Exerc livro fisica3

17.309 visualizações

Publicada em

0 comentários
4 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
17.309
No SlideShare
0
A partir de incorporações
0
Número de incorporações
8
Ações
Compartilhamentos
0
Downloads
341
Comentários
0
Gostaram
4
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Exerc livro fisica3

  1. 1. Gualter José Biscuola Newton Villas Bôas Ricardo Helou Doca ELETRICIDADE FÍSICA MODERNA ANÁLISE DIMENSIONALManual do Professor
  2. 2. Gualter José BiscuolaEngenheiro eletrônico formado pela Escola Politécnica da USPLicenciado em FísicaDiretor e professor de Física do Colégio Leonardo da Vinci de Jundiaí (SP)Newton Villas BôasLicenciado em Física pelo Instituto de Física da USPLicenciado em Ciências e PedagogiaProfessor de Física do Colégio Objetivo de São PauloDiretor do Colégio Objetivo NHN de Passos, São Sebastião do Paraíso e Guaxupé (MG)Ricardo Helou DocaEngenheiro eletrônico formado pela FEI (SP)Licenciado em MatemáticaProfessor de Física do Colégio Objetivo de São PauloDiretor do Colégio Objetivo NHN de Passos, São Sebastião do Paraíso e Guaxupé (MG) AUTORIA Parte I: Tópicos 1 a 4 Gualter Parte II: Tópico 5 Parte III: Tópico 1 Tópicos de Física 1 Parte I: Tópico 5 Helou Parte II: Tópicos 1 a 4 e 6 a 8 Parte III: Tópico 2 Parte I Newton Parte II: Tópico 2 Tópicos de Física 2 Parte II: Tópicos 1 e 3 Gualter Parte III: Tópico 3 Helou Parte III: Tópicos 1, 2, 4 e 5 Newton Parte I Tópicos de Física 3 Gualter Partes II, III e IV Helou Parte V 2007Av. Marquês de São Vicente, 1697 – CEP 01139-904 – Barra Funda – SPPABX: (11) 3613-3000 – Fax: (11) 3611-3308 – Televendas: (11) 3613-3344 – Fax Vendas: (11) 3611-3268Atendimento ao Professor: (11) 3613-3030 e 0800-117875 – atendprof.didatico@editorasaraiva.com.brwww.editorasaraiva.com.br
  3. 3. Ao professor 4 Tópico 2 • O que não pode faltar 69Objetivos fundamentais da obra 5 Associação de resistores e • Subsídios ao Descubra mais 70 medidas elétricas 42 • Resolução dos exercíciosComposição da obra 5 • Objetivos do Tópico 42 propostos 70Metodologia utilizada 5 • O que não pode faltar 42 Tópico 4 • Algo mais 42Instrumentos disponíveis na obra 6 Indução eletromagnética 72 • Resolução dos exercíciosEstratégias de aplicação da obra 6 propostos 44 • Objetivos do Tópico 72 • O que não pode faltar 73A avaliação 7 Tópico 3 • Algo mais 73Considerações didáticas e Circuitos elétricos 47 • Subsídios ao Descubra mais 73 • Objetivos do Tópico 47resolução de exercícios 8 • Resolução dos exercícios • O que não pode faltar 47 propostos 76Parte I - ELETROSTÁTICA 8 • Algo mais 48 • Subsídios ao Descubra mais 48 Parte IV - FÍSICA MODERNA 78Tópico 1 • Resolução de exercíciosCargas Elétricas 8 propostos 49 Tópico 1• Objetivo do Tópico 8 Noções de Física Quântica 78• O que não pode faltar 8 Tópico 4 • Objetivos do Tópico 78• Algo mais 8 Capacitores 57 • O que não pode faltar 79• Subsídios ao Descubra mais 9 • Objetivos do Tópico 57 • Algo mais 79• Resolução dos exercícios • O que não pode faltar 57 • Subsídios ao Descubra mais 79 propostos 10 • Algo mais 57 • Subsídios ao Descubra mais 58 • Resolução dos exercíciosTópico 2 propostos 86 • Resolução dos exercíciosCampo elétrico 17 propostos 59 Tópico 2• Objetivos do Tópico 17• O que não pode faltar 17 Parte III - ELETROMAGNETISMO 61 Noções de Teoria da Relatividade 86• Algo mais 17 • Objetivos do Tópico 86 Tópico 1 • O que não pode faltar 87• Subsídios ao Descubra mais 19 O campo magnético e sua influência • Algo mais 87• Resolução dos exercícios propostos 20 sobre cargas elétricas 61 • Subsídios ao Descubra mais 87 • Objetivos do Tópico 61Tópico 3 • Resolução dos exercícios • O que não pode faltar 61 propostos 91Potencial elétrico 26 • Algo mais 61• Objetivos do Tópico 26 • Subsídios ao Descubra mais 61 Tópico 3• O que não pode faltar 27 • Resolução dos exercícios Comportamento ondulatório• Algo mais 27 propostos 62 da matéria 91• Subsídios ao Descubra mais 29 • Objetivos do Tópico 91 Tópico 2• Resolução dos exercícios • O que não pode faltar 91 propostos 30 A origem do campo magnético 64 • Objetivos do Tópico 64 • Resolução dos exercíciosParte II - ELETRODINÂMICA 34 • O que não pode faltar 64 propostos 92 • Algo mais 65Tópico 1 Parte V - ANÁLISE DIMENSIONAL 92 • Subsídios ao Descubra mais 65Corrente elétrica e resistores 34 • Objetivos 92 • Resolução dos exercícios• Objetivos do Tópico 34 • O que não pode faltar 92 propostos 66• O que não pode faltar 34 • Algo mais 92• Algo mais 34 Tópico 3 • Resolução dos exercícios• Subsídios ao Descubra mais 35 Força magnética sobre propostos 93• Resolução dos exercícios correntes elétricas 69 propostos 40 • Objetivos do Tópico 69 Bibliografia 96
  4. 4. 4 TÓPICOS DE FÍSICA 3Ao professor Esta é uma obra viva, em permanente processo de são mereceu elogios na última reformulação, tambémaprimoramento. Trata-se de um trabalho versátil, que foi alvo de aprimoramento e continua propondo pro-pode se adequar a cursos de diferentes enfoques, desde blemas mais elaborados e que exigem uma perfeitaaqueles com poucas aulas semanais até os mais abran- compreensão da teoria, além de boa capacidade degentes. O material é completo, tratando de todos os tópi- interpretação, abstração e raciocínio. Em todos oscos do programa de Física do Ensino Médio brasileiro. casos tomamos o cuidado de dispor as questões em O texto, embora apresentado em uma linguagem uma seqüência lógica e em ordem crescente de difi-rigorosa, não chega a ser axiomático nem excessiva- culdade. Procuramos dimensionar os dados de modomente formal. É, sim, objetivo e de fácil compreensão. a simplificar os cálculos, o que permitiu a valorizaçãoA simbologia adotada é a consagrada pela maioria dos dos pormenores conceituais.professores e dos livros sobre o assunto. Há, no entanto, vários pontos presentes no texto, Nesta quarta versão, ampliada e atualizada, le- como demonstrações e apêndices, que enriquecem ovamos em conta as competências almejadas nos Pa- material, mas que apresentam caráter facultativo, po-râmetros Curriculares Nacionais do Ensino Médio dendo ser ignorados, sem prejuízo, em cursos com(PCNEM), do Ministério da Educação e Cultura carga horária menor.