SlideShare uma empresa Scribd logo
1 de 211
Baixar para ler offline
Documentos
orientadores
Fichas
10
NOVO
Física e Química A • Física
10.º ano
Carlos Portela
Rogério Nogueira
CADERNODEAPOIO
AOPROFESSOR
T
F
Planificações
Testes
Apoio às atividades
laboratoriais
Guiões de recursos
multimédia
Editável e fotocopiável © Texto | Novo 10 F 1
Objetivos do Caderno de Apoio
ao Professor..........................................................3
Apresentação do Projeto:
linhas orientadoras ...........................................4
Pleno cumprimento do Programa ......................4
Grau de aprofundamento conveniente ..............4
Adequação de atividades e questões .................5
Diversificação das opções de ensino e de
aprendizagem .....................................................5
Valorização da componente laboratorial ...........6
Componente de Física do Programa
de Física e Química A – 10.º ano ...................7
Finalidades, objetivos e Metas Curriculares .......7
Desenvolvimento do Programa ..........................8
Energia e movimentos ........................................9
Conteúdos e Metas Curriculares .......................9
Orientações e sugestões ................................10
Energia e fenómenos elétricos .........................11
Conteúdos e Metas Curriculares .....................11
Orientações e sugestões ................................12
Energia, fenómenos térmicos e radiação .........12
Conteúdos e Metas Curriculares .....................12
Orientações e sugestões ................................14
Avaliação ..........................................................14
Planificações ......................................................15
Indicações gerais ..............................................15
Recursos de 20 Aula Digital ..............................17
Planificação a médio prazo ...............................21
Planos de aulas .................................................23
Apoio às Atividades Laboratoriais ..............51
Atividade Laboratorial 1.1 ................................52
Atividade Laboratorial 1.2 ................................62
Atividade Laboratorial 2.1 ................................69
Atividade Laboratorial 3.1 ................................75
Atividade Laboratorial 3.2 ................................83
Atividade Laboratorial 3.3 ................................91
Fichas ...................................................................97
Fichas de diagnóstico ........................................97
Ficha de diagnóstico 1 ....................................97
Ficha de diagnóstico final .............................100
Fichas formativas ............................................102
Ficha 1 – Energia e movimentos ....................102
Ficha 2 – Energia e movimentos ....................104
Ficha 3 – Energia e fenómenos elétricos ........106
Ficha 4 – Energia e fenómenos elétricos ........108
Ficha 5 – Energia, fenómenos térmicos
e radiação ...................................................110
Ficha 6 – Energia, fenómenos térmicos
e radiação....................................................112
Ficha 7 – Energia e sua conservação
(ficha global) ...............................................114
Proposta de resolução das fichas ...................116
Testes .................................................................123
Teste 1 ............................................................123
Teste 2 ............................................................127
Teste 3 ............................................................131
Teste 4 - Teste Global......................................136
Proposta de resolução dos testes ...................140
Questões de exame agrupadas por
domínio .............................................................147
Guiões de recursos multimédia ................179
Simuladores ....................................................180
Animações ......................................................184
Animações laboratoriais .................................191
Animações de resolução de exercícios............193
Apresentações PowerPoint®
...........................196
Vídeos temáticos ............................................200
Atividades .......................................................201
Testes interativos ...........................................203
Simulador de testes ........................................204
Sugestões de bibliografia e sítios
da internet .......................................................205
Índice
DZFJNZFGNZGFDNGFDZNGFNGFASNGFNGFSMNGF
Editável e fotocopiável © Texto | Novo 10 F 3
Objetivos do Caderno de Apoio ao Professor
Este caderno fornece informação e recursos complementares para ajudar os professores que se
encontrem a trabalhar com o manual escolar Novo 10 F, da Texto Editores.
O Caderno de Apoio ao Professor inclui:
ͻ uma explicação das linhas orientadoras do manual;
ͻ os conteúdos e Metas Curriculares da componente de Física, orientações e sugestões da
componente de Física do Programa;
ͻ informação complementar sobre a abordagem de alguns conteúdos e do trabalho laboratorial;
ͻ propostas de planificações a longo prazo, semana a semana e aula a aula;
ͻ material de apoio à componente laboratorial: respostas às questões pré e pós-laboratoriais do
manual, registos com medidas de todas as atividades laboratoriais, questões para avaliação do
cumprimento das Metas Curriculares, transversais e específicas, da componente laboratorial,
correspondentes soluções, e grelhas de avaliação dessa componente;
ͻ 9 fichas de avaliação: 2 de diagnóstico e 7 formativas, uma das quais global;
ͻ 4 testes, um deles global;
ͻ questões de exame extraídas/adaptadas de Exame Nacional e agrupadas por subdomínio;
ͻ apresentação da Aula Digital.
Finalmente, é possível encontrar uma bibliografia selecionada e brevemente comentada, assim
como um conjunto de endereços da internet.
Atendendo à importância central do trabalho experimental em Física, uma parte substancial da
informação contida neste caderno está relacionada com o trabalho prático. Esperamos que essa
informação ajude o professor, ao proporcionar-lhe um conjunto diversificado de ideias e recursos
que utilizará da maneira que julgar mais conveniente.
4 Editável e fotocopiável © Texto | Novo 10 F
Apresentação do Projeto: linhas orientadoras
A elaboração de um manual escolar de Física para o Ensino Secundário tem necessariamente
como matriz o Programa da disciplina. Nele estão enunciados os objetivos e as metas que se
pretendem atingir e os conteúdos a tratar. Neste manual respeita-se a componente de Física do
Programa de Física e Química A, homologado pelo Despacho n.o
868-B/2014 de 20 de janeiro, para o
10.o
ano de escolaridade.
Mas qualquer manual representa uma leitura do Programa entre várias possíveis. É uma
interpretação enriquecida pelas conceções, convicções e experiências que os autores possuem
acerca do que é e do que deve ser o ensino e a aprendizagem no Ensino Secundário.
Este Projeto, constituído pelo Manual, os Recursos Multimédia disponíveis em , o
Caderno de Exercícios e Problemas e este Caderno de Apoio ao Professor, assenta em linhas
orientadoras que resumimos em cinco pontos essenciais.
Pleno cumprimento do Programa
O manual Novo 10 F aborda de forma sistemática e detalhada todos os conteúdos que são objeto
de ensino definidos na componente de Física do Programa de Física e Química A para o 10.o
ano de
escolaridade. O nível de aprofundamento está de acordo com as Metas Curriculares.
Além da abordagem proporcionada pelo texto principal e pelas ilustrações que o acompanham,
sugere-se um conjunto alargado e diversificado de atividades práticas que permitirão alcançar as
finalidades, os objetivos gerais de aprendizagem e as Metas Curriculares previstas para a disciplina.
As unidades do manual iniciam-se com o enquadramento social dos temas a tratar, a partir do
qual se busca não só a motivação dos alunos, mas também significados e sentidos para a
aprendizagem. Alguns textos complementares, incluídos nas atividades, aos quais se seguem
questões, podem servir de ponto de partida para abordagens que mostrem o impacto que os
conhecimentos da física e da química e das suas aplicações têm na compreensão do mundo natural e
na vida dos seres humanos: casos da vida quotidiana, avanços recentes da ciência e da tecnologia,
contextos culturais onde a ciência se insira, episódios da história da ciência e outras situações
socialmente relevantes.
Grau de aprofundamento conveniente
Os manuais escolares que utilizem uma linguagem científica pouco rigorosa podem prejudicar a
estruturação da aprendizagem, contribuindo para formar ou desenvolver conceitos inadequados.
Tais noções, ao serem difundidas pelo ensino formal, revelam-se muito resistentes à substituição
pelas noções corretas. Vários estudos têm evidenciado as dificuldades que resultam de situações
desse tipo. Por outro lado, uma linguagem demasiado rigorosa pode não se adequar à capacidade do
público-alvo, chegando ao ponto de inibir a aprendizagem.
O manual Novo 10 F está escrito numa linguagem rigorosa, mas ao mesmo tempo acessível.
Escrever textos de Física numa linguagem rigorosa, mas pedagogicamente adequada aos alunos do
Ensino Secundário, é uma tarefa difícil, mas que pensamos ter conseguido.
Nesta linha, evitámos apresentar os assuntos de uma forma demasiado esquemática, enunciando
e comentando brevemente tópicos e subtópicos sucessivos, o que apenas ajudaria os alunos que já
os dominam suficientemente ou aqueles que procuram simplesmente uma memorização superficial.
Evitámos também textos demasiado longos e pormenorizados, que seriam desmotivadores.
Julgamos que a extensão do manual é equilibrada.
Editável e fotocopiável © Texto | Novo 10 F 5
Adotámos uma escrita nem demasiado curta nem demasiado extensa, útil para quem procura
construir por si próprio significados e organizar conhecimentos da melhor maneira.
Os quadros, tabelas e figuras do manual estão sempre legendados e referidos no texto, o que
permite não só uma referência rápida, mas também a atribuição às imagens de um sentido
específico. Desta forma, olhados individualmente, estarão sempre contextualizados. Não os
entendemos como simples adereços gráficos do texto.
O aspeto gráfico é para nós importante, uma vez que um livro deve ser apelativo, captando a
atenção do leitor e facilitando a leitura. No entanto, achamos que o conteúdo deve prevalecer sobre
a forma.
O nosso manual foi escrito a pensar acima de tudo nos alunos. Vemo-lo como um livro para
consultar com frequência, em articulação com as aulas e sob a orientação do professor, um livro
onde o aluno encontre respostas às suas dúvidas e dificuldades.
Nos anexos do manual poderá encontrar-se informação relevante de apoio ao aluno: unidades e
grandezas, medições e erros, conceitos de matemática e utilização da calculadora gráfica.
Adequação de atividades e questões
A aprendizagem da Física, como de resto a de qualquer outra ciência, requer a realização de
atividades por parte dos alunos. Não basta estar concentrado nas aulas ou ler atentamente o
manual. É indispensável realizar determinadas tarefas que estão associadas ao desenvolvimento das
capacidades e atitudes tão necessárias no trabalho em Física, e sem as quais não há uma real
compreensão desta ciência.
Propomos, por isso, a realização de atividades como a leitura e a interpretação de textos sobre
ciência e sociedade, a resolução de exercícios e problemas, a pesquisa de informação histórica ou o
trabalho laboratorial. Incluímos diversas questões resolvidas, devidamente intercaladas no texto,
para que o aluno se vá familiarizando progressivamente com os vários processos e técnicas de
resolução de questões científicas. No final de cada unidade, apresentamos muitas e variadas
questões complementares. Outras são apresentadas no Caderno de Exercícios e Problemas,
perfazendo cerca de 400 questões.
As questões, formuladas de forma clara e compreensível, têm tipologias e formatos diversos e são
representativas dos conteúdos constantes no Programa; o seu nível de dificuldade é diversificado e
adequado à faixa etária dos alunos.
Diversificação das opções de ensino e de aprendizagem
O Projeto contempla a necessidade de diversificar as opções de ensino e de aprendizagem.
A diversidade é, aliás, uma preocupação permanente, porque sabemos bem como são diferentes as
escolas e como, dentro destas, são diferentes as turmas e os alunos. Assim, considera-se que os
professores devem dispor de uma larga margem de manobra, que lhes permita lidar com essa
diferença da maneira que julgarem mais adequada.
O elevado número de questões de tipologias diversas e de diferentes níveis de dificuldade, no
final de cada capítulo, permite ao professor selecionar as que julgue mais apropriadas à sua
perspetiva de ensino e ao nível de aprendizagem que diagnosticou nos seus alunos.
6 Editável e fotocopiável © Texto | Novo 10 F
Alguns textos e atividades podem ser utilizados como trabalhos complementares, o que atende à
necessidade de apoiar alunos com dificuldades particulares ou com maiores potencialidades.
No final do manual Novo 10 F e do Caderno de Exercícios e Problemas existem questões globais
para o aluno resolver.
Valorização da componente laboratorial
Entende-se o trabalho laboratorial como um componente privilegiado da educação científica, pelo
que o ensino da Física deve refletir esse princípio geral. Por isso, e em consonância com o espírito do
Programa, atribui-se-lhe uma importância especial neste Projeto. Interpretámos as diversas
propostas metodológicas de caráter experimental enunciadas no Programa para concretizar uma
abordagem da Física com grau de profundidade adequado ao 10.o
ano e que suscite a adesão do
aluno à disciplina.
A estrutura das atividades que preconizamos permite, a nosso ver, articular bem a componente
laboratorial da Física, contribuindo para uma melhor compreensão dos processos e métodos
inerentes ao trabalho laboratorial.
A nossa conceção da componente laboratorial de Física considera os seguintes aspetos:
ͻ clarificação das principais ideias e conceitos para compreender as tarefas prático-laboratoriais;
ͻ sugestão de procedimentos para a correta manipulação de equipamentos;
ͻ estruturação das atividades laboratoriais a partir de questões, problemas ou tarefas que
despertem o interesse dos alunos;
ͻ desenvolvimento das atividades laboratoriais tendo em conta a necessidade de explorar
aspetos pré e pós-laboratoriais, tão necessários à completa compreensão do trabalho
proposto;
ͻ inclusão de questões resolvidas e de questões por resolver, de conteúdo laboratorial, nas
atividades laboratoriais e nas questões no final de cada unidade.
Editável e fotocopiável © Texto | Novo 10 F 7
Componente de Física do Programa de Física
e Química A – 10.º ano
De acordo com a Portaria n.o
243/2012, de 10 de agosto, a disciplina de Física e Química A faz
parte da componente específica do Curso Científico-Humanístico de Ciências e Tecnologias.
É uma disciplina bienal (10.o
e 11.o
ano), dá continuidade à disciplina de Físico-Química (Ciências
Físico-Químicas) do Ensino Básico (7.o
, 8.o
e 9.o
anos) e constitui precedência em relação às disciplinas
de Física e de Química do 12.o
ano.
O Programa desta disciplina está elaborado atendendo a uma carga letiva semanal mínima de 315
minutos, sendo a aula de maior duração dedicada a atividades práticas e laboratoriais. Nesta aula,
com a duração máxima de 150 minutos, a turma deve funcionar desdobrada.
Cada uma das componentes, Física e Química, é lecionada em metade do ano letivo, alternando-
-se a ordem de lecionação nos dois anos – o 10.o
ano inicia-se com a componente de Química e o
11.o
ano com a componente de Física – de modo a haver uma melhor rendibilização dos recursos,
designadamente os referentes à componente laboratorial.
Finalidades, objetivos e Metas Curriculares
A disciplina «visa proporcionar formação científica consistente no domínio do respetivo curso»
(Portaria n.o
243/2012). Por isso, definem-se como finalidades desta disciplina:
- proporcionar aos alunos uma base sólida de capacidades e de conhecimentos da física e da
química, e dos valores da ciência, que lhes permitam distinguir alegações científicas de não
científicas, especular e envolver-se em comunicações de e sobre ciência, questionar e investigar,
extraindo conclusões e tomando decisões, em bases científicas, procurando sempre um maior
bem-estar social.
- promover o reconhecimento da importância da física e da química na compreensão do mundo
natural e na descrição, explicação e previsão dos seus múltiplos fenómenos, assim como no
desenvolvimento tecnológico e na qualidade de vida dos cidadãos em sociedade.
- contribuir para o aumento do conhecimento científico necessário ao prosseguimento de estudos
e para uma escolha fundamentada da área desses estudos.
De modo a atingir estas finalidades, definem-se como objetivos gerais da disciplina:
- consolidar, aprofundar e ampliar conhecimentos através da compreensão de conceitos, leis e
teorias que descrevem, explicam e preveem fenómenos assim como fundamentam aplicações.
- desenvolver hábitos e capacidades inerentes ao trabalho científico: observação, pesquisa de
informação, experimentação, abstração, generalização, previsão, espírito crítico, resolução de
problemas e comunicação de ideias e resultados nas formas escrita e oral.
- desenvolver as capacidades de reconhecer, interpretar e produzir representações variadas da
informação científica e do resultado das aprendizagens: relatórios, esquemas e diagramas,
gráficos, tabelas, equações, modelos e simulações computacionais.
- destacar o modo como o conhecimento científico é construído, validado e transmitido pela
comunidade científica.
Segundo o Despacho n.º 15971/2012, de 14 de dezembro, as Metas Curriculares «identificam a
aprendizagem essencial a realizar pelos alunos… realçando o que dos programas deve ser objeto
primordial de ensino».
8 Editável e fotocopiável © Texto | Novo 10 F
As Metas Curriculares permitem:
- identificar os desempenhos que traduzem os conhecimentos a adquirir e as capacidades que se
querem ver desenvolvidas no final de um dado módulo de ensino;
- fornecer o referencial para a avaliação interna e externa, em particular para as provas dos
exames nacionais;
- orientar a ação do professor na planificação do seu ensino e na produção de materiais didáticos;
- facilitar o processo de autoavaliação pelo aluno.
Desenvolvimento do Programa
Apresenta-se a sequência dos conteúdos de Física do 10.o
ano e o seu enquadramento, incluindo
as atividades prático-laboratoriais, por domínio e subdomínio, os respetivos objetivos gerais,
algumas orientações e sugestões, e uma previsão do número de aulas por subdomínio. Consideram-
