuja força magnetomotriz que serve anular a força magnetomotriz do secundário, mantendo inalterado o fluxo no núcleo. Esta parcela de corrente no primário devido à existência de carga no secundário é denominada corrente primária de carga ( '1I& ). A relação entre a corrente primária de carga e a corrente no secundário, conforme já foi mostrado para o transformador ideal, é: 1 2 2 1 ' N N I I = & & (1.28) Portanto, a corrente total nos terminais do primário do transformador com carga é:
  • 18. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 18 '' 1011 IIIIII mn &&&&&& +=++= (1.29) 1.3.2 FLUXOS DISPERSOS E RESISTÊNCIAS DOS ENROLAMENTOS O fluxo total que atravessa cada enrolamento é composto de duas parcelas. A primeira é referente ao fluxo mútuo, ou seja, o fluxo comum a ambos os enrolamentos, que determina as forças eletromotrizes “ 1E ” e “ 2E ” consideradas no transformador ideal. A segunda parcela é composta pelo fluxo disperso enlaça somente o enrolamento que o produziu. Como o caminho deste fluxo, na sua maior parte, é o ar, a força eletromotriz por ele gerada varia aproximadamente na mesma proporção da corrente no enrolamento. Portanto, esta força eletromotriz pode tratada como uma queda numa reatância, denominada reatância de dispersão. Para levar em consideração o efeito da dispersão magnética, o circuito equivalente da figura 1.11 possui duas reatâncias “ 1dX ” e “ 2dX ”, denominadas, respectivamente, reatância de dispersão do primário e reatância de dispersão do secundário. As resistências “ 1R ” e “ 2R ” da figura 1.11 servem para se levar em consideração as resistências ôhmicas dos enrolamentos, primário e secundário, do transformador. Na operação sob carga nominal a queda de tensão total, na resistência e na reatância de dispersão, é bem menor do que a tensão nominal do respectivo enrolamento. Devido a estas quedas, tem-se uma diferença entre a tensão terminal de cada enrolamento e a força eletromotriz no mesmo: 11111 )( IjXREV d &&& ++= (1.30) 22222 )( IjXREV d &&& +−= (1.31) Note-se que há uma diferença nos sinais das quedas de tensão nos enrolamentos. Esta diferença é devido à diferença no sentido do fluxo de energia. A energia vai da fonte para o enrolamento primário e do secundário para a impedância de carga, ou seja, no primário a corrente entra pelo terminal positivo e no secundário a corrente sai pelo terminal positivo.
  • 19. Transformadores / Prof. Rodrigo Motta de Azevedo 19 Figura 1.11 – Circuito equivalente completo do transformador real Como as quedas de tensão na resistência e na reatância de dispersão do primário são baixas, a fem induzida no primário é aproximadamente igual à tensão aplicada. Assim, tem-se: 0)( 111 ≅+ IjXR d & 11 EV && ≅ fNV max11 44,4 φ≅ fN V 1 1 max 44,4 ≅φ (1.32) Portanto, o fluxo no núcleo é aproximadamente independente da carga. Ele depende da tensão aplicada ao enrolamento primário, no número de espiras e da freqüência, de forma semelhante ao que foi demonstrado para o transformador ideal. 1.3.3 SATURAÇÃO MAGNÉTICA A existência da saturação magnética faz com que ocorra uma deformação na corrente de excitação do transformador. Uma corrente não senoidal pode ser decomposta matematicamente em uma soma de infinitas correntes senoidais, denominadas correntes harmônicas, cada uma com determinada amplitude e determinada freqüência. Na prática, observa-se que as harmônicas mais significativas (com maior amplitude) são a primeira e a terceira, que possuem freqüências iguais a uma vez e três vezes, respectivamente, a freqüência da forma de onda original não senoidal. As harmônicas são indesejáveis, pois prejudicam o desempenho do sistema elétrico.
  • 20. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 20 A figura 1.12 mostra o aspecto aproximado da corrente de excitação de um transformador real. Uma análise mais detalhada deste assunto foge do escopo do presente texto, sendo tratado mais detalhadamente em cursos de graduação e pós-graduação. Figura 1.12 – Corrente de excitação devido a não linearidade do ferro 1.3.4 CORRENTE DE INRUSH A corrente de inrush é o valor máximo da corrente de excitação do transformador, no momento em que ele é energizado, atingindo valores de 4 a 20 vezes a corrente nominal. O tempo de duração do processo de magnetização inicial é considerado em torno de 0,1s. A corrente de inrush depende do ponto da senóide de tensão em que ocorre a energização e do valor do fluxo residual no núcleo. Este assunto é tratado mais detalhadamente em cursos de graduação e pós- graduação.
  • 21. Transformadores / Prof. Rodrigo Motta de Azevedo 21 1.3.5 DIAGRAMAS FASORIAIS a) Operação a Vazio Considere que no circuito equivalente da figura 1.11 a chave S está aberta, ou seja, o transformador está a vazio. Para efeito de traçado do diagrama fasorial da figura 1.13, considere um transformador elevador. Como não há corrente no secundário ( 02 =I& ), não há quedas de tensão na resistência e na reatância de dispersão do secundário ( 0)( 222 =+ IjXR d & ) e, portanto, a força eletromotriz induzida e a tensão no secundário são iguais ( 22 EV && = ). A força eletromotriz induzida no primário ( 1E& ) está em fase com a força eletromotriz induzida no secundário ( 2E& ), pois ambas são geradas pelo fluxo mútuo. Supondo-se um transformador elevador, tem-se que 1E < 2E . Como transformador está a vazio, a corrente no primário é baixa e as quedas de tensão quedas de tensão na resistência e na reatância de dispersão do secundário podem ser desprezadas ( 0)( 111 ≅+ IjXR d & ). Portanto, a força eletromotriz induzida e a tensão no primário são aproximadamente iguais ( 11 EV && ≅ ). A corrente que circula pelo primário tem duas funções: - magnetizar o núcleo – componente mI& , atrasada de 90º em relação a força eletromotriz induzida no primário; - suprir as perdas no núcleo – componente nI& , em fase com a força eletromotriz induzida no primário. A corrente de excitação ( 0I& ), ou corrente a vazio, é obtida pela soma fasorial da corrente de perdas no núcleo com a corrente de magnetização (equação 1.27), e normalmente fica compreendida entre 2 e 6% da corrente nominal do primário. Na operação a vazio o fator de potência do transformador é muito baixo. Figura 1.13 – Diagrama fasorial para operação a vazio
  • 22. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 22 b) Operação com Carga Quando a chave S no circuito equivalente da figura 1.11 é fechada o transformador passa a alimentar a carga de impedância “ cZ ”. Para efeito de traçado do diagrama fasorial da figura 1.14, considere que transformador elevador fornece potência nominal para uma carga com teor indutivo. Devido ao fator de potência indutivo da carga ( 2cosϕ ), a corrente no secundário ( 2I& ) está atrasada em relação a tensão nos terminais do secundário. A circulação de corrente no secundário produz quedas de tensão na resistência do enrolamento, em fase com a corrente, e na reatância de dispersão, adiantada de 90º da corrente. A soma fasorial da tensão nos terminais do secundário com as quedas de tensão no enrolamento fornece a força eletromotriz induzida no secundário, pois 22222 )( IjXRVE d &&& ++= . Conforme já foi mencionado, a força eletromotriz induzida no primário ( 1E& ) está em fase com a força eletromotriz induzida no secundário ( 2E& ), pois ambas são geradas pelo fluxo mútuo. Supondo-se um transformador elevador, tem-se que 1E < 2E . A existência de corrente no secundário dá origem a uma corrente de carga primária ( '1I& ), em fase com a corrente do secundário. A corrente total no primário é formada pela soma fasorial da corrente de excitação e da corrente de carga primária: '101 III &&& += . A soma fasorial da força eletromotriz induzida no primário com as quedas de tensão no enrolamento fornece a tensão nos terminais do primário, pois 11111 )( IjXREV d &&& ++= . Figura 1.14 – Diagrama fasorial para operação com carga Obs.: as quedas de tensão estão ampliadas para melhorar a visualização
  • 23. Transformadores / Prof. Rodrigo Motta de Azevedo 23 1.3.6 REGULAÇÃO DE TENSÃO A regulação de tensão de um transformador representa a diferença entre a tensão de saída sem carga e a tensão de saída sob carga. Esta diferença é expressa em percentual da tensão secundária sob carga. Como a tensão nos terminais do secundário sem carga é igual a força eletromotriz induzida no secundário, tem-se: %100% 2 22 V VE R − = (1.33) onde %R é a regulação de tensão. De modo geral, deseja-se que o transformador tenha pequena regulação de tensão, ou seja, que a tensão no secundário não seja muito afetada pelas variações de carga. A tabela 1.1 apresenta os valores de regulação em função da carga, incluindo o seu fator de potência. Tabela 1.1 - Regulação em função da carga e do fator de potência. Fator de potência da carga Carga (%) Regulação (%) 0,8 ind. 25 50 75 100 0,8876 1,775 2,662 3,550 0,9 ind. 25 50 75 100 0,7416 1,483 2,225 2,966 1,0 25 50 75 100 0,3037 0,6074 0,9112 1,214 Fonte: Informações Técnicas DT-11 - WEG
  • 24. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 24 Exemplo 1.4 – A força eletromotriz induzida no enrolamento secundário de certo transformador sob carga nominal é 250V. Considerando que a sua regulação de tensão é 4%, calcule a tensão nos terminais de saída na operação sob carga nominal. 1.3.7 RENDIMENTO O transformador é um equipamento estático que transfere energia de um circuito para outro por indução eletromagnética. Como já foi visto, neste processo ocorrem perdas de potência no núcleo ferromagnético (perdas no ferro, nP ) e nas resistências ôhmicas dos enrolamentos (perdas no cobre, 1JP e 2JP ): 2 nnn IRP = 2 111 IRPJ = 2 222 IRPJ = (1.34) O rendimento (η ) é a relação entre a potência ativa fornecida pelo secundário ( 2P ) e a potência ativa absorvida pelo primário ( 1P ): %100 1 2 P P =η (1.35) Comparado com as máquinas elétricas girantes, como o motor e o gerador, o transformador possui altíssimo rendimento, podendo chegar, em alguns transformadores de alta potência, a 99%. A tabela 1.2 apresenta os valores típicos de rendimento para transformadores monofásicos operando sob carga nominal e fator de potência 0,85 indutivo.