(MEC), e estabelecemos estratégias diversas no sen- Este Manual contém considerações didáticas emtido de implementá-las. Aspectos como o incentivo torno do desenvolvimento de cada Tópico da obra eao aprendizado das ciências e suas tecnologias, o apresenta a resolução de boa parte dos exercícios pro-desenvolvimento de uma mentalidade indagadora e postos, que tem por base nossa vivência em sala decrítica, a intelecção e produção de textos, tabelas e aula, chamando a atenção para detalhes que julgamosgráficos tecnocientíficos foram trabalhados, valori- importantes. Mas o professor conta, ainda, com outroszando-se dois paradigmas notórios no ensino atual: materiais de apoio:contextualização e interdisciplinaridade, sugeridas de • Recursos na internet: a partir do início do ano le-maneira enfática na Lei de Diretrizes e Bases (LDB) tivo de 2008 este livro contará com recursos adi-e nos ditames do Exame Nacional do Ensino Médio cionais, disponíveis no site da Editora Saraiva(Enem). Para alcançarmos essas metas, apresentamos (www.saraivaeduca.com.br). No site o professorum grande número de recursos, como ilustrações, encontrará as resoluções de todos os exercícios pro-fotos legendadas, leituras e estímulos à experimenta- postos no livro do aluno.ção. Somaram-se a isso a nova seção Descubra mais • DVD-ROM: todo o conteúdo dos três CDs do livroe uma grande variedade de exercícios, característica do aluno mais as versões digitais dos três manuaismarcante do nosso trabalho. Essas ferramentas contri- do professor em formato PDF são apresentados parabuirão para criar motivações a mais, que despertarão o professor em formato DVD-ROM.a curiosidade e o interesse nos alunos. Procuramos, O gabarito dos exercícios (exceto as respostas àsdentro do possível, explorar situações práticas do dia- perguntas da seção Descubra mais) é apresentado nasa-dia. Incluímos também abordagens tecnológicas, páginas finais de cada volume.demonstrando que a Física é básica e essencial aos Temos consciência de que o assunto não foi es-padrões da vida moderna. Interfaces com outras disci- gotado, já que em Física há sempre o inusitado, aplinas, como Geografia, História, Química e Biologia, descoberta e o permanente desafio.além da correlata Matemática, foram estabelecidas, Por isso serão muito bem-vindas as críticas e su-procurando-se eliminar barreiras de conhecimento. gestões que visem ao aprimoramento deste trabalho. Tornamos ainda mais didáticas as tradicionais se-ções – Exercícios de Nível 1, Nível 2 e Nível 3. Aseção Para raciocinar um pouco mais, cuja inclu- Os autores
  5. 5. Manual do professor 5Objetivos fundamentais da obra cam as contribuições de Planck, Bohr, Einstein e De Broglie. Respaldados em nossa experiência em sala A obra visa transmitir ao estudante, de forma me- de aula, procuramos levar em consideração um as-tódica e organizada, os conhecimentos essenciais do pecto que consideramos fundamental: o fato de queprograma de Física do Ensino Médio, proporcionan- o livro destina-se a um público jovem, que almejado-lhe uma iniciação bem fundamentada nessa disci- ao longo dos três anos do Ensino Médio uma amplaplina, tanto nos aspectos conceituais como nas cor- utilização do raciocínio lógico-formal, maior poderrelações cotidianas, práticas e tecnológicas. Objetiva de abstração, compreensão e manuseio de dados ma-também oferecer a dose ideal de conteúdo compatível temáticos e tecnocientíficos. Para isso, definimoscom a faixa etária do público adolescente, o que favo- criteriosamente a abrangência – horizontalidade – darecerá a gradual formação de um espírito questionador obra. Selecionamos os itens a serem estudados res-e pragmático. Busca trabalhar as estruturas mentais peitando diversos fatores, como a citada evoluçãodo educando, exercitando a flexibilidade de raciocínio dos adolescentes, propostas contidas na LDB e nose o encadeamento sistemático de idéias. PCNEM, programas exigidos nos principais exames O trabalho evolui de modo a desenvolver habili- vestibulares, entre outros. Dimensionamos tambémdades para a compreensão de textos formais, decodi- o grau de formalismo da linguagem e a profundidadeficação de enunciados, tabelas e gráficos, bem como da tratativa – verticalidade.de representações esquemáticas. Propõe obter maior A obra, então, está assim dividida:eficiência na cognição de informações, melhor capa- • Volume 1: Mecânica;cidade de análise e síntese, pleno domínio – em nível • Volume 2: Termologia, Ondulatória e Óptica geo-de Ensino Médio – da simbologia e linguagem pró- métrica;prias da Matemática, imprescindíveis à formulação • Volume 3: Eletricidade, Física Moderna e Análisedas leis da Física e à descrição quantitativa de seus dimensional.fenômenos. Esses processos constituem na sua totali-dade as três grandes metas – competências – sugeri- Cada volume compõe-se de Partes que equivalemdas nos PCNEM para a área de Ciências da Natureza, aos grandes setores de interesse da Física. As Partes,Matemática e suas tecnologias, assim referidas nesse por sua vez, são constituídas de Tópicos, em que umdocumento: “Representação e comunicação; investi- determinado conteúdo é estudado teórica e operacio-gação e compreensão; contextualização”. nalmente, com detalhamento pleno dentro das preten- Há, ainda, que destacar o ideal de desenvolver sões do trabalho, tanto naquilo que ele envolve (hori-uma mentalidade social, em que os conhecimentos zontalidade) como na abordagem (verticalidade). Emoriundos da Física devam ser colocados à dispo- cada Tópico, a matéria foi subdividida em Blocos, quesição da comunidade e das pessoas para melhorar agregam itens relacionados entre si.seus recursos, condições de vida e padrões de con- Na apresentação de cada assunto, propusemos aforto. Também de maneira subalterna, o texto busca seqüência que consideramos ideal, a qual foi testadaformar uma consciência de preservação ambiental e aprimorada em sala de aula ao longo de nossas car-e de habitabilidade