se, para essa previsão, três aulas semanais. O número de aulas previsto é indicativo e deve ser gerido
pelo professor de acordo com as características das suas turmas.
A componente de Física do 10.o
ano contempla um domínio, «Energia e sua conservação».
Existe um só domínio, uma
vez que os conceitos chave se
referem à energia e à sua
conservação, abordando-se as
suas manifestações em sistemas
mecânicos, elétricos e
termodinâmicos. No estudo dos
sistemas mecânicos aborda-se,
de um modo não formal, o
conceito de centro de massa, limitando o estudo a sistemas redutíveis a uma partícula (centro de
massa). Este subdomínio introduz conceitos necessários ao estudo de sistemas mecânicos, cujo
aprofundamento se fará no 11.o
ano, e constitui pré-requisito para a abordagem de subdomínios
posteriores. O estudo de sistemas elétricos permite consolidar aprendizagens anteriores e é um
pré-requisito para trabalhos laboratoriais posteriores e para o estudo da indução eletromagnética no
11.o
ano. O estudo de sistemas termodinâmicos permite alargar conhecimentos, estabelecendo a
ligação com o subdomínio anterior através do conceito de radiação e do seu aproveitamento para a
produção de corrente elétrica.
A vida moderna está repleta de aplicações da física: construções, máquinas, veículos,
comunicações, etc. O enquadramento dos conteúdos da disciplina com essas aplicações ajudará a
uma melhor compreensão quer dos conteúdos da disciplina quer das próprias aplicações, e
consolidará a visão da física como portadora de benefícios sociais, ao mesmo tempo que reforçará o
interesse do aluno. As referências a aplicações da física, para além de serem um meio de
consolidação de conhecimentos, podem e devem ser usadas como ponto de partida e motivação
para a abordagem aos conteúdos.
Apresentam-se em seguida os conteúdos do 10.o
de Física, os objetivos gerais, algumas
orientações e sugestões e uma previsão da distribuição por tempos letivos. As atividades
laboratoriais (designadas por AL) surgem identificadas nos respetivos subdomínios.
Física
Domínio Energia e sua conservação
Subdomínios
Energia e movimentos
Energia e fenómenos elétricos
Energia, fenómenos térmicos e radiação
Editável e fotocopiável © Texto | Novo 10 F 9
Energia e movimentos
Este subdomínio deverá ser lecionado em cerca de 5 semanas (15 aulas).
Conteúdos e Metas Curriculares
Objetivo geral: Compreender em que condições um sistema pode ser representado pelo seu centro
de massa e que a sua energia como um todo resulta do seu movimento (energia cinética) e da
interação com outros sistemas (energia potencial); interpretar as transferências de energia como
trabalho em sistemas mecânicos, os conceitos de força conservativa e de força não conservativa e
a relação entre trabalho e variações de energia, reconhecendo situações em que há conservação
de energia mecânica.
Conteúdos METAS CURRICULARES
ͻ Energia cinética e energia
potencial; energia interna
ͻ Sistema mecânico; sistema
redutível a uma partícula
(centro de massa)
ͻ O trabalho como medida
da energia transferida por
ação de forças; trabalho
realizado por forças
constantes
ͻ Teorema da Energia
Cinética
ͻ Forças conservativas e não
conservativas; o peso
como força conservativa;
trabalho realizado pelo
peso e variação da energia
potencial gravítica
ͻ Energia mecânica e
conservação da energia
mecânica
ͻ Forças não conservativas e
variação da energia
mecânica
1.1. Indicar que um sistema físico (sistema) é o corpo ou o
conjunto de corpos em estudo.
1.2. Associar a energia cinética ao movimento de um corpo e
a energia potencial (gravítica, elétrica, elástica) a
interações desse corpo com outros corpos.
1.3. Aplicar o conceito de energia cinética na resolução de
problemas envolvendo corpos que apenas têm
movimento de translação.
1.4. Associar a energia interna de um sistema às energias
cinética e potencial das suas partículas.
1.5. Identificar um sistema mecânico como aquele em que as
variações de energia interna não são tidas em conta.
1.6. Indicar que o estudo de um sistema mecânico que
possua apenas movimento de translação pode ser
reduzido ao de uma única partícula com a massa do
sistema, identificando-a com o centro de massa.
1.7. Identificar trabalho como uma medida da energia
transferida entre sistemas por ação de forças e calcular o
trabalho realizado por uma força constante em
movimentos retilíneos, qualquer que seja a direção dessa
força, indicando quando é máximo.
1.8. Enunciar e aplicar o Teorema da Energia Cinética.
1.9. Definir forças conservativas e forças não conservativas,
identificando o peso como uma força conservativa.
1.10.Aplicar o conceito de energia potencial gravítica ao
sistema em interação corpo + Terra, a partir de um valor
para o nível de referência.
1.11.Relacionar o trabalho realizado pelo peso com a variação
da energia potencial gravítica e aplicar esta relação na
resolução de problemas.
1.12.Definir e aplicar o conceito de energia mecânica.
10 Editável e fotocopiável © Texto | Novo 10 F
ͻ Potência
ͻ Conservação de energia,
dissipação de energia e
rendimento
ͻ AL 1.1. Movimento num
plano inclinado: variação
da energia cinética e
distância percorrida
ͻ AL 1.2. Movimento vertical
de queda e ressalto de
uma bola: transformações
e transferências de energia
1.13.Concluir, a partir do Teorema da Energia Cinética, que, se
num sistema só atuarem forças conservativas, ou se
também atuarem forças não conservativas que não
realizem trabalho, a energia mecânica do sistema será
constante.
1.14.Analisar situações do quotidiano sob o ponto de vista da
conservação da energia mecânica, identificando
transformações de energia (energia potencial gravítica
em energia cinética e vice-versa).
1.15.Relacionar a variação de energia mecânica com o
trabalho realizado pelas forças não conservativas e
aplicar esta relação na resolução de problemas.
1.16.Associar o trabalho das forças de atrito à diminuição de
energia mecânica de um corpo e à energia dissipada, a
qual se manifesta, por exemplo, no aquecimento das
superfícies em contacto.
1.17.Aplicar o conceito de potência na resolução de
problemas.
1.18.Interpretar e aplicar o significado de rendimento em
sistemas mecânicos, relacionando a dissipação de
energia com um rendimento inferior a 100%.
Orientações e sugestões
Num sistema mecânico apenas com movimento de translação o aluno deve indicar, sem justificar,
que ele se pode reduzir ao estudo de uma partícula, com a massa do sistema, a que se dá o nome de
centro de massa. Não se pretende uma definição formal de centro de massa.
Devem ser abordadas apenas situações em que o peso de um corpo possa ser considerado
constante, isto é, as dimensões da região em que o corpo se move devem ser muito menores do que
o raio da Terra.
Os contextos podem incluir situações que envolvam meios de transporte e movimentos de corpos
(por exemplo, corpos no ar com força de resistência do ar desprezável e não desprezável, corpos
apoiados em superfícies horizontais ou inclinadas, corpos em calhas curvilíneas ou em montanhas-
-russas, elevadores, pêndulo gravítico simples, etc.).
Editável e fotocopiável © Texto | Novo 10 F 11
Energia e fenómenos elétricos
Este subdomínio deverá ser lecionado em cerca de 3 semanas (9 aulas).
Conteúdos e Metas Curriculares
Objetivo geral: Descrever circuitos elétricos a partir de grandezas elétricas; compreender a
função de um gerador e as suas características e aplicar a conservação da energia num circuito
elétrico tendo em conta o efeito Joule.
Conteúdos METAS CURRICULARES
ͻ Grandezas elétricas:
corrente elétrica, diferença
de potencial elétrico e
resistência elétrica
ͻ Corrente contínua e
corrente alternada
ͻ Resistência de condutores
filiformes; resistividade e
variação da resistividade
com a temperatura
ͻ Efeito Joule
ͻ Geradores de corrente
contínua: força eletromotriz
e resistência interna; curva
característica
ͻ Associações em série e em
paralelo: diferença de
potencial elétrico e corrente
elétrica
ͻ Conservação da energia em
circuitos elétricos; potência
elétrica
ͻ AL 2.1. Características de
uma pilha
2.1. Interpretar o significado das grandezas corrente elétrica,
diferença de potencial elétrico (tensão elétrica) e
resistência elétrica.
2.2. Distinguir corrente contínua de corrente alternada.
2.3. Interpretar a dependência da resistência elétrica de um
condutor filiforme com a resistividade, característica do
material que o constitui, e com as suas características
geométricas (comprimento e área da secção reta).
2.4. Comparar a resistividade de materiais bons condutores,
maus condutores e semicondutores e indicar como varia
com a temperatura, justificando, com base nessa
dependência, exemplos de aplicação (resistências padrão
para calibração, termístor em termómetros, etc.).
2.5. Associar o efeito Joule à energia dissipada nos
componentes elétricos, devido à sua resistência, e que é
transferida para as vizinhanças através de calor,
identificando o LED (díodo emissor de luz) como um
componente de elevada eficiência (pequeno efeito Joule).
2.6. Caracterizar um gerador de tensão contínua pela sua força
eletromotriz e resistência interna, interpretando o seu
significado, e determinar esses valores a partir da curva
característica.
2.7. Identificar associações de componentes elétricos em série
e paralelo e caracterizá-las quanto às correntes elétricas
que os percorrem e à diferença de potencial elétrico nos
seus terminais.
2.8. Interpretar a conservação da energia num circuito com
gerador de tensão e condutores puramente resistivos,
através da transferência de energia do gerador para os
condutores, determinando diferenças de potencial
elétrico, corrente elétrica, energias dissipadas e potência
elétrica do gerador e do condutor.
12 Editável e fotocopiável © Texto | Novo 10 F
Orientações e sugestões
Os significados das grandezas corrente elétrica, em regime estacionário, e de diferença de
potencial elétrico (tensão elétrica), abordados no ensino básico, devem ser revisitados interpretando
as respetivas expressões matemáticas sem, contudo, estas constituírem objeto de resolução de
exercícios.
A dependência da resistividade dos materiais com a temperatura deve ser analisada sem recorrer
a quaisquer expressões ou modelos teóricos, privilegiando a interpretação de informação (em texto,
tabelas ou gráficos) e as aplicações dessa dependência.
A abordagem das associações de resistências em série ou em paralelo, limitada ao máximo de três
resistências, deve focar-se na análise e interpretação das diferenças de potencial elétrico e das
correntes elétricas, sem se proceder ao cálculo de resistências equivalentes.
Como a energia elétrica e as suas diversas aplicações são vitais na sociedade atual, na abordagem
dos conceitos pode recorrer-se a contextos como, por exemplo, os da iluminação, aquecimento,
alimentação de dispositivos elétricos móveis ou medição de temperaturas.
Sublinha-se que o fenómeno resultante do movimento de cargas elétricas se denomina corrente
elétrica e que este mesmo nome está adotado na legislação portuguesa (Decreto-Lei n.o
128/2010 de 3
de dezembro) para a grandeza física que se mede com um amperímetro, a qual em normas anteriores
se chamou intensidade de corrente elétrica. Os contextos em que se utiliza o termo corrente elétrica
permitirão estabelecer a distinção entre os dois conceitos, o fenómeno e a grandeza.
Energia, fenómenos térmicos e radiação
Este subdomínio deverá ser lecionado em cerca de 5 semanas (15 aulas).
Conteúdos e Metas Curriculares
Objetivo geral: Compreender os processos e mecanismos de transferências de energia entre
sistemas termodinâmicos, interpretando-os com base na Primeira e na Segunda Lei da
Termodinâmica.
Conteúdos METAS CURRICULARES
ͻ Sistema, fronteira e
vizinhança; sistema
isolado; sistema
termodinâmico
ͻ Temperatura, equilíbrio
térmico e escalas de
temperatura
ͻ O calor como medida da
energia transferida
espontaneamente entre
sistemas a diferentes
temperaturas
3.1. Distinguir sistema, fronteira e vizinhança e definir sistema
isolado.
3.2. Identificar um sistema termodinâmico como aquele em que
se tem em conta a sua energia interna.
3.3. Indicar que a temperatura é uma propriedade que determina
se um sistema está ou não em equilíbrio térmico com outros
e que o aumento de temperatura de um sistema implica, em
geral, um aumento da energia cinética das suas partículas.
3.4. Indicar que as situações de equilíbrio térmico permitem
estabelecer escalas de temperatura, aplicando à escala de
temperatura Celsius.
3.5. Relacionar a escala de Celsius com a escala de Kelvin (escala
de temperatura termodinâmica) e efetuar conversões de
temperatura em graus Celsius e kelvin.
Editável e fotocopiável © Texto | Novo 10 F 13
ͻ Radiação e irradiância
ͻ Mecanismos de
transferência de energia
por calor em sólidos e
fluidos: condução e
convecção
ͻ Condução térmica e
condutividade térmica
ͻ Capacidade térmica
mássica
ͻ Variação de entalpia de
fusão e de vaporização
ͻ Primeira Lei da
Termodinâmica:
transferências de energia
e conservação da energia
ͻ Segunda Lei da
Termodinâmica:
degradação da energia e
rendimento
ͻ AL 3.1. Radiação e
potência elétrica de um
painel fotovoltaico
ͻ AL 3.2. Capacidade
térmica mássica
ͻ AL 3.3. Balanço
energético num sistema
termodinâmico
3.6. Identificar calor como a energia transferida espontaneamente
entre sistemas a diferentes temperaturas. Identificar a energia
transferida espontaneamente entre sistemas a diferentes
temperaturas como calor.
3.7. Descrever as experiências de Thompson e de Joule
identificando o seu contributo para o reconhecimento de que
o calor é energia.
3.8. Distinguir, na transferência de energia por calor, a radiação –
transferência de energia através da propagação de luz, sem
haver necessariamente contacto entre os sistemas – da
condução e da convecção que exigem contacto entre sistemas.
3.9. Indicar que todos os corpos emitem radiação e que à
temperatura ambiente emitem predominantemente no
infravermelho, dando exemplos de aplicação desta
característica (sensores de infravermelhos, visão noturna,
termómetros de infravermelhos, etc.).
3.10. Indicar que todos os corpos absorvem radiação e que a
radiação visível é absorvida totalmente pelas superfícies pretas.
3.11.Associar a irradiância de um corpo à energia da radiação
emitida por unidade de tempo e por unidade de área.
3.12. Identificar uma célula fotovoltaica como um dispositivo que
aproveita a energia da luz solar para criar diretamente uma
diferença de potencial elétrico nos seus terminais, produzindo
uma corrente elétrica contínua.
3.13.Dimensionar a área de um sistema fotovoltaico conhecida a
irradiância solar média no local de instalação, o número
médio de horas de luz solar por dia, o rendimento e a
potência a debitar.
3.14.Distinguir os mecanismos de condução e de convecção.
3.15.Associar a condutividade térmica à taxa temporal de
transferência de energia como calor por condução,
distinguindo materiais bons e maus condutores do calor.
3.16.Interpretar o significado de capacidade térmica mássica,
aplicando-o na explicação de fenómenos do quotidiano.
3.17.Interpretar o conceito de variação de entalpias mássicas de
fusão e de vaporização.
3.18.Determinar a variação de energia interna de um sistema num
aquecimento ou arrefecimento, aplicando os conceitos de
capacidade térmica mássica e de variação de entalpia
mássica (de fusão ou de vaporização), interpretando o sinal
dessa variação.
3.19.Interpretar o funcionamento de um coletor solar, a partir de
informação selecionada, e identificar as suas aplicações.
3.20.Interpretar e aplicar a Primeira Lei da Termodinâmica.
3.21. Associar a Segunda Lei da Termodinâmica ao sentido em que os
processos ocorrem espontaneamente, diminuindo a energia útil.
3.22.Efetuar balanços energéticos e calcular rendimentos.
14 Editável e fotocopiável © Texto | Novo 10 F
Orientações e sugestões
Na apresentação das experiências de Benjamin Thompson e de Joule deve mostrar-se como é que
se reconheceu e comprovou que o calor era energia, apontando as razões que levaram Thompson a
concluir que calor não poderia ser uma substância (o calórico), mas sim uma energia. Na experiência
de Joule, interpretar o aumento de energia interna como resultado do trabalho realizado sobre o
sistema e concluir que esse aumento de energia interna poderia ser obtido por absorção de energia
por calor.
Para exemplificar o aumento da energia interna por realização de trabalho, pode usar-se um tubo
de cartão, com esferas de chumbo no seu interior e as extremidades tapadas com rolhas de cortiça,
que será invertido repetidamente na vertical; as medidas da massa das esferas, da altura do tubo e
das temperaturas das esferas, antes e após um certo número de inversões, permitirão calcular o
trabalho do peso e a variação de energia interna.
A componente laboratorial deve reforçar as aprendizagens relativas ao subdomínio anterior.
Na abordagem da Segunda Lei da Termodinâmica deve recorrer-se a exemplos que mostrem que
as máquinas funcionam sempre com dissipação de energia, não utilizando toda a energia disponível
na realização de trabalho. Deve destacar-se também que ocorre diminuição da energia útil nos mais
diversos processos naturais e que este é o critério que determina o sentido em que evoluem esses
processos. Não se deve introduzir o conceito de entropia na formulação da Segunda Lei da
Termodinâmica.
Avaliação
O processo de avaliação desta disciplina decorre dos princípios gerais da avaliação: deve ser
contínua, apoiada em diversos instrumentos adaptados às aprendizagens em apreciação, ter um
carácter formativo – não só para os alunos, para controlo da sua aprendizagem, mas também para o
professor, como reguladora das suas opções de ensino – e culminar em situações de avaliação
sumativa.
O aluno deve ser envolvido na avaliação, desenvolvendo o sentido crítico relativamente ao seu
trabalho e à sua aprendizagem, através, por exemplo, da promoção de atitudes reflexivas e do
recurso a processos metacognitivos.
Os critérios de avaliação definidos em Conselho Pedagógico, sob proposta dos departamentos
curriculares, devem contemplar os critérios de avaliação da componente prática-laboratorial,
designadamente as atividades laboratoriais de caráter obrigatório. De acordo com o estabelecido no
ponto 5 do art.o
7.o
da Portaria n.o
243/2012, são obrigatórios momentos formais de avaliação da
dimensão prática ou experimentais integrados no processo de ensino. E, de acordo com a alínea c)
do mesmo ponto, na disciplina de Física e Química A a componente prático-laboratorial tem um peso
mínimo de 30% no cálculo da classificação a atribuir em cada momento formal de avaliação.
Dada a centralidade da componente prática-laboratorial na Física e na Química identificam-se nas
Metas Curriculares, para cada uma das atividades laboratoriais, descritores específicos e transversais,
os quais devem servir como referência para a avaliação do desempenho dos alunos nessas