  • 25. Transformadores / Prof. Rodrigo Motta de Azevedo 25 Tabelas 1.2 - Valores típicos de rendimento para transformadores monofásicos operando sob carga nominal e fator de potência 0,85 indutivo. Transformadores Monofásicos - Rendimentos Potência (kVA) 5 10 15 25 37,5 50 75 100 Classe (kV) 15 96,26 96,92 97,18 97,52 97,76 98,02 98,15 98,21 25,8 95,94 96,59 96,88 97,25 97,52 97,68 98,00 98,15 38 95,94 96,59 96,88 97,25 97,52 97,68 98,00 98,15 Fonte: Informações Técnicas DT-11 – WEG 1.4 TRANSFORMADORES COM MÚLTIPLOS ENROLAMENTOS Muitos transformadores monofásicos possuem enrolamentos fracionados em duas partes iguais, de forma que podem ser ligados em série ou paralelo, propiciando duas tensões nominais. Considere, por exemplo, um transformador monofásico com três enrolamentos, divididos da seguinte forma: dois enrolamentos de 110 V e um enrolamento de 12 V. Este transformador pode ser alimentado em 220 V, se os dois enrolamentos de 110 V forem ligados em série, e também pode ser alimentado em 110 V, se os dois enrolamentos de 110 V forem ligados em paralelo. Em qualquer dos casos a tensão do secundário será 12 V. Porém, é necessária atenção ao se ligar enrolamentos de transformadores em série ou em paralelo. As polaridades dos enrolamentos devem ser determinadas antes de se efetuar a ligação. Na figura 1.15 as setas representam os sentidos das forças eletromotrizes induzidas nos enrolamentos num dado instante de tempo. O valor numérico ao lado representa o valor eficaz da fem. Na figura 1.15(a) a ligação está efetuada de forma correta, pois as forças eletromotrizes estão no mesmo sentido e se somam. A corrente no primário resulta com baixo valor e a fem induzida no secundário é 12V. Na figura 1.15(b) a ligação está efetuada de forma incorreta, pois as forças eletromotrizes estão em sentidos contrários e se anulam. Com isto a corrente no primário resulta muito alta e não há fem induzida no secundário, pois os fluxos se anulam.
  • 26. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 26 (a) (b) Figura 1.15 – ligação de enrolamentos em série: (a) correto e (b) incorreto Costuma-se dizer que as ligações devem ser feitas da seguinte forma: Ligação série - conecta-se o final de uma bobina com o início de outra bobina; Ligação paralela - conecta-se o final de uma bobina com o final de outra bobina e conecta-se o início de uma bobina com o início de outra bobina. O problema é saber onde estão os inícios e onde estão os finais de bobinas. Para tanto, pode- se proceder da seguinte forma (figura 1.16): 1º) Com um multímetro na escala de resistência determina-se os terminais dos enrolamentos mediante testes de continuidade. 2º) Os enrolamentos de maior tensão apresentam maior resistência, pois são feitos com mais espiras de fio mais fino. 3º) Conecta-se um terminal de um enrolamento com um terminal de outro enrolamento. 4º) Aplica-se uma tensão alternada baixa em um dos enrolamentos e mede-se a tensão resultante da associação. 5º) Interpreta-se o resultado – se a tensão resultante for maior do que a tensão aplicada a ligação está correta. Caso contrário, basta inverter uma das bobinas. Figura 1.16 – Teste para identificação de inícios e finais de enrolamentos
  • 27. Transformadores / Prof. Rodrigo Motta de Azevedo 27 LISTA DE EXERCÍCIOS Seção 1.1 1.1.1. O transformador é um equipamento fundamental no sistema elétrico. Observando a figura abaixo, descreva cada um dos itens numeradas de 1 a 6, destacando as funções dos transformadores no sistema. Figura 1.8 – Ver exercício 1.1.1 1.1.2. Deseja-se transmitir uma potência de 200 kVA através de uma rede de distribuição. Calcule a corrente nos cabos da rede para cada um dos seguintes casos: a) 13,8 kV, rede trifásica; b) 6,6 kV, rede trifásica; c) 6,6 kV, rede monofásica.
  • 28. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 28 Seção 1.2 1.2.1. Descreva o princípio de funcionamento de um transformador. 1.2.2. Complete as tabelas abaixo (com as palavras maior, menor e igual) de modo a resumir as características básicas do transformador elevador e do transformador rebaixador. a) TRANSFORMADOR ELEVADOR Primário Secundário Tensão Número de espiras Corrente Seção do condutor Freqüência Resistência Indutância b) TRANSFORMADOR REBAIXADOR Primário Secundário Tensão Número de espiras Corrente Seção do condutor Freqüência Resistência Indutância 1.2.3. Apresente o esboço de um transformador de núcleo envolvido e enrolamentos alternados. Seção 1.3 1.3.1. Cite as características do transformador ideal.
  • 29. Transformadores / Prof. Rodrigo Motta de Azevedo 29 1.3.2. Explique o que é a corrente de magnetização de um transformador. Qual o seu valor para um transformador ideal? Justifique. 1.3.3. Um transformador ideal de 220 V/ 20 V tem 50 espiras no seu enrolamento de baixa tensão. Calcule: a) o número de espiras do enrolamento de alta tensão; b) a relação de transformação se utilizado como transformador rebaixador; c) a relação de transformação se utilizado como transformador elevador. 1.3.4. Há 1000 espiras no enrolamento primário de um transformador ideal. Calcule o fluxo no núcleo para cada uma das seguintes alimentações: a) 1000 V / 60 Hz; b) 1500 V / 60 Hz; a) 1500 V / 50 Hz. 1.3.5. O lado de alta tensão de um transformador ideal tem 750 espiras e o enrolamento de baixa tensão tem 50 espiras. Quando a AT é ligada a uma rede de 120 V/60 Hz, e uma carga absorve 40 A do enrolamento de BT, calcule: a) a relação de transformação; b) a tensão secundária; c) a impedância da carga; d) a potência aparente transferida do primário para o secundário. 1.3.6. Uma carga de 10 solicita uma corrente de 20 A do lado de alta tensão de um transformador ideal, cuja relação de transformação é 1:8. Determine: a) a tensão secundária; b) a tensão primária; c) a corrente primária; d) a potência aparente transferida do primário para o secundário. 1.3.7. Um transformador deve ser usado para transformar uma impedância de 8 em uma impedância de 75 . Calcule a relação de transformação necessária, supondo que o transformador seja ideal.
  • 30. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 30 1.3.8. Considere o circuito abaixo, onde o transformador é ideal. Figura 1.9 – Ver exercício 1.3.8 Pede-se: a) calcule a reatância indutiva refletida para o primário e redesenhe o circuito; b) calcule as correntes no primário (I1) e no secundário (I2); c) calcule as forças eletromotrizes no primário (E1) e no secundário (E2). 1.3.9. Explique, com o auxílio de equações, o mecanismo pelo qual o primário “percebe” uma variação de carga no secundário e varia a sua corrente de acordo com a corrente secundária. Seção 1.4. 1.4.1. Descreva, de acordo com a lei de Hopkinson, os fatores determinam a corrente necessária para magnetizar o núcleo de um transformador. 1.4.2. Explique o que é a reatância de magnetização de um transformador. 1.4.3. Explique o que é a resistência de perdas no núcleo. 1.4.4. Descreva qual é a relação aproximada entre corrente de excitação e a corrente nominal do primário. 1.4.5. A corrente no secundário de um transformador é 20 A. Sabendo-se que a sua relação de transformação é 5:1, Calcule a componente da corrente primária devido a carga no secundário. 1.4.6. Descreva a relação entre a tensão terminal e a força eletromotriz induzida, tanto para o primário como para o secundário.