sustentável do planeta. Isso é reiras. Os Tópicos e os Blocos foram estruturados deprimordial até para o exercício pleno da cidadania modo a propiciar ao aluno um crescimento natural,na vida moderna. lógico e bem fundamentado. Por tudo isso, esta coleção procura qualificar-secomo um abrangente e vantajoso instrumento educa-cional de iniciação à Física. Metodologia utilizada A Física é uma disciplina que envolve concei-Composição da obra tos que, pela complexidade e abrangência, são de difícil assimilação. A conservação do momento Optamos por uma distribuição em que o con- linear (quantidade de movimento), por exemplo,teúdo é desenvolvido conforme sua evolução his- está presente em situações muito díspares, comotórica. Iniciamos a coleção abordando no Volume 1 em explosões e colisões, observáveis diretamen-a Mecânica, em que figuram os trabalhos de Aris- te ou por meio de instrumentos, e no decaimentotóteles, Arquimedes, Copérnico, Galileu, Kepler nuclear, inerente ao universo subatômico. Por isso,e Newton, e encerramos o Volume 3 apresentando a apresentação dos conceitos físicos deve mereceruma iniciação à Física Moderna, na qual se desta- primordialmente uma boa exposição teórica enri-
  6. 6. 6 TÓPICOS DE FÍSICA 3quecida com exemplos esclarecedores. Se houver perguntas provocativas que visam reforçar o con-disponibilidade, alguma experimentação também teúdo. Essas perguntas poderão ser objeto de debatescolaborará, já que elementos concretos aceleram em sala de aula ou temas de trabalhos de pesquisa emem muito a compreensão de concepções abstratas. que o aluno será direcionado à leitura de outros textos,Mas o que realmente faz a diferença é a operacio- inclusive àqueles disponíveis na internet. Em relaçãonalização, isto é a resolução do maior número pos- à rede mundial de computadores, os sites de busca po-sível de exercícios. É por meio deles que se tor- derão ser de grande valia, bastando nesse caso utilizarna viável complementar a teoria e estabelecer os palavras-chave adequadas.limites de sua utilização. Nesses exercícios há uma Em cada Tópico há quatro seções de exercíciosgrande diversidade de cenários, o que permite ao com diferentes níveis de dificuldade. Logo após aaluno contemplar um determinado conceito na sua apresentação da teoria de um Bloco aparecem osforma mais ampla, sedimentando as estruturas de Exercícios de Nível 1 e Nível 2. Na primeira seção,raciocínio que lhe facultarão, por analogia, resolver a matéria é cobrada de forma simples, apenas emproblemas correlatos envolvendo o mesmo princí- seus pontos essenciais. Na segunda, a abordagem épio ou lei. Por isso, o professor deve explicar bem mais ampla, valorizando os aspectos conceituais e aa teoria e fazer as possíveis demonstrações experi- descrição quantitativa dos fenômenos. Intercaladosmentais, dando ênfase especial à resolução de exer- aos Exercícios de Nível 1 e Nível 2, há os Exercí-cícios, pois só assim o aprendizado consolida-se. cios Resolvidos (ER), que servem de ponto de par- Deve-se notar que uma bem conduzida aula de tida para o encaminhamento de questões semelhan-resolução de exercícios, em que o professor comenta tes. No final dos Tópicos, estão os Exercícios dedetalhes adicionais vinculados a cada contexto acres- Nível 3, em sua maioria de vestibulares, nos quaiscentando novas informações, é agradável e estimulan- inserimos elementos de complementação. Esseste, além de estar totalmente de acordo com o ritmo de exercícios, selecionados criteriosamente dos examescaptação e assimilação de informações por parte da mais representativos, constituem uma boa fonte demente humana. Nessas ocasiões também ocorre o mo- tarefas para casa. E, por último, temos a seção Paramento supremo da educação como arte de transformar raciocinar um pouco mais, composta por proble-pessoas. Esse é um ambiente profícuo em que se cor- mas mais difíceis – “reserva especial dos autores” –,porifica o vínculo humanístico entre aluno e mestre, que podem ser propostos como desafio, aprofunda-essencial e insubstituível em qualquer época, mesmo mento ou trabalhos extraclasse.diante de todas as tecnologias de ensino à disposição. Pautamos a elaboração e a seleção de todas as ati-Nada ocupará o lugar do professor no seu papel de vidades apresentadas no material pela funcionalidadeorientar o educando, tutelando-o e amparando-o em em classe, diversidade temática e qualidade. Não háseu desenvolvimento. no trabalho exercícios iguais, o que sabidamente torna o processo de ensino mecanicista e enfadonho. Cada questão propõe um novo ambiente em que um detalheInstrumentos disponíveis na obra a mais se faz necessário, constituindo-se, portanto, A parte teórica foi redigida de modo a tentar res- em um auxílio adicional para a melhor compreensãogatar em cada trecho o interesse e a atenção do leitor. da matéria.Para isso, utilizamos uma linguagem correta e ade- Procuramos contemplar nas questões de vesti-quada à descrição da Física – rigorosa, porém insti- bulares todos os estados brasileiros, evitando dessagante –, procurando sempre inserir elementos atuais forma regionalismos. Incluímos nesta quarta ver-e curiosidades do cotidiano. Ilustrações e fotos com são exercícios de Olimpíadas de Física, certameslegendas (Boxes e Drops) foram aplicadas sempre que têm se constituído em um foco de interesse dosque possível para facilitar a compreensão do texto e estudantes e um diferencial para as escolas que de-propiciar outras revelações. Em alguns Tópicos, in- senvolvem projetos visando bons resultados nessascluímos a seção Faça você mesmo, na qual sugerimos competições intelectuais.a realização de pequenos experimentos que requeremmateriais de fácil obtenção ou até mesmo utensílioscaseiros. Foram elaboradas Leituras que serão um Estratégias de aplicação da obrapólo a mais de interesse e ampliarão os horizontes do Esta obra é versátil e pode se adequar a cursosconhecimento. Acrescentamos nesta quarta versão a com enfoques e objetivos distintos e diferentes núme-seção Descubra mais, que traz um questionário com ros de aulas semanais.