atividades.
Para responder aos diversos itens dos testes de avaliação, os alunos podem consultar um
formulário.
Editável e fotocopiável © Texto | Novo 10 F 15
Planificações
Indicações gerais
O Programa do 10.o
para a componente de Física apresenta um único domínio, a Energia e sua
conservação, que se desenvolve em três subdomínios, Energia e movimentos, Energia e fenómenos
elétricos e Energia, fenómenos térmicos e radiação. Para cada subdomínio são sugeridas respeti-
vamente 15 aulas, 9 aulas e 15 aulas, a que corresponde um total aproximado de 13 semanas. No
entanto, de acordo com o calendário escolar, o número de semanas de metade de ano letivo, que
corresponde à componente de Física, ronda as 16. Por isso, de acordo com a previsão do Programa,
haverá cerca de 3 semanas para uma gestão flexível, a concretizar tendo em atenção o projeto
educativo de cada escola (visitas de estudo a laboratórios, indústrias, museus/centros de ciência
etc.), as características de cada turma e eventuais situações imprevistas.
Com o intuito de elaborar um guia que enquadrasse os conteúdos em toda a extensão do período
letivo disponível para a Física, assim como possíveis momentos formais de avaliação (testes),
concebeu-se uma tabela de calendarização para 16 semanas. Contudo, ponderando a necessária
flexibilidade, distribuíram-se os conteúdos e os momentos formais de avaliação por 13 semanas, indo
ao encontro do sugerido no Programa. A opção tomada para as tabelas de calendarização, com 16
semanas, foi a de deixar livre aproximadamente uma semana por cada subdomínio. No plano de
aulas, as aulas que correspondem a esta situação estão indicadas com «Gestão flexível».
A tabela de calendarização a médio prazo, para as 16 semanas, é de fácil leitura. E o enquadramento
nas semanas letivas que essa tabela perspetiva para os subdomínios e para a distribuição e
desenvolvimento adotados nos conteúdos no manual certamente facilitará a organização do trabalho.
O plano de aulas por semana inclui sugestões para as três aulas de cada semana e um desenvolvimento
para cada uma dessas aulas, privilegiando-se uma ligação ao manual e a propostas do projeto.
Para complementar as propostas do manual foram elaboradas duas fichas de diagnóstico, duas
fichas formativas para cada um dos subdomínios e uma ficha formativa que inclui conteúdos dos
três subdomínios.
Na planificação sugere-se que a primeira ficha de diagnóstico seja usada para diagnóstico, ao se
iniciar a componente de Física e a segunda ficha no final. Para as fichas formativas também se indica
um possível momento de implementação.
De igual forma, no sentido de apoiar o trabalho dos professores, elaboraram-se para este projeto
propostas de testes de avaliação para cada um dos subdomínios e um teste global. Na planificação a
médio prazo e para as planificações semanais apenas se sugerem possíveis momentos de uso destes
instrumentos de avaliação por subdomínio.
Os recursos da plataforma multimédia Aula Digital – animações, animações laboratoriais,
atividades, folhas de cálculo Excel, PowerPoint, resolução animada de exercícios, simulações, testes
interativos e vídeos – devem ser utilizados, sempre que possível, de forma a promover o papel ativo
do aluno. Os recursos multimédia devem ser acompanhados de um guião de exploração didática
(escrito ou oral) que inclua ações diversificadas a realizar pelos autores.
Assim, devem ser utilizadas estratégias de exploração desses recursos que envolvam um
constante questionamento dos alunos sobre as suas observações, solicitando a interpretação de
imagens, esquemas, fórmulas, tabelas, gráficos, entre outros. Podem igualmente ser usados no final
de uma discussão, como síntese ou revisão de alguns pontos essenciais. O objetivo é que o
16 Editável e fotocopiável © Texto | Novo 10 F
desempenho dos alunos traduza os conhecimentos a adquirir e as capacidades que se querem ver
desenvolvidas, de acordo com o estabelecido nas Metas Curriculares.
As atividades práticas (resolução de exercícios e de problemas, trabalho laboratorial e outras)
devem ser feitas pelos alunos, individualmente ou em pequeno grupo. Este trabalho prático será
orientado pelo professor, que dará os esclarecimentos individuais adequados, para que cada aluno
adquira os desempenhos pretendidos.
Na resolução de exercícios devem ser destacados os procedimentos comuns a adotar (organização dos
dados, esquema do que é solicitado e expressões algébricas das grandezas envolvidas), assim como os
aspetos fundamentais das grandezas físicas mobilizadas em cada exercício ou problema.
Pelo que já foi referido, é evidente que esta calendarização não pode ser seguida rigidamente. De igual
forma se reforça que apenas se apresentam sugestões para o desenvolvimento das aulas. A
calendarização e as sugestões para as aulas servirão como um bom orientador do trabalho a desenvolver
com o manual e com o projeto que o compõe. Todavia, à realidade de cada escola/professor/turma
caberá a necessária adaptação da calendarização e dos materiais disponibilizados.
Sugestões de boas práticas na atividade docente
x Incentivar o estudo.
x Resumir o que os alunos deveriam ter aprendido.
x Fazer perguntas para suscitar justificações e explicações.
x Fazer perguntas para verificar se os alunos aprenderam.
x Encorajar todos os alunos a melhorar o seu desempenho.
x Elogiar os alunos pelo seu bom desempenho.
x Propor tarefas que constituam um desafio.
x Encorajar o debate.
x Relacionar novos conteúdos com conhecimentos anteriores.
x Solicitar aos alunos que escolham os seus próprios processos de resolução.
x Tornar a física um assunto relevante para os alunos.
x Gerir a aula de modo a evitar a indisciplina.
x Ensinar física utilizando uma abordagem exploratória e investigativa (inquiry).
x Resolver problemas e exercícios.
x Utilizar computadores, tablets, calculadoras ou smartphones durante as aulas (para processar
dados, traçar gráficos e utilizar modelações e simulações).
Abreviaturas e siglas usadas
AD – Aula Digital
AL – Atividade Laboratorial
Anm – Animação
AnmL – Animação laboratorial
CAP – Caderno de Apoio ao Professor
fig. – figura
M – Manual
p. – página; pp. – páginas
PWP – PowerPoint
TI – Teste Interativo
TL – Trabalho de Laboratório
TPC – Trabalho Para Casa
Editável e fotocopiável © Texto | Novo 10 F 17
Recursos de 20 Aula Digital
Documentos PowerPoint (PWP) Página (M)
Energia e movimentos
1.1.1 Energia e tipos fundamentais de energia. Energia interna 10
1.1.2 Sistema mecânico redutível a uma partícula 14
1.1.3 Transferências de energia por ação de forças. Trabalho de uma força constante 16
1.1.4 Trabalho do peso 21
1.1.5 Teorema da Energia Cinética (ou Lei do Trabalho-Energia) 25
1.1.6 Forças conservativas e não conservativas 27
1.1.7 Trabalho do peso, variação da energia potencial gravítica e energia potencial
gravítica
29
1.1.8 Energia mecânica, forças conservativas e conservação da energia mecânica 33
1.1.9 Forças não conservativas, variação da energia mecânica e dissipação de energia 34
1.1.10 Potência, energia dissipada e rendimento 37
Medições e incertezas associadas 40
Energia e fenómenos elétricos
1.2.1 Energia e correntes elétricas 70
1.2.2 Grandezas elétricas: diferença de potencial elétrico e corrente elétrica. Corrente
contínua e corrente alternada
71
1.2.3 Grandezas elétricas: resistência elétrica de um condutor 76
1.2.4 Energia transferida para um componente de um circuito elétrico. Efeito Joule 81
1.2.5 Características de um gerador de tensão contínua. Balanço energético num
circuito
84
1.2.6 Associações de componentes elétricos em série e em paralelo 87
Energia, fenómenos térmicos e radiação
1.3.1 Sistema termodinâmico. Sistema isolado 108
1.3.2 Temperatura, equilíbrio térmico e escalas de temperatura 109
1.3.3 Transferências de energia por calor 113
1.3.4 Radiação e irradiância. Painéis fotovoltaicos 115
1.3.5 Condução térmica 122
1.3.6 Convecção térmica 124
1.3.7 Transferências de energia como calor num coletor solar 125
1.3.8 Aquecimento e arrefecimento de sistemas: capacidade térmica mássica 126
1.3.9 Aquecimento e mudanças de estado: variação das entalpias de fusão e de
vaporização
129
1.3.10 Primeira Lei da Termodinâmica: transferências de energia e conservação da
energia
131
1.3.11 Segunda Lei da Termodinâmica: degradação da energia e rendimento 133
18 Editável e fotocopiável © Texto | Novo 10 F
Animações (Anm) Página (M)
Cálculo da energia cinética 11
Tipos fundamentais de energia 12
Centro de massa 15
Cálculo do trabalho de uma força 19
Cálculo do trabalho do peso 22
Cálculo do trabalho da resultante das forças através do Teorema da Energia Cinética 25
Forças conservativas e não conservativas 28
Cálculo da energia mecânica de um sistema 33
Potência e rendimento 37
Cálculo da potência e do rendimento em sistemas mecânicos 38
Cálculo da incerteza absoluta e da incerteza relativa 41
Grandezas elétricas: diferença de potencial elétrico e corrente elétrica 72
Efeito Joule 81
Cálculo da força eletromotriz e da resistência interna a partir da curva característica 85
Cálculo das grandezas elétricas de um gerador e de um condutor 90
Temperatura e equilíbrio térmico 109
Transferências de energia por calor 113
Emissão e absorção de radiação 116
Cálculo da irradiância 118
Condução e convecção 122
Cálculo da capacidade térmica mássica 127
Cálculo da variação de energia interna de um sistema 132
Cálculo do balanço energético de um sistema 134
Simulações Página (M)
Trabalho de uma força 18
Trabalho do peso 21
Conservação da energia mecânica 33
Resistência elétrica de um condutor 78
Associações de componentes elétricos em série e em paralelo 87
Capacidade térmica mássica 127
Variação de energia interna de um sistema 132
Atividades Página (M)
Trabalho do peso 24
Conservação e variação da energia mecânica 36
Medições e incertezas associadas 46
Balanço energético num circuito 86
Associação de resistências em série e em paralelo 88
Irradiância de um corpo 119
Variação das entalpias de fusão e de vaporização 130
Balanços energéticos 134
Editável e fotocopiável © Texto | Novo 10 F 19
Animação laboratorial Página (M)
AL 1.1 Movimento num plano inclinado: variação da energia cinética e distância
percorrida
49
AL 1.2 Movimento vertical de queda e ressalto de uma bola: transformações e
transferências de energia
53
AL 2.1 Características de uma pilha 96
AL 3.1 Radiação e potência elétrica de um painel fotovoltaico 137
AL 3.2 Capacidade térmica mássica 139
AL 3.3 Balanço energético num sistema termodinâmico 142
Folha de cálculo Página (M)
AL 1.1 Movimento num plano inclinado: variação da energia cinética e distância
percorrida
50
AL 1.2 Movimento vertical de queda e ressalto de uma bola: transformações e
transferências de energia
54
AL 2.1 Características de uma pilha 96
AL 3.1 Radiação e potência elétrica de um painel fotovoltaico 137
AL 3.2 Capacidade térmica mássica 139
AL 3.3 Balanço energético num sistema termodinâmico 142
Testes interativos Página (M)
1.1.1 Energia e tipos fundamentais de energia. Energia interna 13
1.1.2 Sistema mecânico redutível a uma partícula 15
1.1.3 Transferências de energia por ação de forças. Trabalho de uma força constante 20
1.1.4 Trabalho do peso 24
1.1.5 Teorema da Energia Cinética (ou Lei do Trabalho-Energia) 26
1.1.6 Forças conservativas e não conservativas 28
1.1.7 Trabalho do peso, variação da energia potencial gravítica e energia potencial
gravítica
30
1.1.8 Energia mecânica, forças conservativas e conservação da energia mecânica 33
1.1.9 Forças não conservativas, variação da energia mecânica e dissipação de energia 36
1.1.10 Potência, energia dissipada e rendimento 38
1.1 Energia e movimentos 55
1.2.1 Energia e correntes elétricas 70
1.2.2 Grandezas elétricas: diferença de potencial elétrico e corrente elétrica. Corrente
contínua e corrente alternada
75
1.2.3 Grandezas elétricas: resistência elétrica de um condutor 79
1.2.4 Energia transferida para um componente de um circuito elétrico. Efeito Joule 83
1.2.5 Características de um gerador de tensão contínua. Balanço energético num
circuito
86
1.2.6 Associações de componentes elétricos em série e em paralelo 91
1.2 Eletricidade 98
1.3.1 Sistema termodinâmico. Sistema isolado 108
1.3.2 Temperatura, equilíbrio térmico e escalas de temperatura 112
1.3.3 Transferências de energia por calor 114
1.3.4 Radiação e irradiância. Painéis fotovoltaicos 119
20 Editável e fotocopiável © Texto | Novo 10 F
Testes interativos Página (M)
1.3.5 Condução térmica 123
1.3.6 Convecção térmica 124
1.3.7 Transferências de energia como calor num coletor solar 125
1.3.8 Aquecimento e arrefecimento de sistemas: capacidade térmica mássica 128
1.3.9 Aquecimento e mudanças de estado: variação das entalpias de fusão e de
vaporização
130
1.3.10 Primeira Lei da Termodinâmica: transferências de energia e conservação da
energia
132
1.3.11 Segunda Lei da Termodinâmica: degradação da energia e rendimento 134
1.3 Fenómenos térmicos 143
Vídeos Página (M)
Escolha de lâmpadas 83
LED's 83
Temperatura 110
Termografia 118
Células fotovoltaicas 118
Painéis fotovoltaicos 119
Isolamento térmico 123
Coletor solar 125
Editável e fotocopiável © Texto | Novo 10 F 21
Planificação a médio prazo
Energia e sua conservação
Conteúdos Semanas Fichas
Formativas
e testes
1.1. Energia e movimentos (18 aulas) 1 2 3 4 5 6
Ficha de Diagnóstico X Diagnóstico
1.1.1 Energia e tipos fundamentais de energia. Energia interna X
1.1.2 Sistema mecânico redutível a uma partícula X
1.1.3 Transferências de energia por ação de forças. Trabalho de
uma força constante
X X
1.1.4 Trabalho do peso X
1.1.5 Teorema da Energia Cinética (ou Lei do Trabalho-Energia) X
Ficha 1 – Energia e movimentos X Ficha 1
1.1.6 Forças conservativas e não conservativas X
1.1.7 Trabalho do peso, variação da energia potencial gravítica e
energia potencial gravítica
X
1.1.8 Energia mecânica, forças conservativas e conservação da
energia mecânica
X
1.1.9 Forças não conservativas, variação da energia mecânica e
dissipação de energia
X X
1.1.10 Potência, energia dissipada e rendimento X
AL 1.1. Movimento num plano inclinado: variação da energia
cinética e distância percorrida
X
AL 1.2. Movimento vertical de queda e ressalto de uma bola:
transformações e transferências de energia
X
Ficha 2 – Energia e movimentos X Ficha 2
Teste 1 – Energia e movimentos X
Conteúdos Semanas Fichas
Formativas
e testes
1.2. Energia e fenómenos elétricos (12 aulas) 7 8 9 10
1.2.1 Energia e correntes elétricas X
1.2.2 Grandezas elétricas: diferença de potencial elétrico e
corrente elétrica. Corrente contínua e corrente alternada
X
1.2.3 Grandezas elétricas: resistência elétrica de um condutor X
1.2.4 Energia transferida para um componente de um circuito
elétrico. Efeito Joule
X X
Ficha 3 – Energia e Fenómenos Elétricos X Ficha 3
1.2.5 Características de um gerador de tensão contínua. Balanço
energético num circuito
X
1.2.6 Associações de componentes elétricos em série e em paralelo X X
AL 2.1. Características de uma pilha X
Ficha 4 – Energia e Fenómenos Elétricos X Ficha 4
Teste 2 – Energia e Fenómenos Elétricos X Teste 2
22 Editável e fotocopiável © Texto | Novo 10 F
Conteúdos Semanas Fichas
Formativas
e testes
1.3. Energia fenómenos térmicos e radiação (18 aulas) 11 12 13 14 15 16
1.3.1 Sistema termodinâmico. Sistema isolado X
1.3.2 Temperatura, equilíbrio térmico e escalas de temperatura X
1.3.3 Transferências de energia por calor X
1.3.4 Radiação e irradiância. Painéis fotovoltaicos X
1.3.5 Condução térmica X
1.3.6 Convecção térmica X
1.3.7 Transferências de energia como calor num coletor solar X
Ficha 5 – Energia e Fenómenos Térmicos X Ficha 5
1.3.8 Aquecimento e arrefecimento de sistemas: capacidade
térmica mássica
X X
1.3.9 Aquecimento e mudanças de estado: variação das entalpias
de fusão e de vaporização
X
1.3.10 Primeira Lei da Termodinâmica: transferências de energia e
conservação da energia
X X
1.3.11 Segunda Lei da Termodinâmica: degradação da energia e
rendimento
X X
Ficha 6 – Energia e Fenómenos Térmicos X Ficha 6
AL 3.1. Radiação e potência elétrica de um painel fotovoltaico X
AL 3.2. Capacidade térmica mássica X
AL 3.3. Balanço energético num sistema termodinâmico X
Ficha 7 – Energia e Sua Conservação (ficha global) X Ficha 7
Teste 3 – Energia, Fenómenos Térmicos e Radiação X Teste 3
Editável e fotocopiável © Texto | Novo 10 F 23
Planos de aulas semana
N.o
1
Data :
Sumário: Apresentação da componente de Física. Transferência de energia: fonte de energia e recetor de energia. Ficha de
Diagnóstico 1.
Conteúdos: Energia e o seu papel no desenvolvimento social humano. Metas Curriculares: 1.1 e 1.2
Atividades/Estratégias: Apresentação do Programa de Física usando o Manual, apresentação
da estrutura e organização do Manual.
Informação sobre as fichas e os testes: data de realização; número, tipologia e organização das
questões; material; duração e critérios gerais de classificação dos testes.
Indicações sobre a organização do estudo ao longo do ano.
Breve discussão do papel da energia na sociedade moderna (alguns aspetos da história recente
da produção e consumo de energia) com base na interpretação do texto e figuras da p. 8 do M.
Identificar a fonte e o recetor de energia (analisar a fig. 1 da p. 10 do M). Ficha de Diagnóstico 1
(60 min).
Recursos:
M: pp. 8 e 10
CAP: Ficha de Diagnóstico 1
Observações: Pode destacar-se a importância da energia na
Revolução Industrial e o papel da eletricidade no mundo atual.
Com o TPC pretende-se uma revisão dos conhecimentos incluídos
nas metas 3.1, 3.2 e 3.4 do subdomínio Forças, movimentos e
energia do 9.
o
ano: tipos fundamentais de energia e fatores de
que dependem.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes. Ficha de Diagnóstico 1.
Sugestões aos alunos: TPC – a) Quantos e quais são os tipos
fundamentais de energia e de que fatores depende a energia
cinética? b) Questão 1, p. 55 do M.
Data :
Sumário: Correção do TPC. Energia cinética de um corpo. Energia potencial e interações entre corpos. Energia interna de um sistema.
Sistema mecânico. Aplicação dos conceitos na resolução de questões.
Conteúdos: Energia cinética e energia potencial; energia interna. Sistema mecânico.
Conservação de energia.
Metas Curriculares: 1.1, 1.2, 1.3,
1.4 e 1.5
Atividades/Estratégias: Correção da Ficha de Diagnóstico 1. Apresentação do TPC pelos
alunos e síntese das principais conclusões (esquematização das conclusões, ou PWP 1.1.1, ou
Anm Tipos fundamentais de energia). Destacar as unidades SI.
Apresentação de alguns tipos de energia potencial (analisar a fig. 3 da p. 12 do M).
Resolução de dois exercícios de cálculo da energia cinética: determinação da energia cinética e
do módulo da velocidade (interpretar a Questão Resolvida 1 da p. 11 do M e Anm 1.1.1).
Desafio aos alunos: conversão de valores de velocidade km/h para m/s e vice-versa.