  • 31. Transformadores / Prof. Rodrigo Motta de Azevedo 31 1.4.7. Um transformador possui as seguintes características: o secundário tem o dobro do número de espiras do primário; R1=0,3 ; R2=1,2 ; Xd1=0,9 ; Xd2=3,6 ; Rn=70 ; Xm=20 ; A carga é alimentada com 400 V e absorve 50 A, com fator de potência 0,80 indutivo. a) Trace o diagrama fasorial adotando as seguintes escala: 1cm/40 V e 1 cm/10A. b) Baseando-se no diagrama fasorial, determine as seguintes grandezas do primário: tensão aplicada, corrente nos terminais, corrente de excitação e fator de potência. Observação: os valores de resistências e reatâncias dos enrolamentos são maiores que os valores encontrados nos transformadores reais com o objetivo de facilitar a visualização de quedas de tensão no diagrama fasorial. 1.4.8. Refaça o diagrama fasorial considerando que o transformador é alimentado com 380V e opera sem carga. Despreze as quedas de tensão no primário. 1.4.9. Explique o que é a regulação de tensão de um transformador. 1.4.10. Um transformador rebaixador monofásico opera com tensão secundária de 240V, fornece 50kVA para uma carga com fator de potência 0,866 indutivo e a corrente absorvida da rede de alimentação é 21 A. As perdas no ferro são de 190W e as resistências dos enrolamentos são 0,72 e 0,007 . Calcule o rendimento do transformador sob esta condição de operação. Seção 1.5. 1.5.1. Um pequeno transformador possui um enrolamento primário de 220V e dois enrolamentos secundários de 12V/1A cada um. a) Explique como se deve proceder para identificar as polaridades dos enrolamentos de 12V. b) Calcule a tensão, a corrente e a potência disponíveis no secundário se os dois enrolamentos forem ligados em série. c) Calcule a tensão, a corrente e a potência disponíveis no secundário se os dois enrolamentos forem ligados em paralelo.
  • 32. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 32 1.5 ENSAIOS A VAZIO E EM CURTO-CIRCUITO 1.5.1 INTRODUÇÃO TEÓRICA O circuito equivalente do transformador real está apresentado na figura 1.18. Figura 1.18 - Circuito equivalente do transformador real Qualquer grandeza de um enrolamento pode ser refletida para o outro enrolamento. Assim, é possível refletir as grandezas do secundário para o primário, utilizando-se as equações vistas na seção 1.3: 22 2 1 12 ' EaE N N EE &&&& === (1.36) 22 1 2 1 1 ' I a I N N I &&& == (1.37) 22 1 2 1 1 ' I a I N N I &&& == (1.38) 2 2 2 2 2 1 2 ' RaR N N R =      = (1.39) 2 2 2 2 2 1 2 ' ddd XaX N N X =      = (1.40) Com estas transformações o circuito equivalente pode ser representado com todas as grandezas refletidas para o primário, conforme mostra a figura 1.19.
  • 33. Transformadores / Prof. Rodrigo Motta de Azevedo 33 Figura 1.19 - Circuito equivalente com todas as grandezas refletidas para o primário Todos os parâmetros do circuito equivalente (resistências e reatâncias) podem ser determinados através de dois ensaios: ensaio a vazio e ensaio de curto-circuito. A seguir, estes dois ensaios são descritos para um transformador específico do laboratório de Transformadores do curso de Eletrotécnica. Porém, o desenvolvimento apresentado também pode ser utilizado para outros transformadores monofásicos. 1.5.2 ENSAIO A VAZIO Material necessário: transformador Italvolt monofásico, 220V/110V, 5 kVA, 60 Hz; autotransformador variável (variac) monofásico - 0-240V/6,3A; mili-amperímetro de ferro móvel - 300mA/600mA; amperímetro de ferro móvel - 6A; wattímetro eletrodinâmico - 5A/48V-240V; multímetro (para ser usado como voltímetro CA). 1. Verifique se a bancada está desligada e execute as ligações indicadas a seguir. Figura 1.20 – Esquema de ligações para ensaio a vazio
  • 34. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 34 2. Ajuste a escala do multímetro para 250 VAC (ou outra escala aproximadamente igual) e conecte- o entre os dois bornes de AT do transformador sob teste. Ajuste a escala do wattímetro para 240V. 3. Ligue a bancada e alimente o primário do transformador com tensão nominal. Execute as medições e complete a tabela abaixo. V1= I0= P0= 4. Conecte o multímetro no secundário, meça a tensão, e calcule a relação de espiras. V2= a = 5. Como a corrente de excitação I0 é muito baixa, tanto a queda de tensão na impedância do primário como a perda de potência na resistência do enrolamento podem ser desprezadas. Assim, o circuito equivalente toma a seguinte forma aproximada. Figura 1.21 – Circuito equivalente simplificado para operação a vazio 6. A potência ativa medida é praticamente igual à perda no ferro, que é dissipada no resistor Rn do circuito equivalente. Portanto, calcule o valor da resistência de perdas no núcleo. 7. Calcule a corrente de magnetização Im, em função da corrente de perdas no núcleo e da corrente de excitação. 8. Sabendo-se a corrente de magnetização, calcule a reatância de magnetização. 9. Calcule o fator de potência para operação do transformador a vazio.
  • 35. Transformadores / Prof. Rodrigo Motta de Azevedo 35 1.5.3 ENSAIO DE CURTO-CIRCUITO 1. Para realização do ensaio de curto-circuito deve-se curto-circuitar o enrolamento secundário e aumentar cautelosamente a tensão aplicada no primário, até que a corrente atinja o seu valor nominal. Observação: devido à capacidade dos equipamentos disponíveis no laboratório (wattímetro e variac), a tensão será aumentada até que a corrente atinja 5A no primário. 2. Verifique se a bancada está desligada, substitua o mili-amperímetro pelo amperímetro de 6A e feche os terminais do secundário em curto-circuito. 3. Ajuste o variac para a posição 0V. 4. Ligue a bancada e aumente lentamente a tensão aplicada no primário, até que a corrente no primário seja 5A. Complete a tabela abaixo. V1= I1= P1= 5. Como a tensão aplicada é muito baixa, a corrente de excitação pode ser desprezada. Observe que este baixo valor de tensão aplicado aos valores de resistência de perdas no núcleo e reatância de magnetização, que foram calculadas anteriormente, produz correntes desprezíveis. Assim, o circuito equivalente toma a forma aproximada da figura abaixo. Figura 1.22 – Circuito equivalente simplificado para operação em curto-circuito 6. A potência ativa medida é praticamente igual à perda no cobre, que é dissipada no resistor equivalente Req do primário e do secundário. Calcule o valor desta resistência.
  • 36. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 36 7. A resistência do primário e a resistência do secundário refletida para o primário são aproximadamente iguais. Portanto, calcule os valores destas resistências. 8. Calcule o valor verdadeiro da resistência do secundário. 9. Calcule a impedância equivalente do circuito. 10. Calcule a reatância de dispersão equivalente do circuito. 11. A reatância de dispersão do primário e a reatância de dispersão do secundário refletida para o primário são aproximadamente iguais. Portanto, calcule os valores destas reatâncias de dispersão. 12. Calcule o valor verdadeiro da reatância de dispersão do secundário.
  • 37. Transformadores / Prof. Rodrigo Motta de Azevedo 37 1.5.4 RESULTADO FINAL Apresente, nas figuras abaixo, os parâmetros obtidos para o circuito equivalente do transformador sob teste. (a) (b) Figura 1.23 – Circuitos equivalentes com os parâmetros determinados
  • 38. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 38 CAPÍTULO II – TRANSFORMADORES TRIFÁSICOS 2. INTRODUÇÃO Os sistemas elétricos que envolvem potências altas são normalmente trifásicos. As alterações de níveis de tensão em sistemas trifásicos podem ser feitas mediante três transformadores monofásicos ou com um transformador trifásico, que é o caso mais comum. Na figura 2.1 mostra-se um exemplo de três transformadores monofásicos com os enrolamentos de alta tensão ligados em triângulo e com os enrolamentos de baixa tensão ligados em estrela. Os terminais de alta tensão são designados por H1, H2 e H3 e os terminais de baixa tensão são designados por X0 (neutro), X1, X2 e X3. Figura 2.1 - Três transformadores monofásicos com ligação triângulo na AT e estrela na BT Pode-se construir um transformador trifásico agrupando-se três transformadores monofásicos num mesmo núcleo, conforme está representado na figura 2.3(a). Com uma alimentação simétrica e equilibrada no primário as correntes de magnetização criam três fluxos senoidais ( 1, 2 e 3) de mesma amplitude e freqüência mas defasados entre si de 120º. A soma fasorial dos três fluxos é nula, portanto, não há necessidade de utilização da coluna central do núcleo, ou seja, cada coluna serve de caminho de retorno para o fluxo das outras colunas. O núcleo magnético deve ser laminado, e como não necessita da coluna central, fica com o aspecto mostrado na figura 2.3(b), que é perfeitamente simétrico.