  7. 7. Manual do professor 7• Carga mínima (de uma a duas aulas semanais): Aula 2 – Exercícios: Nível 2 – 75, 79 e 81. principais itens da teoria e Exercícios de Nível 1; Faça você mesmo: o professor poderá realizar• Carga média (de três a quatro aulas semanais): princi- em sala de aula a demonstração sugerida, dis- pais itens da teoria e Exercícios de Nível 1 e Nível 2; cutindo com os alunos os efeitos observados e suas conseqüências práticas (estimular a clas-• Carga máxima (cinco ou mais aulas semanais): teo- se a elaborar outros exemplos que conduzam a ria completa mais apêndices, Exercícios de Nível 1, conclusões semelhantes). Nível 2, Nível 3 e Para raciocinar um pouco mais. Para casa: Nível 2 – 76, 77, 82 (estudar a re- solução) e 83. De acordo com as cargas mencionadas anterior-mente – cargas mínima, média e máxima – poderãoser excluídas do texto, a critério do professor, algumas A avaliaçãopropostas que forem consideradas prescindíveis. Isso Esta deve ser a mais abrangente possível, de modonão comprometerá a adoção da obra, tampouco seu a contemplar sempre o maior número de habilidadesbom aproveitamento. próprias de cada estudante. Entendemos que um edu- Por outro lado, dependendo da disponibilidade cando deva ter oportunidade de ver valorizadas suasdo curso, recomendamos também pesquisas na inter- melhores potencialidades, já que o ser humano é do-net, leitura de livros paradidáticos, revistas especia- tado de múltiplas inteligências (talentos) mais ou me-lizadas e materiais afins, o que complementará e se- nos desenvolvidas.dimentará o aprendizado. Nesses casos, os objetivos Devemos levar em consideração fatores subjetivospretendidos são: valorizar aspectos históricos que como seu engajamento no curso (participação e empe-realcem a evolução do conhecimento sobre Física e nho), postura em sala de aula e interesse pela matéria.informar a existência de novas teorias, descobertas e Recomendamos valorizar, no entanto, com ênfase, aoutras aplicações dos assuntos tratados, não mencio- capacidade de responder questões, testes conceituais enados no texto. exercícios que exijam aplicações das leis físicas pau- Uma referência importante que poderá orientar o tadas pela devida operacionalização matemática. Éprofessor na elaboração do seu Planejamento de Cur- ainda essencial que haja aplicação e pontualidade emso é que cada Bloco traz um conteúdo previsto para relação às atividades propostas para casa, que devemduas ou três aulas, considerando a carga média de uti- preencher parte do tempo dos alunos em suas ativida-lização da obra. des extraclasse. A título de exemplo, sugerimos que, numa utili- Há vários instrumentos objetivos que podem serzação em carga média, os Blocos 1 e 5 do Tópico 5 cogitados na avaliação, como:(Vetores e Cinemática vetorial) do Volume 1 sejamlecionados da seguinte maneira: • Provas propriamente ditas; • Trabalhos de pesquisa em livros e na internet;Bloco 1 • Questionários com perguntas instigantes;Aula 1 – Teoria: itens 1, 2 e 3. • Coletânea de testes de múltipla escolha; Exercícios: Nível 1 – 1, 3 e 4. • Coletânea de questões analítico-expositivas; Para casa: Nível 1 – 5; Nível 2 – 10, 11 e 13. • Vestibulares simulados;Aula 2 – Teoria: item 4. • Construção e manuseio de aparatos experimentais; Exercícios: Nível 1 – 6 e 8; Nível 2 – 18 e • Leitura e discussão de artigos sobre Física; 23. Para casa: Nível 1 – 7 e 9; Nível 2 – 16, 19 e • Elaboração de artigos sobre Física; 22. • Seminários; • Debates sobre temas científicos;Bloco 5 • Encenações de textos teatrais sobre Física.Aula 1 – Teoria: itens 13 e 14. Exercícios: Nível 1 – 66 e 70; Nível 2 – 73. Desse universo, que permite obter uma média am- Para casa: Nível 1 – 67, 69 e 71; Nível 2 – pla e justa do desempenho do aluno, será extraída a 72. nota ou o conceito necessário à aprovação.
  8. 8. 8 TÓPICOS DE FÍSICA 3Parte I - ELETROSTÁTICA A utilização da Lei de Coulomb deve ser trabalha-Tópico 1 da por meio da resolução de exercícios que podem ser encontrados em nível 1 e nível 2.Cargas Elétricas • O que não pode faltar• Objetivo do Tópico 1. Síntese histórica da Eletricidade 2. Noção de carga elétrica Este Tópico, por ser o primeiro da Eletricidade, 3. Corpo eletricamente neutro e corpo eletrizadodeve ser iniciado com uma explanação histórica doprocesso de como se desenvolveu o conhecimento 4. Quantização da carga elétricada eletricidade, bem como da sua importância na 5. Princípios da Eletrostáticanossa civilização atual. Tudo isso para despertar o 6. Condutores e isolantes elétricosinteresse dos alunos pela matéria. Pergunte-lhes (e 7. Processos de eletrizaçãodeixe que respondam): Como seria nossa vida sema eletricidade? Exercícios O conceito de carga elétrica deve ser detalhado, 8. Lei de Coulombpodendo ser abordada a teoria dos quarks. Reforçar Exercíciosa idéia de quantização das cargas elétricas, mostran-do que elas aparecem sempre em valores múltiplos dacarga elementar. • Algo mais Diferenciar bem o conceito de material condutor Neste Tópico é importante apresentar um inícioe de material isolante. Explicar o que faz um material histórico da eletricidade. A evolução do pensamen-ser condutor ou isolante. to científico deve ser utilizada sempre; o aluno deve Os Princípios da Eletrostática devem ser bem as- compreender que a Ciência evolui utilizando o conhe-similados pelos alunos. O entendimento desses prin- cimento anterior.cípios é a base para o aprendizado da Eletricidade. A teoria dos quarks deve ser tratada como for- Na apresentação dos processos de eletrização, ma de explicar o que ocorre no núcleo dos átomos edestacar a alteração do número de elétrons de um como os prótons e os nêutrons se mantêm estáveis.corpo neutro que lhe confere a condição de corpo É importante deixar bem claro que os quarks fazemeletrizado. A eletrização por atrito e por conta- parte de uma teoria, já que nem toda a comunidadeto deve ser detalhada. A eletrização por indução científica tem certeza da sua existência. A utiliza-deve ser explicada de uma maneira sucinta, já que ção das teorias vigentes, como a dos quarks, podeos detalhes serão mais bem entendidos no final do facilitar o entendimento das interações elétricas en-Tópico 3. tre partículas.
