SlideShare uma empresa Scribd logo
1 de 94
Baixar para ler offline
Curso de Graduação em Engenharia Elétrica




Projeto de uma Fonte de Referência Band-
   Gap em Tecnologia CMOS 0,35μm
               Bruno Guimarães Chagas




                     Bauru – SP
                       2012
ii




       BRUNO GUIMARÃES CHAGAS




Projeto de uma Fonte de Referência Band-
   Gap em Tecnologia CMOS 0,35μm




                    Trabalho de Graduação do Curso de
                    Engenharia Elétrica apresentado à
                    Faculdade   de     Engenharia   de
                    Bauru/UNESP



                    ORIENTADOR: Prof. Dr. Fernando de
                    Souza Campos




                  Bauru
                  2012
iii




                  FOLHA DE APROVAÇÃO



Autor:_______________________________________________________

Título:_______________________________________________________



   Trabalho de Graduação defendido e aprovado em ____/____/______,

      com NOTA ______ (               ), pela comissão julgadora:




(Assinatura)____________________________________________________
(Titulação/nome/instituição)



(Assinatura)____________________________________________________
(Titulação/nome/instituição)



(Assinatura)____________________________________________________
(Titulação/nome/instituição)



                      ____________________________________________
                       Coordenador do Conselho de Curso de Graduação em
                                                      Engenharia Elétrica
iv




 DEDICATÓRIA




              À   memória    de   meu   pai,   Reinaldo
Guimarães Chagas, talvez novamente entre nós...
v




                                  AGRADECIMENTOS




- Ao meu orientador Prof. Dr. Fernando de Souza Campos, pela amizade e por todo apoio
dado na orientação de meu trabalho, me proporcionando assim, agradáveis momentos de
aprendizagem.


- Ao Departamento de Engenharia Elétrica e a Faculdade de Engenharia de Bauru, pelo
auxílio concedido durante a realização da monografia.


- A minha família e a todos meus amigos, principalmente a meu amigo Kleber Rossi, com
quem partilhei longas madrugadas de estudo para a realização desta monografia.
vi




      "Um homem pode morrer, lutar, falhar, até mesmo ser esquecido,
mas sua ideia pode modificar o mundo mesmo tendo passado 400 anos."
                                    Do aclamado filme V de Vingança




                           “All our science, measured against reality,
                            is primitive and childlike – and yet it is the
                                         most precious thing we have.”
                                           Albert Einstein (1879-1955)


                                  “Hoc non pereo habebo fortior me”
vii




ÍNDICE DE FIGURAS

Figura 1 – Junção pn sobre reversamente polarizada. (a) Desenho esquemático. (b)
Densidade de Carga. (c) Campo Elétrico. (d) Potêncial Eletroestático .................................... 10
Figura 2 – Figura de Transistor bipolar comparado a dois diodos em série............................ 14
Figura 3 – Convenção de correntes no TJB ............................................................................. 15
Figura 4 – Características                         para um TBJ npn. ......................................................... 17
Figura 5 – Curva de               versus       para um transistor npn com 6µ                      de área de emissor. ... 19
Figura 6 – Simbologia do MOSFET tipo enriquecimento ...................................................... 20
Figura 7 – Símbolo esquemático de um MOSFET e seus terminais ....................................... 20
Figura 8 – Estrutura NMOS tipo enriquecimento. .................................................................. 21
Figura 9 – Dispositivo NMOS ideal com tensão porta fonte positiva aplicada, mostrando
região de depleção e canal induzido. ........................................................................................ 22
Figura 10 – O transistor NMOS operando na saturação com o canal estrangulado ................ 25
Figura 11 – Característica               -        parametrizado por                 ................................................. 26
Figura 12 – Gráfico que mostra o comportamento do parâmetro ........................................ 27
Figura 13 – Característica               -        do transistor ................................................................... 27
Figura 14 – Amplificador com realimentação ......................................................................... 28
Figura 15 – Amplificador no modo inversor ........................................................................... 29
Figura 16 – Amplificador Não-Inversor .................................................................................. 30
Figura 17 – Amplificador Diferencial ..................................................................................... 31
Figura 18 – Estágio de entrada típico de um Amp Op ............................................................ 32
Figura 19 – Circuito de referência bandgap hipotético ........................................................... 36
Figura 20 – Variação da tensão de saída do bandgap com a temperatura .............................. 40
Figura 21 – Circuito de Referência bandgap em tecnologia CMOS....................................... 42
Figura 22 – Circuito que aumenta                        aumentando                                  ................................ 43
Figura 23 – dois seguidores de emissor idênticos em cascata. ................................................ 44
Figura 24 – Esquemático de um amp op dois estágios ............................................................ 46
Figura 25 – Esquemático Amp op com os parâmetros já definidos ........................................ 53
Figura 26 – Circuito Esquemático de um amplificador operacional de dois estágios em
tecnologia CMOS 0.35μm utilizando o SPICE. ....................................................................... 54
Figura 27 – Gráfico de Bode para o amp op dois estágios ...................................................... 55
Figura 28 – Ampliação da frequência de corte que o amp op atingiu ..................................... 55
viii




Figura 29 – Análise de Transiente do amp op de dois estágios .............................................. 56
Figura 30 – Circuito Esquemático do circuito de referência bandgap .................................... 58
Figura 31 – Circuito Esquemático de uma fonte de referência do tipo bandgap em tecnologia
CMOS 0.35μm utilizando o SPICE .......................................................................................... 62
Figura 32 – Variação da tensão                   do transistor Q2em relação à temperatura ................... 63
Figura 33 – Variação da tensão                               em relação à temperatura ............................... 64
Figura 34 – Tensão de referência                                                   . ........................................... 65
ix




ÍNDICE DE TABELAS
Tabela 1 – Especificações do projeto do amplificador operacional ........................................ 46
Tabela 2 – Quadro de parâmetros dos MOSFETs ................................................................... 47
Tabela 3 – Tabela com os dados obtidos através dos cálculos e especificações de projeto .... 52
Tabela 4 – Dimensões dos transistores obtidos com o resultado dos cálculos ........................ 53
Tabela 5 – Valor dos resistores escolhidos para a simulação .................................................. 61
Tabela 6 – Valor dos transistores escolhidos para simulação.................................................. 61
Tabela 7 – Valores de polarização do circuito......................................................................... 62
x




        Resumo do Trabalho de Graduação apresentado ao DEE – UNESP como parte dos
requisitos necessários para a obtenção da conclusão do curso de Engenharia Elétrica.

 Projeto de um circuito de referência Band-Gap em tecnologia
                        CMOS 0,35μm
                                  Bruno Guimarães Chagas
                                         11/2012

                      Orientador: Prof. Dr. Fernando de Souza Campos


Área de Concentração: Microeletrônica
Palavras-chave: Circuitos integrados MOS, referência bandgap, fonte de referência de
tensão.



                                         RESUMO

       Este trabalho visa o projeto e a implementação de uma fonte de referência do tipo
bandgap em tecnologia CMOS. Ele apresenta um estudo da literatura existente sobre o
assunto bem como uma discussão sobre as melhores formas de implementação.
       Esta monografia se divide em quatro capítulos, sendo o primeiro apenas uma rápida
introdução quanto ao trabalho proposto a ser realizado. O segundo capítulo se trata de uma
revisão bibliográfica a respeito dos principais tipos de dispositivos semicondutores utilizados
em projetos de circuitos integrados, e que serão usados para a implementação do circuito
proposto.
       No terceiro capítulo inicia-se com a implementação em si, onde se calculou os
parâmetros necessários para o projeto do amplificador operacional de dois estágios e a fonte
de referência bandgap, bem como as discussões sobre resultados obtidos pela simulação do
circuito. Os resultados foram cotejados com os valores teóricos apresentados, obtendo-se uma
ótima aproximação empírica.
       A conclusão forma o quarto e último capítulo, onde foi dado um parecer sobre o
resultado final encontrado, os quais foram extremamente satisfatórios para o propósito do
projeto proposto, alcançando um comportamento bem perto do ideal.
xi




        Abstract of the Undergraduate Work presented to DEE – UNESP as a partial
fulfillment of the requirements to conclude the Electrical Engineering Course.

   Project of a Band-Gap reference circuit in CMOS 0,35μm
                         Technology
                                    Bruno Guimarães Chagas
                                           11/2012

                         Advisor: Prof. Dr. Fernando de Souza Campos


Concentration Area: Microelectronics
Keywords: MOS integrated circuits, bandgap reference, voltage reference sources.



                                          ABSTRACT

       This work aims at the project and implementation of a bandgap voltage reference
source in CMOS technology. It presents a summary of commonly adopted bandgap circuits,
as well as a discussion over their features.
       This text is divided in four chapters, the first one being a short introduction of the
concept of a bandgap circuit, and the second one a literary revision about the main
semiconductor devices that will be used in order to implement the proposed circuit.
       In the third chapter, the implementation began itself, estimating the needed parameters
for the op amp simulation and the design of the bandgap reference circuit, as well as
discussions about the results obtained by simulations and by practical experiences. These
results were collated with the theoretical values showed before, obtaining a good empirical
approximation.
       The conclusion obtained from these data forms the fourth and last chapter, with a sight
regarding the final result, which proved to be extremely satisfactory for the purpose of the
project, reaching a behavior very closer to the ideal.
xii




SUMÁRIO



1.     INTRODUÇÃO ................................................................................................................ 1
2.     REVISÃO BIBLIOGRÁFICA ........................................................................................ 3
     2.1.   TECNOLOGIA DE FABRICAÇÃO CMOS ............................................................... 3
       2.1.1.       A preparação da lâmina de silício ....................................................................... 3
       2.1.2.       A oxidação .......................................................................................................... 4
       2.1.3.       A difusão ............................................................................................................. 5
       2.1.4.       A implantação de íons ......................................................................................... 5
       2.1.5.       A deposição química em fase de vapor ............................................................... 5
       2.1.6.       A metalização...................................................................................................... 6
       2.1.7.       A fotoligrafia ....................................................................................................... 7
       2.1.8.       O encapsulamento ............................................................................................... 7
     2.2.   A JUNÇÃO PN ............................................................................................................ 8
       2.2.1.       A Junção PN sem tensão de polarização ............................................................. 9
       2.2.2.       A Junção PN reversamente polarizada ............................................................... 9
       2.2.3.       Capacitância de Junção ..................................................................................... 11
       2.2.4.       A região de ruptura ........................................................................................... 12
       2.2.5.       O efeito avalanche............................................................................................. 12
     2.3.   BIPOLAR ................................................................................................................... 12
       2.3.1.       Fundamentos ..................................................................................................... 13
       2.3.2.       Modelos de Grandes Sinais na Região Ativa .................................................... 15
       2.3.3.       Efeito das tensões de coletor em Grandes Sinais e características na região
       ativa.       16
       2.3.4.       Saturação ........................................................................................................... 16
       2.3.5.       Tensão de Ruptura ............................................................................................ 18
       2.3.6.       Dependência do ganho de corrente do transistor nas condições de operação ... 18
     2.4.   MOSFET .................................................................................................................... 19
       2.4.1.       Caracteristicas gerais de um dispositivo MOS ................................................. 19
       2.4.2.       O Mosfet tipo enriquecimento .......................................................................... 21
       2.4.3.       Curvas Características de Operação .................................................................. 24
     2.5.   AMPLIFICADOR OPERACIONAL ......................................................................... 28
       2.5.1.       Características Gerais........................................................................................ 28
       2.5.2.       Aplicações com Amplificadores Operacionais ................................................. 28
            2.5.2.1.         Realimentação .................................................................................... 28
            2.5.2.2.         Amplificador Inversor ........................................................................ 29
            2.5.2.3.         O amplificador não-inversor ............................................................... 30
xiii




              2.5.2.4.   Amplificador Diferencial .................................................................... 30
          2.5.3.    Desvios em Amplificadores Operacionais reais ............................................... 31
               2.5.3.1. Corrente de Polarização de Entrada.................................................... 31
               2.5.3.2. Corrente Offset de Entrada ................................................................. 32
               2.5.3.3. Tensão offset de Entrada .................................................................... 33
               2.5.3.4. Taxa de Rejeição de Modo Comum (CMRR) .................................... 33
               2.5.3.5. Resistência de Entrada ........................................................................ 33
               2.5.3.6. Resistência de Saída ........................................................................... 33
     2.6.      O CIRCUITO DE REFERÊNCIA BAND-GAP........................................................ 34
          2.6.1.       Fundamentos ..................................................................................................... 34
          2.6.2.       Equacionamento do circuito a ser projetado ..................................................... 41
          2.6.3.       Minimizando o ganho e maximizando a relação de tensão base-emissor ........ 43
     3.        PROJETO ................................................................................................................. 45
     3.1. PROJETO DE UM AMPLIFICADOR OPERACIONAL DE DOIS ESTÁGIOS EM
     TECNOLOGIA CMOS 0.35μm ........................................................................................... 45
          3.1.1.       Especificações de Projeto ................................................................................. 46
          3.1.2.       Cálculo dos parâmetros de projeto .................................................................... 47
          3.1.3.       Simulações ........................................................................................................ 53
     3.2. PROJETO DE UMA FONTE DE REFERÊNCIA DE TENSÃO BAND-GAP EM
     TECNOLOGIA CMOS 0.35μm ........................................................................................... 57
          3.2.1.       Considerações para o Projeto ............................................................................ 57
          3.2.2.       Equacionamento do circuito ............................................................................. 58
          3.2.3.       Cálculo dos resistores ....................................................................................... 59
          3.2.4.       Simulações ........................................................................................................ 62
4.        CONCLUSÃO................................................................................................................. 66
REFERÊNCIAS BIBLIOGRÁFICAS ................................................................................. 68
ANEXO A ................................................................................................................................ 70
ANEXO B ................................................................................................................................ 75
1


1. INTRODUÇÃO

       O projeto de circuitos integrados (CIs) trouxe grandes avanços para as aplicações
eletrônicas. Em geral os CIs foram a base para a computação e comunicação modernas,
pois permitiram a redução do tamanho dos equipamentos, o aumento do desempenho
dos sistemas e a redução dos preços das máquinas.
       O desenvolvimento da tecnologia de CIs se deu principalmente pelo mercado de
circuitos digitais (microprocessadores e memórias). Recentemente, entretanto, a
tecnologia CMOS (complementary metal-oxide semicondutor) se tornou extensivamente
utilizada no projeto de circuitos analógicos, devido ao baixo custo de fabricação,
baixíssimo consumo de energia (que leva a baixa dissipação de calor) e compatibilidade
para integrar circuitos analógicos e digitais num mesmo circuito integrado, o que
aumenta o desempenho geral e a confiabilidade.
       Fontes de referência são utilizadas por aplicações que necessitam de um valor de
referência externo para operarem de forma correta. Referências de tensão são
importantes em aplicações que necessitam de uma tensão que não se altere. Elas devem
fornecer uma tensão com variações aceitáveis, que dependem de cada tipo de aplicação,
para variações de fatores como tensão de alimentação, temperatura, tempo de operação,
etc.
       Para uma grande gama de circuitos práticos tais como circuitos de instrumentação,
conversores analógico-digitais, microprocessadores, amplificadores operacionais e
reguladores lineares, é necessário o uso de fontes de referência de tensão. Estes circuitos
exemplificados estão presentes na maioria das aplicações eletrônicas, e o que intensifica
a importância das fontes de referência.
       O princípio em que se baseiam as fontes de referência do tipo bandgap foi
introduzido por Hibiber em 1964. Posteriormente Widdlar criou o conceito de bandgap
e desenvolveu uma versão integrada, no que foi seguido por vários outros. Atualmente
são inúmeras as diferentes versões deste circuito, muitas delas usando a tecnologia
CMOS. Este tipo de circuito tem como característica gerar uma tensão constante
independente da temperatura e da tensão de alimentação e com um valor bem
conhecido, que é diferença de potencial da banda proibida do silício. Daí vem seu nome,
pois a banda proibida do silício tem o nome em inglês de bandgap.
2


   Tendo em vista estas considerações, neste trabalho, propor-se-á um estudo
crítico/analítico de uma configuração de fonte de tensão de Referência Bandgap muito
comum em chips comerciais, concluindo importantes itens quanto às técnicas de projeto
e esquemático, o que permitirá julgar a eficiência de tal circuito quanto à compensação
em temperatura.
3




2. REVISÃO BIBLIOGRÁFICA

   2.1. TECNOLOGIA DE FABRICAÇÃO CMOS

   O objetivo desta primeira seção é apresentar um resumo dos conceitos básicos por
trás da tecnologia de fabricação VLSI (very large scale integrated-circuit), onde focar-
se-á apenas na tecnologia baseada em silício       ), material este abundante que ocorre
normalmente na forma de areia. Pode ser refinado usando-se técnicas simples de
purificação e crescimento de cristais. Também apresenta propriedades físicas adequadas
para a fabricação de dispositivos ativos com boas características elétricas. Além disso, o
silício pode ser facilmente oxidado para formar uma excelente camada isolante,
(vidro). Esse óxido é largamente empregado para fabricar capacitores e MOSFETs.
Serve também como uma boa barreira de difusão contra impurezas indesejáveis, que
podem se difundir para o silício com alto grau de pureza. Essa propriedade de
mascaramento do óxido de silício permite alterar a forma localizada as propriedades
elétricas do silício. Portanto, elementos ativos e passivos podem ser construídos em um
mesmo pedaço de material (substrato).            Os componentes podem então ser
interconectados utilizando-se camadas de metal (similar ao empregado para a definição
de circuitos impressos) para formar um circuito integrado monolítico CI, que é
essencialmente um único pedaço de material.
   As etapas básicas envolvidas na fabricação de circuitos integrados serão descritas
nas subseções seguintes. Algumas dessas etapas podem ser repetidas várias vezes, em
diferentes combinações sob diferentes condições de processamento durante uma corrida
completa de fabricação.


       2.1.1. A preparação da lâmina de silício
   O material inicial para a fabricação dos modernos circuitos integrados é o silício
com alto grau de pureza. O material cresce como um cristal na forma de tarugo. Toma a
forma de um cilindro sólido de 10 a 30 cm de diâmetro, pode ter de 1 a 2 m de
comprimento e sua cor é cinza-metálica. Esse cristal é, então, cortado (como um pão de
forma) para que sejam produzidas lâminas circulares com espessura de 400µm a
600µm. A superfície da lâmina é, então, polida até ficar com o acabamento de um
espelho, utilizando-se de técnicas de polimento químico-mecânico. As propriedades
4


elétricas e mecânicas da lâmina dependem da orientação dos planos cristalinos, bem
como da concentração e do tipo de impurezas presentes. Essas variáveis são
estritamente controladas durante o crescimento do cristal. Impurezas podem ser
adicionadas intencionalmente ao silício puro por meio de um processo conhecido como
dopagem. Isso permite uma alteração controlada das propriedades elétricas do silício,
em particular sua resistividade. É possível controlar também o tipo dos portadores
usados para produzir a condução elétrica, criando-se, portanto, durante o crescimento,
tanto lacunas (tipo p) quando elétrons (tipo n). Se um grande número de impurezas for
adicionado, o silício é considerado fortemente dopado[SEDRA, 2007].