  • 39. Transformadores / Prof. Rodrigo Motta de Azevedo 39 (a) (b) Figura 2.3 – (a) Três transformadores monofásicos num mesmo núcleo; (b) Núcleo magnético laminado e perfeitamente simétrico O transformador trifásico apresentado na figura 2.3 é perfeitamente simétrico, porém, o núcleo é de construção difícil e normalmente não é usado. Quase a totalidade dos transformadores trifásicos tem a forma apresentada na figura 2.4. As três colunas estão no mesmo plano e estão interligadas por duas travessas, uma inferior e outra superior. Cada coluna possui um enrolamento de alta tensão e outro de baixa tensão (núcleo envolvido). Normalmente os enrolamentos são concêntricos e sobrepostos, o enrolamento externo é de alta tensão e o interno de baixa tensão. As ligações mais comuns são estrela e triângulo. A relutância da coluna central é menor do que a relutância das colunas laterais, pois possui menor comprimento, de forma que a corrente de magnetização é menor no enrolamento da coluna central em relação aos outros dois enrolamentos.
  • 40. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 40 Figura 2.4 – Configuração típica da parte ativa (núcleo e enrolamentos) de transformadores trifásicos. Comparação: transformador trifásico versus banco de transformadores monofásicos 1º. O transformador trifásico é mais barato do que o banco de três transformadores monofásicos. Além da menor quantidade de ferro, o número de acessórios também é menor. 2º. O transformador trifásico ocupa menos espaço do que os três transformadores monofásicos. 3º. Algumas subestações de grande porte usam três transformadores monofásicos e têm um quarto transformador monofásico de reserva, para um caso de defeito ou manutenção programada de um dos transformadores. Se o transformador for trifásico, qualquer defeito no mesmo tira a subestação de operação. No caso de transformadores monofásicos há ainda a possibilidade de operação em triângulo aberto (ver próxima seção). 2.1 LIGAÇÕES TRIÂNGULO E ESTRELA As ligações mais comuns em transformadores trifásicos são as ligações triângulo e estrela. Conforme estudado na teoria de circuitos trifásicos, as relações entre as grandezas de linha e de fase para estas ligações são as seguintes: Ligação Estrela (Y) fl VV 3= fl II = (2.1) (2.2)
  • 41. Transformadores / Prof. Rodrigo Motta de Azevedo 41 Ligação Triângulo (∆) fl VV = fl II 3= (2.3) (2.4) As tensões de linha e de fase são representadas, respectivamente, por Vl e Vf, enquanto que as correntes de linha e de fase são, respectivamente, Il e If. Freqüentemente são adicionados os índices 1 e 2 para identificar se a grandeza refere-se ao primário ou ao secundário (Vl1, Vf2, If1, Il2, etc). As combinações possíveis são as seguintes: ∆- ∆, Y-Y, ∆-Y e Y- ∆. A figura 2.5 apresenta todas estas ligações. ∆- ∆ Y-Y ∆-Y Y- ∆ Figura 2.5 - Ligações ∆- ∆, Y-Y, ∆-Y e Y- ∆ em transformadores trifásicos Alguns transformadores possuem o enrolamento de cada fase dividido em duas partes iguais. Estas duas partes podem ser ligadas em série ou em paralelo, dependendo dos valores de tensão e de corrente desejáveis. A figura 2.6 apresenta as ligações em série (a) e em paralelo (b) entre as duas H1 H2 H3 X1 X2 X3X0
  • 42. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 42 metades (ou duas bobinas). As ligações das fases entre si não estão apresentadas, podendo ser estrela ou em triângulo. (a) (b) Figura 2.6 - Ligações em série (a) e em paralelo (b) entre as duas metades (bobinas) de cada fase Por simples inspeção se obtém as relações entre as grandezas de fase e de bobina (meia fase): Ligação em série bf VV 2= bf II = (2.5) (2.6) Ligação em paralelo bf VV = bf II 2= (2.7) (2.8) Exemplo 2.1: Um transformador trifásico, na configuração ∆-Ysérie, alimenta no secundário uma carga trifásica equilibrada de 400 kVA com tensão de linha de 380 V. O transformador pode ser considerado como ideal e a relação de espiras entre um enrolamento de AT e um de BT é 62,7. Pede-se: a) represente as ligações na AT e na BT; b) calcule a corrente de linha, a corrente de fase e a corrente de bobina no secundário; c) calcule a tensão de fase e a tensão de bobina no secundário e a tensão de fase no primário; d) calcule a tensão de linha no primário; e) calcule a corrente de linha e a corrente de fase no primário.
  • 43. Transformadores / Prof. Rodrigo Motta de Azevedo 43 H1 H2 H3 X1 X2 X3X0 As seções 2.1.1 até 2.1.3 apresentam, de forma resumida, as características das ligações estrela e triângulo. As citações a respeito de harmônicas são puramente informativas, pois um estudo aprofundado foge do objetivo de uma disciplina de transformadores de nível técnico. 2.1.1 CARACTERÍSTICAS DO AGRUPAMENTO ESTRELA-ESTRELA (Y-Y) Para análise da operação do agrupamento Y-Y com carga desequilibrada, considere a figura 2.7 onde há uma carga de impedância Zc conectada entre a fase X1 e o neutro X0. (a) Sem neutro primário (b) Com neutro primário Figura 2.7 - Agrupamento Y-Y alimentando uma carga desequilibrada
  • 44. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 44 Com a chave S aberta, circulam pelos enrolamentos primários três correntes de pequeno valor, aproximadamente iguais, e defasadas de 120º, com o objetivo de magnetizar o núcleo e suprir as perdas no ferro. Quando a chave S é fechada, circula uma corrente de carga I2 que provoca o surgimento de uma corrente primária de carga I1’ que tenda restabelecer o valor original de fluxo no núcleo. Se o primário não possui neutro, como na figura 2.7(a), a corrente primária de carga é forçada a voltar para a rede pelos outro dois enrolamentos, o que produz uma alteração da força magneto-motriz destes enrolamentos, desequilibrando os fluxos nas três colunas do transformador. Com isto, as tensões de fase, tanto no primário como no secundário, ficam desequilibradas. As tensões de linha permanecem praticamente equilibradas, a não ser por pequenas quedas de tensão. Se o primário possui neutro, como na figura 2.7(b), a corrente primária de carga volta para a rede pelo condutor neutro, e não pelos outros enrolamentos, mantendo os fluxos equilibrados nas três colunas do transformador. Com isto, as tensões de fase, tanto no primário como no secundário, permanecem equilibradas. Portanto, o agrupamento Y-Y sem neutro primário deve ser utilizado somente para cargas equilibradas. Por outro lado, como a tensão de cada enrolamento é menor do que a tensão de linha ( 3/lf VV = ), o agrupamento Y-Y é economicamente vantajoso para altas tensões de linha, pois requer menor isolação nos enrolamentos em relação à ligação triângulo. Por outro lado, como a corrente de linha e a corrente de fase são iguais ( lf II = ), o agrupamento Y-Y é adequado para baixas correntes. Se o agrupamento Y-Y não possui neutro surgem tensões de 3º harmônico indesejáveis. 2.1.2 CARACTERÍSTICAS DO AGRUPAMENTO TRIÂNGULO-TRIÂNGULO (∆ - ∆) A figura 2.8 apresenta o agrupamento ∆-∆ com uma carga de impedância Zc conectada entre as fases X1 e X2. A ligação triângulo impõe que a tensão de fase e a tensão de linha no primário sejam iguais. A mesma afirmativa é válida para o secundário.