  9. 9. Manual do professor 9Como obter a máxima interação entre to pequena, como o hertz, podemos usar prefixosduas partículas eletrizadas que representam múltiplos ou submúltiplos dessa unidade. Assim, vamos encontrar a seguir duas ta- Imagine dois pequenos condutores A e B, inicial- belas com esses prefixos.mente neutros, e uma carga elétrica positiva Q. Comodevemos distribuir essa carga elétrica de modo a ter- Múltiplos Submúltiplosmos a máxima repulsão entre os condutores A e B? Fator Prefixo Símbolo Fator Prefixo Símbolo Para o condutor A devemos transferir uma carga 101 deca da 10–1 deci dQA, ficando o condutor B com o o restante da carga(QB = Q – QA). 102 hecto h 10–2 centi c Utilizando a equação da Lei de Coulomb, temos: 103 quilo k 10–3 mili m |Q · Q | 106 mega M 10–6 micro µ F=K A 2 B d 109 giga G 10–9 nano n Como K e d são constantes, podemos fazer K = a. 1012 10–12 d2 tera T pipo pAssim: F = a QA QB 1015 peta P 10–15 femto f F = a QA (Q – QA) 1018 exa E 10–18 atto a F = a Q QA – a QA 2 1021 zeta Z 10–21 zepto z Representando essa função em diagrama F ϫ QA, 1024 iota Y 10–24 iocto yvem: F Fmáx • Subsídios ao Descubra mais 1. Pesquise e tente explicar como os quarks se mantêm unidos para formar os prótons e os nêutrons. Os americanos Murray Gell-Mann e George 0 Q Q QA Zweig propuseram, em 1961, uma teoria que provoca- 2 ria uma mudança no conceito de átomo: apresentaram Observando o gráfico, devido à simetria apresen- uma nova “família” de partículas subnucleares, ostada pela parábola, podemos concluir que a máxima quarks. No início, essa família era constituída de trêsforça de repulsão entre os condutores A e B ocor- membros: o u (up), o d (down) e o s (strange).re quando eles estão eletrizados com cargas iguais Apenas no final dessa década os físicos James Q Bjorken e Richard Feynman, utilizando o acelerador(QA = QB = ). 2 de partículas da Universidade de Stanford (EUA), conseguiram os primeiros resultados práticos queAlgumas curiosidades evidenciavam a existência de partículas subnuclea-1. Antes de convencionarem o uso do SI como siste- res. Eles chamaram essas partículas de partons. So- ma de unidades a ser utilizado, a quantidade de car- mente na década de 1990 descobriu-se que alguns ga elétrica podia também ser expressa por franklin desses partons eram quarks e, entre os outros, se ou estat-coulomb. São dois nomes diferentes para a encontravam os glúons, partículas mediadoras da in- mesma quantidade de carga. Um franklin ou um es- teração forte. tat-coulomb é a carga elétrica pontual que, colocada O nome glúons vem de glue (cola em inglês). no vácuo, a um centímetro de distância de outra carga Assim, podemos dizer que os quarks são mantidos igual, repele esta última com uma força de intensida- agregados (“colados”) pela transferência mútua de de um dyn (dyne ou dina). Essas unidades eram usa- glúons. Descobriu-se que a força forte existente entre das no antigo sistema CGS Es (CGS Eletrostático). os quarks aumenta com o aumento da distância. As- Valem as relações: sim, podemos imaginar que os glúons agem como um 1 C (coulomb) = 3 · 109 f (franklin) ou estat-C “elástico” unindo os quarks. Quando o “elástico” é (estat-coulomb) esticado, as forças exercidas por ele aumentam. 1 dyn (dyne ou dina) = 10–5 N (newton) 2. Se prótons possuem cargas elétricas de sinais iguais e,2. Quando uma unidade de qualquer coisa é muito portanto, se repelem, como essas partículas se mantêm grande, como, por exemplo, o coulomb, ou mui- estáveis no núcleo de um átomo?
  10. 10. 10 TÓPICOS DE FÍSICA 3 Sabemos que os prótons são partículas eletriza- do quadrado da distância entre as partículas estudadasdas que possuem cargas de mesmo valor e sinal. No na interação. Essa força está presente também semprenúcleo de um átomo encontramos vários prótons que, que duas superfícies estão em contato. A forças nor-portanto, se repelem. Essas forças de repulsão são mal, de atrito, elástica e de tração são exemplos demuito fortes. Assim, o que impede a desintegração forças eletromagnéticas.dos núcleos? A atração gravitacional existente entre prótons 5. É comum uma pessoa, ao fechar a porta de um automó-é muito pequena comparativamente à repulsão ele- vel, após tê-lo dirigido, receber um choque no contatotrostática presente. Assim, deve existir uma terceira com o puxador. Como você explica esse fato?força para manter estável o núcleo do átomo. Essa O atrito da roupa com o material do banco podeforça de interação é a força nuclear forte, uma das provocar um acúmulo de cargas elétricas no motorista,quatro forças fundamentais que, junto com a força principalmente se ele estiver usando um sapato de solagravitacional, a força nuclear fraca e a força ele- de borracha, como um tênis. No contato da mão com atromagnética explicam as interações existentes no maçaneta, essas cargas fluirão para o automóvel, pro-universo. vocando uma descarga elétrica. Isso costuma acontecer A força nuclear forte é praticamente a mesma em época de baixa umidade do ar, quando se usa roupaentre dois prótons e dois nêutrons. Portanto, não de- contendo fios sintéticos, que são péssimos condutorespende da carga elétrica. Assim, os núcleos se man- de cargas elétricas.têm estáveis pela existência de nêutrons que apenasatraem os prótons, ajudando a equilibrar as forças de 6. Você talvez já tenha visto na TV ou no cinema uma cenarepulsão. Essa força nuclear forte tem alcance muito em que uma pessoa se encontra em uma banheira oupequeno, ocorrendo de maneira intensa para distân- piscina e cai na água, por exemplo, um ventilador liga-cias da ordem de 10–15 m e praticamente se anulando do. Se a água é um isolante elétrico, por que a pessoapara distâncias pouco maiores. recebe um choque? No núcleo de um átomo encontramos prótons A água pura é péssima condutora de cargas elé-repelindo todos os outros prótons e sendo atraídos tricas. No entanto, a água tratada que recebemos emapenas por prótons e nêutrons muito próximos. Des- nossas casas é uma solução iônica, já que vários pro-se modo, quando o número Z de prótons aumenta, o dutos químicos são diluídos na sua purificação. Comnúmero N de nêutrons deve aumentar ainda mais para isso, as cargas elétricas podem se movimentar livre-que a estabilidade seja mantida. mente, provocando choque na pessoa que estiver mer- gulhada nessa água.3. Pesquise sobre força nuclear forte. Qual a diferença en- tre essa força e a força nuclear fraca? A interação nuclear forte é de atração e ocorre en- • Resolução dos exercícios propostostre prótons e nêutrons existentes num núcleo atômico. 18Ela é a mais intensa das interações, porém de alcance 1) A e Bmuito pequeno, de ordem 10–15 m. A interação nuclear Q +Q (+ 2,40 n C) + O Q= A B =fraca está associada à radioatividade, surgindo no de- 2 2caimento β (beta), quando um nêutron se transforma Q’A = Q’B = + 1,20 n Cem próton ao emitir um elétron e um antineutrino (de- 2) B e Csintegração β negativa) ou um próton se transforma (+ 1,20 n C) + (–4,80 n C)em nêutron (desintegração β positiva), em que o pró- Q” = Q’C = B 2ton emite um pósitron e um neutrino. Assim, ocorre Q” = Q’C = –1,80 n C Buma alteração no número de prótons no núcleo, trans- No contato com B, C perdeu uma carga elétrica igual a:formando o átomo em um outro elemento químico. ΔQC = (–4,80 n C) – (–1,80 n C)Esse fenômeno é chamado de transmutação. ΔQC = –3,00 n C Assim:4. Faça uma pesquisa sobre força eletromagnética. Pode- ΔQC = n e mos encontrá-la em um átomo ou em uma molécula? –3,00 · 10–9 = n (–1,60) 10–19 Sim. A força eletromagnética é aquela que ligaos átomos e as moléculas para formar a matéria. É n = 1,875 · 1010 elétronsuma força de longo alcance que diminui com o inverso Alternativa b.