       2.1.2. A oxidação
       A oxidação é o processo químico responsável pela reação do silício com o
oxigênio, resultando no dióxido de silício (       ). Para acelerar o processo, muitas
vezes é necessário o aquecimento da lâmina à altas temperaturas (geralmente em torno
de 1000 ºC) em fornos especiais, o quais são minuciosamente inspecionados de modo a
permanecerem ultralimpos, pois qualquer tipo de contaminante é capaz de alterar as
propriedades elétricas do silício.
       O oxigênio utilizado na reação pode ser introduzido tanto como um gás de alta
pureza (oxidação seca) quanto como vapor d’água (oxidação úmida). Em geral, a
oxidação úmida tem uma taxa de crescimento maior, mas a oxidação seca apresenta
melhores características elétricas. Nesse caso, a camada de óxido crescida termicamente
tem excelentes propriedades de isolamento elétrico. A ruptura dielétrica para o       é
de aproximadamente         V/cm. Possui uma constante dielétrica de 3,9 e pode ser usada
para formar excelentes capacitores.
       A camada de dióxido de silício é fina e transparente e a superfície do silício é
altamente reflexiva. Se uma luz branca incidir sobre uma lâmina oxidada, ocorrerão
efeitos de interferência construtivos e destrutivos no óxido, fazendo com que certas
cores sejam refletidas. Os comprimentos de onda da luz refletida dependem da
espessura da camada de óxido, de onde, pela cor da superfície da lâmina, pode-se
deduzir a espessura da camada de óxido[SEDRA, 2007].
5


       2.1.3. A difusão
       A difusão é o processo pelo qual os átomos se movem de uma região com alta
concentração para uma região com baixa concentração pela rede cristalina. Na
fabricação, a difusão é um método em que são introduzidos átomos de impurezas
(dopantes) no silício para mudar sua resistividade. A velocidade em que ocorre a
difusão de dopantes no silício é uma função muito dependente da temperatura. Portanto,
para aumentar a velocidade, a difusão de impurezas dopantes é feita geralmente em altas
temperaturas, para obter o perfil de dopagem desejado. A seguir, quando a lâmina é
resfriada e atinge a temperatura ambiente, as impurezas são essencialmente
‘congeladas’ na posição. O processo de difusão é executado em fornos similares aos
usados pela oxidação. A profundidade com que as impurezas se difundem depende da
temperatura e do tempo de processo.
       As impurezas mais comuns usadas como dopantes são o boro (tipo p), o fósforo
e o arsênio (tipo n). Esses dopantes são efetivamente mascarados por finas camadas de
óxido. Difundindo-se o boro em um substrato tipo n, obtêm-se uma junção pn (diodo)
[SEDRA, 2007].


       2.1.4. A implantação de íons
       A implantação de íons é outro método utilizado para introduzir átomos de
impurezas no cristal de silício. Um implantador de íons produz íons do dopante
desejado, acelera-os por meio de um campo elétrico e faz co que eles se choquem contra
a superfície do silício, que por sua vez ficam “encravados” no mesmo. A profundidade
de penetração está relacionada com a energia do feixe de íons, que pode ser controlada
pela tensão de aceleração, e a quantidade de íons pode ser controlada pela variação da
corrente do feixe (fluxo de íons). Como corrente e tensão podem ser ambas
precisamente medidas e controladas, a implantação de íons resulta em um perfil de
impurezas muito mais preciso e reprodutível que aquele obtido por difusão. Além disso,
a implantação de íons pode ser executada a temperatura ambiente. Ela é usada
normalmente quando um controle preciso dos dopantes é essencial para a operação do
dispositivo[SEDRA, 2007].


       2.1.5. A deposição química em fase de vapor
       A deposição química em fase de vapor é um processo pelo qual os gases ou
vapores reagem quimicamente, levando a formação de um sólido sobre o substrato. O
6


método CDV, pelo qual é conhecido, pode ser usado para depositar vários materiais
sobre o substrato de silício, incluindo     ,        e silício policristalino. Por exemplo,
se o gás silano      e o oxigênio forem misturados no ambiente acima do substrato de
silício, o produto final, dióxido de silício, irá se depositar como um filme sólido sobre o
silício. As propriedades da camada de óxido CVD formada não são tão boas quanto
àquela crescida termicamente, mas são boas o suficiente para agirem como um isolante
para agirem como um isolante elétrico. A vantagem do método CVD é que o óxido
pode ser depositado em taxas mais altas e a temperatura mais baixas (abaixo de 500º C).
Se o gás silano for usado sozinho, então uma camada de silício será depositada sobre a
lâmina. Se a temperatura de reação for alta o suficiente (acima de 1000º C), a camada é
depositada como uma camada cristalina (supondo que o substrato seja silício cristalino).
Essa camada é chamada epitaxial e o processo de deposição é conhecido como epitaxia,
em vez de CVD. Em baixas temperaturas ou se o substrato não for silício
monocristalino, os átomos não serão capazes de se alinhar no mesmo sentido cristalino.
Essa camada é denominada silício policristalino, visto que consiste em pequenos cristais
de silício alinhados em vários sentidos. Normalmente, essas camadas são fortemente
dopadas para formar uma região de alta condutividade que pode ser usada para
interconectar dispositivos[SEDRA, 2007].


       2.1.6. A metalização
       O objetivo da metalização é interconectar vários componentes do circuito
integrado (transistores, resistores, etc) para formar o circuito integrado desejado. A
metalização envolve a disposição inicial de um metal sobre toda a superfície do silício.
O traçado necessário para a interconexão é, então, seletivamente delineado (corroído). A
camada de metal é normalmente depositada por processo de pulverização catódica
(sputtering). Um alvo de metal puro é colocado sob um feixe de íons de argônio (Ar)
dentro de uma câmera em vácuo. As lâminas são também colocadas dentro da câmara,
acima do alvo. Os íons de Ar não reagirão com o metal, uma vez que o Ar é um gás
nobre. Entretanto, esses íons bombardeiam fisicamente o alvo e arrancam literalmente
átomos de metal para fora do alvo. Esses átomos de metal cobrirão todas as superfícies
dentro da câmara, incluindo as lâminas. A espessura da camada de metal pode ser
controlada pelo intervalo de tempo da pulverização catódica, o qual está normalmente
na faixa de 1 a 2 minutos[SEDRA, 2007].
7


       2.1.7. A fotoligrafia
       A geometria superficial (traçado) de vários componentes do circuito integrado é
definida por um processo fotolitográfico. Inicialmente, a superfície do silício revestida
com uma camada fotossensível (chamada fotorresiste) utilizando-se de uma técnica de
espalhamento de material em suporte giratório (spin-on technique). Posteriormente, uma
placa fotográfica contendo o traçado mestre (por exemplo, placa de quartzo com
traçado de cromo) será usada para a exposição seletiva do fotorresiste sob a luz
ultravioleta (UV). Nas áreas expostas à luz, o fotorresiste torna-se solúvel (resiste
positivo). Essa camada é então removida para produzir o traçado desejado sobre a
lâmina. Traçados geométricos diminutos podem ser precisamente produzidos por essa
técnica. A fotoligrafia necessita de um dos equipamentos mais caros da fabricação de
VLSI. A Camada de fotorresiste predefinida pode ser usada como uma máscara efetiva
(resistente a corrosão) para proteger os materiais abaixo desta, contra corrosão úmida e
corrosão por íon reativo. Correspondentemente, camadas de dióxido de silício, nitreto
de silício, silício policristalino e metal podem ser seletivamente removidas utilizando-se
métodos de corrosão apropriados. Após as etapas de corrosão, o fotorresiste é
totalmente removido, deixando em seu lugar um traçado permanente, uma imagem da
fotomáscara na superfície da lâmina[SEDRA, 2007].


       2.1.8. O encapsulamento
       Uma lâmina de silício acabada pode conter centenas, ou mais, de circuitos ou
pastilhas finalizadas. Cada pastilha contem entre     e     , ou mais, transistores dentro
de uma forma retangular, tipicamente entre 1 e 10mm em cada lado. Os circuitos são
primeiro testados eletricamente (ainda em forma de lâmina) usando-se uma estação de
teste automática. Circuitos com defeito são marcados para mais tarde serem
identificados. Os circuitos são, então, separados uns dos outros (por cortes), dando
origem às pastilhas (chips), e os circuitos em bom estado são montados em suportes
para serem encapsulados. Fios finos de outro são tradicionalmente usados para
interconectar os suportes do encapsulamento aos pontos de contato do circuito acabado.
Finalmente, o suporte é encapsulado utilizando-se material plástico ou epóxi sob vácuo
ou em uma atmosfera inerte [SEDRA, 2007].
8


   2.2. A JUNÇÃO PN


       A junção pn consiste em um material semicondutor tipo p (como o silício) posto
em contato com um material semicondutor tipo n (também silício), que na verdade
fazem parte de um mesmo cristal dado pela criação de regiões com “dopagens”
diferentes, assim como foi descrito na secção anterior. Alem de ser essencialmente um
diodo, a junção pn é o componente básico por trás do funcionamento dos transistores
bipolares de junção (TBJs) e dos transistores de efeito de campo (FETs), os quais serão
estudados em seguida.
       Note que seu nome, semicondutor, vem do fato de que são materiais compostos
por átomos com quatro elétrons na camada de valência, daí não serem nem condutores
nem isolantes, mas sim semicondutores. E é dessa singularidade que reside o principio
de funcionamento da junção. No exemplo do silício, os átomos são mantidos em suas
posições pelas ligações covalentes formadas pelos quatro eletros de valência. A
temperatura ambiente, os elétrons adquirem energia suficiente para desprender-se da
estrutura atômica, e pelo efeito de ionização, entrar na banda de condução. Esses
elétrons livres, quando deixam a órbita de seu átomo, criam uma carga positiva em seu
lugar, ou lacuna (hole), o que por sua vez atrai mais elétrons livres, criando assim um
fluxo de corrente no cristal, num processo denominado recombinação. No equilíbrio
térmico, a taxa de recombinação é igual à de ionização, e pode-se calcular a
concentração de elétrons livres, que é igual à de lacunas, como:

                                                                                (2.1)
em que       representa a concentração de elétrons livres ou lacunas em um silício
intrínseco (sem dopantes) a dada temperatura. O estudo da física de semicondutores
revela que, a dada temperatura absoluta      (em kelvins), a concentração             pode ser
encontrada por:

                                                                                (2.2)
em que B é um parâmetro dependente do material (=                  para o silício),      é um
parâmetro conhecido como largura de energia da faixa proibida (bandgap energy), que
representa a energia mínima necessária para romper a ligação covalente e entrar na zona
de condução, gerando assim o par elétron-lacuna, e vale 1,12 elétron-volts (eV) para o
silício, e por fim,   é a constante de Boltzmann =                  eV/K. À temperatura
ambiente (            ),                                  para o silício.
9




       2.2.1. A Junção PN sem tensão de polarização
       Sem tensão de polarização, existe uma tensão através da junção conhecida como
barreira de potencial. Essa tensão se opõe a difusão de lacunas e elétrons livres através
da junção, e em equilíbrio tem um valor de:

                                                                              (2.3)

Onde     é a densidade de dopagem no material tipo n e        a densidade de dopagem no
material tipo p, respectivamente, e     é chamada de tensão térmica, calculada a partir da
constante de Boltzmann, da carga de um elétron, e da temperatura do transistor em
kelvins, dada por:

                                                                              (2.4)

       A fim de que haja a mesma quantidade de cargas descobertas, a camada de
depleção se estenderá mais profundamente no material mais levemente dopado. Se
denotarmos a largura da região de depleção do lado p por         e no lado n por      , uma
condição de igualdade de cargas pode ser expressa por:
                                                                              (2.5)
Em que A é a área da secção transversal da junção. Reorganizando:

                                                                              (2.6)

       Da física de semicondutores, tem-se que a largura da região de depleção de uma
junção em circuito aberto é:

                                                                              (2.7)

       Onde        é a permissividade elétrica do silício                                 .
Tipicamente,          é da ordem de


       2.2.2. A Junção PN reversamente polarizada
       Considere agora uma junção pn polarizada reversamente, como mostrado na
Figura 1 abaixo.
       Devido à diferença nas concentrações de portadores nas regiões p e n, existe
então uma região na junção onde os elétrons e lacunas livres foram removidos, deixando
10


para trás íons aceitadores e doadores. Todo átomo aceitador carrega uma carga negativa
e todo átomo doador uma positiva. Desta maneira, na região perto da junção existe um
espaço significativo de cargas, o que resulta em um elevado campo elétrico. Isso é
chamado de região de depleção, e é definido que os limites da região de depleção são
acentuadamente definidos como na Figura 1 e essa é uma boa aproximação para a
maioria dos casos.




Figura 1 – Junção pn sobre reversamente polarizada. (a) Desenho esquemático. (b) Densidade
de Carga. (c) Campo Elétrico. (d) Potêncial Eletroestático

Fonte: GRAY, P. R. At all. Analysis and Design of Analog Integrated Circuits. 4. Ed. p. 2.
New York: Editora John Willey and Sons, 2001.
11


       Na figura 1, a barreira de potencial é aumentada pela aplicação de uma tensão de
polarização reversa,      , e a tensão total através da junção é de          . Se a região de
depleção penetra a uma distancia          na região tipo p e   na região tipo n, então:
                                                                                 (2.8)



       Devido ao fato de que a carga total por unidade de área de um lado da junção
deve ser igual em magnitude, mas de valor oposto.
       Da física de semicondutores, tem-se que a largura de penetração da camada de
depleção na região p é:


                                                                                 (2.9)



Similarmente:


                                                                                 (2.10)


       As equações (9) e (10) mostram que as regiões de depleção se estendem para a
região tipo p e tipo n em relação inversa com a concentração de impurezas e
proporcional à              . Se      e       é um muito maior que o outro, a região de
depleção existe quase que inteiramente na região levemente dopada.


       2.2.3. Capacitância de Junção
       A partir do momento que há uma tensão que depende de uma quantidade de
carga Q associada à região de depleção, existe uma capacitância intrínseca de pequenos
sinais, dada por:

                                                                                 (2.11)

       A expressão pode ser convenientemente reescrita da seguinte forma:

                                                                                 (2.12)
12


        2.2.4. A região de ruptura
       A ruptura da região de depleção ocorre para um máximo campo elétrico
estabelecido na camada de depleção, que é dado por:

                                                                               (2.13)

       Ou então:

                                                                               (2.14)

       Onde        foi negligenciado. A equação (2.14) mostra que o campo máximo
aumenta à medida que densidade de dopagem aumenta e a tensão de polarização reversa
aumenta. Embora útil para descobrir a dependência de          , essa equação é válida
apenas uma junção plana ideal. Na prática, junções tendem a possuir efeitos de bordas
que causam, de alguma maneira, valores maiores de            devido à concentração de
campo nas bordas de curva da junção.


        2.2.5. O efeito avalanche
       Qualquer junção pn reversamente polarizada possui uma pequena corrente
reversa fluindo devido à presença de portadores minoritários elétrons-lacunas na
vizinhança da região de depleção. Esses são varridos através da região de depleção pelo
campo elétrico e contribuem para a corrente de fuga da junção. À medida que a tensão
reversa aumenta, o campo máximo aumenta e os portadores adquirem quantidade
crescente de energia entre as treliças de colisão na região. Em um campo critico os
portadores atravessando a região de depleção adquirem energia suficiente para criar
novos pares elétrons-lacuna em colisão com os átomos de silício. Esse processo é
chamado de efeito avalanche e leva a um repentino aumento da corrente de fuga de
polarização reversa, na medida em que os novos portadores criados são também capazes
de produzir tal efeito.



    2.3. BIPOLAR
   Tendo em vista o estudo realizado sobre a junção pn na seção anterior, que é o
princípio utilizado para a construção de dispositivos semicondutores de dois terminais,
vamos agora dedicar a nossa atenção aos dispositivos semicondutores de três terminais,
que são bastante úteis, uma vez que podem ser usados em múltiplas aplicações, desde a
13


amplificação de um sinais e tensões até projetos de circuitos lógicos digitais e de
memória.
   Seu princípio básico subjacente é a utilização da tensão entre dois terminais para
controlar a corrente que flui no terceiro terminal. Desta forma, um dispositivo de três
terminais pode ser usado para realizar uma fonte controlada de corrente, que a é base do
projeto de um amplificador.
   Além disso, o sinal de controle pode ser usado para fazer variar a corrente no
terceiro terminal entre zero e um valor elevado, permitindo assim que o dispositivo
funcione como uma chave, essa que, alias, é o elemento básico dos circuitos digitais.
Há dois tipos principais de dispositivos de três terminais: os transistores bipolares de
junção (BJT), que se estudará neste capítulo, e os transistores de efeito de campo (FET),
que será visto a seguir. Os dois tipos de transistores são igualmente importantes, cada
qual possuindo suas vantagens e desvantagens distintas.
         O transistor bipolar de junção consiste de duas junções pn, construídas de uma
maneira especial e ligadas em série. A corrente é conduzida, tanto por elétrons quanto
por lacunas, e daí se chamar bipolar.
         O TBJ, frequentemente referido simplesmente como “transistor”, é largamente
utilizado tanto em circuitos discretos como em circuitos integrados, analógicos ou
digitais. Compreendendo bem as características do dispositivo, podem projetar-se
circuitos com transistores cujo desempenho é notavelmente previsível e bastante
insensível às variações de seus parâmetros.


         2.3.1. Fundamentos
         O transistor de junção bipolar é um dispositivo semicondutor de três terminais,
formado por três camadas consistindo de: duas camadas de material tipo "n" e uma de
tipo "p" ou de duas de material tipo "p" e uma de tipo "n".
         Os três terminais de um transistor bipolar recebem o nome de emissor, base e
coletor. Do emissor são emitidos os portadores de corrente, elétrons ou lacunas,
dependendo da polaridade do transistor, com o sentido de atingirem o coletor onde
serão coletados, passando através da região de base, que tem a função de controlar o
fluxo.
         Pode-se fazer uma analogia do transistor bipolar de junção com dois diodos, para
entender-se alguns aspectos de seu funcionamento. A analogia é baseada na estrutura do
14


diodo de junção PN. Do terminal de base para os terminais de emissor ou coletor se vê
um diodo PN. Tal comparação é elucidada pela figura 2.




       Figura 2 – Figura de Transistor bipolar comparado a dois diodos em série


       Para um transistor bipolar operar num circuito é necessário que seja
convenientemente polarizado. A polarização consiste na fixação de tensões e correntes
nos terminais do dispositivo, dentro de seus limites de operação e modo de
funcionamento desejado. Existem quatro combinações possíveis de polarização do
transistor bipolar de junção, porém somente três são utilizadas.
        Na primeira situação de polarização os diodos equivalentes das junções base-
emissor (BE) e base-coletor (BC) são diretamente polarizados. Como os dois diodos BE
e BC estão diretamente polarizados, então conduzirão muito bem. A essa situação de
polarização chamamos saturação e diz-se que o transistor está saturado quando a
polarização entre base e emissor e entre base e coletor é direta. O transistor saturado
corresponde a uma chave fechada entre coletor e emissor.
       Na segunda situação de polarização os diodos equivalentes das junções base-
emissor (BE) e base-coletor (BC) são reversamente polarizados. Em polarização
reversa, os diodos equivalentes não conduzem. A essa situação de polarização
chamamos corte e diz-se que o transistor está cortado quando a polarização entre base e
emissor e entre base e coletor é reversa. O transistor cortado corresponde a situação de
chave aberta
       A primeira e a segunda forma de polarização são utilizadas em circuitos em que
o transistor deva funcionar como uma chave. São chamados de circuitos de
chaveamento.
       Na terceira situação de polarização o diodo BE é diretamente polarizado e o
diodo BC é reversamente polarizado. O circuito equivalente fazendo-se analogia com
15


diodo e fonte de corrente. Uma vez que a polarização do diodo BE é direta então,
conduzirá. Como a base é uma região estreita, as cargas emitidas no emissor, terão
condições de chegar próxima à junção BC reversamente polarizada, sendo atraídas pela
barreira de potencial formado junto à junção, sendo coletadas no coletor, onde há a
dissipação de energia por efeito Joule. Essa situação de operação é conhecida
como operação ativa do transistor bipolar de junção, pois o transistor funciona como
uma fonte de corrente na malha de coletor.
       Os circuitos que utilizam transistores operando na região ativa são chamados de
circuitos lineares. Um exemplo destes circuitos são os amplificadores de áudio, fontes
de alimentação e a fonte que será desenvolvida neste trabalho, o que torna, portanto,
essa configuração a de maior interesse para o projeto de circuitos integrados que será
desenvolvido nesse trabalho.


       2.3.2. Modelos de Grandes Sinais na Região Ativa
         Nesta seção, os grandes sinais ou comportamentos DC dos transistores
bipolares são considerados. Modelos de grandes sinais são desenvolvidos para o calculo
das correntes e tensões totais nos circuitos com transistores, e efeitos como as
limitações das tensões de ruptura, que geralmente não são incluídos nos modelos, são
também considerados. Efeitos secundários, como ganhos de corrente com corrente de
coletor e tensão inicial podem ser importantes em muitos circuitos.
         Os sinais convencionais usados para as correntes e tensões nos transistores
bipolares são mostrados na figura 3. Ambas correntes npn e pnp são consideradas
positivas e chegando ao dispositivo.




                        Figura 3 – Convenção de correntes no TJB

Fonte: GRAY, P. R. At all. Analysis and Design of Analog Integrated Circuits. 4. Ed. p. 9.
New York: Editora John Willey and Sons, 2001.
16




         A corrente de base      é dada por:

                                                                          (2.15)

         Onde       é o ganho de corrente e    é a corrente de coletor.