  • 45. Transformadores / Prof. Rodrigo Motta de Azevedo 45 Figura 2.8 - Agrupamento ∆-∆ alimentando uma carga desequilibrada Quando a chave S é fechada, a corrente de carga I2 circula somente pelo enrolamento que está entre os terminais X1 e X2, ou seja, no enrolamento da coluna central. Assim, a corrente primária de carga I1’ também percorre o enrolamento da coluna central. Como o enrolamento da coluna central está ligado diretamente entre os terminais H1 e H2 da rede, I1’ não percorre os outros enrolamentos e os fluxos permanecem equilibrados nas três colunas do transformador. Com isto, as tensões de fase, bem como as tensões de linha, no secundário permanecem equilibradas. Portanto, o agrupamento ∆-∆ pode ser utilizado com cargas desequilibradas. O agrupamento ∆-∆ apresenta a vantagem da possibilidade de operação em triângulo aberto, conforme será estudado na seção 2.4. Outro fator positivo é que as tensões de 3º harmônico são eliminadas com a ligação triângulo. Como a corrente de cada enrolamento é menor do que a corrente de linha ( 3/lf II = ), e a tensão de fase é igual a tensão de linha ( lf VV = ), o agrupamento ∆-∆ é economicamente vantajosa para altas correntes de linha e baixas tensões de linha.
  • 46. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 46 2.1.3 CARACTERÍSTICAS DOS AGRUPAMENTOS COM TRIÂNGULO E ESTRELA Considere a figura 2.9, onde o agrupamento é ∆-Y e há uma carga de impedância Zc conectada entre a fase X1 e o neutro X0. Figura 2.9 – Agrupamento ∆-Y alimentando uma carga desequilibrada Quando a chave S é fechada, a corrente primária de carga circula somente pelo enrolamento que está entre os terminais H1 e H3. Como I1’ não percorre os outros enrolamentos, os fluxos permanecem equilibrados nas três colunas do transformador. Com isto, as tensões de fase, bem como as tensões de linha, no secundário permanecem equilibradas. Portanto, o agrupamento ∆-Y pode ser utilizado com cargas desequilibradas. Devido à existência do neutro secundário, e da operação satisfatória com carga desequilibrada, o agrupamento ∆-Y é muito utilizado nos transformadores de redes de distribuição de energia. O agrupamento ∆-Y sem neutro também é utilizado nos transformadores elevadores das subestações que estão localizadas junto às centrais geradoras. O enrolamento de menor tensão possui maior corrente e está ligado em triângulo. A corrente de fase é menor do que a corrente de linha ( 3/lf II = ), portanto a ligação triângulo é economicamente vantajosa para altas correntes de linha, pois requer condutores de menor seção em relação à ligação estrela. Já a ligação do enrolamento de maior tensão é estrela, que é adequada para altas tensões e baixas correntes.
  • 47. Transformadores / Prof. Rodrigo Motta de Azevedo 47 Por outro lado, o agrupamento Y-∆ é adequado para transformadores de subestações rebaixadoras, ou seja, na extremidade final de uma linha de transmissão. Porém, no funcionamento com carga desequilibrada ocorre o mesmo problema do agrupamento Y-Y sem neutro. Assim como no agrupamento ∆-∆ as tensões de 3º harmônico são eliminadas, tanto para o agrupamento ∆-Y como para Y-∆, graças à existência da ligação triângulo. Alguns transformadores de subestações de grande porte utilizam o agrupamento Y-Y com terciário em triângulo para eliminação das tensões de 3º harmônico nos outros enrolamentos e também para alimentação de circuitos auxiliares. 2.2 LIGAÇÃO ZIGUE-ZAGUE (ZIGUEZAGUE OU ZIG-ZAG) A figura 2.10 apresenta um enrolamento de baixa tensão com a ligação zigue-zague, que pode ser considerada como uma variação da ligação estrela série. O enrolamento de cada fase é dividido em duas metades, denominadas de duas meias fases ou duas bobinas. A bobina de uma coluna é ligada em série com a bobina de outra coluna, porém, com polaridade invertida. Esta ligação serve para eliminar as tensões de terceiro harmônico do enrolamento de baixa tensão, bem como produzir uma operação satisfatória com carga desequilibrada. Há ainda a possibilidade de utilização do condutor neutro para levar dois níveis de tensão até a carga (tensão entre fases e tensão entre fase e neutro). Figura 2.10 - Enrolamento de baixa tensão a ligação zigue-zague
  • 48. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 48 Aplicando-se a 2ª lei de Kirchhoff à malha que inclui X0 e X1 obtém-se: 0'3101 =−+− XXXX VVV &&& '3101 XXXX VVV &&& −= )'( 3101 XXXX VVV &&& −+= (2.9) Adotando-se o mesmo procedimento para as outras fases obtém-se: )'( 1202 XXXX VVV &&& −+= )'( 2303 XXXX VVV &&& −+= (2.10) (2.11) Com base nas equações (2.9) a (2.10) obtém-se os diagramas fasoriais envolvendo as tensões de bobina ( ',,',,', 332211 XXXXXX VVVVVV &&&&&& ) e as tensões de fase ( 030201 ,, XXXXXX VVV &&& ), conforme mostra a figura 2.11 (a) e (b). As equações (2.9) a (2.10) podem ser desenvolvidas para obter-se uma forma de apresentação mais prática. Tomando-se o módulo de cada tensão de fase como Vf (eficaz) e o módulo de cada tensão de bobina como Vb (eficaz), tem-se o seguinte desenvolvimento trigonométrico: o b o bf VVV 30cos30cos += 2 3 230cos2 b o bf VVV == bf VV 3= (2.12) Portanto, a tensão de fase e a tensão de bobina estão relacionadas por um fator 3 . Isto decorre da defasagem de 60º existente entre as duas tensões de bobina que compõem a tensão de fase. Na verdade as tensões de bobina de colunas diferentes estão defasadas de 120º, mas a inversão da ligação entre elas produz um efeito de defasagem de 60º.
  • 49. Transformadores / Prof. Rodrigo Motta de Azevedo 49 (a) (b) (c) Figura 2.11 - Diagramas fasoriais para a ligação zigue-zague As tensões de linha ( 133221 ,, XXXXXX VVV &&& ) são obtidas como numa ligação estrela comum, a partir das tensões de fase resultantes: 2121 XXXX VVV &&& −= 3232 XXXX VVV &&& −= 1313 XXXX VVV &&& −= (2.13) (2.14) (2.15) A figura 2.11(c) mostra o diagrama fasorial com as tensões de linha e as tensões de fase. Assim como na ligação estrela tem-se a seguinte relação entre os valores eficazes da tensão de linha Vl e da tensão de fase Vf: fl VV 3= (2.16) Uma análise simples do esquema da figura 2.10 mostra que a corrente de bobina, a corrente de fase e a corrente de linha são iguais na ligação zigue-zague: lfb III == (2.17) Conhecendo-se as relações das tensões e das correntes nas ligações zigue-zague e estrela série, é possível comparar as quantidades de cobre necessárias para cada ligação, conforme o exemplo a seguir.
  • 50. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 50 Exemplo 2.2: O secundário de um transformador de distribuição possui cada enrolamento de BT dividido em duas metades, cada uma delas projetada para 110V e 114A. Pede-se: a) Calcule a tensão de linha e a potência, disponíveis no secundário, se a ligação for zigue-zague. b) Calcule a tensão de linha e a potência, disponíveis no secundário, se a ligação for estrela série. c) Que alteração deve ser feita no transformador para que na ligação zigue-zague obtenha-se a mesma tensão e a mesma potência que na ligação estrela série. 2.3 LIGAÇÃO TRIÂNGULO ABERTO OU V Considere um banco de três transformadores monofásicos com o agrupamento ∆-∆ conforme mostrado na figura 2.12. Figura 2.12 - Banco de três transformadores monofásicos com o agrupamento ∆-∆ Se um dos transformadores monofásicos for retirado, a ligação resultante é denominada de triângulo aberto ou V (figura 2.13). Tem-se assim um agrupamento denominado de V-V. Figura 2.13 - Agrupamento V-V
  • 51. Transformadores / Prof. Rodrigo Motta de Azevedo 51 Facilmente percebe-se que as os primários dos dois transformadores monofásicos permanecem recebendo a mesma tensão que recebiam na ligação triângulo ( 21HHV& e 32HHV& ). A tensão 13HHV& é imposta pela rede trifásica e também independe da existência do terceiro transformador. As tensões 21XXV& e 32 XXV& do secundário também permanecem iguais, pois elas dependem das tensões primárias 21HHV& e 32HHV& , bem como da relação de transformador de cada transformador monofásico. Como 21XXV& e 32 XXV& possuem mesmo valor eficaz, e estão defasadas de 120º, a tensão resultante entre elas, que é 13XXV& , tem o mesmo valor eficaz das outras duas e está defasada 120º das mesmas, conforme mostra o diagrama fasorial da figura 2.13 onde o fasor 13XXV& está representado tracejado. Portanto, conclui-se que o agrupamento V-V mantém as mesmas tensões em relação ao agrupamento ∆-∆, ou seja, em termos de tensão a ausência do terceiro transformador não é percebida. Por outro lado, há uma alteração em termos de capacidade de corrente e de potência do agrupamento. Na ligação triângulo com carga equilibrada, a corrente eficaz disponível na linha ( ∆lI ) é maior do que a corrente eficaz de cada transformador monofásico ( fI ): fl II 3=∆ (2.18) A figura 2.14 apresenta as correntes envolvidas na alimentação de uma carga trifásica equilibrada. Como a carga é equilibrada, e recebe alimentação de três tensões iguais e defasadas de 120º, as correntes na linha de alimentação ( 321 ,, XXX III &&& ) também são iguais e defasadas de 120º. Observa-se, facilmente, na figura 2.14 que as correntes nos terminais de X1 e X3, que são correntes de linha, são iguais as correntes que circulam nos enrolamentos secundários ( 121 XXX II && = e 323 XXX II && = ), que são correntes de fase. A corrente na linha de X2 é, na verdade, resultado da soma fasorial das correntes nos enrolamentos secundários.