  11. 11. Manual do professor 11 30 A função centrípeta é desempenhada pela força eletrostática. 40 a) q1 F1,3 q F2,3 q2 = 4q1 3 + – + e x Fe – d F1,3 = F2,3 |q1 q3| |q q | |q1| |q2| p R K = K 2 32 ⇒ 2 = + x2 (d – x) x (d – x)2 |q1| |4q1|Assim: 2 = ⇒ 4x2 = (d – x)2 x (d – x)2Fcp = Fe 2x = d – x ⇒ 3x = d ⇒ x = dm v2 = K |Q q| 3 R R2 K |Q q| Nota:v2 = • Existe uma outra solução matemática, em que x = –d, que não serve fisi- mR camente. Nesse caso, apesar de |F1, 3| = |F2, 3|, essas forças terão sentidos 9 · 109 (1,6 · 10–19)2 iguais, fazendo com que a carga q3 não esteja em equilíbrio.v2 = 9,1 · 10–31 · 10–10 b) q1v2 Ӎ 2,53 · 1012 + F2,1 F3,1 v Ӎ 1,6 · 106 m/s F2,1 = F3,1Alternativa c. |q2 q1| |q q | K 2 = K 32 1 d x 32 Observando a figura a seguir: |q2| |q3| = d2 x2 C – |q3| d2 = |q2| x2 B – – D Mas: A – – q – E x= d 3 Então: 2 Z + + X 2 + |q3| d2 = |q2| d ⇒ |q3| d2 = |q2| d 3 9 Y |q2| 4|q1|notamos que: |q3| = ⇒ |q3| = 9 91) Em Q a resultante de A e E é nula. 4q12) B, C e D provocam em Q uma força resultante F1. q3 = 93) Por simetria, Z, Y e X também provocam em Q uma resultante F1.Assim, em q, temos: Nota:FR = 2F1 • Este cálculo pode ser feito utilizando-se a carga q2. O valor obtido será o mesmo.Alternativa e. 41 Na esfera abandonada A 35 No equilíbrio, temos: P sen θ no ponto A do plano inclina-Fe = P(anel) do, a força resultante deve ter |Q Q| a direção AP e sentido de AK= = mg para P. d2 Q2 Isso ocorre apenas na situação9 · 109 = 0,9 · 10–3 · 10 encontrada na alternativa e. θ (1 · 10–2)2 F2 F1Q2 = 10–16 Além da componente tangencial da força pesoQ = 1 · 10–8 C + (P sen θ), ainda temos a resultante das forças elé-Essa carga foi adquirida pelo anel superior (inicialmente neutro) no tricas. F1 e F2 são forças de repulsão exercidas pelas F4 F3contato com o anel eletrizado. Assim, no início, a carga existente no cargas positivas.anel eletrizado vale: F3 e F4 são forças de atração exercidas pelas cargas + + negativas. P senθ q = 2 · 10–8 C – –Alternativa b. P
  12. 12. 12 TÓPICOS DE FÍSICA 3A resultante é observada em: Assim: 2 F12 (d’)2 = d 4 + d’ = d P sen θ F34 2 Alternativa b. + + 120° 48 F2 F1 – – q 3,0 cm 3,0 cmque resulta A 30° P 30° Q1 Q2 + Na condição de equilíbrio da carga q, temos: FR F1 + F2 = P Usando a Lei dos Cossenos, temos: |F1 + F2|2 = P2 = F2 + F2 + 2F1 F2 cos 120° 1 2 Mas: |Q1 q| F1 = F2 = K 2 d 1,0 · 10–7 · q P F1 = F2 = 9,0 · 109 (3,0 · 10–2)2Alternativa e 9,0 · 102 q F1 = F2 = ⇒ F1 = F2 = 1,0 · 106 q 9,0 · 10–4 43 Então:a) Lei de Coulomb: P2 = F2 + F2 – F2 |Q Q | P2 = F2 F = K0 1 2 2 d P=F Sendo: K0 = 1 = 9 · 109 (SI) mg=F 4πε0 –9 –10 10 · 10–3 · 10 = 1,0 · 106 q F = 9 · 10 9 · 1 · 10 · 5 · 10 (N) (0,3)2 q = 1,0 · 10–7 C F = 5 · 10–8 N Cargas elétricas de sinais opostos: força atrativa. Alternativa e.b) Após o contato: 50 q d q Q +Q (A) (D) Q= 1 2 2 (+1 · 10–9) + (–5 · 10–10) Q Q= (C) 2 d [(+10) + (–5)] Q= · 10–10 (C) 2 Q = +2,5 · 10–10 C (B) (C) Lei de Coulomb: q q |Q Q| Em A, supondo que as cargas q sejam positivas e Q seja negativa, temos: F = K0 2 d Condição de equilíbrio: (2,5 · 10–10)2 F = 9 · 109 FBA FBA + FCA + FDA + F = O (0,3)2 FCA F = 6,25 · 109 N Somando FBA + FDA : q Agora as cargas elétricas têm sinais iguais: força repulsiva. Por Pitágoras: FDA F2 = F2 + F2 R BA DA 45 Na situação inicial, temos: F |q q| Fe + PA = PB Como: FBA = FDA = K 2 d |Q Q | temos: K A 2 C +mg=Mg F2 = 2F2 ⇒ FR = 2 FBA d R BA Q2 |q q| A k 2 = (M – m)g FR = 2 K 2 d d K Q2 Assim: B PA d2 = (M – m) g FR + FCA = F Fe Na situação final, temos: |q q| |q q| |Q q| K Q2 K Q2 2K 2 +K =K 2 (d’)2 = = d (d 2)2 d 2 PB (4M – 4m) g 4(M – m) g 2
  13. 13. Manual do professor 13 2 |q| + |q| = |Q| Assim, em (I), vem: d2 d2 2 d2 2 d d 4 tg θC = BC = BC dAC 2,5 dBC |q| 2 |q| + = 2 |Q| 2 tg θC = 0,40(2 2 + 1)|q| = 2 |Q| 2 53 Situação de equilíbrio inicial: q (2 2 + 1) |Q| = |q| 4Nota: 0• Se as cargas q fossem negativas e Q fosse positiva, o resultado seria o A carga q’ é fixada a uma distância d da posição de equilíbrio inicial, mesmo. desfazendo esse equilíbrio. q q 51 F C d 0 dAC A carga q é levada para a nova posição de equilíbrio: dBC q q Fm Fe θC A B r O r d dtg θC = BC (I) 0 dAC 40 cmPara que a esfera vazada C permaneça em equilíbrio, é preciso que a Portanto:força resultante das repulsões de A e B seja equilibrada pela força nor- Fm = Femal exercida pelo aro. |q q’| K x = K0Observemos que o sistema encontra-se em um plano horizontal; por- (d – 0,40)2tanto, a força peso não interfere no equilíbrio da esfera C. Como, no MHS, temos: RC T = 2π m K FBC –3 θC 0,40π = 2π 10 · 10 FAC K C K = 0,25 N/m θC Assim: –6 10–6 dAC N 0,25 · 0,40 = 9 · 109 · 2 · 10 · 0,2 · 2 dBC (d – 0,40) d Ӎ 0,59 m Ӎ 59 cm θC A B 54 r O r a) Na situação de equilíbrio, temos: F ᐉ ᐉtg θC = BC F1 2 2 F2 FAC |Q q| xComo: F = K 2temos: d +q +2q 0 |QB q| 0,3 m 0,3 m K P d2 |Q | d2 Q + + Qtg θC = BC = B 2 (II) AC |QA q| |QA|dBC K 2 dAC Condição de equilíbrio:Igualando (I) e (II), temos: ∑F = OdBC |QB| d2 P = F1 + F2 = AC ⇒ 125 · 10–6 d3 = 8 · 10–6 d3 BC ACdAC |QA|d2BC Usando a Lei de Coulomb, temos:125 d3 = 8 d3 ⇒ 5 dBC = 2 dAC BC BC |Q d|dAC = 2,5 dBC F=K d2