       2.3.3. Efeito das tensões de coletor em Grandes Sinais e características na
               região ativa.
       Na análise anterior, a junção base-coletor foi assumida reversamente polarizada,
   onde idealmente não há efeito sobre a corrente de coletor. Esta é uma aproximação
   útil em cálculos de primeira ordem, mas não é rigorosamente verdade na pratica. Há
   ocasiões onde a influencia da tensão de coletor na corrente de coletor é importante,
   em especial para duas regiões de operação do dispositivo, que é a região de
   saturação (VCE aproximadamente zero) e corte (VCE muito grande).

       2.3.4. Saturação
         Saturação é uma região do dispositivo que é geralmente evitada em circuitos
analógicos por que o ganho do transistor é muito baixo nessa região. Ela é muito mais
encontrada em circuitos digitais onde fornece uma tensão de saída bem especificada, o
que representa um estado lógico. Na saturação, ambas as junções base-coletor e base-
emissor são polarizadas diretamente, e consequentemente a tensão coletor-emissor é
bastante pequena, da ordem de 0,05 a 0,3V.
         Um aspecto interessante do comportamento do transistor na região de
saturação reside no fato de que para uma dada corrente de coletor, agora há uma
quantidade muito maior de carga armazenada na base, se comparada com a região ativa
direta do transistor. Assim, a contribuição da corrente de base será maior na saturação.
Alem disso, desde que a junção base-coletor agora é polarizada diretamente, há uma
nova componente da corrente de base devido à injeção de portadores da base para o
coletor. Destes dois efeitos resulta uma corrente de base na saturação que é maior do
que na região ativa para uma mesma corrente de coletor.
         A característica da corrente de coletor pela tensão coletor-emissor é mostrada
na figura 4:
17




                   Figura 4 – Características         para um TBJ npn.

Fonte: GRAY, P. R. At all. Analysis and Design of Analog Integrated Circuits. 4. Ed. p. 18.
New York: Editora John Willey and Sons, 2001.


       Pode-se expressar as correntes de coletor e emissor na saturação a partir da
equação:
                                                                               (2.16)
       Onde       é a corrente de fuga base-coletor com o emissor aberto. Na prática os
efeitos superficiais da corrente de fuga são dominantes quando a junção base-coletor é
polarizada reversamente. Valores típicos de        são de        a        a 25 º C, e sua
magnitude dobra a cada 8 º C. Como consequência , essa corrente de fuga pode se tornar
bastante significante à altas temperaturas. Como exemplo, considere a corrente de base:

                                                                               (2.17)

Se    é calculado a partir de (16), substituindo na equação (2.17):

                                                                               (2.18)

E como:

                                                                               (2.19)
18


         Substituindo (19) em (18), obtêm-se:

                                                                             (2.20)

         Desde que os dois termos em (20) tenham sinais opostos, o efeito da corrente de
fuga é diminuir a magnitude da corrente de base externa em um dado valor da corrente
de coletor.


         2.3.5. Tensão de Ruptura
         Qualquer junção pn reversamente polarizada tem um pequeno fluxo de corrente
fluindo no caminho inverso devido a presença de portadores minoritários nas
proximidades da região de depleção. Eles estão varrendo a região de depleção do campo
e contribuindo para a corrente de fuga da junção. Na media que a tensão de polarização
inversa na junção cresce, cresce também o potencial elétrico existente na região de
depleção aumenta, esse campo é aumentado de modo que os portadores adquirem
quantidades significativamente grandes de energia, fazendo com que ocorram colisões
com átomos de silício. Isso é chamado de efeito avalanche, o que leva um aumento
repentino na corrente de fuga. Um efeito similar ocorre nas junções base-emissor e
base-coletor de um transistor, e esse efeito limita a máxima tensão que pode ser aplicada
ao dispositivo.


         2.3.6. Dependência do ganho de corrente do transistor nas condições de
              operação
         Embora a maioria das analises de primeira ordem de circuitos integrados
fazerem a suposição de que         é constante, esse parâmetro na verdade depende das
condições de operação do transistor. Basicamente        varia com a temperatura e com a
corrente de coletor. Esta variação é ilustrada na figura 5, onde é mostrada a curva de
versus     a três temperaturas diferentes para um transistor npn.
19




   Figura 5 – Curva de     versus   para um transistor npn com 6µ    de área de emissor.

Fonte: GRAY, P. R. At all. Analysis and Design of Analog Integrated Circuits. 4. Ed. p. 24.
New York: Editora John Willey and Sons, 2001.



   A região I é chamada de região de baixa corrente, onde        diminui à medida que
diminui. A região II é a região de media corrente, onde               é aproximadamente
constante. A região III é a de alta corrente, onde   diminui enquanto      aumenta.


   2.4. MOSFET

         O transistor MOSFET (Metal Oxide Semiconductor Field Effect Transistor) foi
fabricado pela primeira vez em 1960, um ano após a era dos circuitos integrados. Ele
tem se tornado o transistor dominante na área de circuitos digitais integrados, pois
permitem uma utilização em alta densidade e uma baixa dissipação de energia. Possui
uma vasta aplicação nos circuitos integrados em larga escala, na qual é empregada a
tecnologia CMOS (Complementar Metal-Oxide Semicondutor) (Baruqui, 2011).

       2.4.1. Caracteristicas gerais de um dispositivo MOS
       Como o próprio nome já diz, o MOSFET nada mais é do que um dispositivo de
três terminais onde seu controle é baseado no campo elétrico estabelecido pela tensão
aplicada em seu terminal de controle. Comparado com o TBJ, os transistores MOS
podem ser fabricados em tamanhos muito reduzidos e menores (ocupando uma área
20


muito menor da pastilha de circuito integrado), possuem um processo de fabricação
mais simples e um consumo de energia muito inferior.
       Para o projeto de circuitos integrados, utiliza-se a simbologia mostrada na Figura
6:




                    Figura 6 – Simbologia do MOSFET tipo enriquecimento

Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 142. New York:
Oxford University Press, 2004.


       Sua função é, assim como o TBJ, através de uma tensão aplicada em um de seus
terminais, controlar uma corrente através do dispositivo.          Seus três terminais são
análogos ao TBJ, sendo a fonte (F) análoga ao emissor, o dreno (D) ao coletor, e a porta
(G) à base. Seu símbolo esquemático é mostrado na Figura 7, com a representação da
corrente de dreno     , que é a corrente a ser controlada, e a tensão de porta   :




             Figura 7 – Símbolo esquemático de um MOSFET e seus terminais

Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 142 New York: Oxford
University Press, 2004.


       A fabricação do MOSFET de canal n é feita em um substrato tipo p, que é
basicamente uma lâmina de silício na qual oferece apoio físico para o dispositivo. Duas
regiões fortemente dopadas do tipo n são difundidas no substrato (corpo do dispositivo).
21


Uma região é denominada de fonte e a outra de dreno. Um óxido isolante (normalmente
o dióxido de silício) é acrescido acima do substrato, entre a fonte e o dreno. Por cima do
óxido, é depositada uma camada de metal, que irá formar a porta do dispositivo.
Terminais metálicos saem de cada parte do dispositivo: terminal do substrato ou corpo
(B), terminal da fonte (S), terminal da porta (G) e terminal de dreno (D) (SEDRA;
SMITH, 2004). A seção transversal de um transistor de canal-n do tipo enriquecimento
MOS (NMOS) é mostrado na Figura 8. Regiões fortemente dopadas tipo-n fonte e
dreno são fabricados em um substrato tipo p (muitas vezes chamado de corpo). Uma
fina camada de dióxido de silício é acrescida ao longo do material e o material condutor
da porta (silício policristalino de metal) cobre o óxido entre fonte e dreno. Em operação,
a tensão porta-fonte modifica a condutância da região sob a porta, permitindo que a
tensão de porta possa controlar o fluxo de corrente entre fonte e dreno. Esse controle
pode ser usado para fornecer ganho de circuitos analógicos e características de
comutação de circuitos digitais.




                     Figura 8 – Estrutura NMOS tipo enriquecimento.

Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 142 New York: Oxford
University Press, 2004.


       2.4.2. O Mosfet tipo enriquecimento
       O modo tipo enriquecimento do dispositivo NMOS da Figura 9 mostra uma
condução existente entre fonte e dreno somente quando um canal do tipo n existe sob a
22


porta. Esta observação é a origem da designação canal-n. O modo de enriquecimento
refere-se ao fato de que nenhuma condução ocorre para                . Assim, o canal deve
ser enriquecido de modo a conduzir.
            A Figura 9 mostra sem a aplicação de uma tensão na porta do dispositivo, ou
seja,            , o dispositivo se comportará como dois diodos em serie e em oposição,
resultando em uma resistência extremamente alta entre o dreno e a fonte, da ordem de
        .
            Agora considere o substrato, a fonte e o dreno aterrados com uma tensão
positiva aplicada na porta, como mostrado na Figura 9. A porta e o substrato formam as
placas de um capacitor com o dióxido de silício sendo o dielétrico. Cargas positivas são
acumuladas na porta e cargas negativas no substrato. Inicialmente, as cargas negativas
no substrato tipo-p são identificadas pelo aparecimento de uma região de depleção,
mostrada na Figura 9.




Figura 9 – Dispositivo NMOS ideal com tensão porta fonte positiva aplicada, mostrando região
                              de depleção e canal induzido.

Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 142 New York: Oxford
University Press, 2004.

            Quando o potencial na superfície do silício atinge um valor crítico (igual ao
dobro do nível de Fermini), um fenômeno conhecido como inversão ocorre. Depois
deste valor crítico, novos aumentos da tensão na porta não produzem mais mudanças na
23


largura da camada de depleção, mas ao invés disso induzem uma fina camada de
elétrons na camada de depleção, especificamente na superfície da camada do silício e
diretamente sob o óxido, esta fina camada de elétrons induzidos cria um canal condutor
ligando a região da fonte com o dreno. A tensão de porta fonte               necessária para que
essa inversão ocorra é chamada de tensão de threshold (limiar)             . Quanto maior for o
valor de      , acima de     , maior será a indução de cargas negativas no canal e, portanto
maior a condutividade do canal, isto é, a condutividade do canal será proporcional a
              .
       Se para o mesmo transistor for aplicada uma pequena tensão entre dreno e fonte,
aparecerá uma corrente entre dreno e fonte. Essa corrente será proporcional à tensão
    . Nessa região o transistor se comportará como uma resistência de valor constante.
       Se agora formos aumentando               , a corrente de dreno aumentará, mas a
extremidade do canal próximo ao dreno começa a ficar mais estreita, isso por que a
tensão entre porta e o canal na extremidade próxima ao dreno diminui. Se                  =     –
    o canal se fechará totalmente próximo ao dreno. Se a tensão de dreno continuar a
aumentar o ponto de estreitamento se deslocará no sentido da fonte. Com a resistência
tornando-se       muito    alta   o   dispositivo     passa   a   ter    comportamento de uma
fonte de corrente (       começa a ficar constante).
       A partir disso, pode-se perceber que a operação do MOSFET pode ser dividida
em três regiões, dependendo da tensão aplicada em seus terminais:
   Região de corte: ocorre quando                  , ou seja, não existem elétrons livres para a
    criação do canal n, por isso não há corrente. O transistor permanece desligado, não
    havendo condução entre dreno e fonte. Diz-se que o transistor está cortado.
   Região de Triodo ou região linear (que seria o MOSFET operando como uma
    chave): ocorre quando               e                     . O transistor é ligado, e o canal é
    criado, permitindo fluxo de corrente entre o dreno e a fonte. O MOSFET opera
    como uma resistência controlada pela tensão na porta, e sua corrente de dreno para
    fonte é dada por:

                                                                                 (2.21)


       Onde K' é um parâmetro do MOSFET dado por:
                                                                                 (2.22)
24


   Região de saturação (região utilizada para amplificação): ocorre quando, alem de se
    formar o canal,          , tem-se também a condição                  , ou seja, existe
    uma tensão maior entre o dreno e a fonte. Por essa razão, o canal n é deformado, e
    consequentemente parte dele é desligado. Mesmo desligado, os elétrons ainda
    conseguem fluir de um lado pro outro, por que eles são acelerados nessa região onde
    ele é desligado. A criação dessa região é chamada de “pinch-off”. A diferença é que
    a corrente de dreno é agora relativamente independente da tensão de dreno (para
    uma primeira aproximação) e é controlada somente pela tensão da porta, de tal
    forma que tem-se a equação:

                                                                         (2.23)

OBS: As equações dadas até agora se referem ao transistor NMOS, sendo que para o
transistor PMOS as equações são idênticas, lembrando-se que             é negativo e as
inequações são invertidas.


        2.4.3. Curvas Características de Operação
        A operação do transistor na saturação é mostrada na Figura 10, onde uma tensão
    polariza o circuito, e uma fonte de                  de valor tal forma que ocorre a
deformação do canal n, ou seja, ocorre o estrangulamento (pinch-off) do canal. Uma
consideração importante nessa análise é o fato da corrente de porta ser praticamente
nula, devido ao terminal de porta estar eletricamente isolado do transistor (devido ao
óxido de silício), ou seja, a corrente do dreno é praticamente igual a corrente da fonte.
Logo:
                                                                                (2.24)


                                                                                (2.25)
25




         Figura 10 – O transistor NMOS operando na saturação com o canal estrangulado

Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 145 New York: Oxford
University Press, 2004


         Um gráfico da curva de        -     é mostrado na Figura 11, parametrizado por
   . Pode-se observar que quando o         tem um valor menor que a tensão de threshold,
   , a corrente     é nula, portanto o dispositivo está na região de corte. À medida que a
tensão       é incrementada, fica evidente o aumento da corrente     . Entretanto, para fluir
alguma corrente entre o dreno e a fonte, é necessário também uma tensão           . A partir
do momento que           aumenta, a corrente cresce, a primeiro momento, linearmente na
região de triodo. Conforme         aumenta, a característica quadrática fica cada vez mais
evidente, até que a taxa de corrente       cai a um ponto que é o limite entre a região de
triodo e a região de saturação.
26




                 Figura 11 – Característica    -    parametrizado por

   Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 151 New York:
   Oxford University Press, 2004


         Observa-se do gráfico que a corrente de dreno possui uma leve dependência
linear com        na região de saturação. Essa dependência pode ser considerada
incorporando-se um fator de                   na equação de   , onde           , como se

segue:
                                                                                  (2.26)

         Onde λ é um parâmetro do MOSFET. VA é uma tensão positiva semelhante a
tensão Early do TBJ, como mostra a figura 12:
27




              Figura 12 – Gráfico que mostra o comportamento do parâmetro

   Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 154 New York:
   Oxford University Press, 2004




                      Figura 13 – Característica   -    do transistor

Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 152 New York: Oxford
University Press, 2004


       Fica fácil observar a partir do gráfico da Figura 13 que a partir do ponto
existe a corrente   . Um     menor que       não existe corrente, e a partir desse ponto o
transistor começa a conduzir.
28


   2.5. AMPLIFICADOR OPERACIONAL

       2.5.1. Características Gerais
        Amplificadores Operacionais (amp ops) são circuitos amplificadores que
possuem uma entrada diferencial e seu ganho na saída é proporcional a sua tensão
aplicada na entrada. Um amplificador operacional ideal com uma única saída possui
uma entrada diferencial, ganho de tensão infinita, resistência de entrada infinita, e
resistência de saída nula. Enquanto os atuais amplificadores operacionais não têm essas
características ideais, seu desempenho é suficientemente satisfatório para que o
comportamento do circuito se aproxime de um ideal.


       2.5.2. Aplicações com Amplificadores Operacionais

           2.5.2.1.   Realimentação
       A função da rede de realimentação é diminuir a sensibilidade da saída em função
da variação dos parâmetros de entrada. Um amplificador com realimentação é mostrado
na figura 14, o bloco ɑ é chamado de controlador, enquanto que o bloco f é chamado de
realimentação ou retroação. O ganho de um amplificador básico quando a realimentação
não esta presente é chamado de ganho de malha aberta, ɑ, do amplificador. Na figura
observa-se um sistema com realimentação negativa, ou seja, o sinal de saída é subtraído
do sinal de entrada. O ganho do sistema quando a rede de realimentação esta presente é
chamado de ganho de malha fechada.




                       Figura 14 – Amplificador com realimentação

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 406 New York: Ed. John Willey and Sons
29




       A análise matemática deste circuito é mostrada abaixo:


                                                                          (2.27)


       A equação deste circuito é dada encontrando-se o quociente do sinal de saída
pelo sinal de entrada, logo:
                                                                          (2.28)

Onde ɑf é chamado ganho de malha.



           2.5.2.2.    Amplificador Inversor
       Na figura 15 abaixo tem-se um amplificador no modo inversor, onde
consideramos para análise prática um amplificador ideal, ou seja, com impedância de
entrada infinita e impedância de saída nula.




                            Figura 15 – Amplificador no modo inversor

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 406 New York: Ed. John Willey and Sons


       Aplicando as leis de kirchhoff no circuito dado, encontra-se sua equação
característica, dada por:
                                                                          (2.29)
30


       O que mostra que devido as suas características o ganho de malha fechada é
função das impedâncias de entrada e saída do circuito.



           2.5.2.3.   O amplificador não-inversor
       A configuração de um amplificador não-inversor é dada pela figura 16:




                          Figura 16 – Amplificador Não-Inversor

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 406 New York: Ed. John Willey and Sons


       Novamente equacionando o circuito a partir das leis de kirchhoff, e assumindo
que não existe corrente de entrada devido à alta impedância, e também que geralmente
 >> , tem-se que:
                                                                          (2.30)




          2.5.2.4. Amplificador Diferencial
       O amplificador diferencial é usado de modo que haja uma diferença de potencial
entre as duas tensões. O circuito é mostrado na figura 17, onde entre os resistores   e
   formam um divisor de tensão:
31




                           Figura 17 – Amplificador Diferencial

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 409 New York: Ed. John Willey and Sons


       De maneira análoga aos circuitos vistos anteriormente, tomando-se I1 = I2, Ii1=0
e >> , tem-se:
                                                                           (2.31)


       2.5.3. Desvios em Amplificadores Operacionais reais
       Amp ops reais possuem diferenças de comportamentos significativas se
comparados aos amp ops reais existentes hoje. Os principais efeitos destes desvios são
para limitar a faixa de frequência dos sinais que podem ser precisamente amplificados,
para colocar um limite inferior na magnitude dos sinais DC que podem ser detectados, e
para colocar um limite superior nas magnitudes de impedância dos elementos passivos
que podem ser usados na rede de realimentação do amplificador.



           2.5.3.1. Corrente de Polarização de Entrada
O estagio de entrada de um amp op a transistor bipolar é mostrado na figura 18 abaixo:
32




                    Figura 18 – Estágio de entrada típico de um Amp Op

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 420 New York: Ed. John Willey and Sons


       A corrente de polarização é definida como a média aritmética das correntes de
base dos transistores Q1 e Q2:
                                                                           (2.32)




           2.5.3.2. Corrente Offset de Entrada
       Para o par emissor-acoplado mostrado na figura 19, as duas correntes de
polarização na entrada apenas serão iguais se os dois transistores tiverem o mesmo
ganho beta, ou seja, se os dispositivos forem idênticos nos aspectos construtivos. Porem
mesmo com estes requisitos sendo atendidos, eles ainda assim apresentam um pequeno
erro percentual. Sendo assim, o desempenho deste amp op é caracterizado por uma
corrente offset de entrada, definida como
                                                                          (2.33)
       Fazendo as mesmas considerações anteriores para o amplificador diferencial,
considerando V1=V2 =0, tem-se:
                                                                          (2.34)


       Esta equação mostra que o erro na tensão de saída DC é proporcional ao tanto a
corrente offset de entrada quanto a resistência de realimentação sob essas condições. O
33


ponto chave é que o tamanho da resistência de realimentação é limitada pela máxima
corrente de offset que pode surgir e pelo erro permitido na pratica da tensão dc de saída.



            2.5.3.3. Tensão offset de Entrada
         De acordo com o que foi visto anteriormente, devido às discrepâncias dos
resultados da tensão offset de entrada diferente de zero, pode-se gerar tensões de erro na
saída. Essa tensão de offset na entrada é definida de modo que gere uma tensão nula na
saída.