  • 52. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 52 Figura 2.14 – Agrupamento V-V com carga trifásica equilibrada Tratando-se apenas de valores eficazes, tem-se: flV II = (2.19) Assim, a relação entre as correntes de linha disponíveis nas duas ligações é: 577,0 3 1 3 === ∆ f f l lV I I I I ∆= llV II 577,0 (2.20) Portanto, no agrupamento V-V a corrente de linha disponível fica reduzida a 57,7% da corrente de linha disponível no agrupamento ∆-∆. Conseqüentemente, a potência disponível também fica reduzida a 57,7%: ∆= SSV 577,0 (2.21) O agrupamento V-V pode ser utilizado quando um dos transformadores monofásicos de um agrupamento ∆-∆ estiver com algum defeito. Porém, a capacidade de potência fica reduzida.
  • 53. Transformadores / Prof. Rodrigo Motta de Azevedo 53 LISTA DE EXERCÍCOS Seção 2.1 2.1.1. Execute a ligação Y entre os enrolamentos de AT e ∆ na BT para o banco de transformadores monofásicos abaixo. 2.1.2. Explique porque a coluna central do transformador da figura 2.3(a) pode ser eliminada. 2.1.3. Explique porque as correntes de magnetização não são perfeitamente equilibradas no transformador da figura 2.4. O mesmo acontece para os transformadores da figura 2.3? Justifique. 2.1.4. Explique porque o transformador trifásico é mais utilizado do que o banco de transformadores monofásicos. Seção 2.2 2.2.1. [Kosow] Uma fábrica drena 100 A, com cosφ=0,7 indutivo, do secundário de um transformador de distribuição de 60 kVA, 2300V/230V, ligado em Y-∆. Calcule: a) a potência ativa (kW) e a potência aparente (kVA); (28kW; 40kVA) b) as tensões e correntes nominais secundárias, de fase e de linha; (87A; 150A) c) o percentual de carregamento do transformador (pot.fornecida/pot.nominal); (67%) d) as tensões e correntes primárias, de fase e de linha. (10A) 2.2.2. {Kosow] Refaça o exercício anterior considerando um agrupamento ∆-∆ e anote conclusões. (28kW; 40kVA; 87A; 150A; 67%; 10A; 17,3 A)
  • 54. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 54 2.2.3. Um transformador de distribuição trifásico possui um enrolamento secundário dividido em duas metades iguais. Dados: Vb2 = 127 V, Ib2 = 394 A, Vf1 = 13200 V. Calcule as correntes, as tensões e a potência aparente deste transformador trifásico para cada uma das ligações abaixo. a) ∆-Y série; b) ∆-Y paralelo; c) Y-∆ paralelo; 2.2.4. Explique porque a ligação Y-Y sem neutro primário não é adequada para alimentação de cargas desequilibradas. 2.2.5. Explique porque a ligação ∆-Y pode ser utilizada com cargas desequilibradas. 2.2.6. Considerando os agrupamentos ∆-Y e Y-∆, explique qual é mais adequado economicamente para cada um dos seguintes casos: a) subestações elevadoras das usinas elétricas; b) subestações rebaixadoras próximas dos centros de consumo. Seção 2.3 2.3.1. (a) Refaça o exercício 2.2.3 para um agrupamento triângulo-ziguezague (∆-Z). (b) Apresente um esquema com as ligações. (c) Compare com os resultados do agrupamento ∆-Y série e anote conclusões. 2.3.2. Cite características positivas e negativas da ligação zigue-zague. Seção 2.4 2.4.1. Dispõe-se de três transformadores monofásicos idênticos, cada um deles com as seguintes características nominais: 26 kV / 2,3 kV; 200 kVA. Determine as características nominais resultantes dos seguintes agrupamentos: a) ∆- ∆; b) V-V.
  • 55. Transformadores / Prof. Rodrigo Motta de Azevedo 55 CAPÍTULO III – PRINCIPAIS CARACTERÍSTICAS CONSTRUTIVAS 3. INTRODUÇÃO - Núcleo Parte ativa - Enrolamentos - Material isolante sólido Transformadores: Liquido isolante ou resina Carcaça Acessórios 3.1 POTÊNCIAS NOMINAIS NORMALIZADAS Potência nominal é o valor de potência aparente que serve de base para o projeto, ensaios e ainda determina a corrente nominal que circulará sob tensão nominal. As potências nominais para os transformadores de distribuição são as seguintes: 1. Transformadores monofásicos para instalação em postes: ( 3, 5, 10, 15, 25, 50, 75 e 100 ) KVA. 2. Transformadores trifásicos para instalação em postes: ( 15, 30, 45, 75, 112, 5 e 150) KVA. 3. Transformadores trifásicos para instalação em plataforma: ( 225 e 300 ) KVA.
  • 56. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 56 Há também outras potências já consagradas pelo uso: ( 500, 750 e 1000 )KVA. A norma PB- 1515/90 padroniza como transformadores de força as potências de 225, 300, 500, 750, 1000, 2500, 3000 e 3750 KVA, porém há outras potências maiores que não são padronizadas. 3.2 CONFIGURAÇÕES DE NÚCLEOS E ENROLAMENTOS 3.2.1 NÚCLEOS ENVOLVIDOS E NÚCLEOS ENVOLVENTES O núcleo é feito geralmente de uma liga de ferro-silicio, em formato laminar, possuindo suas partículas elementares orientada, reduzindo assim a sua relutância. Tem as funções de concentrar as linhas de força e reduzir ao máximo a oposição à passagem das mesmas. Na prática existem dois tipos de circuitos magnéticos para transformadores, isto é, os de núcleo envolvido e os de núcleo envolvente. O núcleo envolvido possui a forma indicada na figura 3.1 (a). Nesse tipo de núcleo os enrolamentos são colocados sobre as colunas e envolvem o respectivo circuito magnético, sem ser envolvidos por este. O núcleo envolvente, pelo contrário, adquire a forma indicada na figura 3.1 (b). Neste tipo de núcleo os enrolamentos a envolvem o respectivo circuito magnético, ficando porem envolvidos por este. (a) Núcleo Envolvido
  • 57. Transformadores / Prof. Rodrigo Motta de Azevedo 57 (b) Núcleo Envolvente Figura 3.1- Núcleo Envolvente e Núcleo Envolvido 3.2.2 ENROLAMENTOS Os enrolamentos são constituídos de fios de cobre, de seção retangular ou circular, isolados com esmalte ou papel. Os enrolamentos de BT e AT, figura 3.2, normalmente são concêntricos, onde a BT ocupa a parte interna e a AT a parte externa, sendo estes fracionados em bobinas de menor número de espiras, chamadas, por motivo de isolação, facilidade de manutenção e retirada das derivações para conexão ao comutador. Figura 3.2- Enrolamento de BT (a) e Enrolamento de AT (b)
  • 58. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 58 3.2.2.1 TIPOS DE ENROLAMENTOS Qualquer que seja o tipo de construção do transformador, os dois enrolamentos de alta tensão (A.T.) e baixa tensão (B.T.) da mesma fase são em geral colocados sobre a mesma coluna. Nos transformadores monofásicos de colunas, é possível colocar o enrolamento de A.T. sobre uma coluna e o enrolamento de B.T. sobre outra. Este critério, porém, não é muito aplicado pelo fato de dar origem a dispersões magnéticas notáveis, pois uma grande parte do fluxo gerado pelo enrolamento primário se fecha no ar sem chegar a concatenar-se com o secundário. Nos transformadores industriais há varias maneiras de se disporem as bobinas a fim de se diminuir a dispersão magnética. Conforme a posição relativa em que são dispostas as A.T. e B.T., obtêm-se os dois tipos de enrolamentos que são de bobinas concêntricas ou tubulares e de bobinas alternadas ou de discos. Figura 3.3- Enrolamentos de disco (panquecas) e enrolamentos concêntricos A- Enrolamentos concêntricos ou tubulares Esta construção realiza-se dispondo-se sobre cada coluna, os dois enrolamento o de alta e de baixa tensão, concêntricos(tem o mesmo centro), separados entre si por meio de material isolante. Para maior segurança, perto da coluna coloca-se o enrolamento de BT separado da mesma por meio de um tubo de material isolante.