  14. 14. 14 TÓPICOS DE FÍSICA 3 –6 –6 F1 = 9 · 109 4 · 10 · 12· 10 ⇒ F1 = 0,4 N Assim: (0,3) 5 Fe 5 mg –6 –6 = F2 = 9 · 109 4 · 10 · 22· 10 ⇒ F2 = 0,8 N 3 4 (0,3) |Q q| 3 Portanto: K 2 = mg P = 0,4 + 0,8 (N) d 4 –9 q 9 · 10 9 10 · 10 = 3 · 0,4 · 10–3 · 10 P = 1,2 N (3 · 10–2)2 4b) A outra condição para ocorrer equilíbrio é: 90 q = 3 · 10–3 ∑M0 = 0 9 · 10–4 q = 3 · 10–8 C F1 ᐉ + P x = F2 ᐉ q = 30 · 10–9 C 2 2 0,4 2 + 1,2 x = 0,8 2 q = 30 nC 2 2 1,2x = 0,4 Alternativa a. x= 1 m 57 3Nota: a) Como está ocorrendo atração entre as esferas, elas estão eletrizadas• Para ocorrer equilíbrio, o peso P deve estar suspenso a 1 m, do lado com cargas de sinais opostos (uma positiva e a outra negativa). 3 direito da barra. b) Na esfera B, decompondo T, temos: 55 Situação descrita: y α T Ty 45° 45° α T T B Fe 45° 45° F F Tx = T sen α x Tx Ty = T cos α P P P Portanto, sendo: d Tx = Fe Ty = PPara o equilíbrio das esferas devemos ter: dividindo membro a membro, temos: T sen α = Fe T sen 45° = P T cos α m g T cos 45° = F F tg α = eComo sen 45º = cos 45º, vem: mgF=P 4 = Fe ⇒ Fe = 4 N 3 0,1 · 10 3 |Q q| Usando a Lei de Coulomb, vem:K 2 = mg d |Q q| 1,0 · 10–6 · 1,0 · 10–6 Fe = K 29 · 109 = 10 · 10–3 · 10 d d2 4 = 9 · 109 Q29 · 10–3 = 10–1 d2 3 (0,1)2 –12 2 = 0,04 = 40 · 10d2 = 9 · 10–2 Q 27 · 109 27d = 3,0 · 10–1 m d = 30 cm Q = 40 10–6 C 27Alternativa e. Q = 40 µC 27 56 Assim: T cos θ = P 58 Na situação inicial, decompondo-se T, temos: T sen θ = Fe θ y θd = 4 cm L = 5 cm T 4 = mg T Tx = T sen θ 5 Ty Ty = T cos θ T θ T 3 = Fe θ 5 Fe Fe x Q x = 3 cm q 5 mg Tx T= 4 P P 5 Fe T= 3
  15. 15. Manual do professor 15Na situação de equilíbrio: Então: Qq Tx = Fe 2 1 · sen α = m g 4π ε0 d 2 Ty = P 2 cos αT sen θ = Fe ⇒ F = m g tg θ 8 · Q q · cos2 α sen α T cos θ m g e m= 4π ε0 d2 gUsando a Lei de Coulomb, temos: |Q q| Alternativa d.K 2 = m g tg θ d –6 · –69 · 109 2 · 10 · 2 2 10 = 0,090 · 10 tg θ 60 No átomo de Bohr, o raio da órbita é dado por: (0,20) R = n2 R0tg θ = 1 ⇒ θ = 45º em que R0 = 5,3 · 10–11 m (raio da órbita fundamental).Na situação final, temos: Para o estado fundamental n = 1; para o primeiro nível excitado n = 2. No equilíbrio, vem: Assim: y R = 22 R0 θ Tx = F’e – Fm T R = 4 R0 Ty Ty = P Como a força eletrostática faz o papel de força centrípeta, temos: θ F‘ Fm T sen θ = F’e – Fm Fe = Fcp e T cos θ mg 2 Tx x K e2 = mr e m g tg θ = F’e – Fm R R 2 P 0,090 · 10 · 1 = v2 = K e mR 9 · 109 4 · 10–6 · 4 · 10–6 – k 1,0 · 10–2 Sendo v inversamente proporcional a R, se R = 4R0, temos: (0,20)2 vTx = T sen θ v = 0 = 1,1 · 106 m/s 0,9 = 3,6 – 0,01 k 2Ty = T cos θ Portanto: 0,01 k = 2,7 ⇒ k = 2,7 · 102 N/m v = 2π R T 59 Observe que a condição de equilíbrio exige simetria na configu- 2 · 3,14 · 4 · 5,3 · 10–11 1,1 · 106 =ração, sendo as cargas elétricas da base iguais, e a interação entre elas T T Ӎ 1,2 · 10–15 se a carga q tem de ser de repulsão. Como o elétron tem vida de 10–8 s, vem: n = Δt = 10 –15 –8 F F T 1,2 · 10 q n Ӎ 8 · 106 revoluções Alternativa d. P Fe 61 A a a Pt a) No equilíbrio, temos: B Pt = Fe |Q q| 30° m g sen 30° = K 2 α α d 20 · 10–6 q 20 · 10–3 · 10 1 = 9 · 109 Q Q d 2 (0,30)2 0,10 = 2 · 10 6qDecompondo as forças F segundo a horizontal e a vertical, notamosque: q = 5,0 · 10–8 C y Fy Fy b) Com atrito, temos: F F Fe = Pt + Fat est |Q q| K 2 = m g sen 30° + µ m g cos 30° d2Fy = P α α 20 · 10–6 · 5,0 · 10–8 9 · 109 =2F sen α = m g Fx Fx x d2Da Lei de Coulomb, temos: = 0,020 · 10 (0,50 + 0,25 · 0,86) P |Q q| 9 · 10–3 = 0,143 ⇒ d2 = 0,0092K 2 sen α = m g a d2 0,143Mas: K = 1 e a = d d2 Ӎ 0,063 ⇒ d Ӎ 0,25 m Ӎ 25 cm 4πε0 2 cos α