            2.5.3.4.   Taxa de Rejeição de Modo Comum (CMRR)

         Esta taxa de Rejeição de Modo Comum é definida como o quociente entre o
ganho em modo comum e o ganho do amplificador em modo diferencial. Logo:

                                                                                 (2.35)

         Do ponto de vista de aplicações, a taxa de rejeição de modo comum pode ser
vista como a mudança na tensão offset de entrada que resulta em uma mudança unitária
na tensão de entrada em modo comum.



            2.5.3.5. Resistência de Entrada
         Como foi visto anteriormente, nos amp ops ideais a resistência de entrada é
considerada infinita, porem nos circuitos reais, os amp ops a transistor bipolar
apresentam resistência de entrada da ordem de 100kΩ a 1MΩ. Contudo, o ganho de
tensão é grande o bastante para que a resistência de entrada tenha efeitos mínimos no
desempenho do circuito.



         2.5.3.6. Resistência de Saída
   Amplificadores operacionais a transistor bipolar apresentam valores de resistência
de saída na faixa de 40 Ω a 100Ω. Embora sejam valores não nulos, ela não afeta
fortemente o desempenho do sistema a malha fechada, exceto sobre carga capacitiva
grande e amp ops de potência
34




   2.6. O CIRCUITO DE REFERÊNCIA BAND-GAP

   Fontes de referência são utilizadas por aplicações que necessitam de um valor de
referência externo para operarem de forma correta. Referências de tensão são
importantes em aplicações de precisão que necessitam de uma tensão que não se altere.
Elas devem fornecer tensões com variações aceitáveis, que dependem de cada tipo de
aplicação, para variações de fatores como tensão de alimentação, temperatura, tempo de
operação, etc.
   As principais implementações de fontes de referência em tecnologia CMOS eram
baseadas em diferenças de tensões gate/source no modo enriquecimento e depleção de
transistores MOS. Todavia, apesar do baixo coeficiente de temperatura obtido, os
circuitos se perdiam no controle da estabilidade da saída, já que esse fator é diretamente
dependente dos níveis de dopagem nos passos de implementação.
   No sentido de melhorar a qualidade das fontes, a fonte de tensão de referência
bandgap, inicialmente proposta por Widlar, tem sido amplamente empregada em
tecnologia CMOS que, graças a possibilidade de se implementar transistores bipolares
por meio de estruturas parasitas, tem sofrido grandes avanços e apresentados ótimos
resultados.
   Contudo, existem fatores que devem ser conhecidos, que prejudicam a estabilidade
da referência bandgap, necessitando de métodos e técnicas adequadas de projeto para
minimiza-los.
   Nesta seção, será apresentado o principio de compensação térmica da fonte de
tensão de referência bandgap. Desenvolver-se-á as equações que regem o
funcionamento do circuito, bem com as considerações técnicas para sua implementação.

       2.6.1. Fundamentos
   A ideia básica por trás de um circuito bandgap, largamente utilizado em tensões de
referência, reside no fato de que este circuito trabalha com dois elementos que se
comportam de forma inversa com a temperatura. O primeiro é o transistor bipolar, para
o qual a tensão base-emissor decresce quase que linearmente com o aumento da
temperatura absoluta, que é uma tensão CTAT (Complementary-To-Absolute
Temperature), como é mostrado no gráfico abaixo. Essa referência possui um
coeficiente negativo de temperatura, geralmente da ordem de                        . Para
35


compensar isso, soma-se a esta tensão outra tensão com coeficiente térmico positivo,
para o qual a tensão aumenta com a o aumento da temperatura absoluta.
    Esta tensão pode ser obtida pela diferença de tensão       de duas junções pn de
dois transistores bipolares, submetidas a diferentes densidades de corrente, que é uma
tensão proporcional à temperatura absoluta (PTAT – do inglês, Proportional-To-
Absolute Temperature) através da tensão     . onde:


                                                                          (2.36)

       E onde:
            Constante de Boltzmann (                   )
            Temperatura Absoluta (K)
           Carga do elétron (


   A tensão de referência ou de saída é obtida somando-se as tensões base-emissor
com a variação de         com a temperatura, a qual é função da tensão térmica       ,
multiplicada por um coeficiente M que garante que a saída seja independente da
temperatura.
   O circuito recebe o nome de bandgap por que ajustando o coeficiente de
multiplicação M pode-se obter um coeficiente de temperatura próximo a 0 ppm/ º C, e
neste caso a tensão de saída atingida fica próxima da tensão   do transistor, chamada
de tensão de bandgap, de aproximadamente 1,205 V, que é a diferença de potencial da
banda proibida do silício extrapolada para 0 K.
36




                    Figura 19 – Circuito de referência bandgap hipotético

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 318 New York: Ed. John Willey and Sons


   No sentido de compreender melhor o princípio de funcionamento de tensão de
referência bandgap, equacionar-se-á a dependência de           e        com a temperatura,
bem com a soma dos dois termos, que resulta num nível DC de tensão praticamente
invariável com a temperatura. Provar-se-á, matematicamente, que esse valor é
aproximadamente a tensão de bandgap do silício.
   Considerando o circuito da Figura 21, tem-se que a tensão de referência ou tensão de
saída,      , é dada por:

                                                                                      (2.37)

         Para determinar o valor requerido de M, deve-se antes determinar o coeficiente
de temperatura de       .
         Seja a densidade de corrente de coletor de um transistor bipolar dada por:

                                                                                      (2.38)
37


         Onde,    é a densidade de corrente no coletor,     é a constante de difusão média
dos elétrons,      é a largura da base e      é a concentração de equilíbrio de elétrons na
base, que é expressa por:

                                                                                   (2.39)

onde:

                                                                                     (2.40)

sendo,       a tensão de bandgap do Si e D uma constante independente da temperatura.
         Combinando as equações (36), (37) e (38), pode-se representar a corrente de
coletor por:

                                                                                    (2.41)

Ou ainda, agrupando os termos constantes em uma única constante C:


                                                                                     (2.42)

         O coeficiente de temperatura, γ, é ligeiramente diferente de 3, se considerarmos
a dependência com a temperatura do termo         .
         A relação de       com a temperatura pode, então, ser deduzida a partir de (41):


                                                                                     (2.43)

         Considerando     à temperatura ambiente, tem-se:

                                                                                      (2.44)

         Assim, pode-se determinar o valor da razão           e desta última, a equação de
        onde se leva em consideração a variação da densidade de corrente e
consequentemente a variação de temperatura associada a este termo:


                                                                                      (2.45)

         A equação (2.45) pode ser rearranjada para obtermos       :
38




                                                                                           (2.46)

          Derivando a equação (2.46) com relação à temperatura, fazendo                e
considerando que        tem uma dependência exponencial com a temperatura dada por α,
pode-se representar a variação de          em temperatura por:


                                                                                           (2.47)

          Para a temperatura de 300K, o coeficiente de temperatura de           , equação (2.47)
e de      são aproximadamente de                    e               , respectivamente.
Observando a equação (2.35), se utilizarmos um valor adequado para a constante M,
pode-se compensar as diferenças dos valores absolutos dos coeficientes térmicos de
e      , de tal forma a anular o coeficiente térmico de       .
          Nestas condições, o coeficiente de temperatura de         para dois transistores
bipolares idênticos, com diferentes densidades de corrente, pode ser obtido por meio da
derivada em relação à temperatura da equação (2.48), obtida através da equação (2.43).
Assim, ter-se-ia:

                                                                                       (2.48)

          E sua derivada fica:


                                                                                        (2.49)

          No sentido de se conseguir o coeficiente de temperatura igual à zero para uma
determinada temperatura          , adiciona-se o coeficiente de    ao coeficiente de         ,
dados pelas equações (47) e (49) e iguala-se à zero o resultado dessa operação. Isso é
mostrado pela equação a seguir:


                                                                                        (2.50)

          Onde é     uma constante do circuito que deverá ser ajustada para fazer a equação
(2.50) ser válida.
          Definindo                         e substituindo na equação (2.50):
39




                                                                                  (2.51)

       E de (50) encontramos o valor de K:

                                                                                 (2.52)

       Ver-se-á mais adiante que o termo K é de total controle do projetista, que pode
ajusta-lo de modo a compensar o coeficiente de temperatura.
       Rearranjando a equação (2.52), obtem-se o termo dependente da temperatura
que faz parte da equação de       dada pela equação (2.36), que é:

                                                                                 (2.53)

       Note que o termo K da equação (2.53) é a mesma constante da equação (2.36),
ou seja, K=M. Como essa constante força o coeficiente zero de temperatura da tensão
    , pode-se substituir a equação (2.53) em (2.37) para uma determinada temperatura
  , onde obtêm-se:

                                                                                (2.54)

       Por exemplo, para se alcançar um coeficiente de temperatura igual à zero em
27°C, assumindo que           e     , e que a tensão de bandgap do silício é
        tem-se:

                                                                                (2.55)

       Portanto, a tensão de referência para um coeficiente de temperatura igual à zero
é aproximadamente a tensão de bandgap do silício, daí o nome dado ao circuito.
       Sendo      , γ e α constantes (praticamente não dependentes da temperatura),
derivando a equação (2.54) em relação à temperatura, o coeficiente da tensão       é,
finalmente, expresso por:

                                                                                 (2.56)

       Como o segundo termo da expressão (56) é aproximadamente nulo, concluímos
que houve uma compensação em temperatura para o nível DC de           , salvo que o
40


coeficiente de temperatura da tensão bandgap        não é exatamente nulo. Finalmente,
pode-se escrever que:
                                                                                  (2.57)


       O nome atribuído da fonte de referência bandgap é decorrência do principio que
rege o funcionamento do mesmo de acordo com o que foi exposto acima, ou seja, no
coeficiente de temperatura da tensão de bandgap do silício.
       Uma típica familia de gráficos da variação da tensão de referência em relação a
temperatura é mostrada na Figura 20. A inclinação de cada curva é zero para               .
Quando          , a inclinação é positiva devido ao argumento do logaritmo em (35) ser
maior que 1. Similarmente, a inclinação é negativa para          .




           Figura 20 – Variação da tensão de saída do bandgap com a temperatura

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 321 New York: Ed. John Willey and Sons


       Como mostrado anteriormente, o coeficiente de temperatura é zero somente a
uma temperatura          . Esse resultado advém de uma tensão térmica ponderada para
uma tensão base-emissor, como mostrado na Figura 199. Uma vez que o coeficiente de
temperatura de uma tensão base-emissor não é exatamente constante, o ganho M pode
ser escolhido de modo a levar o coeficiente de temperatura da saída à zero apenas em
41


uma temperatura. Em outras palavras, o circuito gerador de tensão térmica (ou seja, uma
tensão com coeficiente térmico positivo) é usado para cancelar a dependência linear que
a tensão base-emissor tem com a temperatura.


       2.6.2. Equacionamento do circuito a ser projetado
       Circuitos de referência bandgap também podem ser implementados usando
dispositivos bipolares inerentes à tecnologia CMOS, utilizando-se, por exemplo,
transistores npn, como mostrado na Figura 21.
       A tensão offset de entrada       foi incluída no circuito (a tensão de offset de
entrada é definida como a tensão que deve ser aplicada a uma das entradas para levar a
saída à zero). Transistores Q1 e Q2 são assumidos como tendo áreas base-emissor de
AE1 e AE2 , respectivamente. Se assumirmos que a tensão de offset é zero, então, a
tensão através de R3 é:


                                                                            (2.58)

       Entretanto, o amp op força a seguinte relação no circuito:

                                                                            (2.59)

       A tensão de referência da Figura 21 pode ser escrito como:

                                                                            (2.60)


        Substituindo a equação (2.58) na equação (2.57) e o resultado na equação
(2.58), tem-se:

                                                                            (2.61)

       Essa equação mostra, claramente, que o circuito obedece ao principio de
referência bandgap. Dessa forma, comparando a equação (2.60) com a equação (2.37),
pode-se definir a constante M como:


                                                                             (2.62)
42


       Portanto, a constante M é definida em termos dos resistores e das áreas base-
emissor dos transistores. Isso pode ser mostrado para uma tensão offset de entrada
diferente de zero. Logo, a equação (2.61) se torna:


                                                                               (2.63)


       Aqui fica claro que a tensão de offset de entrada deveria ser, na prática,
insignificante e independente da temperatura a fim de não interferir no desempenho e
danificar a tensão de referência de saída [ALLEN, 157]. Pode-se observar, pela equação
(2.62), que a tensão       introduz um desvio em          , principalmente pelo segundo
termo da expressão, sendo o terceiro praticamente desprezível. Esses termos não podem
ser eliminados, já que a tensão          é inerente ao processo CMOS. Todavia, sua
influência pode ser minimizada, fazendo a relação             mínima. Isso mostra que o
circuito é bastante sensível ao offset do amplificador operacional, que também apresenta
um pequeno, mas não desprezível, coeficiente térmico.




             Figura 21 – Circuito de Referência bandgap em tecnologia CMOS

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 324 New York: Ed. John Willey and Sons
43


       2.6.3. Minimizando o ganho e maximizando a relação de tensão base-
             emissor
       Quando um ganho é apurado em uma temperatura para ajustar a saída do
bandgap para uma tensão alvo desejada, variações de offset no amp op causam
variações no coeficiente de temperatura na saída. Na prática, a tensão de offset do amp
op é geralmente a maior fonte de coeficientes de temperatura diferente de zero [GRAY,
325]. Portanto, minimizando o ganho minimiza-se a variação do coeficiente de
temperatura na saída, o que pode ser obtido maximizando o termo          , que geralmente
é feito aplicando-se uma corrente muito grande em um pequeno transistor, ou uma
corrente muito pequena em um transistor de grande porte. Este processo é mostrado na
figura abaixo. Ignorando a corrente de base:


                                                                               (2.64)




               Figura 22 – Circuito que aumenta        aumentando

Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of
Analog Integrated Circuits. 4. ed. p. 325 New York: Ed. John Willey and Sons


       A equação (2.47) mostra que a maximização do produto das relações

maximiza        . Na figura 22, a relação          é enfatizada desenhando o símbolo da
fonte de corrente    sendo maior que     . Similarmente, a área de     é maior que a área
de    para representar             . Na pratica, estas relações são ajustadas de modo que
44


cada uma seja igual a 10, o que resulta em um                             (em temperatura
ambiente). Devido à função logarítmica comprimir seu argumento, para dobrar               é
necessário aumentar as relações dentro do argumento em um fator de 100. Porem para
isso seria necessário aumentar também em um fator de 100 a área dos transistores.
       Para superar esta limitação, dois circuitos idênticos são colocados em cascata, de
modo que para dobrar         deve-se ter                                           . Mais
uma vez ignorando as correntes de base, tem-se:

                                                                                 (2.65)




                Figura 23 – dois seguidores de emissor idênticos em cascata.


       Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and
Design of Analog Integrated Circuits. 4. ed. p. 326 New York: Ed. John Willey and Sons


       Assim, vê-se que dois seguidores de emissor idênticos em cascata conseguem
dobrar o valor de      , enquanto que um único requer que dobre-se a sua área.
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm
Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm

Mais conteúdo relacionado

Mais procurados

Tecnicas de-controle parte03
Tecnicas de-controle parte03Tecnicas de-controle parte03
Tecnicas de-controle parte03Robert Oliveira
 
Tqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porteTqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porteAnderson Ricardo Cunha
 
Amplificador Operacional - Slew Rate e Resposta em Frequência LM741 e LM324
Amplificador Operacional - Slew Rate e Resposta em Frequência LM741 e LM324Amplificador Operacional - Slew Rate e Resposta em Frequência LM741 e LM324
Amplificador Operacional - Slew Rate e Resposta em Frequência LM741 e LM324GS-Silva
 
Dimensionamento real de sistema fotovoltaico
Dimensionamento real de sistema fotovoltaicoDimensionamento real de sistema fotovoltaico
Dimensionamento real de sistema fotovoltaicogustavo augusto
 
Tqs epp-home-03-edificações de pequeno porte
Tqs epp-home-03-edificações de pequeno porteTqs epp-home-03-edificações de pequeno porte
Tqs epp-home-03-edificações de pequeno porteAnderson Ricardo Cunha
 
Alocação de dlccs via ag
Alocação de dlccs via agAlocação de dlccs via ag
Alocação de dlccs via agIsabel Duarte
 
ROBÔ LOCALIZADOR DE SERES HUMANOS
ROBÔ LOCALIZADOR DE SERES HUMANOSROBÔ LOCALIZADOR DE SERES HUMANOS
ROBÔ LOCALIZADOR DE SERES HUMANOSAgnaldo Coelho
 
Tcc final fernandopolastrini_2016_ee-
Tcc final fernandopolastrini_2016_ee-Tcc final fernandopolastrini_2016_ee-
Tcc final fernandopolastrini_2016_ee-Dyego Torres
 

Mais procurados (17)

Tecnicas de-controle parte03
Tecnicas de-controle parte03Tecnicas de-controle parte03
Tecnicas de-controle parte03
 
Tqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porteTqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porte
 
Amplificador Operacional - Slew Rate e Resposta em Frequência LM741 e LM324
Amplificador Operacional - Slew Rate e Resposta em Frequência LM741 e LM324Amplificador Operacional - Slew Rate e Resposta em Frequência LM741 e LM324
Amplificador Operacional - Slew Rate e Resposta em Frequência LM741 e LM324
 
Clp s7 300 básico
Clp s7 300 básicoClp s7 300 básico
Clp s7 300 básico
 
Tqs 01-comandos e funções gerais
Tqs 01-comandos e funções geraisTqs 01-comandos e funções gerais
Tqs 01-comandos e funções gerais
 
Clp s7 300
Clp s7 300Clp s7 300
Clp s7 300
 
Fundações 02-edição de dados
Fundações 02-edição de dadosFundações 02-edição de dados
Fundações 02-edição de dados
 
Vigas 05-teórico
Vigas 05-teóricoVigas 05-teórico
Vigas 05-teórico
 
Dimensionamento real de sistema fotovoltaico
Dimensionamento real de sistema fotovoltaicoDimensionamento real de sistema fotovoltaico
Dimensionamento real de sistema fotovoltaico
 
Tqs epp-home-03-edificações de pequeno porte
Tqs epp-home-03-edificações de pequeno porteTqs epp-home-03-edificações de pequeno porte
Tqs epp-home-03-edificações de pequeno porte
 
Alocação de dlccs via ag
Alocação de dlccs via agAlocação de dlccs via ag
Alocação de dlccs via ag
 
tcc2 (versao final 2)
tcc2 (versao final 2)tcc2 (versao final 2)
tcc2 (versao final 2)
 
Vigas 03-critérios de projeto
Vigas 03-critérios de projetoVigas 03-critérios de projeto
Vigas 03-critérios de projeto
 
Simulador em matlab para canais mimo
Simulador em matlab para canais mimoSimulador em matlab para canais mimo
Simulador em matlab para canais mimo
 
ROBÔ LOCALIZADOR DE SERES HUMANOS
ROBÔ LOCALIZADOR DE SERES HUMANOSROBÔ LOCALIZADOR DE SERES HUMANOS
ROBÔ LOCALIZADOR DE SERES HUMANOS
 
Tcc final fernandopolastrini_2016_ee-
Tcc final fernandopolastrini_2016_ee-Tcc final fernandopolastrini_2016_ee-
Tcc final fernandopolastrini_2016_ee-
 
Aula1 spring
Aula1 springAula1 spring
Aula1 spring
 

Semelhante a Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm

Avaliação de Topologias de Redes Neurais Artificiais para Previsão do Consumo ...
Avaliação de Topologias de Redes Neurais Artificiais para Previsão do Consumo ...Avaliação de Topologias de Redes Neurais Artificiais para Previsão do Consumo ...
Avaliação de Topologias de Redes Neurais Artificiais para Previsão do Consumo ...Giovani Barili
 
TCC - DISPOSITIVO PARA TESTE DE SISTEMA VENTILAÇÃO TIPO BLOWER
TCC - DISPOSITIVO PARA TESTE DE SISTEMA VENTILAÇÃO TIPO BLOWERTCC - DISPOSITIVO PARA TESTE DE SISTEMA VENTILAÇÃO TIPO BLOWER
TCC - DISPOSITIVO PARA TESTE DE SISTEMA VENTILAÇÃO TIPO BLOWERGerson Roberto da Silva
 
Filtro de Cavidade para LTE.pdf
Filtro de Cavidade para LTE.pdfFiltro de Cavidade para LTE.pdf
Filtro de Cavidade para LTE.pdfJoelManuel8
 