  • 59. Transformadores / Prof. Rodrigo Motta de Azevedo 59 Figura 3.4- Enrolamento Concêntrico B- Enrolamento com bobinas alternadas ou de discos Esta construção é realizada executando-se ambos os enrolamentos AT e BT com várias bobinas de comprimento axial pequeno (discos) e sobrepondo-se as bobinas AT e BT alternadamente. Para tornar mais fácil o isolamento contra a cabeça do núcleo, as bobinas são divididas de maneira que as extremas pertençam ao enrolamento de BT. Para diminuir a dispersão, estas duas bobinas devem possuir a metade da espessura das bobinas de BT. O isolamento entre as bobinas sobrepostas e obtidas com a interposição de coroas isolantes. No enrolamento de AT, o problema fundamental é o do isolamento, enquanto que no de BT surgem dificuldades de execução. O enrolamento de AT tem em geral elevado numero de espiras com seção relativamente pequena, enquanto o enrolamento de BT, pelo contrario, tem poucas espiras com grandes seções. Figura 3.5- Enrolamento Alternado
  • 60. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 60 3.3 REFRIGERAÇÃO, ISOLAÇÃO E CLASSES DE PROTEÇÃO 3.3.1 LÍQUIDOS ISOLANTES Os transformadores de distribuição, com tensão acima de 1,2 KV, são construídos de maneira a trabalharem imersos em óleos isolantes. O liquido de um transformador exerce duas funções distintas: - Uma é de natureza isolante; - A outra é de transferir para as paredes do tanque, o calor produzido, pelas perdas, na parte ativa do aparelho. Para que o óleo possa cumprir satisfatoriamente as duas condições acima, deve estar perfeitamente livre de umidade e outras impurezas, garantindo assim elevada rigidez dielétrica e boa fluidez. Os óleos mais utilizados em transformadores são os minerais, que são obtidos na refinação do petróleo. O de base parafinica (tipo B) é recomendado para equipamentos com tensão igual ou inferior a 34,5 KV, e os de base naftênica (tipo A) para equipamentos com tensão superior a 34,5KV. Existem também os fluidos isolantes a base de silicone recomendados para áreas de alto grau de segurança. Ao contrario dos óleos minerais, esse tipo de fluido possui baixa inflamabilidade, reduzindo sensivelmente uma eventual propagação de incêndio. Mais recente ainda as empresas começaram a utilizar o liquide isolante vegetal, passando os transformadores a ser chamado de transformadores verde. O grande diferencial do óleo vegetal é que ele se biodegrada na atmosfera em poucos meses ao contrário dos óleos minerais que são derivados do petróleo. Fatores que danificam o óleo: Água, oxigênio e calor. É importante citar que na maioria dos casos, os líquidos isolantes são tratados e reutilizados novamente.
  • 61. Transformadores / Prof. Rodrigo Motta de Azevedo 61 Existem também transformadores que trabalham sem o liquido isolante, na qual chamamos de TRANSFORMADORES A SECO. Neste caso, ocorre o encapsulamento das bobinas de AT e BT sob vácuo e sob a injeção de uma resina epóxi, conferindo ao transformador características elétricas e mecânicas que atendem os requisitos conforme os transformadores selados. Figura 3.6- Transformadores a Seco 3.3.1.1 TANQUES O tanque do transformador, além de ser o recipiente que contem as partes ativas, isoladores e óleo, é o elemento que transmite para o ar o calor produzido pelas perdas. O formato do tanque varia de redondo para os transformadores de distribuição cuja potencia máxima é da ordem de 150 KVA, a oval e retangular para os transformadores de média e grande potencias. De acordo com a quantidade de calor que deve ser liberado, os transformadores têm o tanque liso, nervurado ou equipados de radiadores. As figuras abaixo mostram exemplos de tanques de transformadores de distribuição e de força, monofásico e trifásico.
  • 62. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 62 Figura 3.7- Tanque de Transformadores de Distribuição Trifásicos e monofásicos Figura 3.8- Tanque de Transformadores de Força
  • 63. Transformadores / Prof. Rodrigo Motta de Azevedo 63 3.3.2 TIPOS DE RESFRIAMENTO Os tipos de resfriamento utilizados nos transformadores são os seguintes: Métodos de Resfriamento Natureza do Meio de Resfriamento Símbolo Óleo Líquido Isolante Sintético Não Inflamável Gás Água Ar O L G W A Natureza da Circulação Símbolo Natural Forçada(no caso de óleo, fluxo não dirigido) Forçada com Fluxo de Óleo Dirigido N F D Ordem dos símbolos 1ª Letra 2ª Letra 3ª Letra 4ª Letra Meio de resfriamento em contato direto com o enrolamento Meio de resfriamento em contato com o sistema externo de resfriamento Natureza do Meio Natureza de Circulação Natureza do Meio Natureza de Circulação Exemplos: ONAN – Transformador imerso em óleo com resfriamento a ar natural ODAF – Transformador imerso em óleo com fluxo dirigido, com resfriamento a ar forçado ONAN/ONAF/ONAF – Transformador imerso em óleo sem fluxo dirigido, com ventilação a ar natural com opção de ventilação forçada, com um estágio de ventiladores e com dois estágios de ventiladores. ANAN – Transformador seco com invólucro protetor vedado com resfriamento natural a ar internamente e externamente.
  • 64. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 64 3.3.3 CLASSES DE PROTEÇÃO É importante salientar que, além das características elétricas, os transformadores devem ser projetados ou escolhidos de acordo com uma classe de proteção. O que vem ser a classe de proteção? As características de trabalho dos transformadores são importantíssimas, mas de igual importância é o ambiente em que esse transformador irá desenvolver esse trabalho e que proteções operacionais ele deve possuir. Para mensurar essas características temos as classes de proteção indicadas pelos índices de proteção IP. Esse índice é construído com dois algarismos, conforme a tabela abaixo. Tabela grau de Proteção IP
  • 65. Transformadores / Prof. Rodrigo Motta de Azevedo 65 A coluna da esquerda se refere a graus de proteção contra penetração de objetos sólidos estranhos. Já a coluna da direita indica o grau de proteção contra a penetração de água. Por exemplo, um transformador cujo grau de proteção é IP21 que dizer que ele é protegido sobre a inserção de corpos sólidos maiores que 12mm e protegido mecanicamente contra quedas de água na vertical. 3.4 ACESSÓRIOS DE UM TRANSFORMADOR 3.4.1 RESPIRADOR É uma válvula sobre o tanque de expansão, possuindo as seguintes funções: - Permitir a entrada ou saída de ar sempre que houver dilatação ou contração do óleo; - Serve como meio de abastecimento do óleo. 3.4.2 SECADOR DE AR Os transformadores sofrem variações da pressão interna devido às mudanças de temperatura. Os transformadores de potência, dotados de tanque de expansão tem uma comunicação entre o mesmo e o ambiente, por onde respiram. Para evitar a entrada de umidade existe na passagem do ar um recipiente chamado de secador de ar contendo cristais de sílica-gel o qual é muito higroscópico sendo capaz de absorver água em até 40% de seu peso. Enquanto estiver seca a sua cor é azul celeste, porém torna-se róseo quando estiver saturado de umidade. O ar ao passar pela sílica gel deixará na mesma a umidade, fazendo que a sílica gel troque de coloração, até a sua saturação conforme indicado abaixo: - Coloração laranja: Sílica gel seca; - Coloração amarela: Sílica gel com aproximadamente 20% da umidade absorvida; - Coloração amarelo-claro: Sílica gel com 100% de umidade absorvida (saturada);
  • 66. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 66 Podemos encontrar também a sílica-gel quando estiver seca na cor azul celeste, porém torna-se róseo quando estiver saturado de umidade. Para regeneração da sílica gel recomenda-se colocar em estufa com temperatura máxima de 120°C de 2 a 4 horas. Figura 3.9-Secadores de Ar 3.4.3 CONSERVADOR DE ÓLEO OU TANQUE DE EXPANSÃO Consiste de um tanque de menor capacidade colocado acima de um tanque principal de transformadores com potencia acima de 1000 KVA. Os dois tanques são unidos por uma tubulação. Nessa tubulação pode ser colocado, quando a potencia do transformador exigir (acima de 5000KVA), o relé detector de gás (relé BUCHHOLZ) o tanque de expansão deve ter a capacidade de suportar as variações de volume do óleo, em função da temperatura sem extravasar ou ao contrário ficar vazio , deixando entrar ar ate o relé BUCHHOLZ podendo ate desligar o transformador. O tanque de expansão tem as funções de: - Permitir as variações do nível do óleo pela temperatura sem forçar o tanque; - Possibilitar a instalação do relé BUCHHOLZ ;
  • 67. Transformadores / Prof. Rodrigo Motta de Azevedo 67 - Não deixar o ar frio entrar em contato com a parte ativa (núcleo e enrolamentos) quente. Figura 3.10 – Transformadores de Força com Tanque de Expansão Conservador com bolsa de borracha A bolsa de borracha utilizada nos conservadores de óleo dos transformadores é um acessório opcional. Tem como objetivo evitar o contato do líquido isolante com a atmosfera, preservando-o da umidade e oxidação. A ligação da bolsa com a atmosfera é feita através do secador de ar com sílica-gel, que mantém o ar seco em seu interior, permitindo que a bolsa se encha e esvazie com as variações de volume do líquido isolante. O ar existente entre a bolsa de borracha e suas adjacências, deverá ser eliminado no local da instalação, durante o enchimento de óleo. O óleo devidamente preparado é introduzido no tanque até a bolsa de borracha ficar vazia. Exceto quando houver determinação especial, a temperatura deverá estar entre 5°C e 35°C, e a umidade relativa do ar entre 45 e 85%, durante os ensaios. Além disso, deverá ser evitada corrente de ar para que não haja variação de temperatura e umidade relativa, prejudicando assim os resultados. Deverá resistir ao ensaio de estanqueidade com colocação de ar seco a pressão de 0,1kgf/cm2. Não deverá apresentar nenhum vazamento durante o ensaio.