  16. 16. 16 TÓPICOS DE FÍSICA 3 62 FCAa) Com o passar do tempo haverá perda de carga elétrica para o ar FBA A que envolve as esferas. Isso provocará a aproximação, já que a força de repulsão entre elas irá diminuir. Como as esferas têm mesmo peso e as forças de repulsão são iguais FDA em módulo (Princípio da Ação-Reação), o ângulo α deverá ser igual para ambas. Observe que: |q q| |FAB| = |FDA| = Kb) a2 |q q| |q q| α |FCA| = K =K 2 (a 2)2 a 2 Tcos α Somando os vetores FBA e FDA, temos: T T sen α = Fe α S2 = F2 + F2 = 2 F2 BA DA BA T cos α = P |q q| F F Tsen α S = 2 FBA ⇒ S = 2 K Fe a2tg α = e = e P mg A força resultante de A é dada por: PFe = m g tg α |q q| |q q| F = S – FCA = 2 K 2 – 1 K 2Lei de Coulomb: a 2 a |Q Q| F= 2– 1 K |q q|Fe = K 2 d 2 a2Assim: Como: K = 1 |Q Q| 4π ε0K 2 = mg tg α d 29 ·109 Q2 = 0,0048 · 10 · 0,75 Então: F= 2 2–1 1 · q2 d 2 4π ε0 a2Q2 = 4 · 10–12 d2Q = 2 · 10–6 d Essa resultante tem direção radial, passando pelo centro da cir-Mas: cunferência. b) A força resultante calculada no item a funciona, para cada carga, α d = ᐉ sen α como força centrípeta. 2 2 F = Fcp = m v ᐉ R d = 2 · 0,090 · 0,60 (m) d = 0,108 m Como o raio R da circunferência corresponde à metade da diagonal do quadrado, temos: Portanto: d Q = 2 · 10–6 · 0,108 (C) R= a 2 2 2 Q = ±2,16 · 10–7 C Assim: m v2 2 63 F= = 2m v a 2 a 2a) Cada uma das quatro cargas elétricas está sujeita a três forças exer- 2 cidas pelas outras cargas. v2 = a 2F FCA FDB 2m FBA FAB (2 2 – 1) 1 q2 A +q –q B v2 = a 2 · · · 2m 2 4π ε0 a2 q2 FDA FCB v2 = 4 – 2 · 1 · 4m 4π ε0 a FAD FBC q 4– 2 +q v= 4 m a π ε0 –q D C FCD FDC FBD FAC 64 Devido à simetria, podemos observar que as forças resultantes em a) Lei de Coulomb: cada carga têm intensidades iguais. Por exemplo, considerando a |Q q| Fe = K 2 carga nominada por A, temos: d
  17. 17. Manual do professor 17 1,6 · 10–19 · 1,6 · 10–19 semelhanças e as diferenças. Explicar aos alunos que Fe = 9,0 · 109 (1,0 · 10–10)2 foi Isaac Newton o primeiro a usar a interação a dis- Fe = 2,3 · 10–8 N tância entre dois corpos. Michael Faraday foi o autor do conceito de campo que inicialmene foi usado nab) A força eletrostática Fe funciona como força centrípeta: interação entre partículas eletrizadas. Só mais tarde Fe = Fcp essa idéia de campo foi levada à situação gravitacio- 2 nal e à magnética. 2,3 · 10–8 = m v R Insistir no caráter vetorial do campo elétrico e 9,0 · 10–31 · v2 procurar fazer o aluno visualizar as linhas de força 2,3 · 10–8 = 1,0 · 10–10 em diferentes campos elétricos, principalmente no v 2 Ӎ 2,6 · 1012 campo elétrico uniforme. v Ӎ 1,6 · 106 m/s Deve-se explorar bem o item que trata do poder das pontas, explicando o funcionamento dos pára-c) Fr = Fe + Fg raios e desmistificando certas crendices populares. Se Fr = 2,3 · 10–8 + G M m possível, pedir duas pesquisas para os alunos: em uma d2 delas, procurar diferentes tipos de pára-raio (fazendo –31 10–27 Fr = 2,3 · 10–8 + 6,7 · 10–11 · 9,0 · 10 · 1,7 · 2 –10) fotos) e promover um debate sobre as vantagens e as (1,0 · 10 Fr = 2,3 · 10–8 + 1,0 · 10–49 desvantagens de cada um deles; em outra, pedir aos alunos para pesquisarem as principais crendices sobre Observe que a interação gravitacional entre o próton e o elétron é desprezível quando comparada com a interação eletrotástica. raios (como, por exemplo: espelhos atraem raios; não Assim: usar telefone durante tempestades; não deixar rádios Fr = Fe = 2,3 · 10–8 N e TV ligadas enquanto ocorrem descargas elétricas na atmosfera; etc.), apresentar aos colegas e debater (apósd) Do item c, concluímos que: pesquisa) cada uma delas. Fcp = Fe Dar especial atenção ao campo elétrico uniforme. Esse assunto aparecerá em Tópicos futuros e é alvo de m v2 = K |Q q| cobrança em provas a serem realizadas pelos alunos R d2 em vestibulares ou concursos. v Ӎ 1,6 · 106 m/s (Ver item b.) • O que não pode faltar 1. Conceito e descrição de campo elétrico Tópico 2 2. Definição do vetor campo elétrico 3. Campo elétrico de uma partícula eletrizada 4. Campo elétrico devido a duas ou mais partículasCampo elétrico eletrizadas 5. Linhas de força• Objetivos do Tópico Exercícios 6. Densidade superficial de cargas A grande dificuldade dos alunos do nível médio éconseguir abstrair, encontrando dificuldade para “en- 7. O poder das pontasxergar” algo abstrato como o campo elétrico. É im- 8. Campo elétrico criado por um condutor eletrizadoportante que o educando consiga entender que o con- 9. Campo elétrico criado por um condutor esféricoceito de campo elétrico envolve a idéia de influência eletrizadoproporcionada por uma carga elétrica em uma região 10. Campo elétrico uniformedo espaço. Trabalhar esse conceito é trabalhar uma Exercíciosdas bases da Eletricidade. Neste Tópico, é importante que o aluno entendao conceito de campo elétrico como um modelo teó- • Algo maisrico usado para explicar a interação a distância entre Para as turmas de nível mais avançado pode-partículas eletrizadas. Na medida do possível fazer se completar o assunto utilizando-se o Teorema deanalogia com o campo gravitacional, mostrando as Gauss para as demonstrações das fórmulas utiliza-

×