Energia fotovoltaica
Energia fotovoltaicaEnergia fotovoltaica
Energia fotovoltaicaSchields
 
Projeto amp-op full-differential com malha CMFB
Projeto amp-op full-differential com malha CMFBProjeto amp-op full-differential com malha CMFB
Projeto amp-op full-differential com malha CMFBKleber Rossi
 
Pratica eletronica 2019b_apostila
Pratica eletronica 2019b_apostilaPratica eletronica 2019b_apostila
Pratica eletronica 2019b_apostilaEdinaldo Guimaraes
 
Alocação de dlccs via ag
Alocação de dlccs via agAlocação de dlccs via ag
Alocação de dlccs via agIsabel Duarte
 
Barramento de subestações
Barramento de subestações   Barramento de subestações
Barramento de subestações nuno17718
 
Desenvolvimento de um Sistema de Controle para Quadrirrotores
Desenvolvimento de um Sistema de Controle para Quadrirrotores Desenvolvimento de um Sistema de Controle para Quadrirrotores
Desenvolvimento de um Sistema de Controle para Quadrirrotores UmbertoXavierdaSilva
 
TCC DESENVOLVIMENTO DE UM PROTÓTIPO DE PRÓTESE DE DEDO ROBÓTICO COM ARDUINO ...
TCC DESENVOLVIMENTO DE UM PROTÓTIPO DE PRÓTESE DE DEDO ROBÓTICO COM ARDUINO  ...TCC DESENVOLVIMENTO DE UM PROTÓTIPO DE PRÓTESE DE DEDO ROBÓTICO COM ARDUINO  ...
TCC DESENVOLVIMENTO DE UM PROTÓTIPO DE PRÓTESE DE DEDO ROBÓTICO COM ARDUINO ...Thiago Assis
 
ANTENA PARA COMUNICAC¸OES DSRC.pdf
ANTENA PARA COMUNICAC¸OES DSRC.pdfANTENA PARA COMUNICAC¸OES DSRC.pdf
ANTENA PARA COMUNICAC¸OES DSRC.pdfJoelManuel8
 
Amplificador[2]
Amplificador[2]Amplificador[2]
Amplificador[2]amaral55
 
Controle de braço mecânico através da diferença de potencial ocular
Controle de braço mecânico através da diferença de potencial ocularControle de braço mecânico através da diferença de potencial ocular
Controle de braço mecânico através da diferença de potencial ocularSaulo Moura
 
Simulador Numérico Bidimensional para Escoamento Monofásico em Meios Porosos
Simulador Numérico Bidimensional para Escoamento Monofásico em Meios PorososSimulador Numérico Bidimensional para Escoamento Monofásico em Meios Porosos
Simulador Numérico Bidimensional para Escoamento Monofásico em Meios PorososBismarck Gomes
 

Semelhante a Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm (20)

Avaliação de Topologias de Redes Neurais Artificiais para Previsão do Consumo ...
Avaliação de Topologias de Redes Neurais Artificiais para Previsão do Consumo ...Avaliação de Topologias de Redes Neurais Artificiais para Previsão do Consumo ...
Avaliação de Topologias de Redes Neurais Artificiais para Previsão do Consumo ...
 
TCC - DISPOSITIVO PARA TESTE DE SISTEMA VENTILAÇÃO TIPO BLOWER
TCC - DISPOSITIVO PARA TESTE DE SISTEMA VENTILAÇÃO TIPO BLOWERTCC - DISPOSITIVO PARA TESTE DE SISTEMA VENTILAÇÃO TIPO BLOWER
TCC - DISPOSITIVO PARA TESTE DE SISTEMA VENTILAÇÃO TIPO BLOWER
 
Filtro de Cavidade para LTE.pdf
Filtro de Cavidade para LTE.pdfFiltro de Cavidade para LTE.pdf
Filtro de Cavidade para LTE.pdf
 
Energia fotovoltaica
Energia fotovoltaicaEnergia fotovoltaica
Energia fotovoltaica
 
Eletricista instalador predial
Eletricista instalador predialEletricista instalador predial
Eletricista instalador predial
 
Projeto amp-op full-differential com malha CMFB
Projeto amp-op full-differential com malha CMFBProjeto amp-op full-differential com malha CMFB
Projeto amp-op full-differential com malha CMFB
 
Pratica eletronica 2019b_apostila
Pratica eletronica 2019b_apostilaPratica eletronica 2019b_apostila
Pratica eletronica 2019b_apostila
 
Alocação de dlccs via ag
Alocação de dlccs via agAlocação de dlccs via ag
Alocação de dlccs via ag
 
Tese marinho
Tese marinhoTese marinho
Tese marinho
 
Barramento de subestações
Barramento de subestações   Barramento de subestações
Barramento de subestações
 
Desenvolvimento de um Sistema de Controle para Quadrirrotores
Desenvolvimento de um Sistema de Controle para Quadrirrotores Desenvolvimento de um Sistema de Controle para Quadrirrotores
Desenvolvimento de um Sistema de Controle para Quadrirrotores
 
TCC DESENVOLVIMENTO DE UM PROTÓTIPO DE PRÓTESE DE DEDO ROBÓTICO COM ARDUINO ...
TCC DESENVOLVIMENTO DE UM PROTÓTIPO DE PRÓTESE DE DEDO ROBÓTICO COM ARDUINO  ...TCC DESENVOLVIMENTO DE UM PROTÓTIPO DE PRÓTESE DE DEDO ROBÓTICO COM ARDUINO  ...
TCC DESENVOLVIMENTO DE UM PROTÓTIPO DE PRÓTESE DE DEDO ROBÓTICO COM ARDUINO ...
 
quântica computacional
quântica computacionalquântica computacional
quântica computacional
 
Eletronica 1
Eletronica 1Eletronica 1
Eletronica 1
 
Eletronica 1
Eletronica 1Eletronica 1
Eletronica 1
 
ANTENA PARA COMUNICAC¸OES DSRC.pdf
ANTENA PARA COMUNICAC¸OES DSRC.pdfANTENA PARA COMUNICAC¸OES DSRC.pdf
ANTENA PARA COMUNICAC¸OES DSRC.pdf
 
Amplificador[2]
Amplificador[2]Amplificador[2]
Amplificador[2]
 
Controle de braço mecânico através da diferença de potencial ocular
Controle de braço mecânico através da diferença de potencial ocularControle de braço mecânico através da diferença de potencial ocular
Controle de braço mecânico através da diferença de potencial ocular
 
ProjetoFinal_LuizAndre
ProjetoFinal_LuizAndreProjetoFinal_LuizAndre
ProjetoFinal_LuizAndre
 
Simulador Numérico Bidimensional para Escoamento Monofásico em Meios Porosos
Simulador Numérico Bidimensional para Escoamento Monofásico em Meios PorososSimulador Numérico Bidimensional para Escoamento Monofásico em Meios Porosos
Simulador Numérico Bidimensional para Escoamento Monofásico em Meios Porosos
 

Último

Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxSlides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxLuizHenriquedeAlmeid6
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)ElliotFerreira
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãIlda Bicacro
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.Mary Alvarenga
 
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamentalAntônia marta Silvestre da Silva
 
Ficha de trabalho com palavras- simples e complexas.pdf
Ficha de trabalho com palavras- simples e complexas.pdfFicha de trabalho com palavras- simples e complexas.pdf
Ficha de trabalho com palavras- simples e complexas.pdfFtimaMoreira35
 
A QUATRO MÃOS - MARILDA CASTANHA . pdf
A QUATRO MÃOS  -  MARILDA CASTANHA . pdfA QUATRO MÃOS  -  MARILDA CASTANHA . pdf
A QUATRO MÃOS - MARILDA CASTANHA . pdfAna Lemos
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxLuizHenriquedeAlmeid6
 
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕESCOMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕESEduardaReis50
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividadeMary Alvarenga
 
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxJOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxTainTorres4
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMHELENO FAVACHO
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
o ciclo do contato Jorge Ponciano Ribeiro.pdf
o ciclo do contato Jorge Ponciano Ribeiro.pdfo ciclo do contato Jorge Ponciano Ribeiro.pdf
o ciclo do contato Jorge Ponciano Ribeiro.pdfCamillaBrito19
 
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfPRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfprofesfrancleite
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Ilda Bicacro
 
Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?AnabelaGuerreiro7
 
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfplanejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfmaurocesarpaesalmeid
 

Último (20)

Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxSlides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
 
Bullying, sai pra lá
Bullying,  sai pra láBullying,  sai pra lá
Bullying, sai pra lá
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! Sertã
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.
 
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
 
Ficha de trabalho com palavras- simples e complexas.pdf
Ficha de trabalho com palavras- simples e complexas.pdfFicha de trabalho com palavras- simples e complexas.pdf
Ficha de trabalho com palavras- simples e complexas.pdf
 
A QUATRO MÃOS - MARILDA CASTANHA . pdf
A QUATRO MÃOS  -  MARILDA CASTANHA . pdfA QUATRO MÃOS  -  MARILDA CASTANHA . pdf
A QUATRO MÃOS - MARILDA CASTANHA . pdf
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
 
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕESCOMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividade
 
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxJOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
o ciclo do contato Jorge Ponciano Ribeiro.pdf
o ciclo do contato Jorge Ponciano Ribeiro.pdfo ciclo do contato Jorge Ponciano Ribeiro.pdf
o ciclo do contato Jorge Ponciano Ribeiro.pdf
 
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfPRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"
 
Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?
 
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfplanejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
 