  • 68. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 68 Figura 3.11 – Conservador de Óleo com Bolsão de Borracha 3.4.4 INDICADOR DE NÍVEL Os transformadores sem tanque de expansão (selados) possuem um indicador de nível no seu interior, constando de uma lista de tinta ou de um cordão de solda conforme mostra a figura abaixo. Figura 3.12 – Indicação do nível de Óleo em transformadores selados sem tanque de expansão
  • 69. Transformadores / Prof. Rodrigo Motta de Azevedo 69 Já os transformadores com o tanque de expansão podem ter o nível indicado por um tubo de vidro que se visualiza o óleo ou por um indicador magnético de nível. Esse indicador transmite a posição da bóia colocada dentro do tanque, para o indicador externo por meio de um imã para não ter ponto de passagem de umidade. Figura 3.13 – Indicador de Nível de Óleo 3.4.5 TERMÔMETRO O termômetro é utilizado para indicação da temperatura do óleo. Instalado na parte superior do tanque mede continuamente a temperatura no topo do óleo (zona mais quente, abaixo da tampa) podendo emitir sinais de alarme. O termômetro possui, além do ponteiro de indicação de temperatura instantânea, dois ou três ponteiros controláveis externamente para ligação do sistema de proteção e ventilação forçada (VF, alarme e desligamento) e um ponteiro de arraste para indicação de temperatura máxima do período.
  • 70. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 70 Para o ponteiro indicador de temperatura máxima do período, após a inspeção periódica do termômetro, deve-se voltar o mesmo até encostar-se ao ponteiro principal através do controle externo. Figura 3.14- Termômetros Existem também os controladores microprocessados de temperatura. Os controladores eletrônicos de temperatura foram desenvolvidos para substituir, com vantagens da tecnologia microprocessada, os termômetros de óleo e enrolamento tradicionais, utilizados em transformadores e reatores de potência. O principio de funcionamento é todo através de sensores e dispositivos eletrônicos. Os controladores microprocessados são necessários quando o cliente solicita indicação digital de temperatura no transformador, pois os termômetros usuais são analógicos. Podem possuir saídas analógicas para transdutores ou indicadores instalados remotamente e ainda protocolo de comunicação Figura 3.15- Controladores Microprocessados de Temperatura
  • 71. Transformadores / Prof. Rodrigo Motta de Azevedo 71 3.4.6 BUJÃO DE DRENAGEM É um tampão por onde se retira o óleo isolante e fica localizado na parte inferior do tanque. Figura 3.16- Bujão de Drenagem 3.4.7 TERMINAL DE LIGAÇÃO A TERRA É um parafuso soldado na carcaça que faz a conexão elétrica desta a terra. Por medida de segurança mantém nula a d.d.p. da carcaça em relação à terra . Figura 3.17- Aterramento da Carcaça
  • 72. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 72 3.4.8 COMUTADOR Conectado ao primário, tem a função de regular a tensão fornecida no secundário isto é conseguido com a variação do número de espiras do primário. O comutador pode ser comandado internamente ou externamente ao tanque. Figura 3.18- Comutadores 3.4.9 ISOLADORES São acessórios feitos de porcelana, com a periferia vitrificada para impermeabilizá-los. Os transformadores têm isoladores de alta e baixa tensão. Funções: - Possibilitar a passagem aos terminais dos enrolamentos através da tampa, com isolação elétrica entre ambos; - Servir de ponto de ligação dar rede, ao transformador em sua extremidade externa. São chamados, também de buchas.
  • 73. Transformadores / Prof. Rodrigo Motta de Azevedo 73 Figura 3.19- Isoladores 3.4.10 PLACA DE IDENTIFICAÇÃO Nela são gravadas as principais características do transformador tais como: - Nome e demais dados do fabricante; - Número de série; - Mês e ano de fabricação; - Potencia em KVA; - Norma utilizada na fabricação; - Impedância de curto circuito; - Tipo de óleo isolante; - Tensões nominais do primário; - Tensões nominais do secundário; - Diagramas de ligação do primário e secundário com identificação das derivações; - Indicação do diagrama fasorial quando se tratar de transformadores trifásicos e polaridade quando monofásicos; - Volume total do liquido isolante em litros; - Massa total em kg; - Número da placa de identificação.
  • 74. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 74 Figura 3.20- Placa de Identificação 3.4.11 ALÇAS DE SUSPENSÃO São alças metálicas na carcaça do transformador que servem para suspensão do mesmo. Figura 3.21- Transformadores de Distribuição
  • 75. Transformadores / Prof. Rodrigo Motta de Azevedo 75 3.4.12 RADIADORES Todo calor gerado na parte ativa se propaga através do óleo e dissipado no tanque. As elevações de temperatura do óleo e dos enrolamentos são normalizadas e devem ser limitadas para evitar a deterioração do isolamento e do próprio óleo. Dependendo da potencia do transformador, isto é, das perdas, a área da superfície externa deve ser aumentada para melhor dissipar o calor. Para tal usam-se radiadores. Figura 3.22- Radiadores, Transformador de Força com Radiadores e circulação do óleo
  • 76. IF-Instituto Federal Sul-Rio-Grandense / Curso Técnico de Eletrotécnica 76 3.4.13 RELÉ DE GÁS (BUCHHOLZ) O relé de gás tem a função de proteger aparelhos elétricos que trabalhem imersos em líquidos isolante, geralmente transformadores. Os defeitos pode ser perda do óleo, descargas internas, isolação defeituosa dos enrolamentos, do ferro ou mesmo contra terra em transformadores equipados apenas com relé de máxima corrente. O relé de gás é instalado na tubulação que liga o tanque principal ao tanque de expansão. Tem a capacidade de capitar em seu interior bolhas de gás que se formam no interior do tanque principal e se dirigem ao tanque de expansão pela diferença de densidade. A formação de gás dentro do relé diminui o nível do óleo, fazendo com que as bóias (duas) sejam inclinadas. As bóias estão em alturas (níveis) diferentes. Assim a primeira deve fechar o contato de alarme e a segunda deve desligar o equipamento. Os contatos são feitos de ampolas de vidro com mercúrio em seu interior para fazer o fechamento do circuito elétrico. O relé também possui uma válvula para retirar o ar contido em seu interior. O relé BUCHHOLZ é instalado em transformadores para, em tempo hábil, indicar por meio de alarme ou desligamento do transformador, defeitos como os acima citados e, deste modo, possibilitar sua recuperação. Figura 3.23- Relé de Gás
  • 77. Transformadores / Prof. Rodrigo Motta de Azevedo 77 3.4.14 DISPOSITIVO DE ALÍVIO DE PRESSÃO Os dispositivos de alívio de pressão são instalados em transformadores imersos em líquido isolante com a finalidade de protegê-los contra possíveis deformações ou ruptura do tanque, em casos de defeito interno, com aparecimento de pressão elevada. Podem ser divididos em dois tipos básicos: a) Tipo Membrana: Conhecido também como tubo de explosão, no qual o alívio de pressão ocorrerá pelo rompimento da membrana. Sempre que o transformador for submetido a vácuo, essa membrana deve ser isolada do tanque, e, quando manuseada, devem ser tomados os devidos cuidados para não danificá-la. Observar que é usual utilizar-se uma proteção para a membrana durante o transporte, devendo, obrigatoriamente, ser retirada antes do inicio do funcionamento do transformador; Figura 3.24- Transformador de força com dispositivo de alívio de pressão tipo membrana.