Atividade prática: questões 1, 3 e 4 da p. 55 e TI 1.1.1. A partir da questão Pode um carro
considerar-se um sistema mecânico? identificar o que é um sistema mecânico (contextualizar
com as figs. 5 e 6 da p. 14 do M).
Recursos:
M: pp. 11- 14, 55
CAP: Proposta de resolução da Ficha
de Diagnóstico 1
AD:
ƒ PWP 1.1.1
ƒ Anm Tipos fundamentais de energia
ƒ Anm 1.1.1 Cálculo da energia
cinética
ƒ Anm Centro de massa
x TI 1.1.1
Observações: Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões 2 e 5 da p. 55 do M.
90 min
100 min
90 min
100 min
Aulas
n.o
1/2
Aulas
n.o
3/4
24 Editável e fotocopiável © Texto | Novo 10 F
Data :
Sumário: Correção do TPC. Modelo do centro de massa. A grandeza trabalho e o seu significado físico. Determinação do trabalho
realizado por forças constantes em movimentos retilíneos. Aplicação dos conceitos na resolução de questões.
Conteúdos: Sistema redutível a uma partícula (centro de massa). O trabalho como medida da
energia transferida por ação de forças; trabalho realizado por forças constantes.
Metas Curriculares: 1.6 e 1.7
Atividades/Estratégias: Apresentação do TPC (questões 2 e 5 da p. 55 do M) esclarecimento
das dúvidas.
Explicar o modelo do centro de massa, interpretando a fig. 7 da p. 15 do M, e identificar algumas
das suas limitações (contextualizar com a Anm Centro de massa e com a Questão Resolvida 2 da
p. 15 do M).
Atividade prática: questão 6 da p. 55 do M e TI 1.1.2.
Revisão do conceito de trabalho como processo de transferência de energia entre sistemas
através da atuação de forças (fig. 8 da p. 16 do M).
Representação das forças exercidas sobre um corpo assente numa superfície horizontal (fig. 10
da p. 17 do M).
A partir da questão Uma força aplicada sobre um corpo realiza sempre trabalho? concluir em
que situações o trabalho de uma força é nulo (interpretar a Questão Resolvida 3 da p. 17 do M).
Identificação dos fatores de que depende o trabalho de uma força (interpretação das figs. 13 e
14 da p. 16 do M, e da fig. 16 da p. 17).
Identificação do trabalho de uma força com o trabalho da sua componente na direção do
deslocamento.
Apresentação e interpretação da expressão algébrica do trabalho de uma força constante,
salientando as unidades SI.
Relacionar o facto de o trabalho ser potente, resistente ou nulo com o ângulo entre a força e o
deslocamento.
Atividade prática: interpretação da Questão Resolvida 4 da p. 20 do M e Anm 1.1.3.
Recursos:
M: pp. 15-20, 55
AD:
ƒ Anm Centro de massa
ƒ TI 1.1.2
ƒ PWP 1.1.3
ƒ Simulação Trabalho de uma força
ƒAnm Cálculo do trabalho de uma
força
Observações: Revisão dos conceitos da meta 3.6 do subdomínio
Forças, movimentos e energia do 9.
o
ano (transferir energia
através de trabalho).
Explorar os recursos, e as atividades de aplicação incluídas na
Aula Digital, que seguem os exemplos do M.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões 9, 10, 11 e 13 da p. 56 do M.
Registo de Notas
135 min
150 min
Aulas
n.o
5/6/7
Editável e fotocopiável © Texto | Novo 10 F 25
Planos de aulas semana
N.o
2
Data :
Sumário: Correção do TPC. Transferências de energia por ação de forças. Trabalho de uma força constante. Trabalho do peso. Aplicação
dos conceitos na resolução de questões.
Conteúdos: Trabalho de forças constantes. Metas Curriculares: 1.6 e 1.7
Atividades/Estratégias: Apresentação do TPC (questões 9, 10, 11 e 13 da p. 56 do M) e
esclarecimento de dúvidas.
Atividade prática: questões 7 e 8 da p. 55 e 12 e 14 da p. 56 do M; TI 1.1.3.
Determinação do trabalho do peso em trajetórias retilíneas horizontais e verticais (interpretação
da figura 10 da p. 21 do M).
Representação das forças que atuam sobre um corpo num plano inclinado.
Decomposição do peso e identificação do trabalho do peso com o trabalho da componente do
peso na direção do deslocamento (pode recorrer-se ao PWP 1.1.4 ou à simulação 1.1.4).
Recursos:
M: pp. 21-23, 55-56
AD:
ƒ TI 1.1.3 Transferências de energia
por ação de forças. Trabalho de uma
força constante
ƒ PWP 1.1.4 Trabalho do peso
ƒ Simulação 1.1.4 Trabalho do peso
Observações: A simulação 1.1.4 está estruturada em três
partes: breve animação sobre o cálculo do trabalho do peso no
plano inclinado; simulação (o ângulo do plano e a massa do corpo
podem ser alterados, marcam-se as forças, mostra-se as
componentes do peso e num gráfico de barras os valores dos
trabalhos do peso, da força de atrito e da força resultante);
questões para resolver.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões 15 e 16 da p. 57 do M.
Data :
Sumário: Correção do TPC. Transferências de energia por ação de forças. Trabalho de uma força constante. Trabalho do peso. Aplicação
dos conceitos na resolução de questões.
Conteúdos: Trabalho de forças constantes. Metas de aprendizagem: 1.7
Atividades/Estratégias: Apresentação do TPC (questões 15 e 16 da p. 57 do M) e
esclarecimento de dúvidas.
Resolução animada de exercícios 1.1.4.
Interpretação da inclinação de uma estrada expressa em percentagem.
Análise da Questão resolvida 5 da p. 24 do M.
Atividade prático-laboratorial: Medição do trabalho do peso (p. 24 do M).
Atividade prática: questões 18 da p. 57 e 19 da p. 58.
Recursos:
M: pp. 24, 57-58
AD:
ƒ Resolução animada de exercícios
1.1.4 Cálculo do trabalho do peso
ƒ Atividade Trabalho do peso
Observações: Sugere-se que a atividade Medição do trabalho do
peso seja feita em grupos de dois.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questão 17 da p. 57 do M.
90 min
100 min
90 min
100 min
Aulas
n.o
10/11
Aulas
n.o
8/9
26 Editável e fotocopiável © Texto | Novo 10 F
Data :
Sumário: Correção do TPC. Teorema da Energia Cinética (ou Lei do Trabalho-Energia). Aplicação dos conceitos na resolução de
questões.
Conteúdos: Trabalho de forças constantes. Variação de energia cinética. Lei do trabalho
energia.
Metas de aprendizagem: 1.8
Atividades/Estratégias: Apresentação do TPC (questão 17 da p. 57 do M) e esclarecimento de
dúvidas.
Apresentação do teorema da energia cinética (interpretação das figs. 27 e 28 da p. 25 do M e da
expressão algébrica que traduz este teorema).
Identificação do trabalho total com o trabalho da resultante das forças para um corpo apenas
com movimento de translação.
Interpretação da Questão Resolvida 6 (p. 26 do M).
Atividade prática: Anm 1.1.5 e questões 20, 21, 22, 25, 26 da p. 58 e 29, 31 e 32 da p. 59.
Recursos:
M: pp. 25-26, 57-59
AD:
ƒ PowerPoint 1.1.5 Teorema da
Energia Cinética (ou Lei do Trabalho-
Energia)
ƒ Resolução animada de exercícios
1.1.5 Cálculo do trabalho da
resultante das forças através do
Teorema da Energia Cinética.
ƒ TI 1.1.5 Teorema da Energia Cinética
(ou Lei do Trabalho-Energia)
Simulação Stopping Distance –
Distância de travagem
(http://goo.gl/W1qOV1) do Physics
Classroom
Observações: Na apresentação do teorema da energia cinética
pode recorrer-se ao PWP 1.1.5.
Se o ritmo de progressão da turma assim o permitir poderá ainda
resolver-se o Teste interativo 1.1.5.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões 23 e 27 da p. 58 e 30 da
p. 59 do M.
Registo de Notas
135 min
150 min
Aulas
n.o
12/13/14
Editável e fotocopiável © Texto | Novo 10 F 27
Planos de aulas semana
N.o
3
Data :
Sumário: Correção do TPC. Ficha Formativa 1: Energia e movimentos. Forças conservativas e não conservativas.
Conteúdos: Trabalho de forças constantes. Energia cinética. Variação de energia cinética. Lei do
trabalho energia. Forças conservativas e não conservativas.
Metas de aprendizagem: 1.3, 1.6,
1.7, 1.8 e 1.9
Atividades/Estratégias: Apresentação do TPC (questões 23, 27 da p. 58 e 30 da p. 59 do M) e
esclarecimento de dúvidas.
Ficha 1 – Energia e movimentos (60 min).
Comparação do trabalho realizado pelo peso, entre dois pontos, seguindo diferentes trajetórias
(interpretação das figs. 30, 31 e 32 da p. 27 do M).
Determinação do trabalho do peso numa trajetória fechada (interpretação da fig. 33 da p. 28 do M).
Recursos:
M: pp. 27-28
ƒ CAP: Ficha 1 – Energia e
movimentos
Observações: Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Estudar a definição de força
conservativa; justificar o facto de o peso ser uma força conservativa;
indicar dois exemplos de forças não conservativas.
Data :
Sumário: Correção da Ficha Formativa 1 – Energia e movimentos – e do TPC. Forças conservativas e não conservativas. Medição e
incertezas associadas. Aplicação dos conceitos na resolução de questões. Preparação da AL 1.1.
Conteúdos: Medição, medição direta e indireta. Incerteza de medida numa medição direta.
Exatidão e precisão.
Metas de aprendizagem: 1.9 e do
TL conceptuais 7, 9, 11 a 15 e 18 a 23
Atividades/Estratégias: Correção da Ficha 1 – Energia e movimentos. Apresentação do TPC
(definição de força conservativa, concluindo-se que o peso é uma força conservativa e indicação
de alguns exemplos de forças não conservativas) e esclarecimento de dúvidas.
Atividade prática: questões 33 e 34 da p. 59 do M.
Apresentação dos conceitos de medição direta e indireta.
Determinação da incerteza absoluta de uma medida quando há uma só medição direta
(exemplificação com balança, régua e cronómetros digital e interpretação da Questão Resolvida
11 da p. 43 do M).
Determinação da incerteza absoluta de uma medida quando existem várias medições diretas nas
mesmas condições.
Explicação dos conceitos de exatidão e de precisão (interpretação da Questão Resolvida 12 da
p. 47 do M).
Recursos:
M: pp. 40-45; 59
CAP: Proposta de resolução da Ficha 1
– Energia e movimentos
AD:
ƒ Anm Forças conservativas e não
conservativas
ƒ PWP Medições e incertezas
associadas
ƒ Atividade Medições e incertezas
associadas
Observações: Pode recorrer-se à Anm Forças conservativas e
não conservativas e à Atividade Medições e incertezas associadas.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões pré-laboratoriais da AL 1.1
(p. 48 do M).
90 min
100 min
90 min
100 min
Aulas
n.o
15/16
Aulas
n.o
17/18
28 Editável e fotocopiável © Texto | Novo 10 F
Data :
Sumário: AL 1.1: Movimento num plano inclinado: variação da energia cinética e distância percorrida.
Conteúdos: Trabalho de forças constantes. Energia cinética. Medição, medição direta e
indireta. Incerteza de medida numa medição direta.
Metas de aprendizagem:
Específicas da AL: 1 a 6; Processuais 1,
6 e 8 a 12; Conceptuais 1 a 3, 6 e 7, 9,
11 a 15 e 18 a 23
Atividades/Estratégias: Esclarecimento de dúvidas sobre as questões pré-laboratoriais da
AL 1.1 (p. 48 do M).
Atividade laboratorial 1.1 (pp. 49 e 50 do M). Resolução das questões pós-laboratoriais da AL 1.1
(p. 51 do M). No final da execução laboratorial os alunos poderão fazer uma apresentação dos
resultados de cada grupo.
Recursos:
Material necessário para a AL 1.1
(p. 49 do M)
M: pp. 48-51
CAP: AL 1.1 - Respostas às questões
pré e pós-laboratoriais, resultados
obtidos em trabalho laboratorial e
grelha de avaliação da atividade
laboratorial
ƒ AD: AnmL 1.1 Movimento num
plano inclinado: variação da energia
cinética e distância percorrida
Observações: Ver indicações e sugestões de realização desta AL
no CAP. Parte da avaliação da AL pode ser concretizada com as
questões, indicadas no CAP.
Pode utilizar-se a AnmL 1.1 para expor os aspetos fundamentais
do trabalho laboratorial.
Avaliação: Registo de intervenção e participação. Respostas a
questões pré e pós-laboratoriais. Ficha de avaliação específica.
Comportamento e atitudes.
Sugestões aos alunos: TPC – De que fatores depende a energia
potencial gravítica?
Registo de Notas
Aulas
n.o
19/20/21
135 min
150 min
Editável e fotocopiável © Texto | Novo 10 F 29
Planos de aulas semana
N.o
4
Data :
Sumário: Correção do TPC. Trabalho do peso, variação de energia potencial gravítica e energia potencial gravítica. Energia mecânica.
Aplicação dos conceitos na resolução de questões. Aplicação dos conceitos na resolução de questões.
Conteúdos: Trabalho de forças constantes. Trabalho do peso. Variação de energia potencial e
energia potencial.
Metas de aprendizagem: 1.7, 1.9,
1.10 e 1.11
Atividades/Estratégias: Apresentação do TPC (fatores de que depende a energia potencial
gravítica) e esclarecimento de dúvidas.
Escrita e interpretação da expressão da energia potencial gravítica de um sistema corpo + Terra.
Estabelecimento da relação entre a variação de energia potencial gravítica e o trabalho do peso
(poderá recorrer-se ao PWP 1.1.7).
Os alunos deverão explicar o sinal da variação da energia potencial gravítica e do trabalho do
peso, na subida e na descida, relacionando os sinais dos valores dessas duas grandezas.
Análise da questão resolvida 7 da p. 30 do M.
Atividade prática: questões 35, 36, 38 da pp. 59-60 do M e TI 1.1.7.
Apresentação da definição de energia mecânica de um sistema corpo + Terra.
Interpretação de situações em que ocorrem transformações de energia cinética em potencial
gravítica e vice-versa (exemplificar com movimentos em desportos e atividades de lazer).
Recursos:
M: pp. 29-32; 59-60
AD:
ƒ PWP 1.1.7 Trabalho do peso,
variação da energia potencial
gravítica e energia potencial
gravítica
ƒ TI 1.1.7 Trabalho do peso, variação
da energia potencial gravítica e
energia potencial gravítica
Observações: Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões 37 e 39 da p. 60 do M.
Data :
Sumário: Correção do TPC. Energia mecânica, forças conservativas e conservação da energia mecânica. Aplicação dos conceitos na
resolução de questões.
Conteúdos: Forças conservativas. Energia potencial, energia cinética e energia mecânica. Metas de aprendizagem: 1.8, 1.9,
1.10, 1.11. 1.12, 1.13 e 1.14
Atividades/Estratégias: Apresentação do TPC (questões 37 e 39 da p. 60 do M) e
esclarecimento de dúvidas.
Conclusão da conservação da energia mecânica num sistema conservativo, ou se o trabalho das
forças não conservativas for nulo, a partir do teorema da energia cinética (pode recorrer-se ao
PWP 1.1.8).
Utilização de uma simulação (simulação 1.1.8 ou outras) para questionamento oral dos alunos
sobre variações de energia cinética, potencial gravítica e mecânica e suas relações.
Interpretação da Questão Resolvida 8 (p. 33 do M).
Atividade prática: Anm 1.1.8 e questões 40, 41, 43 e 44 da pp. 60-61 do M.
Recursos:
M: pp. 32-33; 60-61
AD:
ƒ PWP 1.1.8 Energia mecânica, forças
conservativas e conservação da
energia mecânica
ƒ Simulação 1.1.8 Conservação da
energia mecânica
ƒ Anm 1.1.8 Cálculo da energia
mecânica de um sistema
Outras simulações: Energia do Parque
de Skate: Básico
(http://goo.gl/jWKjtd) do projeto
PhET ou Roller Coaster Model
(http://goo.gl/wLPcWa) do Physics
Classroom
Observações: Revisão das metas 3.3 e 3.5 do subdomínio
Forças, movimentos e energia do 9.
o
ano.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões 45 e 46 da p. 62 do M.
90 min
100 min
90 min
100 min
Aulas
n.o
22/23
Aulas
n.o
24/25
30 Editável e fotocopiável © Texto | Novo 10 F
Data :
Sumário: Correção do TPC. Entrega dos trabalhos de laboratório relativos à atividade laboratorial 1.1. Análise dos resultados obtidos.
Forças não conservativas, variação da energia mecânica e dissipação de energia.
Conteúdos: Forças não conservativas. Variação de energia mecânica. Metas de aprendizagem: 1.7, 1.8,
1.10, 1.12, 1.15 e 1.16
Atividades/Estratégias: Apresentação do TPC (questões 45 e 46 da p. 62 do M) e
esclarecimento de dúvidas.
Interpretação de uma demonstração experimental em vídeo com base na conservação da
energia mecânica.
Atividade prática: questões 50, 51, 53 e 54 das pp. 62-63 do M.
Discussão dos resultados obtidos pelos diversos grupos na AL 1.1.
Estabelecimento da relação entre o trabalho das forças não conservativas e a variação de
energia mecânica (exemplificação com a força de atrito e a força de resistência do ar –
interpretação da fig. 39 da p. 34 do M e fig. 40 da p. 35).
Recursos:
Vídeo Potential Energy to Kinetic
Energy
(http://youtu.be/L2mdAvdPhT4) do
canal MIT Tech TV
M: pp. 34-35; 62-63
AD:
ƒ PWP 1.1.9 Forças não
conservativas, variação da energia
mecânica e dissipação de energia
Observações: Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões 55, 58 e 59 da p. 64 do M.
Registo de Notas
135 min
150 min
Aulas
n.o
26/27/28
Editável e fotocopiável © Texto | Novo 10 F 31
Planos de aulas semana
N.o
5
Data :
Sumário: Correção do TPC. Forças não conservativas, variação da energia mecânica e dissipação de energia. Potência, energia dissipada
e rendimento. Aplicação dos conceitos na resolução de questões.
Conteúdos: Forças não conservativas. Variação de energia mecânica. Metas de aprendizagem: 1.7, 1.8,
1.10, 1.12, 1.15, 1.16 e 1.18
Atividades/Estratégias: Apresentação do TPC (questões 55, 58 e 59 da p. 64 do M) e
esclarecimento de dúvidas.
Estabelecimento das relações entre forças dissipativas, energia dissipada e variação da energia
mecânica (contextualizar a discussão com exemplos de movimentos reais – pêndulo gravítico,
esfera numa calha semicircular, queda de uma folha de papel, corpo que desce um plano
inclinado, etc. – e com simulações).
Interpretação da Questão Resolvida 9 (p. 36 do M).
Atividade prática: questões 61, 62 e 63 da p. 64 e TI 1.1.8.
Estabelecimento das relações entre energia, potência, energia útil, energia dissipada e
rendimento.
Recursos:
M: pp. 34-36; 64
Simulações: Energia do Parque de
Skate: Básico (http://goo.gl/jWKjtd)
do projeto PhET ou Roller Coaster
Model (http://goo.gl/wLPcWa) do
Physics Classroom
AD:
ƒ TI 1.1.8 Energia mecânica, forças
conservativas e conservação da
energia mecânica
ƒ Atividade Conservação e variação
da energia mecânica
ƒ PWP 1.1.10 Potência, energia
dissipada e rendimento
ƒ Anm Potência e rendimento
Observações: Pode recorrer-se ao PWP 1.1.10 para
apresentação dos conceitos de potência e rendimento (rever do
ensino básico o conceito de potência – metas 2.2 a 2.4 do
subdomínio Efeitos da corrente elétrica e energia elétrica).
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questão 60 da p. 64 do M.
Data :
Sumário: Correção do TPC. Potência, energia dissipada e rendimento. Preparação da AL 1.2. Aplicação dos conceitos na resolução de
questões.
Conteúdos: Energia, potência e rendimento. Metas de aprendizagem: 1.15,
1.16, 1.17 e 1.18 e do TL Conceptuais
18 e 20
Atividades/Estratégias: Apresentação do TPC (questões 60 da p. 64 do M) e esclarecimento
de dúvidas.
Interpretação da Questão Resolvida 10 da p. 38.
Atividade prática: resolução animada do exercício 1.1.10 e das questões 67, 68 e 69 e 70, da p. 65.
Utilização do vídeo para relacionar os conceitos de trabalho, energia e potência.
Construção de um gráfico e determinação da reta de regressão a partir de um conjunto de dados
experimentais (pode recorrer-se ao anexo 1 das pp. 156-159 do M que tem instruções para as
calculadoras TEXAS TI-84 Plus C Silver Edition e CASIO FX–CG20).
Recursos:
M: pp. 37-38; 65; 156-159
Vídeo How does work...work? - Peter
Bohacek
(http://youtu.be/u6y2RPQw7E0) do
canal TED Ed
AD:
ƒ Anm 1.1.10 Cálculo da potência e do
rendimento em sistemas mecânicos
Observações: Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões pré-laboratoriais da AL 1.2
(pp. 52-53 do M).