Projeto de uma fonte de referência band gap em tecnologia cmos 0,35μm

  • 1. Curso de Graduação em Engenharia Elétrica Projeto de uma Fonte de Referência Band- Gap em Tecnologia CMOS 0,35μm Bruno Guimarães Chagas Bauru – SP 2012
  • 2. ii BRUNO GUIMARÃES CHAGAS Projeto de uma Fonte de Referência Band- Gap em Tecnologia CMOS 0,35μm Trabalho de Graduação do Curso de Engenharia Elétrica apresentado à Faculdade de Engenharia de Bauru/UNESP ORIENTADOR: Prof. Dr. Fernando de Souza Campos Bauru 2012
  • 3. iii FOLHA DE APROVAÇÃO Autor:_______________________________________________________ Título:_______________________________________________________ Trabalho de Graduação defendido e aprovado em ____/____/______, com NOTA ______ ( ), pela comissão julgadora: (Assinatura)____________________________________________________ (Titulação/nome/instituição) (Assinatura)____________________________________________________ (Titulação/nome/instituição) (Assinatura)____________________________________________________ (Titulação/nome/instituição) ____________________________________________ Coordenador do Conselho de Curso de Graduação em Engenharia Elétrica
  • 4. iv DEDICATÓRIA À memória de meu pai, Reinaldo Guimarães Chagas, talvez novamente entre nós...
  • 5. v AGRADECIMENTOS - Ao meu orientador Prof. Dr. Fernando de Souza Campos, pela amizade e por todo apoio dado na orientação de meu trabalho, me proporcionando assim, agradáveis momentos de aprendizagem. - Ao Departamento de Engenharia Elétrica e a Faculdade de Engenharia de Bauru, pelo auxílio concedido durante a realização da monografia. - A minha família e a todos meus amigos, principalmente a meu amigo Kleber Rossi, com quem partilhei longas madrugadas de estudo para a realização desta monografia.
  • 6. vi "Um homem pode morrer, lutar, falhar, até mesmo ser esquecido, mas sua ideia pode modificar o mundo mesmo tendo passado 400 anos." Do aclamado filme V de Vingança “All our science, measured against reality, is primitive and childlike – and yet it is the most precious thing we have.” Albert Einstein (1879-1955) “Hoc non pereo habebo fortior me”
  • 7. vii ÍNDICE DE FIGURAS Figura 1 – Junção pn sobre reversamente polarizada. (a) Desenho esquemático. (b) Densidade de Carga. (c) Campo Elétrico. (d) Potêncial Eletroestático .................................... 10 Figura 2 – Figura de Transistor bipolar comparado a dois diodos em série............................ 14 Figura 3 – Convenção de correntes no TJB ............................................................................. 15 Figura 4 – Características para um TBJ npn. ......................................................... 17 Figura 5 – Curva de versus para um transistor npn com 6µ de área de emissor. ... 19 Figura 6 – Simbologia do MOSFET tipo enriquecimento ...................................................... 20 Figura 7 – Símbolo esquemático de um MOSFET e seus terminais ....................................... 20 Figura 8 – Estrutura NMOS tipo enriquecimento. .................................................................. 21 Figura 9 – Dispositivo NMOS ideal com tensão porta fonte positiva aplicada, mostrando região de depleção e canal induzido. ........................................................................................ 22 Figura 10 – O transistor NMOS operando na saturação com o canal estrangulado ................ 25 Figura 11 – Característica - parametrizado por ................................................. 26 Figura 12 – Gráfico que mostra o comportamento do parâmetro ........................................ 27 Figura 13 – Característica - do transistor ................................................................... 27 Figura 14 – Amplificador com realimentação ......................................................................... 28 Figura 15 – Amplificador no modo inversor ........................................................................... 29 Figura 16 – Amplificador Não-Inversor .................................................................................. 30 Figura 17 – Amplificador Diferencial ..................................................................................... 31 Figura 18 – Estágio de entrada típico de um Amp Op ............................................................ 32 Figura 19 – Circuito de referência bandgap hipotético ........................................................... 36 Figura 20 – Variação da tensão de saída do bandgap com a temperatura .............................. 40 Figura 21 – Circuito de Referência bandgap em tecnologia CMOS....................................... 42 Figura 22 – Circuito que aumenta aumentando ................................ 43 Figura 23 – dois seguidores de emissor idênticos em cascata. ................................................ 44 Figura 24 – Esquemático de um amp op dois estágios ............................................................ 46 Figura 25 – Esquemático Amp op com os parâmetros já definidos ........................................ 53 Figura 26 – Circuito Esquemático de um amplificador operacional de dois estágios em tecnologia CMOS 0.35μm utilizando o SPICE. ....................................................................... 54 Figura 27 – Gráfico de Bode para o amp op dois estágios ...................................................... 55 Figura 28 – Ampliação da frequência de corte que o amp op atingiu ..................................... 55
  • 8. viii Figura 29 – Análise de Transiente do amp op de dois estágios .............................................. 56 Figura 30 – Circuito Esquemático do circuito de referência bandgap .................................... 58 Figura 31 – Circuito Esquemático de uma fonte de referência do tipo bandgap em tecnologia CMOS 0.35μm utilizando o SPICE .......................................................................................... 62 Figura 32 – Variação da tensão do transistor Q2em relação à temperatura ................... 63 Figura 33 – Variação da tensão em relação à temperatura ............................... 64 Figura 34 – Tensão de referência . ........................................... 65
  • 9. ix ÍNDICE DE TABELAS Tabela 1 – Especificações do projeto do amplificador operacional ........................................ 46 Tabela 2 – Quadro de parâmetros dos MOSFETs ................................................................... 47 Tabela 3 – Tabela com os dados obtidos através dos cálculos e especificações de projeto .... 52 Tabela 4 – Dimensões dos transistores obtidos com o resultado dos cálculos ........................ 53 Tabela 5 – Valor dos resistores escolhidos para a simulação .................................................. 61 Tabela 6 – Valor dos transistores escolhidos para simulação.................................................. 61 Tabela 7 – Valores de polarização do circuito......................................................................... 62
  • 10. x Resumo do Trabalho de Graduação apresentado ao DEE – UNESP como parte dos requisitos necessários para a obtenção da conclusão do curso de Engenharia Elétrica. Projeto de um circuito de referência Band-Gap em tecnologia CMOS 0,35μm Bruno Guimarães Chagas 11/2012 Orientador: Prof. Dr. Fernando de Souza Campos Área de Concentração: Microeletrônica Palavras-chave: Circuitos integrados MOS, referência bandgap, fonte de referência de tensão. RESUMO Este trabalho visa o projeto e a implementação de uma fonte de referência do tipo bandgap em tecnologia CMOS. Ele apresenta um estudo da literatura existente sobre o assunto bem como uma discussão sobre as melhores formas de implementação. Esta monografia se divide em quatro capítulos, sendo o primeiro apenas uma rápida introdução quanto ao trabalho proposto a ser realizado. O segundo capítulo se trata de uma revisão bibliográfica a respeito dos principais tipos de dispositivos semicondutores utilizados em projetos de circuitos integrados, e que serão usados para a implementação do circuito proposto. No terceiro capítulo inicia-se com a implementação em si, onde se calculou os parâmetros necessários para o projeto do amplificador operacional de dois estágios e a fonte de referência bandgap, bem como as discussões sobre resultados obtidos pela simulação do circuito. Os resultados foram cotejados com os valores teóricos apresentados, obtendo-se uma ótima aproximação empírica. A conclusão forma o quarto e último capítulo, onde foi dado um parecer sobre o resultado final encontrado, os quais foram extremamente satisfatórios para o propósito do projeto proposto, alcançando um comportamento bem perto do ideal.
  • 11. xi Abstract of the Undergraduate Work presented to DEE – UNESP as a partial fulfillment of the requirements to conclude the Electrical Engineering Course. Project of a Band-Gap reference circuit in CMOS 0,35μm Technology Bruno Guimarães Chagas 11/2012 Advisor: Prof. Dr. Fernando de Souza Campos Concentration Area: Microelectronics Keywords: MOS integrated circuits, bandgap reference, voltage reference sources. ABSTRACT This work aims at the project and implementation of a bandgap voltage reference source in CMOS technology. It presents a summary of commonly adopted bandgap circuits, as well as a discussion over their features. This text is divided in four chapters, the first one being a short introduction of the concept of a bandgap circuit, and the second one a literary revision about the main semiconductor devices that will be used in order to implement the proposed circuit. In the third chapter, the implementation began itself, estimating the needed parameters for the op amp simulation and the design of the bandgap reference circuit, as well as discussions about the results obtained by simulations and by practical experiences. These results were collated with the theoretical values showed before, obtaining a good empirical approximation. The conclusion obtained from these data forms the fourth and last chapter, with a sight regarding the final result, which proved to be extremely satisfactory for the purpose of the project, reaching a behavior very closer to the ideal.
  • 12. xii SUMÁRIO 1. INTRODUÇÃO ................................................................................................................ 1 2. REVISÃO BIBLIOGRÁFICA ........................................................................................ 3 2.1. TECNOLOGIA DE FABRICAÇÃO CMOS ............................................................... 3 2.1.1. A preparação da lâmina de silício ....................................................................... 3 2.1.2. A oxidação .......................................................................................................... 4 2.1.3. A difusão ............................................................................................................. 5 2.1.4. A implantação de íons ......................................................................................... 5 2.1.5. A deposição química em fase de vapor ............................................................... 5 2.1.6. A metalização...................................................................................................... 6 2.1.7. A fotoligrafia ....................................................................................................... 7 2.1.8. O encapsulamento ............................................................................................... 7 2.2. A JUNÇÃO PN ............................................................................................................ 8 2.2.1. A Junção PN sem tensão de polarização ............................................................. 9 2.2.2. A Junção PN reversamente polarizada ............................................................... 9 2.2.3. Capacitância de Junção ..................................................................................... 11 2.2.4. A região de ruptura ........................................................................................... 12 2.2.5. O efeito avalanche............................................................................................. 12 2.3. BIPOLAR ................................................................................................................... 12 2.3.1. Fundamentos ..................................................................................................... 13 2.3.2. Modelos de Grandes Sinais na Região Ativa .................................................... 15 2.3.3. Efeito das tensões de coletor em Grandes Sinais e características na região ativa. 16 2.3.4. Saturação ........................................................................................................... 16 2.3.5. Tensão de Ruptura ............................................................................................ 18 2.3.6. Dependência do ganho de corrente do transistor nas condições de operação ... 18 2.4. MOSFET .................................................................................................................... 19 2.4.1. Caracteristicas gerais de um dispositivo MOS ................................................. 19 2.4.2. O Mosfet tipo enriquecimento .......................................................................... 21 2.4.3. Curvas Características de Operação .................................................................. 24 2.5. AMPLIFICADOR OPERACIONAL ......................................................................... 28 2.5.1. Características Gerais........................................................................................ 28 2.5.2. Aplicações com Amplificadores Operacionais ................................................. 28 2.5.2.1. Realimentação .................................................................................... 28 2.5.2.2. Amplificador Inversor ........................................................................ 29 2.5.2.3. O amplificador não-inversor ............................................................... 30
  • 13. xiii 2.5.2.4. Amplificador Diferencial .................................................................... 30 2.5.3. Desvios em Amplificadores Operacionais reais ............................................... 31 2.5.3.1. Corrente de Polarização de Entrada.................................................... 31 2.5.3.2. Corrente Offset de Entrada ................................................................. 32 2.5.3.3. Tensão offset de Entrada .................................................................... 33 2.5.3.4. Taxa de Rejeição de Modo Comum (CMRR) .................................... 33 2.5.3.5. Resistência de Entrada ........................................................................ 33 2.5.3.6. Resistência de Saída ........................................................................... 33 2.6. O CIRCUITO DE REFERÊNCIA BAND-GAP........................................................ 34 2.6.1. Fundamentos ..................................................................................................... 34 2.6.2. Equacionamento do circuito a ser projetado ..................................................... 41 2.6.3. Minimizando o ganho e maximizando a relação de tensão base-emissor ........ 43 3. PROJETO ................................................................................................................. 45 3.1. PROJETO DE UM AMPLIFICADOR OPERACIONAL DE DOIS ESTÁGIOS EM TECNOLOGIA CMOS 0.35μm ........................................................................................... 45 3.1.1. Especificações de Projeto ................................................................................. 46 3.1.2. Cálculo dos parâmetros de projeto .................................................................... 47 3.1.3. Simulações ........................................................................................................ 53 3.2. PROJETO DE UMA FONTE DE REFERÊNCIA DE TENSÃO BAND-GAP EM TECNOLOGIA CMOS 0.35μm ........................................................................................... 57 3.2.1. Considerações para o Projeto ............................................................................ 57 3.2.2. Equacionamento do circuito ............................................................................. 58 3.2.3. Cálculo dos resistores ....................................................................................... 59 3.2.4. Simulações ........................................................................................................ 62 4. CONCLUSÃO................................................................................................................. 66 REFERÊNCIAS BIBLIOGRÁFICAS ................................................................................. 68 ANEXO A ................................................................................................................................ 70 ANEXO B ................................................................................................................................ 75
  • 14. 1 1. INTRODUÇÃO O projeto de circuitos integrados (CIs) trouxe grandes avanços para as aplicações eletrônicas. Em geral os CIs foram a base para a computação e comunicação modernas, pois permitiram a redução do tamanho dos equipamentos, o aumento do desempenho dos sistemas e a redução dos preços das máquinas. O desenvolvimento da tecnologia de CIs se deu principalmente pelo mercado de circuitos digitais (microprocessadores e memórias). Recentemente, entretanto, a tecnologia CMOS (complementary metal-oxide semicondutor) se tornou extensivamente utilizada no projeto de circuitos analógicos, devido ao baixo custo de fabricação, baixíssimo consumo de energia (que leva a baixa dissipação de calor) e compatibilidade para integrar circuitos analógicos e digitais num mesmo circuito integrado, o que aumenta o desempenho geral e a confiabilidade. Fontes de referência são utilizadas por aplicações que necessitam de um valor de referência externo para operarem de forma correta. Referências de tensão são importantes em aplicações que necessitam de uma tensão que não se altere. Elas devem fornecer uma tensão com variações aceitáveis, que dependem de cada tipo de aplicação, para variações de fatores como tensão de alimentação, temperatura, tempo de operação, etc. Para uma grande gama de circuitos práticos tais como circuitos de instrumentação, conversores analógico-digitais, microprocessadores, amplificadores operacionais e reguladores lineares, é necessário o uso de fontes de referência de tensão. Estes circuitos exemplificados estão presentes na maioria das aplicações eletrônicas, e o que intensifica a importância das fontes de referência. O princípio em que se baseiam as fontes de referência do tipo bandgap foi introduzido por Hibiber em 1964. Posteriormente Widdlar criou o conceito de bandgap e desenvolveu uma versão integrada, no que foi seguido por vários outros. Atualmente são inúmeras as diferentes versões deste circuito, muitas delas usando a tecnologia CMOS. Este tipo de circuito tem como característica gerar uma tensão constante independente da temperatura e da tensão de alimentação e com um valor bem conhecido, que é diferença de potencial da banda proibida do silício. Daí vem seu nome, pois a banda proibida do silício tem o nome em inglês de bandgap.
  • 15. 2 Tendo em vista estas considerações, neste trabalho, propor-se-á um estudo crítico/analítico de uma configuração de fonte de tensão de Referência Bandgap muito comum em chips comerciais, concluindo importantes itens quanto às técnicas de projeto e esquemático, o que permitirá julgar a eficiência de tal circuito quanto à compensação em temperatura.
  • 16. 3 2. REVISÃO BIBLIOGRÁFICA 2.1. TECNOLOGIA DE FABRICAÇÃO CMOS O objetivo desta primeira seção é apresentar um resumo dos conceitos básicos por trás da tecnologia de fabricação VLSI (very large scale integrated-circuit), onde focar- se-á apenas na tecnologia baseada em silício ), material este abundante que ocorre normalmente na forma de areia. Pode ser refinado usando-se técnicas simples de purificação e crescimento de cristais. Também apresenta propriedades físicas adequadas para a fabricação de dispositivos ativos com boas características elétricas. Além disso, o silício pode ser facilmente oxidado para formar uma excelente camada isolante, (vidro). Esse óxido é largamente empregado para fabricar capacitores e MOSFETs. Serve também como uma boa barreira de difusão contra impurezas indesejáveis, que podem se difundir para o silício com alto grau de pureza. Essa propriedade de mascaramento do óxido de silício permite alterar a forma localizada as propriedades elétricas do silício. Portanto, elementos ativos e passivos podem ser construídos em um mesmo pedaço de material (substrato). Os componentes podem então ser interconectados utilizando-se camadas de metal (similar ao empregado para a definição de circuitos impressos) para formar um circuito integrado monolítico CI, que é essencialmente um único pedaço de material. As etapas básicas envolvidas na fabricação de circuitos integrados serão descritas nas subseções seguintes. Algumas dessas etapas podem ser repetidas várias vezes, em diferentes combinações sob diferentes condições de processamento durante uma corrida completa de fabricação. 2.1.1. A preparação da lâmina de silício O material inicial para a fabricação dos modernos circuitos integrados é o silício com alto grau de pureza. O material cresce como um cristal na forma de tarugo. Toma a forma de um cilindro sólido de 10 a 30 cm de diâmetro, pode ter de 1 a 2 m de comprimento e sua cor é cinza-metálica. Esse cristal é, então, cortado (como um pão de forma) para que sejam produzidas lâminas circulares com espessura de 400µm a 600µm. A superfície da lâmina é, então, polida até ficar com o acabamento de um espelho, utilizando-se de técnicas de polimento químico-mecânico. As propriedades
  • 17. 4 elétricas e mecânicas da lâmina dependem da orientação dos planos cristalinos, bem como da concentração e do tipo de impurezas presentes. Essas variáveis são estritamente controladas durante o crescimento do cristal. Impurezas podem ser adicionadas intencionalmente ao silício puro por meio de um processo conhecido como dopagem. Isso permite uma alteração controlada das propriedades elétricas do silício, em particular sua resistividade. É possível controlar também o tipo dos portadores usados para produzir a condução elétrica, criando-se, portanto, durante o crescimento, tanto lacunas (tipo p) quando elétrons (tipo n). Se um grande número de impurezas for adicionado, o silício é considerado fortemente dopado[SEDRA, 2007]. 2.1.2. A oxidação A oxidação é o processo químico responsável pela reação do silício com o oxigênio, resultando no dióxido de silício ( ). Para acelerar o processo, muitas vezes é necessário o aquecimento da lâmina à altas temperaturas (geralmente em torno de 1000 ºC) em fornos especiais, o quais são minuciosamente inspecionados de modo a permanecerem ultralimpos, pois qualquer tipo de contaminante é capaz de alterar as propriedades elétricas do silício. O oxigênio utilizado na reação pode ser introduzido tanto como um gás de alta pureza (oxidação seca) quanto como vapor d’água (oxidação úmida). Em geral, a oxidação úmida tem uma taxa de crescimento maior, mas a oxidação seca apresenta melhores características elétricas. Nesse caso, a camada de óxido crescida termicamente tem excelentes propriedades de isolamento elétrico. A ruptura dielétrica para o é de aproximadamente V/cm. Possui uma constante dielétrica de 3,9 e pode ser usada para formar excelentes capacitores. A camada de dióxido de silício é fina e transparente e a superfície do silício é altamente reflexiva. Se uma luz branca incidir sobre uma lâmina oxidada, ocorrerão efeitos de interferência construtivos e destrutivos no óxido, fazendo com que certas cores sejam refletidas. Os comprimentos de onda da luz refletida dependem da espessura da camada de óxido, de onde, pela cor da superfície da lâmina, pode-se deduzir a espessura da camada de óxido[SEDRA, 2007].
  • 18. 5 2.1.3. A difusão A difusão é o processo pelo qual os átomos se movem de uma região com alta concentração para uma região com baixa concentração pela rede cristalina. Na fabricação, a difusão é um método em que são introduzidos átomos de impurezas (dopantes) no silício para mudar sua resistividade. A velocidade em que ocorre a difusão de dopantes no silício é uma função muito dependente da temperatura. Portanto, para aumentar a velocidade, a difusão de impurezas dopantes é feita geralmente em altas temperaturas, para obter o perfil de dopagem desejado. A seguir, quando a lâmina é resfriada e atinge a temperatura ambiente, as impurezas são essencialmente ‘congeladas’ na posição. O processo de difusão é executado em fornos similares aos usados pela oxidação. A profundidade com que as impurezas se difundem depende da temperatura e do tempo de processo. As impurezas mais comuns usadas como dopantes são o boro (tipo p), o fósforo e o arsênio (tipo n). Esses dopantes são efetivamente mascarados por finas camadas de óxido. Difundindo-se o boro em um substrato tipo n, obtêm-se uma junção pn (diodo) [SEDRA, 2007]. 2.1.4. A implantação de íons A implantação de íons é outro método utilizado para introduzir átomos de impurezas no cristal de silício. Um implantador de íons produz íons do dopante desejado, acelera-os por meio de um campo elétrico e faz co que eles se choquem contra a superfície do silício, que por sua vez ficam “encravados” no mesmo. A profundidade de penetração está relacionada com a energia do feixe de íons, que pode ser controlada pela tensão de aceleração, e a quantidade de íons pode ser controlada pela variação da corrente do feixe (fluxo de íons). Como corrente e tensão podem ser ambas precisamente medidas e controladas, a implantação de íons resulta em um perfil de impurezas muito mais preciso e reprodutível que aquele obtido por difusão. Além disso, a implantação de íons pode ser executada a temperatura ambiente. Ela é usada normalmente quando um controle preciso dos dopantes é essencial para a operação do dispositivo[SEDRA, 2007]. 2.1.5. A deposição química em fase de vapor A deposição química em fase de vapor é um processo pelo qual os gases ou vapores reagem quimicamente, levando a formação de um sólido sobre o substrato. O