90 min
100 min
90 min
100 min
Aulas
n.o
29/30
Aulas
n.o
31/32
32 Editável e fotocopiável © Texto | Novo 10 F
Data :
Sumário: AL 1.2. Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia.
Conteúdos: Trabalho do peso. Transformações de energia. Conservação de energia mecânica. Metas de aprendizagem:
Específicas da AL: 1 a 7; Processuais 1,
7, 10 e 11; Conceptuais 1, 2, 4, 9, 13,
14 e 18 a 21
Atividades/Estratégias: Correção das questões pré-laboratoriais da AL 1.2 (pp. 52-53 do M).
Trabalho laboratorial da AL 1.2 (p. 54 do M).
Resolução das questões pós-laboratoriais da AL 1.2 (p. 54 do M).
Recursos:
Material necessário para a AL 1.2
(p. 54 do M)
M: pp. 52-54
CAP: AL 1.2 – Respostas às questões
pré e pós-laboratoriais, resultados
obtidos em trabalho laboratorial e
grelha de avaliação da atividade
laboratorial
AD:
ƒ AnmL 1.2 Movimento vertical de
queda e ressalto de uma bola:
transformações e transferências de
energia
Observações: Ver indicações e sugestões de realização desta AL
no CAP. Parte da avaliação da AL pode ser concretizada com as
questões, indicadas no CAP.
Avaliação: Registo de intervenção e participação. Respostas a
questões pré e pós-laboratoriais. Ficha de avaliação específica.
Comportamento e atitudes.
Sugestões aos alunos: TPC – Produzir um documento em folha de
cálculo com os dados organizados em tabela e sua interpretação
gráfica.
Registo de Notas
135 min
150 min
Aulas
n.o
33/34/35
S
C
A
D
I
O
r
e
c
e
o
q
o
q
c
v
q
S
C
A
O
s
q
p
S
C
A
O
Plano
Sumário: Ficha
Conteúdos: Ene
Atividades/Est
Discussão da pro
ndicações para a
Observações: A
realização do tes
estar concentrad
com muita atenç
em conta o tipo
organizar a respo
que tenha dúvida
outra estratégia
questões de mai
como os dados s
vice-versa); quan
questões; caso a
Sumário: Teste
Conteúdos: Ene
Atividades/Est
Observações: S
seja disponibiliza
que seja projetad
podem ser dados
Sumário: Gestã
Conteúdos:
Atividades/Est
Observações:
Au
n.o
3
Au
n.o
3
Au
n.o
40/
os de au
N.o
Formativa 2 – E
ergia e movimen
tratégias: Ficha
oposta de resolu
a realização do t
Algumas das sug
ste: levar todo o
do e com uma at
ção e responder
de questão; qua
osta de modo cla
as na resposta, m
de resolução, nã
or complexidade
e podem relacio
ndo terminar, ve
inda tenha temp
Escrito n.º 1 (co
ergia e movimen
tratégias: Realiz
Sugere-se que a p
da em PDF (por
da numa aula seg
s nessa aula.
o flexível
tratégias:
las
6/37
las
8/39
las
/41/42
las sema
6
nergia e movime
ntos.
2 – Energia e m
ção da ficha 2 e
teste.
gestões a transm
material necess
titude positiva; l
apenas ao que é
ando tiver de esc
aro e conciso; na
mas não consiga
ão deve riscar a
e, procurar esqu
onar com o que é
erificar se respon
po, reler todas a
omponente de Fí
ntos.
zação do Teste E
proposta de reso
exemplo, na plat
guinte. Eventuais
135
150
90 m
100
90 m
100
Editável e fotoco
ana
Data
entos. Esclarecim
movimentos (60 m
autocorreção.
mitir para a
sário; ter calma,
er cada questão
é pedido, tendo
crever um texto
as questões em
a estabelecer
resposta; nas
uematizar a form
é solicitado (e
ndeu a todas as
as respostas.
Data
ísica) de avaliaçã
Escrito n.
o
1.
olução do teste
taforma Moodle
s esclarecimento
Data
min
min
min
min
min
min
opiável © Texto |
:
mento de dúvida
min).
o
ma
Avaliação:
e atitudes.
Sugestões
(p. 39 do M
Resolução d
:
ão.
) e
os
Avaliação:
Sugestões
:
Avaliação:
Sugestões
| Novo 10 F
as e revisões.
: Registo de inte
s aos alunos: Le
M) e revisão dos c
da Questão Glob
: Critérios de cla
s aos alunos:
:
s aos alunos:
Metas de a
Recursos:
CAP: Ficha 2
respetiva Pr
ervenção e parti
eitura atenta do
conceitos estudo
bal 76 (pp. 67-68
Metas de a
Recursos:
CAP: Teste E
assificação do Te
Metas de a
Recursos:
aprendizagem
2 – Energia e mo
roposta de Reso
cipação. Compo
o resumo dos co
os.
8).
aprendizagem
Escrito n.
o
1
este Escrito n.
o
1
aprendizagem
33
m: 1.1 a 1.18
ovimentos e
olução
ortamento
onteúdos
m: 1.1 a1.18
1.
m:
34 Editável e fotocopiável © Texto | Novo 10 F
Planos de aulas semana
N.o
7
Data :
Sumário: Energia e correntes elétricas. Grandezas elétricas: diferença de potencial elétrico e corrente elétrica. Corrente contínua e
corrente alternada. Resistência elétrica e resistividade. Aplicação dos conceitos na resolução de questões.
Conteúdos: Carga elétrica. Fenómeno da corrente elétrica. Diferença de potencial elétrico.
Corrente elétrica. Corrente contínua e corrente alternada. Resistência de condutores filiformes e
resistividade.
Metas de aprendizagem: 2.1, 2.2 e
2.3
Atividades/Estratégias: Apresentação de alguns exemplos do dia a dia que mostrem o uso da
eletricidade e da energia.
Apresentação das principais características da corrente contínua e da corrente alternada
(interpretação das figs. 10 e 12 da p. 74 do M) e indicação de exemplos de aplicação.
Atividade prática: questões 1, 2, 3 e 5 da p. 98 do M.
Distinção entre resistência e resistividade. Análise de tabelas de resistividade de modo a
distinguir bons condutores de maus condutores (fig. 17 da p. 76 e tabela da p. 77 do M).
Apresentação da dependência da resistência elétrica de um condutor filiforme com a
resistividade do material que o constitui, o seu comprimento e a sua área da secção reta.
Recursos:
M: pp. 71-78; 98
AD:
ƒ PWP 1.2.1 Energia e correntes
elétricas
ƒ PWP 1.2.2 Diferença de potencial
elétrico e corrente elétrica. Corrente
contínua e corrente alternada
ƒ Anm Diferença de potencial elétrico
e corrente elétrica
Observações: Com o TPC pretende-se uma revisão dos
conhecimentos incluídos nas metas 1.2, 1.5, 1.7, 1.9 e 1.11 do
subdomínio Corrente elétrica e circuitos elétricos do 9.
o
ano. Para
contextualizar os conceitos, sugere-se a medição de diferenças de
potencial elétrico de diferentes componentes (lâmpada e pilha)
de um circuito elétrico simples, assim como da corrente elétrica,
em circuito aberto e em circuito fechado.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – questões 4, 6, 7 e 8 da p. 98 do M.
Data :
Sumário: Correção do TPC. Resistência de condutores filiformes; resistividade e variação da resistividade com a temperatura. Aplicação
dos conceitos na resolução de questões.
Conteúdos: Resistência elétrica. Resistividade. Resistência elétrica de fios cilíndricos. Metas de aprendizagem: 2.3 e 2.4.
Atividades/Estratégias: Apresentação do TPC e esclarecimento de dúvidas.
Apresentação da variação da resistividade com a temperatura de alguns tipos de materiais e
interpretação de aplicações que tiram partido dessa variação (interpretação da fig. 18 da p. 77 e
fig. 19 da p. 78 do M). Interpretação do funcionamento de dispositivos com resistência variável
(potenciómetro, reóstato e caixas de resistências).Utilização da simulação Resistência elétrica de
um condutor para relacionar a resistência e características geométricas de um condutor
filiforme. Síntese dos aspetos principais (PWP 1.2.3).
Interpretação das questões resolvidas 1 e 2 da p. 79 do M.
Atividade prática: questões 10, 13, 16 e 18 da p. 99, 21 e 23 da p. 100 do M.
Recursos:
M: pp. 77-79; 99-100
AD:
ƒ PWP 1.2.3 Grandezas elétricas:
resistência elétrica de um condutor
ƒ Simulação Resistência elétrica de
um condutor
Outras: simulação Resistência num
condutor (http://goo.gl/agMefS) do
projeto PhET
Observações: Em alternativa à simulação Resistência elétrica de
um condutor pode utilizar-se a simulação Resistência num
condutor do PhET.
Sugere-se que se faça a medição da resistência elétrica de vários
dispositivos (termístores, lâmpadas etc.) a diferentes
temperaturas.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – questões 12 e 15 da p. 99, 20 e 22 da
p. 100.
Aulas
n.o
45/46
90 min
100 min
Aulas
n.o
43/44
90 min
100 min
Editável e fotocopiável © Texto | Novo 10 F 35
Data :
Sumário: Correção do TPC. Energia transferida para um componente de um circuito elétrico. Efeito Joule. Aplicação dos conceitos na
resolução de questões.
Conteúdos: Resistência elétrica de fios cilíndricos. Corrente elétrica. Energia elétrica transferida
e dissipada por efeito Joule. Potência elétrica.
Metas de aprendizagem: 2.4 e 2.5
Atividades/Estratégias: Apresentação do TPC e esclarecimento de dúvidas. Apresentação do
efeito Joule (PWP 1.2.4 ou Anm Efeito Joule). Dedução da expressão da energia e potência
transferidas para um componente de um circuito elétrico, e sua interpretação. Distinção entre
componentes puramente resistivos e não puramente resistivos, indicando-se alguns exemplos.
Dedução das expressões da energia e potência dissipadas num componente puramente resistivo
e sua interpretação. Interpretação da questão resolvida 3 da p. 83.
Atividade prática: questões 24, 28 e 29 da p. 100 e 32, 34, 36 e 37 da p. 101.
Recursos:
M: pp. 80-83; 99-101
AD:
ƒ PWP 1.2.4 Energia transferida para
um componente de um circuito
elétrico. Efeito Joule
ƒ Anm Efeito Joule
Observações: Os trabalhos sobre a tecnologia LED podem ser
feitos em grupos de dois a concluir no prazo de uma semana.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – questões 26 e 30 da p. 100 e 31, 35,
38 da p. 101 (aula seguinte); atividade de pesquisa Lâmpadas LED
(p. 83 do M).
Registo de Notas
135 min
150 min
Aulas
n.o
47/48/49
36
S
F
C
e
r
A
F
D
O
S
q
C
C
A
e
C
f
A
I
A
c
O
p
R
6
Plano
Sumário: Energ
Ficha formativa 3
Conteúdos: Gra
elétrica. Corrent
resistividade e va
Atividades/Est
Ficha 3 – Energia
Discussão da pro
Observações:
Sumário: Carac
questões.
Conteúdos: Ene
CC, força eletrom
Atividades/Est
e dissipada (inte
Características d
orça eletromotr
Análise da conse
nterpretação da
Atividade prática
característica e q
Observações: D
potencial elétrico
Registo de No
Au
n.o
5
Au
n.o
5
os de au
N.o
gia transferida pa
3 – Energia e fen
andezas elétrica
e contínua e cor
ariação da resist
tratégias: Apres
a e fenómenos el
oposta de resolu
terísticas de um
ergia elétrica dis
motriz, resistênc
tratégias: Análi
rpretação das tr
e um gerador (s
riz e resistência i
ervação da energ
a questão resolv
a: Anm Cálculo d
questões 40 e 41
Deve ser feita a m
o de diversas pil
otas
las
0/51
las
2/53
las sema
8
ara um compone
nómenos elétrico
s: corrente elétr
rrente alternada
tividade com a te
sentação do TPC
létricos (60 min)
ção da ficha 3 e
gerador de ten
ssipada num rec
ia interna e curv
se da energia e
ransferências e t
ignificado físico
interna.
gia num circuito
ida 4, p. 86.
da força eletrom
1 da p. 101 e 42,
medição da dife
has em circuito
90 m
100
90 m
100
Editável e fotoco
ana
Data
ente de um circu
os.
rica, diferença d
a. Resistência de
emperatura. Efe
C e esclarecimen
).
autocorreção.
Data
são contínua. Ba
etor. Potência e
va característica
potência num ge
transformações
e determinação
elétrico.
otriz e da resistê
, 43, 47 da p. 10
rença de
aberto e fechad
min
min
min
min
opiável © Texto |
:
uito elétrico. Efe
e potencial elétr
condutores filif
eito Joule.
nto de dúvidas.
Avaliação:
e atitudes.
Sugestões
:
alanço energétic
elétrica de um ge
.
erador: fornecid
de energia num
o a partir da curv
ência interna a p
2 do M.
do.
Avaliação:
e atitudes.
Sugestões
| Novo 10 F
eito Joule.
rico e resistência
formes;
: Registo de inte
s aos alunos:
co num circuito.
erador. Gerador
da ao circuito (út
circuito elétrico
va característica
partir da curva
: Registo de inte
s aos alunos: T
a Metas de a
Recursos:
M: pp. 100-
CAP: Ficha 3
elétricos e r
resolução.
ervenção e parti
Aplicação dos c
r Metas de a
til)
o).
):
Recursos:
M: pp. 84-8
AD:
 Anm Cálc
da resistê
curva car
 Atividade
circuito
ervenção e parti
TPC – questões 4
aprendizagem
-101
3 – Energia e fen
respetiva Propos
cipação. Compo
conceitos na reso
aprendizagem
86, 101-102
culo da força ele
ência interna a p
racterística
Balanço energé
cipação. Compo
44, 45 e 46 da p.
m: 2.1 a 2.5
nómenos
sta de
ortamento
olução de
m: 2.5 e 2.6
tromotriz e
partir da
ético num
ortamento
102 do M.
Editável e fotocopiável © Texto | Novo 10 F 37
Data :
Sumário: Correção do TPC. Iluminação LED. Balanço energético num circuito. Associações de componentes elétricos em série e em
paralelo. Aplicação dos conceitos na resolução de questões.
Conteúdos: Efeito Joule. Geradores de corrente contínua: força eletromotriz e resistência
interna; curva característica. Associações em série e em paralelo: diferença de potencial elétrico
e corrente elétrica.
Metas de aprendizagem: 2.5 a 2.8
Atividades/Estratégias: Apresentação do TPC e esclarecimento de dúvidas.
Apresentação dos trabalhos sobre a tecnologia LED.
Análise da corrente elétrica e da diferença de potencial de uma associação de resistências em
série, e de uma associação em paralelo (PWP 1.2.6 ou simulação Associações de componentes
elétricos em série e em paralelo), comprovando-se as relações com medições de tensões
elétricas e correntes elétricas em circuitos elétricos simples.
Análise da força eletromotriz de uma associação de pilhas em série e de uma associação em
paralelo.
Interpretação das questões resolvidas 5 e 6, p. 86.
Atividade prática: Anm Cálculo das grandezas elétricas de um gerador e de um condutor (ou
atividade 1.2.6) e questões 49 e 50 da p. 103 do M.
Recursos:
M: pp. 87-90, 92-93, 103
AD:
ƒ PWP 1.2.6 Associações de
componentes elétricos em série e
em paralelo
ƒ Simulação Associações de
componentes elétricos em série e
em paralelo
ƒ Atividade 1.2.6 Associação de
resistências em série e em paralelo
ƒ Anm Cálculo das grandezas elétricas
de um gerador e de um condutor
Observações: Na apresentação dos trabalhos cada grupo pode
apresentar aspetos diferentes (evolução histórica; material
utilizado; tipos de LED, tipo de corrente elétrica que usam e
valores de potência; vantagens e desvantagens das lâmpadas
LED). Os grupos que estão a assistir à apresentação dos colegas
devem confrontar os resultados apresentados com os seus,
discutindo-se eventuais divergências.
Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – questões 51 e 52 da p. 103 do M.
Registo de Notas
135 min
150 min
Aulas
n.o
54/55/56
38 Editável e fotocopiável © Texto | Novo 10 F
Planos de aulas semana
N.o
9
Data :
Sumário: Correção do TPC. Balanço energético num circuito. Associações de componentes elétricos em série e em paralelo. Aplicação
dos conceitos na resolução de questões.
Conteúdos: Efeito Joule. Geradores de corrente contínua: força eletromotriz e resistência
interna; curva característica. Associações em série e em paralelo: diferença de potencial elétrico
e corrente elétrica.
Metas de aprendizagem: 2.5 a 2.8
Atividades/Estratégias: Apresentação do TPC e esclarecimento de dúvidas.
Interpretação da questão resolvida 7, p. 87.
Exploração da simulação Circuitos de Corrente Contínua (DC) para colocar, oralmente, diversas
questões sobre as relações entre as diferenças de potencial elétrico em diferentes componentes
de um circuito, assim como das relações entre correntes elétricas e interpretar as respostas com
o auxílio da própria simulação.
Atividade prática: questões 53 e 54 da p. 103; 55 a 58 da p. 104; 62 e 63 da p. 105; 64 e 65 da p. 106.
Recursos:
M: pp. 87, 103-106
Simulação: Circuitos de Corrente
Contínua (DC) (http://goo.gl/eYAXfE)
do projeto PhET
Observações: Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos:
Data :
Sumário: Ficha formativa 4 – Energia e fenómenos elétricos. Revisões e esclarecimento de dúvidas. Preparação da AL 2.1.
Características de uma pilha.
Conteúdos: Energia e fenómenos elétricos. Metas de aprendizagem: 2.1 a 2.8
Atividades/Estratégias: Ficha 4 - Energia e fenómenos elétricos (60 min).
Discussão da proposta de resolução da ficha 4 e autocorreção.
Síntese da AL 2.1 explicitando-se o respetivo objetivo geral.
Recursos:
CAP: Ficha 4 - Energia e fenómenos
elétricos e respetiva proposta de
resolução
Observações:. Avaliação: Registo de intervenção e participação. Comportamento
e atitudes.
Sugestões aos alunos: TPC – Questões pré-laboratoriais da AL 2.1
(p. 95 do M).
Data :
Sumário: AL 2.1. Características de uma pilha.
Conteúdos: Gerador CC, força eletromotriz, resistência interna e curva característica. Metas de aprendizagem:
Específicas da AL: 1 a 5; Processuais:
1, 7, 8, 10 a 12; Conceptuais: 1 a 3, 5,
7 a 9, 11, 12, 18 a 21 e 23
Atividades/Estratégias: Correção das questões pré-laboratoriais da AL 2.1 (p. 95 do M).
Trabalho laboratorial da AL 2.1 (pp. 96-97 do M).
Resolução das questões pós-laboratoriais da AL 2.1 (p. 97 do M).
Recursos:
Material necessário para a AL 2.1
(p. 96 do M)
CAP: AL 2.1 – Respostas às questões pré
e pós-laboratoriais, resultados obtidos
em trabalho laboratorial e grelha de
avaliação da atividade laboratorial
Observações: Parte da avaliação da AL pode ser concretizada
com as questões indicadas neste CAP.
Avaliação: Registo de intervenção e participação. Respostas a
questões pré e pós-laboratoriais. Ficha de avaliação específica.
Comportamento e atitudes.
Sugestões aos alunos: questões globais 62 e 63 (p. 105 do M).
90 min
100 min
90 min
100 min
135 min
150 min
Aulas
n.o
57/58
Aulas
n.o
59/60
Aulas
n.o
61/62/63
Editável e fotocopiável © Texto | Novo 10 F 39
Planos de aulas semana
N.o
10
Data :
Sumário: Gestão flexível
Conteúdos: Metas de aprendizagem:
Atividades/Estratégias: Indicações para a realização do teste. Recursos:
Observações: Algumas das sugestões a transmitir para a
realização do teste: levar todo o material necessário; ter calma,
estar concentrado e com uma atitude positiva; ler cada questão
com muita atenção e responder apenas ao que é pedido, tendo
em conta o tipo de questão; para escrever um texto, organizar a
resposta de modo claro e conciso; nas questões em que tenha
dúvidas e não consiga estabelecer outra estratégia de resolução,
não deve riscar a resposta; nas questões de maior complexidade
procurar esquematizar como é que os dados se podem relacionar
com o que é solicitado (e vice-versa); quando terminar, verificar
se respondeu a todas as questões; e, caso ainda tenha tempo,
deve reler todas as respostas.
Avaliação:
Sugestões aos alunos: TPC – Leitura atenta do resumo dos
conteúdos (p. 94 do M) e revisão dos conceitos estudados; questões
66 e 67 da p. 106 do M.
Data :
Sumário: Teste Escrito n.
o
2 (componente de Física) de avaliação.
Conteúdos: Energia e fenómenos eléctricos. Metas de aprendizagem: 2.1 a 2.8
Atividades/Estratégias: Realização do Teste Escrito n.
o
2. Recursos:
CAP: Teste Escrito n.
o
2
Observações: Sugere-se que a proposta de resolução do teste
seja disponibilizada em PDF (por exemplo na plataforma Moodle)
e que seja projetada numa aula seguinte. Eventuais
esclarecimentos podem ser dados nessa aula.
Avaliação: Critérios de classificação do Teste Escrito n.
o
2.
Sugestões aos alunos:
Data :
Sumário: Gestão flexível
Conteúdos: Metas de aprendizagem:
Atividades/Estratégias: Recursos
Observações: Avaliação:
Sugestões aos alunos:
Registo de Notas
Aulas
n.o
64/65
Aulas
n.o
66/67
Aulas
n.o
68/69/70
90 min
100 min
90 min
100 min
135 min
150 min
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf
Caderno de Apoio ao Professor-10F.pdf

Mais conteúdo relacionado

Mais procurados

livro filosofia soluções.pdf
livro filosofia soluções.pdflivro filosofia soluções.pdf
livro filosofia soluções.pdfInesVieiraAluno
 
10 f caderno de apoio ao professor (1)
10 f   caderno de apoio ao professor (1)10 f   caderno de apoio ao professor (1)
10 f caderno de apoio ao professor (1)Elsa
 
Exercícios tipo exame sismologia metodos estrutura
Exercícios tipo exame sismologia metodos estruturaExercícios tipo exame sismologia metodos estrutura
Exercícios tipo exame sismologia metodos estruturaAndreia Carvalho
 
ldia11_gramatica_funcoes_sintaticas_1.docx
ldia11_gramatica_funcoes_sintaticas_1.docxldia11_gramatica_funcoes_sintaticas_1.docx
ldia11_gramatica_funcoes_sintaticas_1.docxMaria Gois
 
Testes Intermédios 10ºano
Testes Intermédios 10ºanoTestes Intermédios 10ºano
Testes Intermédios 10ºanosandranascimento
 
Teste de Biologia (2º Teste) - correcção
Teste de Biologia (2º Teste) - correcçãoTeste de Biologia (2º Teste) - correcção
Teste de Biologia (2º Teste) - correcçãoIsaura Mourão
 
Ficha De Trabalho BiomoléCulas
Ficha De Trabalho BiomoléCulasFicha De Trabalho BiomoléCulas
Ficha De Trabalho BiomoléCulasguestdc4752
 
TESTES INTERMÉDIOS 11ºANO
TESTES INTERMÉDIOS 11ºANOTESTES INTERMÉDIOS 11ºANO
TESTES INTERMÉDIOS 11ºANOsandranascimento
 
EXERCÍCIOS DE BIOLOGIA 10º
EXERCÍCIOS DE BIOLOGIA 10ºEXERCÍCIOS DE BIOLOGIA 10º
EXERCÍCIOS DE BIOLOGIA 10ºsandranascimento
 
Revisões - teste global de Geologia (10º ano)
Revisões  - teste global de Geologia (10º ano)Revisões  - teste global de Geologia (10º ano)
Revisões - teste global de Geologia (10º ano)Ana Castro
 
caderno-de-apoio-ao-professor
caderno-de-apoio-ao-professorcaderno-de-apoio-ao-professor
caderno-de-apoio-ao-professoranamuges
 
Teste 3 geo 10 versao oficial
Teste 3 geo 10 versao oficialTeste 3 geo 10 versao oficial
Teste 3 geo 10 versao oficialEstela Costa
 
Mapa mundo 9 caderno de apoio ao professor
Mapa mundo 9   caderno de apoio ao professorMapa mundo 9   caderno de apoio ao professor
Mapa mundo 9 caderno de apoio ao professorJssicaTaborda1
 
Bg 11 reprodução assexuada (exercícios)
Bg 11   reprodução assexuada (exercícios)Bg 11   reprodução assexuada (exercícios)
Bg 11 reprodução assexuada (exercícios)Nuno Correia
 

Mais procurados (20)

odis10_eNL_teste4.docx
odis10_eNL_teste4.docxodis10_eNL_teste4.docx
odis10_eNL_teste4.docx
 
livro filosofia soluções.pdf
livro filosofia soluções.pdflivro filosofia soluções.pdf
livro filosofia soluções.pdf
 
EXERCÍCIOS DE EXAMES
EXERCÍCIOS DE EXAMESEXERCÍCIOS DE EXAMES
EXERCÍCIOS DE EXAMES
 
10 f caderno de apoio ao professor (1)
10 f   caderno de apoio ao professor (1)10 f   caderno de apoio ao professor (1)
10 f caderno de apoio ao professor (1)
 
BG11_T1a_2021_CC.pdf
BG11_T1a_2021_CC.pdfBG11_T1a_2021_CC.pdf
BG11_T1a_2021_CC.pdf
 
Exercícios tipo exame sismologia metodos estrutura
Exercícios tipo exame sismologia metodos estruturaExercícios tipo exame sismologia metodos estrutura
Exercícios tipo exame sismologia metodos estrutura
 
ldia11_gramatica_funcoes_sintaticas_1.docx
ldia11_gramatica_funcoes_sintaticas_1.docxldia11_gramatica_funcoes_sintaticas_1.docx
ldia11_gramatica_funcoes_sintaticas_1.docx
 
Testes Intermédios 10ºano
Testes Intermédios 10ºanoTestes Intermédios 10ºano
Testes Intermédios 10ºano
 
Teste de Biologia (2º Teste) - correcção
Teste de Biologia (2º Teste) - correcçãoTeste de Biologia (2º Teste) - correcção
Teste de Biologia (2º Teste) - correcção
 
Ficha De Trabalho BiomoléCulas
Ficha De Trabalho BiomoléCulasFicha De Trabalho BiomoléCulas
Ficha De Trabalho BiomoléCulas
 