  • 19. 6 método CDV, pelo qual é conhecido, pode ser usado para depositar vários materiais sobre o substrato de silício, incluindo , e silício policristalino. Por exemplo, se o gás silano e o oxigênio forem misturados no ambiente acima do substrato de silício, o produto final, dióxido de silício, irá se depositar como um filme sólido sobre o silício. As propriedades da camada de óxido CVD formada não são tão boas quanto àquela crescida termicamente, mas são boas o suficiente para agirem como um isolante para agirem como um isolante elétrico. A vantagem do método CVD é que o óxido pode ser depositado em taxas mais altas e a temperatura mais baixas (abaixo de 500º C). Se o gás silano for usado sozinho, então uma camada de silício será depositada sobre a lâmina. Se a temperatura de reação for alta o suficiente (acima de 1000º C), a camada é depositada como uma camada cristalina (supondo que o substrato seja silício cristalino). Essa camada é chamada epitaxial e o processo de deposição é conhecido como epitaxia, em vez de CVD. Em baixas temperaturas ou se o substrato não for silício monocristalino, os átomos não serão capazes de se alinhar no mesmo sentido cristalino. Essa camada é denominada silício policristalino, visto que consiste em pequenos cristais de silício alinhados em vários sentidos. Normalmente, essas camadas são fortemente dopadas para formar uma região de alta condutividade que pode ser usada para interconectar dispositivos[SEDRA, 2007]. 2.1.6. A metalização O objetivo da metalização é interconectar vários componentes do circuito integrado (transistores, resistores, etc) para formar o circuito integrado desejado. A metalização envolve a disposição inicial de um metal sobre toda a superfície do silício. O traçado necessário para a interconexão é, então, seletivamente delineado (corroído). A camada de metal é normalmente depositada por processo de pulverização catódica (sputtering). Um alvo de metal puro é colocado sob um feixe de íons de argônio (Ar) dentro de uma câmera em vácuo. As lâminas são também colocadas dentro da câmara, acima do alvo. Os íons de Ar não reagirão com o metal, uma vez que o Ar é um gás nobre. Entretanto, esses íons bombardeiam fisicamente o alvo e arrancam literalmente átomos de metal para fora do alvo. Esses átomos de metal cobrirão todas as superfícies dentro da câmara, incluindo as lâminas. A espessura da camada de metal pode ser controlada pelo intervalo de tempo da pulverização catódica, o qual está normalmente na faixa de 1 a 2 minutos[SEDRA, 2007].
  • 20. 7 2.1.7. A fotoligrafia A geometria superficial (traçado) de vários componentes do circuito integrado é definida por um processo fotolitográfico. Inicialmente, a superfície do silício revestida com uma camada fotossensível (chamada fotorresiste) utilizando-se de uma técnica de espalhamento de material em suporte giratório (spin-on technique). Posteriormente, uma placa fotográfica contendo o traçado mestre (por exemplo, placa de quartzo com traçado de cromo) será usada para a exposição seletiva do fotorresiste sob a luz ultravioleta (UV). Nas áreas expostas à luz, o fotorresiste torna-se solúvel (resiste positivo). Essa camada é então removida para produzir o traçado desejado sobre a lâmina. Traçados geométricos diminutos podem ser precisamente produzidos por essa técnica. A fotoligrafia necessita de um dos equipamentos mais caros da fabricação de VLSI. A Camada de fotorresiste predefinida pode ser usada como uma máscara efetiva (resistente a corrosão) para proteger os materiais abaixo desta, contra corrosão úmida e corrosão por íon reativo. Correspondentemente, camadas de dióxido de silício, nitreto de silício, silício policristalino e metal podem ser seletivamente removidas utilizando-se métodos de corrosão apropriados. Após as etapas de corrosão, o fotorresiste é totalmente removido, deixando em seu lugar um traçado permanente, uma imagem da fotomáscara na superfície da lâmina[SEDRA, 2007]. 2.1.8. O encapsulamento Uma lâmina de silício acabada pode conter centenas, ou mais, de circuitos ou pastilhas finalizadas. Cada pastilha contem entre e , ou mais, transistores dentro de uma forma retangular, tipicamente entre 1 e 10mm em cada lado. Os circuitos são primeiro testados eletricamente (ainda em forma de lâmina) usando-se uma estação de teste automática. Circuitos com defeito são marcados para mais tarde serem identificados. Os circuitos são, então, separados uns dos outros (por cortes), dando origem às pastilhas (chips), e os circuitos em bom estado são montados em suportes para serem encapsulados. Fios finos de outro são tradicionalmente usados para interconectar os suportes do encapsulamento aos pontos de contato do circuito acabado. Finalmente, o suporte é encapsulado utilizando-se material plástico ou epóxi sob vácuo ou em uma atmosfera inerte [SEDRA, 2007].
  • 21. 8 2.2. A JUNÇÃO PN A junção pn consiste em um material semicondutor tipo p (como o silício) posto em contato com um material semicondutor tipo n (também silício), que na verdade fazem parte de um mesmo cristal dado pela criação de regiões com “dopagens” diferentes, assim como foi descrito na secção anterior. Alem de ser essencialmente um diodo, a junção pn é o componente básico por trás do funcionamento dos transistores bipolares de junção (TBJs) e dos transistores de efeito de campo (FETs), os quais serão estudados em seguida. Note que seu nome, semicondutor, vem do fato de que são materiais compostos por átomos com quatro elétrons na camada de valência, daí não serem nem condutores nem isolantes, mas sim semicondutores. E é dessa singularidade que reside o principio de funcionamento da junção. No exemplo do silício, os átomos são mantidos em suas posições pelas ligações covalentes formadas pelos quatro eletros de valência. A temperatura ambiente, os elétrons adquirem energia suficiente para desprender-se da estrutura atômica, e pelo efeito de ionização, entrar na banda de condução. Esses elétrons livres, quando deixam a órbita de seu átomo, criam uma carga positiva em seu lugar, ou lacuna (hole), o que por sua vez atrai mais elétrons livres, criando assim um fluxo de corrente no cristal, num processo denominado recombinação. No equilíbrio térmico, a taxa de recombinação é igual à de ionização, e pode-se calcular a concentração de elétrons livres, que é igual à de lacunas, como: (2.1) em que representa a concentração de elétrons livres ou lacunas em um silício intrínseco (sem dopantes) a dada temperatura. O estudo da física de semicondutores revela que, a dada temperatura absoluta (em kelvins), a concentração pode ser encontrada por: (2.2) em que B é um parâmetro dependente do material (= para o silício), é um parâmetro conhecido como largura de energia da faixa proibida (bandgap energy), que representa a energia mínima necessária para romper a ligação covalente e entrar na zona de condução, gerando assim o par elétron-lacuna, e vale 1,12 elétron-volts (eV) para o silício, e por fim, é a constante de Boltzmann = eV/K. À temperatura ambiente ( ), para o silício.
  • 22. 9 2.2.1. A Junção PN sem tensão de polarização Sem tensão de polarização, existe uma tensão através da junção conhecida como barreira de potencial. Essa tensão se opõe a difusão de lacunas e elétrons livres através da junção, e em equilíbrio tem um valor de: (2.3) Onde é a densidade de dopagem no material tipo n e a densidade de dopagem no material tipo p, respectivamente, e é chamada de tensão térmica, calculada a partir da constante de Boltzmann, da carga de um elétron, e da temperatura do transistor em kelvins, dada por: (2.4) A fim de que haja a mesma quantidade de cargas descobertas, a camada de depleção se estenderá mais profundamente no material mais levemente dopado. Se denotarmos a largura da região de depleção do lado p por e no lado n por , uma condição de igualdade de cargas pode ser expressa por: (2.5) Em que A é a área da secção transversal da junção. Reorganizando: (2.6) Da física de semicondutores, tem-se que a largura da região de depleção de uma junção em circuito aberto é: (2.7) Onde é a permissividade elétrica do silício . Tipicamente, é da ordem de 2.2.2. A Junção PN reversamente polarizada Considere agora uma junção pn polarizada reversamente, como mostrado na Figura 1 abaixo. Devido à diferença nas concentrações de portadores nas regiões p e n, existe então uma região na junção onde os elétrons e lacunas livres foram removidos, deixando
  • 23. 10 para trás íons aceitadores e doadores. Todo átomo aceitador carrega uma carga negativa e todo átomo doador uma positiva. Desta maneira, na região perto da junção existe um espaço significativo de cargas, o que resulta em um elevado campo elétrico. Isso é chamado de região de depleção, e é definido que os limites da região de depleção são acentuadamente definidos como na Figura 1 e essa é uma boa aproximação para a maioria dos casos. Figura 1 – Junção pn sobre reversamente polarizada. (a) Desenho esquemático. (b) Densidade de Carga. (c) Campo Elétrico. (d) Potêncial Eletroestático Fonte: GRAY, P. R. At all. Analysis and Design of Analog Integrated Circuits. 4. Ed. p. 2. New York: Editora John Willey and Sons, 2001.
  • 24. 11 Na figura 1, a barreira de potencial é aumentada pela aplicação de uma tensão de polarização reversa, , e a tensão total através da junção é de . Se a região de depleção penetra a uma distancia na região tipo p e na região tipo n, então: (2.8) Devido ao fato de que a carga total por unidade de área de um lado da junção deve ser igual em magnitude, mas de valor oposto. Da física de semicondutores, tem-se que a largura de penetração da camada de depleção na região p é: (2.9) Similarmente: (2.10) As equações (9) e (10) mostram que as regiões de depleção se estendem para a região tipo p e tipo n em relação inversa com a concentração de impurezas e proporcional à . Se e é um muito maior que o outro, a região de depleção existe quase que inteiramente na região levemente dopada. 2.2.3. Capacitância de Junção A partir do momento que há uma tensão que depende de uma quantidade de carga Q associada à região de depleção, existe uma capacitância intrínseca de pequenos sinais, dada por: (2.11) A expressão pode ser convenientemente reescrita da seguinte forma: (2.12)
  • 25. 12 2.2.4. A região de ruptura A ruptura da região de depleção ocorre para um máximo campo elétrico estabelecido na camada de depleção, que é dado por: (2.13) Ou então: (2.14) Onde foi negligenciado. A equação (2.14) mostra que o campo máximo aumenta à medida que densidade de dopagem aumenta e a tensão de polarização reversa aumenta. Embora útil para descobrir a dependência de , essa equação é válida apenas uma junção plana ideal. Na prática, junções tendem a possuir efeitos de bordas que causam, de alguma maneira, valores maiores de devido à concentração de campo nas bordas de curva da junção. 2.2.5. O efeito avalanche Qualquer junção pn reversamente polarizada possui uma pequena corrente reversa fluindo devido à presença de portadores minoritários elétrons-lacunas na vizinhança da região de depleção. Esses são varridos através da região de depleção pelo campo elétrico e contribuem para a corrente de fuga da junção. À medida que a tensão reversa aumenta, o campo máximo aumenta e os portadores adquirem quantidade crescente de energia entre as treliças de colisão na região. Em um campo critico os portadores atravessando a região de depleção adquirem energia suficiente para criar novos pares elétrons-lacuna em colisão com os átomos de silício. Esse processo é chamado de efeito avalanche e leva a um repentino aumento da corrente de fuga de polarização reversa, na medida em que os novos portadores criados são também capazes de produzir tal efeito. 2.3. BIPOLAR Tendo em vista o estudo realizado sobre a junção pn na seção anterior, que é o princípio utilizado para a construção de dispositivos semicondutores de dois terminais, vamos agora dedicar a nossa atenção aos dispositivos semicondutores de três terminais, que são bastante úteis, uma vez que podem ser usados em múltiplas aplicações, desde a
  • 26. 13 amplificação de um sinais e tensões até projetos de circuitos lógicos digitais e de memória. Seu princípio básico subjacente é a utilização da tensão entre dois terminais para controlar a corrente que flui no terceiro terminal. Desta forma, um dispositivo de três terminais pode ser usado para realizar uma fonte controlada de corrente, que a é base do projeto de um amplificador. Além disso, o sinal de controle pode ser usado para fazer variar a corrente no terceiro terminal entre zero e um valor elevado, permitindo assim que o dispositivo funcione como uma chave, essa que, alias, é o elemento básico dos circuitos digitais. Há dois tipos principais de dispositivos de três terminais: os transistores bipolares de junção (BJT), que se estudará neste capítulo, e os transistores de efeito de campo (FET), que será visto a seguir. Os dois tipos de transistores são igualmente importantes, cada qual possuindo suas vantagens e desvantagens distintas. O transistor bipolar de junção consiste de duas junções pn, construídas de uma maneira especial e ligadas em série. A corrente é conduzida, tanto por elétrons quanto por lacunas, e daí se chamar bipolar. O TBJ, frequentemente referido simplesmente como “transistor”, é largamente utilizado tanto em circuitos discretos como em circuitos integrados, analógicos ou digitais. Compreendendo bem as características do dispositivo, podem projetar-se circuitos com transistores cujo desempenho é notavelmente previsível e bastante insensível às variações de seus parâmetros. 2.3.1. Fundamentos O transistor de junção bipolar é um dispositivo semicondutor de três terminais, formado por três camadas consistindo de: duas camadas de material tipo "n" e uma de tipo "p" ou de duas de material tipo "p" e uma de tipo "n". Os três terminais de um transistor bipolar recebem o nome de emissor, base e coletor. Do emissor são emitidos os portadores de corrente, elétrons ou lacunas, dependendo da polaridade do transistor, com o sentido de atingirem o coletor onde serão coletados, passando através da região de base, que tem a função de controlar o fluxo. Pode-se fazer uma analogia do transistor bipolar de junção com dois diodos, para entender-se alguns aspectos de seu funcionamento. A analogia é baseada na estrutura do
  • 27. 14 diodo de junção PN. Do terminal de base para os terminais de emissor ou coletor se vê um diodo PN. Tal comparação é elucidada pela figura 2. Figura 2 – Figura de Transistor bipolar comparado a dois diodos em série Para um transistor bipolar operar num circuito é necessário que seja convenientemente polarizado. A polarização consiste na fixação de tensões e correntes nos terminais do dispositivo, dentro de seus limites de operação e modo de funcionamento desejado. Existem quatro combinações possíveis de polarização do transistor bipolar de junção, porém somente três são utilizadas. Na primeira situação de polarização os diodos equivalentes das junções base- emissor (BE) e base-coletor (BC) são diretamente polarizados. Como os dois diodos BE e BC estão diretamente polarizados, então conduzirão muito bem. A essa situação de polarização chamamos saturação e diz-se que o transistor está saturado quando a polarização entre base e emissor e entre base e coletor é direta. O transistor saturado corresponde a uma chave fechada entre coletor e emissor. Na segunda situação de polarização os diodos equivalentes das junções base- emissor (BE) e base-coletor (BC) são reversamente polarizados. Em polarização reversa, os diodos equivalentes não conduzem. A essa situação de polarização chamamos corte e diz-se que o transistor está cortado quando a polarização entre base e emissor e entre base e coletor é reversa. O transistor cortado corresponde a situação de chave aberta A primeira e a segunda forma de polarização são utilizadas em circuitos em que o transistor deva funcionar como uma chave. São chamados de circuitos de chaveamento. Na terceira situação de polarização o diodo BE é diretamente polarizado e o diodo BC é reversamente polarizado. O circuito equivalente fazendo-se analogia com
  • 28. 15 diodo e fonte de corrente. Uma vez que a polarização do diodo BE é direta então, conduzirá. Como a base é uma região estreita, as cargas emitidas no emissor, terão condições de chegar próxima à junção BC reversamente polarizada, sendo atraídas pela barreira de potencial formado junto à junção, sendo coletadas no coletor, onde há a dissipação de energia por efeito Joule. Essa situação de operação é conhecida como operação ativa do transistor bipolar de junção, pois o transistor funciona como uma fonte de corrente na malha de coletor. Os circuitos que utilizam transistores operando na região ativa são chamados de circuitos lineares. Um exemplo destes circuitos são os amplificadores de áudio, fontes de alimentação e a fonte que será desenvolvida neste trabalho, o que torna, portanto, essa configuração a de maior interesse para o projeto de circuitos integrados que será desenvolvido nesse trabalho. 2.3.2. Modelos de Grandes Sinais na Região Ativa Nesta seção, os grandes sinais ou comportamentos DC dos transistores bipolares são considerados. Modelos de grandes sinais são desenvolvidos para o calculo das correntes e tensões totais nos circuitos com transistores, e efeitos como as limitações das tensões de ruptura, que geralmente não são incluídos nos modelos, são também considerados. Efeitos secundários, como ganhos de corrente com corrente de coletor e tensão inicial podem ser importantes em muitos circuitos. Os sinais convencionais usados para as correntes e tensões nos transistores bipolares são mostrados na figura 3. Ambas correntes npn e pnp são consideradas positivas e chegando ao dispositivo. Figura 3 – Convenção de correntes no TJB Fonte: GRAY, P. R. At all. Analysis and Design of Analog Integrated Circuits. 4. Ed. p. 9. New York: Editora John Willey and Sons, 2001.
  • 29. 16 A corrente de base é dada por: (2.15) Onde é o ganho de corrente e é a corrente de coletor. 2.3.3. Efeito das tensões de coletor em Grandes Sinais e características na região ativa. Na análise anterior, a junção base-coletor foi assumida reversamente polarizada, onde idealmente não há efeito sobre a corrente de coletor. Esta é uma aproximação útil em cálculos de primeira ordem, mas não é rigorosamente verdade na pratica. Há ocasiões onde a influencia da tensão de coletor na corrente de coletor é importante, em especial para duas regiões de operação do dispositivo, que é a região de saturação (VCE aproximadamente zero) e corte (VCE muito grande). 2.3.4. Saturação Saturação é uma região do dispositivo que é geralmente evitada em circuitos analógicos por que o ganho do transistor é muito baixo nessa região. Ela é muito mais encontrada em circuitos digitais onde fornece uma tensão de saída bem especificada, o que representa um estado lógico. Na saturação, ambas as junções base-coletor e base- emissor são polarizadas diretamente, e consequentemente a tensão coletor-emissor é bastante pequena, da ordem de 0,05 a 0,3V. Um aspecto interessante do comportamento do transistor na região de saturação reside no fato de que para uma dada corrente de coletor, agora há uma quantidade muito maior de carga armazenada na base, se comparada com a região ativa direta do transistor. Assim, a contribuição da corrente de base será maior na saturação. Alem disso, desde que a junção base-coletor agora é polarizada diretamente, há uma nova componente da corrente de base devido à injeção de portadores da base para o coletor. Destes dois efeitos resulta uma corrente de base na saturação que é maior do que na região ativa para uma mesma corrente de coletor. A característica da corrente de coletor pela tensão coletor-emissor é mostrada na figura 4:
  • 30. 17 Figura 4 – Características para um TBJ npn. Fonte: GRAY, P. R. At all. Analysis and Design of Analog Integrated Circuits. 4. Ed. p. 18. New York: Editora John Willey and Sons, 2001. Pode-se expressar as correntes de coletor e emissor na saturação a partir da equação: (2.16) Onde é a corrente de fuga base-coletor com o emissor aberto. Na prática os efeitos superficiais da corrente de fuga são dominantes quando a junção base-coletor é polarizada reversamente. Valores típicos de são de a a 25 º C, e sua magnitude dobra a cada 8 º C. Como consequência , essa corrente de fuga pode se tornar bastante significante à altas temperaturas. Como exemplo, considere a corrente de base: (2.17) Se é calculado a partir de (16), substituindo na equação (2.17): (2.18) E como: (2.19)
  • 31. 18 Substituindo (19) em (18), obtêm-se: (2.20) Desde que os dois termos em (20) tenham sinais opostos, o efeito da corrente de fuga é diminuir a magnitude da corrente de base externa em um dado valor da corrente de coletor. 2.3.5. Tensão de Ruptura Qualquer junção pn reversamente polarizada tem um pequeno fluxo de corrente fluindo no caminho inverso devido a presença de portadores minoritários nas proximidades da região de depleção. Eles estão varrendo a região de depleção do campo e contribuindo para a corrente de fuga da junção. Na media que a tensão de polarização inversa na junção cresce, cresce também o potencial elétrico existente na região de depleção aumenta, esse campo é aumentado de modo que os portadores adquirem quantidades significativamente grandes de energia, fazendo com que ocorram colisões com átomos de silício. Isso é chamado de efeito avalanche, o que leva um aumento repentino na corrente de fuga. Um efeito similar ocorre nas junções base-emissor e base-coletor de um transistor, e esse efeito limita a máxima tensão que pode ser aplicada ao dispositivo. 2.3.6. Dependência do ganho de corrente do transistor nas condições de operação Embora a maioria das analises de primeira ordem de circuitos integrados fazerem a suposição de que é constante, esse parâmetro na verdade depende das condições de operação do transistor. Basicamente varia com a temperatura e com a corrente de coletor. Esta variação é ilustrada na figura 5, onde é mostrada a curva de versus a três temperaturas diferentes para um transistor npn.
  • 32. 19 Figura 5 – Curva de versus para um transistor npn com 6µ de área de emissor. Fonte: GRAY, P. R. At all. Analysis and Design of Analog Integrated Circuits. 4. Ed. p. 24. New York: Editora John Willey and Sons, 2001. A região I é chamada de região de baixa corrente, onde diminui à medida que diminui. A região II é a região de media corrente, onde é aproximadamente constante. A região III é a de alta corrente, onde diminui enquanto aumenta. 2.4. MOSFET O transistor MOSFET (Metal Oxide Semiconductor Field Effect Transistor) foi fabricado pela primeira vez em 1960, um ano após a era dos circuitos integrados. Ele tem se tornado o transistor dominante na área de circuitos digitais integrados, pois permitem uma utilização em alta densidade e uma baixa dissipação de energia. Possui uma vasta aplicação nos circuitos integrados em larga escala, na qual é empregada a tecnologia CMOS (Complementar Metal-Oxide Semicondutor) (Baruqui, 2011). 2.4.1. Caracteristicas gerais de um dispositivo MOS Como o próprio nome já diz, o MOSFET nada mais é do que um dispositivo de três terminais onde seu controle é baseado no campo elétrico estabelecido pela tensão aplicada em seu terminal de controle. Comparado com o TBJ, os transistores MOS podem ser fabricados em tamanhos muito reduzidos e menores (ocupando uma área
  • 33. 20 muito menor da pastilha de circuito integrado), possuem um processo de fabricação mais simples e um consumo de energia muito inferior. Para o projeto de circuitos integrados, utiliza-se a simbologia mostrada na Figura 6: Figura 6 – Simbologia do MOSFET tipo enriquecimento Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 142. New York: Oxford University Press, 2004. Sua função é, assim como o TBJ, através de uma tensão aplicada em um de seus terminais, controlar uma corrente através do dispositivo. Seus três terminais são análogos ao TBJ, sendo a fonte (F) análoga ao emissor, o dreno (D) ao coletor, e a porta (G) à base. Seu símbolo esquemático é mostrado na Figura 7, com a representação da corrente de dreno , que é a corrente a ser controlada, e a tensão de porta : Figura 7 – Símbolo esquemático de um MOSFET e seus terminais Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 142 New York: Oxford University Press, 2004. A fabricação do MOSFET de canal n é feita em um substrato tipo p, que é basicamente uma lâmina de silício na qual oferece apoio físico para o dispositivo. Duas regiões fortemente dopadas do tipo n são difundidas no substrato (corpo do dispositivo).
  • 34. 21 Uma região é denominada de fonte e a outra de dreno. Um óxido isolante (normalmente o dióxido de silício) é acrescido acima do substrato, entre a fonte e o dreno. Por cima do óxido, é depositada uma camada de metal, que irá formar a porta do dispositivo. Terminais metálicos saem de cada parte do dispositivo: terminal do substrato ou corpo (B), terminal da fonte (S), terminal da porta (G) e terminal de dreno (D) (SEDRA; SMITH, 2004). A seção transversal de um transistor de canal-n do tipo enriquecimento MOS (NMOS) é mostrado na Figura 8. Regiões fortemente dopadas tipo-n fonte e dreno são fabricados em um substrato tipo p (muitas vezes chamado de corpo). Uma fina camada de dióxido de silício é acrescida ao longo do material e o material condutor da porta (silício policristalino de metal) cobre o óxido entre fonte e dreno. Em operação, a tensão porta-fonte modifica a condutância da região sob a porta, permitindo que a tensão de porta possa controlar o fluxo de corrente entre fonte e dreno. Esse controle pode ser usado para fornecer ganho de circuitos analógicos e características de comutação de circuitos digitais. Figura 8 – Estrutura NMOS tipo enriquecimento. Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 142 New York: Oxford University Press, 2004. 2.4.2. O Mosfet tipo enriquecimento O modo tipo enriquecimento do dispositivo NMOS da Figura 9 mostra uma condução existente entre fonte e dreno somente quando um canal do tipo n existe sob a