TESTES INTERMÉDIOS 11ºANO
TESTES INTERMÉDIOS 11ºANOTESTES INTERMÉDIOS 11ºANO
TESTES INTERMÉDIOS 11ºANO
 
EXERCÍCIOS DE BIOLOGIA 10º
EXERCÍCIOS DE BIOLOGIA 10ºEXERCÍCIOS DE BIOLOGIA 10º
EXERCÍCIOS DE BIOLOGIA 10º
 
Revisões - teste global de Geologia (10º ano)
Revisões  - teste global de Geologia (10º ano)Revisões  - teste global de Geologia (10º ano)
Revisões - teste global de Geologia (10º ano)
 
10 teste 10.4
10 teste 10.410 teste 10.4
10 teste 10.4
 
caderno-de-apoio-ao-professor
caderno-de-apoio-ao-professorcaderno-de-apoio-ao-professor
caderno-de-apoio-ao-professor
 
Teste 3 geo 10 versao oficial
Teste 3 geo 10 versao oficialTeste 3 geo 10 versao oficial
Teste 3 geo 10 versao oficial
 
Mapa mundo 9 caderno de apoio ao professor
Mapa mundo 9   caderno de apoio ao professorMapa mundo 9   caderno de apoio ao professor
Mapa mundo 9 caderno de apoio ao professor
 
Testes
TestesTestes
Testes
 
Teste2
Teste2Teste2
Teste2
 
Bg 11 reprodução assexuada (exercícios)
Bg 11   reprodução assexuada (exercícios)Bg 11   reprodução assexuada (exercícios)
Bg 11 reprodução assexuada (exercícios)
 

Semelhante a Caderno de Apoio ao Professor-10F.pdf

Tutoria e orientação de estudos
Tutoria e orientação de estudosTutoria e orientação de estudos
Tutoria e orientação de estudosELZA PIRES
 
539354296-Caderno-de-Apoio-Ao-ProfessorTexto-10º-Ano (1).pdf
539354296-Caderno-de-Apoio-Ao-ProfessorTexto-10º-Ano (1).pdf539354296-Caderno-de-Apoio-Ao-ProfessorTexto-10º-Ano (1).pdf
539354296-Caderno-de-Apoio-Ao-ProfessorTexto-10º-Ano (1).pdfmariajoaosargento
 
GEOPORTUGAL 10 ANO - TESTES (1).pdf
GEOPORTUGAL 10 ANO - TESTES (1).pdfGEOPORTUGAL 10 ANO - TESTES (1).pdf
GEOPORTUGAL 10 ANO - TESTES (1).pdfAida Cunha
 
EstáCio Med ColetâNea De ExercíCios 2010
EstáCio   Med ColetâNea De ExercíCios 2010EstáCio   Med ColetâNea De ExercíCios 2010
EstáCio Med ColetâNea De ExercíCios 2010Victor Yamaguchi
 
Guia elaboracao projetos de pesquisa 2006
Guia elaboracao projetos de pesquisa 2006Guia elaboracao projetos de pesquisa 2006
Guia elaboracao projetos de pesquisa 2006Arlete Silvestre
 
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_2s
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_2sCaderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_2s
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_2sGleici Licá
 
PLANO DE ESTUDO.docxkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PLANO DE ESTUDO.docxkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiPLANO DE ESTUDO.docxkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PLANO DE ESTUDO.docxkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiManoelCastro18
 
Falas portugues-b2 guia-do-professor
Falas portugues-b2 guia-do-professorFalas portugues-b2 guia-do-professor
Falas portugues-b2 guia-do-professorligiaelenacandeias
 
Livro instrumentacao final 3 pdf
Livro instrumentacao final 3 pdfLivro instrumentacao final 3 pdf
Livro instrumentacao final 3 pdfPriscila Rodrigues
 
LIVRO INSTRUMENTACAO FINAL.pdf
LIVRO INSTRUMENTACAO FINAL.pdfLIVRO INSTRUMENTACAO FINAL.pdf
LIVRO INSTRUMENTACAO FINAL.pdfAdrianaCirino
 
Para a Renovação do Ensino da Filosofia (Actas de Caparide)
Para a Renovação do Ensino da Filosofia (Actas de Caparide)Para a Renovação do Ensino da Filosofia (Actas de Caparide)
Para a Renovação do Ensino da Filosofia (Actas de Caparide)Antonio Paulo Costa
 
Guia elaboracao projetos de pesquisa 2006
Guia elaboracao projetos de pesquisa 2006Guia elaboracao projetos de pesquisa 2006
Guia elaboracao projetos de pesquisa 2006Dany Pereira
 
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_1s
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_1sCaderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_1s
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_1sGleici Licá
 
Exemplo plano de aula unidade didática
Exemplo plano de aula unidade didáticaExemplo plano de aula unidade didática
Exemplo plano de aula unidade didáticacriscomparin
 
Analise do livro didatico
Analise do livro didaticoAnalise do livro didatico
Analise do livro didaticoJoão Lima
 
Coleção Explorando o Ensino - Matemática - Volume 17 - MEC
Coleção Explorando o Ensino - Matemática - Volume 17 - MECColeção Explorando o Ensino - Matemática - Volume 17 - MEC
Coleção Explorando o Ensino - Matemática - Volume 17 - MECAndréa Thees
 
ROTEIRO DE APOIO À ANÁLISE DE MATERIAIS DIDÁTICOS (1).pptx
ROTEIRO DE APOIO À ANÁLISE DE MATERIAIS DIDÁTICOS (1).pptxROTEIRO DE APOIO À ANÁLISE DE MATERIAIS DIDÁTICOS (1).pptx
ROTEIRO DE APOIO À ANÁLISE DE MATERIAIS DIDÁTICOS (1).pptxJUSTINOOLIVEIRA
 
Livro professor cn 7o ano
Livro professor cn 7o anoLivro professor cn 7o ano
Livro professor cn 7o anoMaria Valadas
 

Semelhante a Caderno de Apoio ao Professor-10F.pdf (20)

Tutoria e orientação de estudos
Tutoria e orientação de estudosTutoria e orientação de estudos
Tutoria e orientação de estudos
 
539354296-Caderno-de-Apoio-Ao-ProfessorTexto-10º-Ano (1).pdf
539354296-Caderno-de-Apoio-Ao-ProfessorTexto-10º-Ano (1).pdf539354296-Caderno-de-Apoio-Ao-ProfessorTexto-10º-Ano (1).pdf
539354296-Caderno-de-Apoio-Ao-ProfessorTexto-10º-Ano (1).pdf
 
GEOPORTUGAL 10 ANO - TESTES (1).pdf
GEOPORTUGAL 10 ANO - TESTES (1).pdfGEOPORTUGAL 10 ANO - TESTES (1).pdf
GEOPORTUGAL 10 ANO - TESTES (1).pdf
 
Manual do-estagio-
Manual do-estagio-Manual do-estagio-
Manual do-estagio-
 
EstáCio Med ColetâNea De ExercíCios 2010
EstáCio   Med ColetâNea De ExercíCios 2010EstáCio   Med ColetâNea De ExercíCios 2010
EstáCio Med ColetâNea De ExercíCios 2010
 
Guia elaboracao projetos de pesquisa 2006
Guia elaboracao projetos de pesquisa 2006Guia elaboracao projetos de pesquisa 2006
Guia elaboracao projetos de pesquisa 2006
 
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_2s
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_2sCaderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_2s
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_2s
 
PLANO DE ESTUDO.docxkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PLANO DE ESTUDO.docxkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiPLANO DE ESTUDO.docxkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PLANO DE ESTUDO.docxkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
 
Falas portugues-b2 guia-do-professor
Falas portugues-b2 guia-do-professorFalas portugues-b2 guia-do-professor
Falas portugues-b2 guia-do-professor
 
Livro instrumentacao final 3 pdf
Livro instrumentacao final 3 pdfLivro instrumentacao final 3 pdf
Livro instrumentacao final 3 pdf
 
LIVRO INSTRUMENTACAO FINAL.pdf
LIVRO INSTRUMENTACAO FINAL.pdfLIVRO INSTRUMENTACAO FINAL.pdf
LIVRO INSTRUMENTACAO FINAL.pdf
 
Para a Renovação do Ensino da Filosofia (Actas de Caparide)
Para a Renovação do Ensino da Filosofia (Actas de Caparide)Para a Renovação do Ensino da Filosofia (Actas de Caparide)
Para a Renovação do Ensino da Filosofia (Actas de Caparide)
 
Guia elaboracao projetos de pesquisa 2006
Guia elaboracao projetos de pesquisa 2006Guia elaboracao projetos de pesquisa 2006
Guia elaboracao projetos de pesquisa 2006
 
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_1s
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_1sCaderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_1s
Caderno doprofessor 2014_2017_vol2_baixa_mat_matematica_em_1s
 
Exemplo plano de aula unidade didática
Exemplo plano de aula unidade didáticaExemplo plano de aula unidade didática
Exemplo plano de aula unidade didática
 
Analise do livro didatico
Analise do livro didaticoAnalise do livro didatico
Analise do livro didatico
 
Coleção Explorando o Ensino - Matemática - Volume 17 - MEC
Coleção Explorando o Ensino - Matemática - Volume 17 - MECColeção Explorando o Ensino - Matemática - Volume 17 - MEC
Coleção Explorando o Ensino - Matemática - Volume 17 - MEC
 
ROTEIRO DE APOIO À ANÁLISE DE MATERIAIS DIDÁTICOS (1).pptx
ROTEIRO DE APOIO À ANÁLISE DE MATERIAIS DIDÁTICOS (1).pptxROTEIRO DE APOIO À ANÁLISE DE MATERIAIS DIDÁTICOS (1).pptx
ROTEIRO DE APOIO À ANÁLISE DE MATERIAIS DIDÁTICOS (1).pptx
 
Livro professor cn 7o ano
Livro professor cn 7o anoLivro professor cn 7o ano
Livro professor cn 7o ano
 