  • 35. 22 porta. Esta observação é a origem da designação canal-n. O modo de enriquecimento refere-se ao fato de que nenhuma condução ocorre para . Assim, o canal deve ser enriquecido de modo a conduzir. A Figura 9 mostra sem a aplicação de uma tensão na porta do dispositivo, ou seja, , o dispositivo se comportará como dois diodos em serie e em oposição, resultando em uma resistência extremamente alta entre o dreno e a fonte, da ordem de . Agora considere o substrato, a fonte e o dreno aterrados com uma tensão positiva aplicada na porta, como mostrado na Figura 9. A porta e o substrato formam as placas de um capacitor com o dióxido de silício sendo o dielétrico. Cargas positivas são acumuladas na porta e cargas negativas no substrato. Inicialmente, as cargas negativas no substrato tipo-p são identificadas pelo aparecimento de uma região de depleção, mostrada na Figura 9. Figura 9 – Dispositivo NMOS ideal com tensão porta fonte positiva aplicada, mostrando região de depleção e canal induzido. Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 142 New York: Oxford University Press, 2004. Quando o potencial na superfície do silício atinge um valor crítico (igual ao dobro do nível de Fermini), um fenômeno conhecido como inversão ocorre. Depois deste valor crítico, novos aumentos da tensão na porta não produzem mais mudanças na
  • 36. 23 largura da camada de depleção, mas ao invés disso induzem uma fina camada de elétrons na camada de depleção, especificamente na superfície da camada do silício e diretamente sob o óxido, esta fina camada de elétrons induzidos cria um canal condutor ligando a região da fonte com o dreno. A tensão de porta fonte necessária para que essa inversão ocorra é chamada de tensão de threshold (limiar) . Quanto maior for o valor de , acima de , maior será a indução de cargas negativas no canal e, portanto maior a condutividade do canal, isto é, a condutividade do canal será proporcional a . Se para o mesmo transistor for aplicada uma pequena tensão entre dreno e fonte, aparecerá uma corrente entre dreno e fonte. Essa corrente será proporcional à tensão . Nessa região o transistor se comportará como uma resistência de valor constante. Se agora formos aumentando , a corrente de dreno aumentará, mas a extremidade do canal próximo ao dreno começa a ficar mais estreita, isso por que a tensão entre porta e o canal na extremidade próxima ao dreno diminui. Se = – o canal se fechará totalmente próximo ao dreno. Se a tensão de dreno continuar a aumentar o ponto de estreitamento se deslocará no sentido da fonte. Com a resistência tornando-se muito alta o dispositivo passa a ter comportamento de uma fonte de corrente ( começa a ficar constante). A partir disso, pode-se perceber que a operação do MOSFET pode ser dividida em três regiões, dependendo da tensão aplicada em seus terminais:  Região de corte: ocorre quando , ou seja, não existem elétrons livres para a criação do canal n, por isso não há corrente. O transistor permanece desligado, não havendo condução entre dreno e fonte. Diz-se que o transistor está cortado.  Região de Triodo ou região linear (que seria o MOSFET operando como uma chave): ocorre quando e . O transistor é ligado, e o canal é criado, permitindo fluxo de corrente entre o dreno e a fonte. O MOSFET opera como uma resistência controlada pela tensão na porta, e sua corrente de dreno para fonte é dada por: (2.21) Onde K' é um parâmetro do MOSFET dado por: (2.22)
  • 37. 24  Região de saturação (região utilizada para amplificação): ocorre quando, alem de se formar o canal, , tem-se também a condição , ou seja, existe uma tensão maior entre o dreno e a fonte. Por essa razão, o canal n é deformado, e consequentemente parte dele é desligado. Mesmo desligado, os elétrons ainda conseguem fluir de um lado pro outro, por que eles são acelerados nessa região onde ele é desligado. A criação dessa região é chamada de “pinch-off”. A diferença é que a corrente de dreno é agora relativamente independente da tensão de dreno (para uma primeira aproximação) e é controlada somente pela tensão da porta, de tal forma que tem-se a equação: (2.23) OBS: As equações dadas até agora se referem ao transistor NMOS, sendo que para o transistor PMOS as equações são idênticas, lembrando-se que é negativo e as inequações são invertidas. 2.4.3. Curvas Características de Operação A operação do transistor na saturação é mostrada na Figura 10, onde uma tensão polariza o circuito, e uma fonte de de valor tal forma que ocorre a deformação do canal n, ou seja, ocorre o estrangulamento (pinch-off) do canal. Uma consideração importante nessa análise é o fato da corrente de porta ser praticamente nula, devido ao terminal de porta estar eletricamente isolado do transistor (devido ao óxido de silício), ou seja, a corrente do dreno é praticamente igual a corrente da fonte. Logo: (2.24) (2.25)
  • 38. 25 Figura 10 – O transistor NMOS operando na saturação com o canal estrangulado Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 145 New York: Oxford University Press, 2004 Um gráfico da curva de - é mostrado na Figura 11, parametrizado por . Pode-se observar que quando o tem um valor menor que a tensão de threshold, , a corrente é nula, portanto o dispositivo está na região de corte. À medida que a tensão é incrementada, fica evidente o aumento da corrente . Entretanto, para fluir alguma corrente entre o dreno e a fonte, é necessário também uma tensão . A partir do momento que aumenta, a corrente cresce, a primeiro momento, linearmente na região de triodo. Conforme aumenta, a característica quadrática fica cada vez mais evidente, até que a taxa de corrente cai a um ponto que é o limite entre a região de triodo e a região de saturação.
  • 39. 26 Figura 11 – Característica - parametrizado por Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 151 New York: Oxford University Press, 2004 Observa-se do gráfico que a corrente de dreno possui uma leve dependência linear com na região de saturação. Essa dependência pode ser considerada incorporando-se um fator de na equação de , onde , como se segue: (2.26) Onde λ é um parâmetro do MOSFET. VA é uma tensão positiva semelhante a tensão Early do TBJ, como mostra a figura 12:
  • 40. 27 Figura 12 – Gráfico que mostra o comportamento do parâmetro Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 154 New York: Oxford University Press, 2004 Figura 13 – Característica - do transistor Fonte: SEDRA, A. S.; SMITH, K. C. Microelectronic Circuits. 5. Ed. p. 152 New York: Oxford University Press, 2004 Fica fácil observar a partir do gráfico da Figura 13 que a partir do ponto existe a corrente . Um menor que não existe corrente, e a partir desse ponto o transistor começa a conduzir.
  • 41. 28 2.5. AMPLIFICADOR OPERACIONAL 2.5.1. Características Gerais Amplificadores Operacionais (amp ops) são circuitos amplificadores que possuem uma entrada diferencial e seu ganho na saída é proporcional a sua tensão aplicada na entrada. Um amplificador operacional ideal com uma única saída possui uma entrada diferencial, ganho de tensão infinita, resistência de entrada infinita, e resistência de saída nula. Enquanto os atuais amplificadores operacionais não têm essas características ideais, seu desempenho é suficientemente satisfatório para que o comportamento do circuito se aproxime de um ideal. 2.5.2. Aplicações com Amplificadores Operacionais 2.5.2.1. Realimentação A função da rede de realimentação é diminuir a sensibilidade da saída em função da variação dos parâmetros de entrada. Um amplificador com realimentação é mostrado na figura 14, o bloco ɑ é chamado de controlador, enquanto que o bloco f é chamado de realimentação ou retroação. O ganho de um amplificador básico quando a realimentação não esta presente é chamado de ganho de malha aberta, ɑ, do amplificador. Na figura observa-se um sistema com realimentação negativa, ou seja, o sinal de saída é subtraído do sinal de entrada. O ganho do sistema quando a rede de realimentação esta presente é chamado de ganho de malha fechada. Figura 14 – Amplificador com realimentação Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 406 New York: Ed. John Willey and Sons
  • 42. 29 A análise matemática deste circuito é mostrada abaixo: (2.27) A equação deste circuito é dada encontrando-se o quociente do sinal de saída pelo sinal de entrada, logo: (2.28) Onde ɑf é chamado ganho de malha. 2.5.2.2. Amplificador Inversor Na figura 15 abaixo tem-se um amplificador no modo inversor, onde consideramos para análise prática um amplificador ideal, ou seja, com impedância de entrada infinita e impedância de saída nula. Figura 15 – Amplificador no modo inversor Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 406 New York: Ed. John Willey and Sons Aplicando as leis de kirchhoff no circuito dado, encontra-se sua equação característica, dada por: (2.29)
  • 43. 30 O que mostra que devido as suas características o ganho de malha fechada é função das impedâncias de entrada e saída do circuito. 2.5.2.3. O amplificador não-inversor A configuração de um amplificador não-inversor é dada pela figura 16: Figura 16 – Amplificador Não-Inversor Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 406 New York: Ed. John Willey and Sons Novamente equacionando o circuito a partir das leis de kirchhoff, e assumindo que não existe corrente de entrada devido à alta impedância, e também que geralmente >> , tem-se que: (2.30) 2.5.2.4. Amplificador Diferencial O amplificador diferencial é usado de modo que haja uma diferença de potencial entre as duas tensões. O circuito é mostrado na figura 17, onde entre os resistores e formam um divisor de tensão:
  • 44. 31 Figura 17 – Amplificador Diferencial Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 409 New York: Ed. John Willey and Sons De maneira análoga aos circuitos vistos anteriormente, tomando-se I1 = I2, Ii1=0 e >> , tem-se: (2.31) 2.5.3. Desvios em Amplificadores Operacionais reais Amp ops reais possuem diferenças de comportamentos significativas se comparados aos amp ops reais existentes hoje. Os principais efeitos destes desvios são para limitar a faixa de frequência dos sinais que podem ser precisamente amplificados, para colocar um limite inferior na magnitude dos sinais DC que podem ser detectados, e para colocar um limite superior nas magnitudes de impedância dos elementos passivos que podem ser usados na rede de realimentação do amplificador. 2.5.3.1. Corrente de Polarização de Entrada O estagio de entrada de um amp op a transistor bipolar é mostrado na figura 18 abaixo:
  • 45. 32 Figura 18 – Estágio de entrada típico de um Amp Op Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 420 New York: Ed. John Willey and Sons A corrente de polarização é definida como a média aritmética das correntes de base dos transistores Q1 e Q2: (2.32) 2.5.3.2. Corrente Offset de Entrada Para o par emissor-acoplado mostrado na figura 19, as duas correntes de polarização na entrada apenas serão iguais se os dois transistores tiverem o mesmo ganho beta, ou seja, se os dispositivos forem idênticos nos aspectos construtivos. Porem mesmo com estes requisitos sendo atendidos, eles ainda assim apresentam um pequeno erro percentual. Sendo assim, o desempenho deste amp op é caracterizado por uma corrente offset de entrada, definida como (2.33) Fazendo as mesmas considerações anteriores para o amplificador diferencial, considerando V1=V2 =0, tem-se: (2.34) Esta equação mostra que o erro na tensão de saída DC é proporcional ao tanto a corrente offset de entrada quanto a resistência de realimentação sob essas condições. O
  • 46. 33 ponto chave é que o tamanho da resistência de realimentação é limitada pela máxima corrente de offset que pode surgir e pelo erro permitido na pratica da tensão dc de saída. 2.5.3.3. Tensão offset de Entrada De acordo com o que foi visto anteriormente, devido às discrepâncias dos resultados da tensão offset de entrada diferente de zero, pode-se gerar tensões de erro na saída. Essa tensão de offset na entrada é definida de modo que gere uma tensão nula na saída. 2.5.3.4. Taxa de Rejeição de Modo Comum (CMRR) Esta taxa de Rejeição de Modo Comum é definida como o quociente entre o ganho em modo comum e o ganho do amplificador em modo diferencial. Logo: (2.35) Do ponto de vista de aplicações, a taxa de rejeição de modo comum pode ser vista como a mudança na tensão offset de entrada que resulta em uma mudança unitária na tensão de entrada em modo comum. 2.5.3.5. Resistência de Entrada Como foi visto anteriormente, nos amp ops ideais a resistência de entrada é considerada infinita, porem nos circuitos reais, os amp ops a transistor bipolar apresentam resistência de entrada da ordem de 100kΩ a 1MΩ. Contudo, o ganho de tensão é grande o bastante para que a resistência de entrada tenha efeitos mínimos no desempenho do circuito. 2.5.3.6. Resistência de Saída Amplificadores operacionais a transistor bipolar apresentam valores de resistência de saída na faixa de 40 Ω a 100Ω. Embora sejam valores não nulos, ela não afeta fortemente o desempenho do sistema a malha fechada, exceto sobre carga capacitiva grande e amp ops de potência
  • 47. 34 2.6. O CIRCUITO DE REFERÊNCIA BAND-GAP Fontes de referência são utilizadas por aplicações que necessitam de um valor de referência externo para operarem de forma correta. Referências de tensão são importantes em aplicações de precisão que necessitam de uma tensão que não se altere. Elas devem fornecer tensões com variações aceitáveis, que dependem de cada tipo de aplicação, para variações de fatores como tensão de alimentação, temperatura, tempo de operação, etc. As principais implementações de fontes de referência em tecnologia CMOS eram baseadas em diferenças de tensões gate/source no modo enriquecimento e depleção de transistores MOS. Todavia, apesar do baixo coeficiente de temperatura obtido, os circuitos se perdiam no controle da estabilidade da saída, já que esse fator é diretamente dependente dos níveis de dopagem nos passos de implementação. No sentido de melhorar a qualidade das fontes, a fonte de tensão de referência bandgap, inicialmente proposta por Widlar, tem sido amplamente empregada em tecnologia CMOS que, graças a possibilidade de se implementar transistores bipolares por meio de estruturas parasitas, tem sofrido grandes avanços e apresentados ótimos resultados. Contudo, existem fatores que devem ser conhecidos, que prejudicam a estabilidade da referência bandgap, necessitando de métodos e técnicas adequadas de projeto para minimiza-los. Nesta seção, será apresentado o principio de compensação térmica da fonte de tensão de referência bandgap. Desenvolver-se-á as equações que regem o funcionamento do circuito, bem com as considerações técnicas para sua implementação. 2.6.1. Fundamentos A ideia básica por trás de um circuito bandgap, largamente utilizado em tensões de referência, reside no fato de que este circuito trabalha com dois elementos que se comportam de forma inversa com a temperatura. O primeiro é o transistor bipolar, para o qual a tensão base-emissor decresce quase que linearmente com o aumento da temperatura absoluta, que é uma tensão CTAT (Complementary-To-Absolute Temperature), como é mostrado no gráfico abaixo. Essa referência possui um coeficiente negativo de temperatura, geralmente da ordem de . Para
  • 48. 35 compensar isso, soma-se a esta tensão outra tensão com coeficiente térmico positivo, para o qual a tensão aumenta com a o aumento da temperatura absoluta. Esta tensão pode ser obtida pela diferença de tensão de duas junções pn de dois transistores bipolares, submetidas a diferentes densidades de corrente, que é uma tensão proporcional à temperatura absoluta (PTAT – do inglês, Proportional-To- Absolute Temperature) através da tensão . onde: (2.36) E onde: Constante de Boltzmann ( ) Temperatura Absoluta (K) Carga do elétron ( A tensão de referência ou de saída é obtida somando-se as tensões base-emissor com a variação de com a temperatura, a qual é função da tensão térmica , multiplicada por um coeficiente M que garante que a saída seja independente da temperatura. O circuito recebe o nome de bandgap por que ajustando o coeficiente de multiplicação M pode-se obter um coeficiente de temperatura próximo a 0 ppm/ º C, e neste caso a tensão de saída atingida fica próxima da tensão do transistor, chamada de tensão de bandgap, de aproximadamente 1,205 V, que é a diferença de potencial da banda proibida do silício extrapolada para 0 K.
  • 49. 36 Figura 19 – Circuito de referência bandgap hipotético Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 318 New York: Ed. John Willey and Sons No sentido de compreender melhor o princípio de funcionamento de tensão de referência bandgap, equacionar-se-á a dependência de e com a temperatura, bem com a soma dos dois termos, que resulta num nível DC de tensão praticamente invariável com a temperatura. Provar-se-á, matematicamente, que esse valor é aproximadamente a tensão de bandgap do silício. Considerando o circuito da Figura 21, tem-se que a tensão de referência ou tensão de saída, , é dada por: (2.37) Para determinar o valor requerido de M, deve-se antes determinar o coeficiente de temperatura de . Seja a densidade de corrente de coletor de um transistor bipolar dada por: (2.38)
  • 50. 37 Onde, é a densidade de corrente no coletor, é a constante de difusão média dos elétrons, é a largura da base e é a concentração de equilíbrio de elétrons na base, que é expressa por: (2.39) onde: (2.40) sendo, a tensão de bandgap do Si e D uma constante independente da temperatura. Combinando as equações (36), (37) e (38), pode-se representar a corrente de coletor por: (2.41) Ou ainda, agrupando os termos constantes em uma única constante C: (2.42) O coeficiente de temperatura, γ, é ligeiramente diferente de 3, se considerarmos a dependência com a temperatura do termo . A relação de com a temperatura pode, então, ser deduzida a partir de (41): (2.43) Considerando à temperatura ambiente, tem-se: (2.44) Assim, pode-se determinar o valor da razão e desta última, a equação de onde se leva em consideração a variação da densidade de corrente e consequentemente a variação de temperatura associada a este termo: (2.45) A equação (2.45) pode ser rearranjada para obtermos :
  • 51. 38 (2.46) Derivando a equação (2.46) com relação à temperatura, fazendo e considerando que tem uma dependência exponencial com a temperatura dada por α, pode-se representar a variação de em temperatura por: (2.47) Para a temperatura de 300K, o coeficiente de temperatura de , equação (2.47) e de são aproximadamente de e , respectivamente. Observando a equação (2.35), se utilizarmos um valor adequado para a constante M, pode-se compensar as diferenças dos valores absolutos dos coeficientes térmicos de e , de tal forma a anular o coeficiente térmico de . Nestas condições, o coeficiente de temperatura de para dois transistores bipolares idênticos, com diferentes densidades de corrente, pode ser obtido por meio da derivada em relação à temperatura da equação (2.48), obtida através da equação (2.43). Assim, ter-se-ia: (2.48) E sua derivada fica: (2.49) No sentido de se conseguir o coeficiente de temperatura igual à zero para uma determinada temperatura , adiciona-se o coeficiente de ao coeficiente de , dados pelas equações (47) e (49) e iguala-se à zero o resultado dessa operação. Isso é mostrado pela equação a seguir: (2.50) Onde é uma constante do circuito que deverá ser ajustada para fazer a equação (2.50) ser válida. Definindo e substituindo na equação (2.50):
  • 52. 39 (2.51) E de (50) encontramos o valor de K: (2.52) Ver-se-á mais adiante que o termo K é de total controle do projetista, que pode ajusta-lo de modo a compensar o coeficiente de temperatura. Rearranjando a equação (2.52), obtem-se o termo dependente da temperatura que faz parte da equação de dada pela equação (2.36), que é: (2.53) Note que o termo K da equação (2.53) é a mesma constante da equação (2.36), ou seja, K=M. Como essa constante força o coeficiente zero de temperatura da tensão , pode-se substituir a equação (2.53) em (2.37) para uma determinada temperatura , onde obtêm-se: (2.54) Por exemplo, para se alcançar um coeficiente de temperatura igual à zero em 27°C, assumindo que e , e que a tensão de bandgap do silício é tem-se: (2.55) Portanto, a tensão de referência para um coeficiente de temperatura igual à zero é aproximadamente a tensão de bandgap do silício, daí o nome dado ao circuito. Sendo , γ e α constantes (praticamente não dependentes da temperatura), derivando a equação (2.54) em relação à temperatura, o coeficiente da tensão é, finalmente, expresso por: (2.56) Como o segundo termo da expressão (56) é aproximadamente nulo, concluímos que houve uma compensação em temperatura para o nível DC de , salvo que o
  • 53. 40 coeficiente de temperatura da tensão bandgap não é exatamente nulo. Finalmente, pode-se escrever que: (2.57) O nome atribuído da fonte de referência bandgap é decorrência do principio que rege o funcionamento do mesmo de acordo com o que foi exposto acima, ou seja, no coeficiente de temperatura da tensão de bandgap do silício. Uma típica familia de gráficos da variação da tensão de referência em relação a temperatura é mostrada na Figura 20. A inclinação de cada curva é zero para . Quando , a inclinação é positiva devido ao argumento do logaritmo em (35) ser maior que 1. Similarmente, a inclinação é negativa para . Figura 20 – Variação da tensão de saída do bandgap com a temperatura Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 321 New York: Ed. John Willey and Sons Como mostrado anteriormente, o coeficiente de temperatura é zero somente a uma temperatura . Esse resultado advém de uma tensão térmica ponderada para uma tensão base-emissor, como mostrado na Figura 199. Uma vez que o coeficiente de temperatura de uma tensão base-emissor não é exatamente constante, o ganho M pode ser escolhido de modo a levar o coeficiente de temperatura da saída à zero apenas em
  • 54. 41 uma temperatura. Em outras palavras, o circuito gerador de tensão térmica (ou seja, uma tensão com coeficiente térmico positivo) é usado para cancelar a dependência linear que a tensão base-emissor tem com a temperatura. 2.6.2. Equacionamento do circuito a ser projetado Circuitos de referência bandgap também podem ser implementados usando dispositivos bipolares inerentes à tecnologia CMOS, utilizando-se, por exemplo, transistores npn, como mostrado na Figura 21. A tensão offset de entrada foi incluída no circuito (a tensão de offset de entrada é definida como a tensão que deve ser aplicada a uma das entradas para levar a saída à zero). Transistores Q1 e Q2 são assumidos como tendo áreas base-emissor de AE1 e AE2 , respectivamente. Se assumirmos que a tensão de offset é zero, então, a tensão através de R3 é: (2.58) Entretanto, o amp op força a seguinte relação no circuito: (2.59) A tensão de referência da Figura 21 pode ser escrito como: (2.60) Substituindo a equação (2.58) na equação (2.57) e o resultado na equação (2.58), tem-se: (2.61) Essa equação mostra, claramente, que o circuito obedece ao principio de referência bandgap. Dessa forma, comparando a equação (2.60) com a equação (2.37), pode-se definir a constante M como: (2.62)
  • 55. 42 Portanto, a constante M é definida em termos dos resistores e das áreas base- emissor dos transistores. Isso pode ser mostrado para uma tensão offset de entrada diferente de zero. Logo, a equação (2.61) se torna: (2.63) Aqui fica claro que a tensão de offset de entrada deveria ser, na prática, insignificante e independente da temperatura a fim de não interferir no desempenho e danificar a tensão de referência de saída [ALLEN, 157]. Pode-se observar, pela equação (2.62), que a tensão introduz um desvio em , principalmente pelo segundo termo da expressão, sendo o terceiro praticamente desprezível. Esses termos não podem ser eliminados, já que a tensão é inerente ao processo CMOS. Todavia, sua influência pode ser minimizada, fazendo a relação mínima. Isso mostra que o circuito é bastante sensível ao offset do amplificador operacional, que também apresenta um pequeno, mas não desprezível, coeficiente térmico. Figura 21 – Circuito de Referência bandgap em tecnologia CMOS Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 324 New York: Ed. John Willey and Sons
  • 56. 43 2.6.3. Minimizando o ganho e maximizando a relação de tensão base- emissor Quando um ganho é apurado em uma temperatura para ajustar a saída do bandgap para uma tensão alvo desejada, variações de offset no amp op causam variações no coeficiente de temperatura na saída. Na prática, a tensão de offset do amp op é geralmente a maior fonte de coeficientes de temperatura diferente de zero [GRAY, 325]. Portanto, minimizando o ganho minimiza-se a variação do coeficiente de temperatura na saída, o que pode ser obtido maximizando o termo , que geralmente é feito aplicando-se uma corrente muito grande em um pequeno transistor, ou uma corrente muito pequena em um transistor de grande porte. Este processo é mostrado na figura abaixo. Ignorando a corrente de base: (2.64) Figura 22 – Circuito que aumenta aumentando Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 325 New York: Ed. John Willey and Sons A equação (2.47) mostra que a maximização do produto das relações maximiza . Na figura 22, a relação é enfatizada desenhando o símbolo da fonte de corrente sendo maior que . Similarmente, a área de é maior que a área de para representar . Na pratica, estas relações são ajustadas de modo que
  • 57. 44 cada uma seja igual a 10, o que resulta em um (em temperatura ambiente). Devido à função logarítmica comprimir seu argumento, para dobrar é necessário aumentar as relações dentro do argumento em um fator de 100. Porem para isso seria necessário aumentar também em um fator de 100 a área dos transistores. Para superar esta limitação, dois circuitos idênticos são colocados em cascata, de modo que para dobrar deve-se ter . Mais uma vez ignorando as correntes de base, tem-se: (2.65) Figura 23 – dois seguidores de emissor idênticos em cascata. Fonte: GRAY, P. R.; MEYER, R. G.; HURST, P. J.; LEWIS, S. H. Analysis and Design of Analog Integrated Circuits. 4. ed. p. 326 New York: Ed. John Willey and Sons Assim, vê-se que dois seguidores de emissor idênticos em cascata conseguem dobrar o valor de , enquanto que um único requer que dobre-se a sua área.