Saresp2
Saresp2Saresp2
Saresp2
 

Caderno de Apoio ao Professor-10F.pdf

  • 1. Documentos orientadores Fichas 10 NOVO Física e Química A • Física 10.º ano Carlos Portela Rogério Nogueira CADERNODEAPOIO AOPROFESSOR T F Planificações Testes Apoio às atividades laboratoriais Guiões de recursos multimédia
  • 2. Editável e fotocopiável © Texto | Novo 10 F 1 Objetivos do Caderno de Apoio ao Professor..........................................................3 Apresentação do Projeto: linhas orientadoras ...........................................4 Pleno cumprimento do Programa ......................4 Grau de aprofundamento conveniente ..............4 Adequação de atividades e questões .................5 Diversificação das opções de ensino e de aprendizagem .....................................................5 Valorização da componente laboratorial ...........6 Componente de Física do Programa de Física e Química A – 10.º ano ...................7 Finalidades, objetivos e Metas Curriculares .......7 Desenvolvimento do Programa ..........................8 Energia e movimentos ........................................9 Conteúdos e Metas Curriculares .......................9 Orientações e sugestões ................................10 Energia e fenómenos elétricos .........................11 Conteúdos e Metas Curriculares .....................11 Orientações e sugestões ................................12 Energia, fenómenos térmicos e radiação .........12 Conteúdos e Metas Curriculares .....................12 Orientações e sugestões ................................14 Avaliação ..........................................................14 Planificações ......................................................15 Indicações gerais ..............................................15 Recursos de 20 Aula Digital ..............................17 Planificação a médio prazo ...............................21 Planos de aulas .................................................23 Apoio às Atividades Laboratoriais ..............51 Atividade Laboratorial 1.1 ................................52 Atividade Laboratorial 1.2 ................................62 Atividade Laboratorial 2.1 ................................69 Atividade Laboratorial 3.1 ................................75 Atividade Laboratorial 3.2 ................................83 Atividade Laboratorial 3.3 ................................91 Fichas ...................................................................97 Fichas de diagnóstico ........................................97 Ficha de diagnóstico 1 ....................................97 Ficha de diagnóstico final .............................100 Fichas formativas ............................................102 Ficha 1 – Energia e movimentos ....................102 Ficha 2 – Energia e movimentos ....................104 Ficha 3 – Energia e fenómenos elétricos ........106 Ficha 4 – Energia e fenómenos elétricos ........108 Ficha 5 – Energia, fenómenos térmicos e radiação ...................................................110 Ficha 6 – Energia, fenómenos térmicos e radiação....................................................112 Ficha 7 – Energia e sua conservação (ficha global) ...............................................114 Proposta de resolução das fichas ...................116 Testes .................................................................123 Teste 1 ............................................................123 Teste 2 ............................................................127 Teste 3 ............................................................131 Teste 4 - Teste Global......................................136 Proposta de resolução dos testes ...................140 Questões de exame agrupadas por domínio .............................................................147 Guiões de recursos multimédia ................179 Simuladores ....................................................180 Animações ......................................................184 Animações laboratoriais .................................191 Animações de resolução de exercícios............193 Apresentações PowerPoint® ...........................196 Vídeos temáticos ............................................200 Atividades .......................................................201 Testes interativos ...........................................203 Simulador de testes ........................................204 Sugestões de bibliografia e sítios da internet .......................................................205 Índice
  • 4. Editável e fotocopiável © Texto | Novo 10 F 3 Objetivos do Caderno de Apoio ao Professor Este caderno fornece informação e recursos complementares para ajudar os professores que se encontrem a trabalhar com o manual escolar Novo 10 F, da Texto Editores. O Caderno de Apoio ao Professor inclui: ͻ uma explicação das linhas orientadoras do manual; ͻ os conteúdos e Metas Curriculares da componente de Física, orientações e sugestões da componente de Física do Programa; ͻ informação complementar sobre a abordagem de alguns conteúdos e do trabalho laboratorial; ͻ propostas de planificações a longo prazo, semana a semana e aula a aula; ͻ material de apoio à componente laboratorial: respostas às questões pré e pós-laboratoriais do manual, registos com medidas de todas as atividades laboratoriais, questões para avaliação do cumprimento das Metas Curriculares, transversais e específicas, da componente laboratorial, correspondentes soluções, e grelhas de avaliação dessa componente; ͻ 9 fichas de avaliação: 2 de diagnóstico e 7 formativas, uma das quais global; ͻ 4 testes, um deles global; ͻ questões de exame extraídas/adaptadas de Exame Nacional e agrupadas por subdomínio; ͻ apresentação da Aula Digital. Finalmente, é possível encontrar uma bibliografia selecionada e brevemente comentada, assim como um conjunto de endereços da internet. Atendendo à importância central do trabalho experimental em Física, uma parte substancial da informação contida neste caderno está relacionada com o trabalho prático. Esperamos que essa informação ajude o professor, ao proporcionar-lhe um conjunto diversificado de ideias e recursos que utilizará da maneira que julgar mais conveniente.
  • 5. 4 Editável e fotocopiável © Texto | Novo 10 F Apresentação do Projeto: linhas orientadoras A elaboração de um manual escolar de Física para o Ensino Secundário tem necessariamente como matriz o Programa da disciplina. Nele estão enunciados os objetivos e as metas que se pretendem atingir e os conteúdos a tratar. Neste manual respeita-se a componente de Física do Programa de Física e Química A, homologado pelo Despacho n.o 868-B/2014 de 20 de janeiro, para o 10.o ano de escolaridade. Mas qualquer manual representa uma leitura do Programa entre várias possíveis. É uma interpretação enriquecida pelas conceções, convicções e experiências que os autores possuem acerca do que é e do que deve ser o ensino e a aprendizagem no Ensino Secundário. Este Projeto, constituído pelo Manual, os Recursos Multimédia disponíveis em , o Caderno de Exercícios e Problemas e este Caderno de Apoio ao Professor, assenta em linhas orientadoras que resumimos em cinco pontos essenciais. Pleno cumprimento do Programa O manual Novo 10 F aborda de forma sistemática e detalhada todos os conteúdos que são objeto de ensino definidos na componente de Física do Programa de Física e Química A para o 10.o ano de escolaridade. O nível de aprofundamento está de acordo com as Metas Curriculares. Além da abordagem proporcionada pelo texto principal e pelas ilustrações que o acompanham, sugere-se um conjunto alargado e diversificado de atividades práticas que permitirão alcançar as finalidades, os objetivos gerais de aprendizagem e as Metas Curriculares previstas para a disciplina. As unidades do manual iniciam-se com o enquadramento social dos temas a tratar, a partir do qual se busca não só a motivação dos alunos, mas também significados e sentidos para a aprendizagem. Alguns textos complementares, incluídos nas atividades, aos quais se seguem questões, podem servir de ponto de partida para abordagens que mostrem o impacto que os conhecimentos da física e da química e das suas aplicações têm na compreensão do mundo natural e na vida dos seres humanos: casos da vida quotidiana, avanços recentes da ciência e da tecnologia, contextos culturais onde a ciência se insira, episódios da história da ciência e outras situações socialmente relevantes. Grau de aprofundamento conveniente Os manuais escolares que utilizem uma linguagem científica pouco rigorosa podem prejudicar a estruturação da aprendizagem, contribuindo para formar ou desenvolver conceitos inadequados. Tais noções, ao serem difundidas pelo ensino formal, revelam-se muito resistentes à substituição pelas noções corretas. Vários estudos têm evidenciado as dificuldades que resultam de situações desse tipo. Por outro lado, uma linguagem demasiado rigorosa pode não se adequar à capacidade do público-alvo, chegando ao ponto de inibir a aprendizagem. O manual Novo 10 F está escrito numa linguagem rigorosa, mas ao mesmo tempo acessível. Escrever textos de Física numa linguagem rigorosa, mas pedagogicamente adequada aos alunos do Ensino Secundário, é uma tarefa difícil, mas que pensamos ter conseguido. Nesta linha, evitámos apresentar os assuntos de uma forma demasiado esquemática, enunciando e comentando brevemente tópicos e subtópicos sucessivos, o que apenas ajudaria os alunos que já os dominam suficientemente ou aqueles que procuram simplesmente uma memorização superficial. Evitámos também textos demasiado longos e pormenorizados, que seriam desmotivadores. Julgamos que a extensão do manual é equilibrada.
  • 6. Editável e fotocopiável © Texto | Novo 10 F 5 Adotámos uma escrita nem demasiado curta nem demasiado extensa, útil para quem procura construir por si próprio significados e organizar conhecimentos da melhor maneira. Os quadros, tabelas e figuras do manual estão sempre legendados e referidos no texto, o que permite não só uma referência rápida, mas também a atribuição às imagens de um sentido específico. Desta forma, olhados individualmente, estarão sempre contextualizados. Não os entendemos como simples adereços gráficos do texto. O aspeto gráfico é para nós importante, uma vez que um livro deve ser apelativo, captando a atenção do leitor e facilitando a leitura. No entanto, achamos que o conteúdo deve prevalecer sobre a forma. O nosso manual foi escrito a pensar acima de tudo nos alunos. Vemo-lo como um livro para consultar com frequência, em articulação com as aulas e sob a orientação do professor, um livro onde o aluno encontre respostas às suas dúvidas e dificuldades. Nos anexos do manual poderá encontrar-se informação relevante de apoio ao aluno: unidades e grandezas, medições e erros, conceitos de matemática e utilização da calculadora gráfica. Adequação de atividades e questões A aprendizagem da Física, como de resto a de qualquer outra ciência, requer a realização de atividades por parte dos alunos. Não basta estar concentrado nas aulas ou ler atentamente o manual. É indispensável realizar determinadas tarefas que estão associadas ao desenvolvimento das capacidades e atitudes tão necessárias no trabalho em Física, e sem as quais não há uma real compreensão desta ciência. Propomos, por isso, a realização de atividades como a leitura e a interpretação de textos sobre ciência e sociedade, a resolução de exercícios e problemas, a pesquisa de informação histórica ou o trabalho laboratorial. Incluímos diversas questões resolvidas, devidamente intercaladas no texto, para que o aluno se vá familiarizando progressivamente com os vários processos e técnicas de resolução de questões científicas. No final de cada unidade, apresentamos muitas e variadas questões complementares. Outras são apresentadas no Caderno de Exercícios e Problemas, perfazendo cerca de 400 questões. As questões, formuladas de forma clara e compreensível, têm tipologias e formatos diversos e são representativas dos conteúdos constantes no Programa; o seu nível de dificuldade é diversificado e adequado à faixa etária dos alunos. Diversificação das opções de ensino e de aprendizagem O Projeto contempla a necessidade de diversificar as opções de ensino e de aprendizagem. A diversidade é, aliás, uma preocupação permanente, porque sabemos bem como são diferentes as escolas e como, dentro destas, são diferentes as turmas e os alunos. Assim, considera-se que os professores devem dispor de uma larga margem de manobra, que lhes permita lidar com essa diferença da maneira que julgarem mais adequada. O elevado número de questões de tipologias diversas e de diferentes níveis de dificuldade, no final de cada capítulo, permite ao professor selecionar as que julgue mais apropriadas à sua perspetiva de ensino e ao nível de aprendizagem que diagnosticou nos seus alunos.
  • 7. 6 Editável e fotocopiável © Texto | Novo 10 F Alguns textos e atividades podem ser utilizados como trabalhos complementares, o que atende à necessidade de apoiar alunos com dificuldades particulares ou com maiores potencialidades. No final do manual Novo 10 F e do Caderno de Exercícios e Problemas existem questões globais para o aluno resolver. Valorização da componente laboratorial Entende-se o trabalho laboratorial como um componente privilegiado da educação científica, pelo que o ensino da Física deve refletir esse princípio geral. Por isso, e em consonância com o espírito do Programa, atribui-se-lhe uma importância especial neste Projeto. Interpretámos as diversas propostas metodológicas de caráter experimental enunciadas no Programa para concretizar uma abordagem da Física com grau de profundidade adequado ao 10.o ano e que suscite a adesão do aluno à disciplina. A estrutura das atividades que preconizamos permite, a nosso ver, articular bem a componente laboratorial da Física, contribuindo para uma melhor compreensão dos processos e métodos inerentes ao trabalho laboratorial. A nossa conceção da componente laboratorial de Física considera os seguintes aspetos: ͻ clarificação das principais ideias e conceitos para compreender as tarefas prático-laboratoriais; ͻ sugestão de procedimentos para a correta manipulação de equipamentos; ͻ estruturação das atividades laboratoriais a partir de questões, problemas ou tarefas que despertem o interesse dos alunos; ͻ desenvolvimento das atividades laboratoriais tendo em conta a necessidade de explorar aspetos pré e pós-laboratoriais, tão necessários à completa compreensão do trabalho proposto; ͻ inclusão de questões resolvidas e de questões por resolver, de conteúdo laboratorial, nas atividades laboratoriais e nas questões no final de cada unidade.
  • 8. Editável e fotocopiável © Texto | Novo 10 F 7 Componente de Física do Programa de Física e Química A – 10.º ano De acordo com a Portaria n.o 243/2012, de 10 de agosto, a disciplina de Física e Química A faz parte da componente específica do Curso Científico-Humanístico de Ciências e Tecnologias. É uma disciplina bienal (10.o e 11.o ano), dá continuidade à disciplina de Físico-Química (Ciências Físico-Químicas) do Ensino Básico (7.o , 8.o e 9.o anos) e constitui precedência em relação às disciplinas de Física e de Química do 12.o ano. O Programa desta disciplina está elaborado atendendo a uma carga letiva semanal mínima de 315 minutos, sendo a aula de maior duração dedicada a atividades práticas e laboratoriais. Nesta aula, com a duração máxima de 150 minutos, a turma deve funcionar desdobrada. Cada uma das componentes, Física e Química, é lecionada em metade do ano letivo, alternando- -se a ordem de lecionação nos dois anos – o 10.o ano inicia-se com a componente de Química e o 11.o ano com a componente de Física – de modo a haver uma melhor rendibilização dos recursos, designadamente os referentes à componente laboratorial. Finalidades, objetivos e Metas Curriculares A disciplina «visa proporcionar formação científica consistente no domínio do respetivo curso» (Portaria n.o 243/2012). Por isso, definem-se como finalidades desta disciplina: - proporcionar aos alunos uma base sólida de capacidades e de conhecimentos da física e da química, e dos valores da ciência, que lhes permitam distinguir alegações científicas de não científicas, especular e envolver-se em comunicações de e sobre ciência, questionar e investigar, extraindo conclusões e tomando decisões, em bases científicas, procurando sempre um maior bem-estar social. - promover o reconhecimento da importância da física e da química na compreensão do mundo natural e na descrição, explicação e previsão dos seus múltiplos fenómenos, assim como no desenvolvimento tecnológico e na qualidade de vida dos cidadãos em sociedade. - contribuir para o aumento do conhecimento científico necessário ao prosseguimento de estudos e para uma escolha fundamentada da área desses estudos. De modo a atingir estas finalidades, definem-se como objetivos gerais da disciplina: - consolidar, aprofundar e ampliar conhecimentos através da compreensão de conceitos, leis e teorias que descrevem, explicam e preveem fenómenos assim como fundamentam aplicações. - desenvolver hábitos e capacidades inerentes ao trabalho científico: observação, pesquisa de informação, experimentação, abstração, generalização, previsão, espírito crítico, resolução de problemas e comunicação de ideias e resultados nas formas escrita e oral. - desenvolver as capacidades de reconhecer, interpretar e produzir representações variadas da informação científica e do resultado das aprendizagens: relatórios, esquemas e diagramas, gráficos, tabelas, equações, modelos e simulações computacionais. - destacar o modo como o conhecimento científico é construído, validado e transmitido pela comunidade científica. Segundo o Despacho n.º 15971/2012, de 14 de dezembro, as Metas Curriculares «identificam a aprendizagem essencial a realizar pelos alunos… realçando o que dos programas deve ser objeto primordial de ensino».
  • 9. 8 Editável e fotocopiável © Texto | Novo 10 F As Metas Curriculares permitem: - identificar os desempenhos que traduzem os conhecimentos a adquirir e as capacidades que se querem ver desenvolvidas no final de um dado módulo de ensino; - fornecer o referencial para a avaliação interna e externa, em particular para as provas dos exames nacionais; - orientar a ação do professor na planificação do seu ensino e na produção de materiais didáticos; - facilitar o processo de autoavaliação pelo aluno. Desenvolvimento do Programa Apresenta-se a sequência dos conteúdos de Física do 10.o ano e o seu enquadramento, incluindo as atividades prático-laboratoriais, por domínio e subdomínio, os respetivos objetivos gerais, algumas orientações e sugestões, e uma previsão do número de aulas por subdomínio. Consideram- se, para essa previsão, três aulas semanais. O número de aulas previsto é indicativo e deve ser gerido pelo professor de acordo com as características das suas turmas. A componente de Física do 10.o ano contempla um domínio, «Energia e sua conservação». Existe um só domínio, uma vez que os conceitos chave se referem à energia e à sua conservação, abordando-se as suas manifestações em sistemas mecânicos, elétricos e termodinâmicos. No estudo dos sistemas mecânicos aborda-se, de um modo não formal, o conceito de centro de massa, limitando o estudo a sistemas redutíveis a uma partícula (centro de massa). Este subdomínio introduz conceitos necessários ao estudo de sistemas mecânicos, cujo aprofundamento se fará no 11.o ano, e constitui pré-requisito para a abordagem de subdomínios posteriores. O estudo de sistemas elétricos permite consolidar aprendizagens anteriores e é um pré-requisito para trabalhos laboratoriais posteriores e para o estudo da indução eletromagnética no 11.o ano. O estudo de sistemas termodinâmicos permite alargar conhecimentos, estabelecendo a ligação com o subdomínio anterior através do conceito de radiação e do seu aproveitamento para a produção de corrente elétrica. A vida moderna está repleta de aplicações da física: construções, máquinas, veículos, comunicações, etc. O enquadramento dos conteúdos da disciplina com essas aplicações ajudará a uma melhor compreensão quer dos conteúdos da disciplina quer das próprias aplicações, e consolidará a visão da física como portadora de benefícios sociais, ao mesmo tempo que reforçará o interesse do aluno. As referências a aplicações da física, para além de serem um meio de consolidação de conhecimentos, podem e devem ser usadas como ponto de partida e motivação para a abordagem aos conteúdos. Apresentam-se em seguida os conteúdos do 10.o de Física, os objetivos gerais, algumas orientações e sugestões e uma previsão da distribuição por tempos letivos. As atividades laboratoriais (designadas por AL) surgem identificadas nos respetivos subdomínios. Física Domínio Energia e sua conservação Subdomínios Energia e movimentos Energia e fenómenos elétricos Energia, fenómenos térmicos e radiação
  • 10. Editável e fotocopiável © Texto | Novo 10 F 9 Energia e movimentos Este subdomínio deverá ser lecionado em cerca de 5 semanas (15 aulas). Conteúdos e Metas Curriculares Objetivo geral: Compreender em que condições um sistema pode ser representado pelo seu centro de massa e que a sua energia como um todo resulta do seu movimento (energia cinética) e da interação com outros sistemas (energia potencial); interpretar as transferências de energia como trabalho em sistemas mecânicos, os conceitos de força conservativa e de força não conservativa e a relação entre trabalho e variações de energia, reconhecendo situações em que há conservação de energia mecânica. Conteúdos METAS CURRICULARES ͻ Energia cinética e energia potencial; energia interna ͻ Sistema mecânico; sistema redutível a uma partícula (centro de massa) ͻ O trabalho como medida da energia transferida por ação de forças; trabalho realizado por forças constantes ͻ Teorema da Energia Cinética ͻ Forças conservativas e não conservativas; o peso como força conservativa; trabalho realizado pelo peso e variação da energia potencial gravítica ͻ Energia mecânica e conservação da energia mecânica ͻ Forças não conservativas e variação da energia mecânica 1.1. Indicar que um sistema físico (sistema) é o corpo ou o conjunto de corpos em estudo. 1.2. Associar a energia cinética ao movimento de um corpo e a energia potencial (gravítica, elétrica, elástica) a interações desse corpo com outros corpos. 1.3. Aplicar o conceito de energia cinética na resolução de problemas envolvendo corpos que apenas têm movimento de translação. 1.4. Associar a energia interna de um sistema às energias cinética e potencial das suas partículas. 1.5. Identificar um sistema mecânico como aquele em que as variações de energia interna não são tidas em conta. 1.6. Indicar que o estudo de um sistema mecânico que possua apenas movimento de translação pode ser reduzido ao de uma única partícula com a massa do sistema, identificando-a com o centro de massa. 1.7. Identificar trabalho como uma medida da energia transferida entre sistemas por ação de forças e calcular o trabalho realizado por uma força constante em movimentos retilíneos, qualquer que seja a direção dessa força, indicando quando é máximo. 1.8. Enunciar e aplicar o Teorema da Energia Cinética. 1.9. Definir forças conservativas e forças não conservativas, identificando o peso como uma força conservativa. 1.10.Aplicar o conceito de energia potencial gravítica ao sistema em interação corpo + Terra, a partir de um valor para o nível de referência. 1.11.Relacionar o trabalho realizado pelo peso com a variação da energia potencial gravítica e aplicar esta relação na resolução de problemas. 1.12.Definir e aplicar o conceito de energia mecânica.
  • 11. 10 Editável e fotocopiável © Texto | Novo 10 F ͻ Potência ͻ Conservação de energia, dissipação de energia e rendimento ͻ AL 1.1. Movimento num plano inclinado: variação da energia cinética e distância percorrida ͻ AL 1.2. Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia 1.13.Concluir, a partir do Teorema da Energia Cinética, que, se num sistema só atuarem forças conservativas, ou se também atuarem forças não conservativas que não realizem trabalho, a energia mecânica do sistema será constante. 1.14.Analisar situações do quotidiano sob o ponto de vista da conservação da energia mecânica, identificando transformações de energia (energia potencial gravítica em energia cinética e vice-versa). 1.15.Relacionar a variação de energia mecânica com o trabalho realizado pelas forças não conservativas e aplicar esta relação na resolução de problemas. 1.16.Associar o trabalho das forças de atrito à diminuição de energia mecânica de um corpo e à energia dissipada, a qual se manifesta, por exemplo, no aquecimento das superfícies em contacto. 1.17.Aplicar o conceito de potência na resolução de problemas. 1.18.Interpretar e aplicar o significado de rendimento em sistemas mecânicos, relacionando a dissipação de energia com um rendimento inferior a 100%. Orientações e sugestões Num sistema mecânico apenas com movimento de translação o aluno deve indicar, sem justificar, que ele se pode reduzir ao estudo de uma partícula, com a massa do sistema, a que se dá o nome de centro de massa. Não se pretende uma definição formal de centro de massa. Devem ser abordadas apenas situações em que o peso de um corpo possa ser considerado constante, isto é, as dimensões da região em que o corpo se move devem ser muito menores do que o raio da Terra. Os contextos podem incluir situações que envolvam meios de transporte e movimentos de corpos (por exemplo, corpos no ar com força de resistência do ar desprezável e não desprezável, corpos apoiados em superfícies horizontais ou inclinadas, corpos em calhas curvilíneas ou em montanhas- -russas, elevadores, pêndulo gravítico simples, etc.).
  • 12. Editável e fotocopiável © Texto | Novo 10 F 11 Energia e fenómenos elétricos Este subdomínio deverá ser lecionado em cerca de 3 semanas (9 aulas). Conteúdos e Metas Curriculares Objetivo geral: Descrever circuitos elétricos a partir de grandezas elétricas; compreender a função de um gerador e as suas características e aplicar a conservação da energia num circuito elétrico tendo em conta o efeito Joule. Conteúdos METAS CURRICULARES ͻ Grandezas elétricas: corrente elétrica, diferença de potencial elétrico e resistência elétrica ͻ Corrente contínua e corrente alternada ͻ Resistência de condutores filiformes; resistividade e variação da resistividade com a temperatura ͻ Efeito Joule ͻ Geradores de corrente contínua: força eletromotriz e resistência interna; curva característica ͻ Associações em série e em paralelo: diferença de potencial elétrico e corrente elétrica ͻ Conservação da energia em circuitos elétricos; potência elétrica ͻ AL 2.1. Características de uma pilha 2.1. Interpretar o significado das grandezas corrente elétrica, diferença de potencial elétrico (tensão elétrica) e resistência elétrica. 2.2. Distinguir corrente contínua de corrente alternada. 2.3. Interpretar a dependência da resistência elétrica de um condutor filiforme com a resistividade, característica do material que o constitui, e com as suas características geométricas (comprimento e área da secção reta). 2.4. Comparar a resistividade de materiais bons condutores, maus condutores e semicondutores e indicar como varia com a temperatura, justificando, com base nessa dependência, exemplos de aplicação (resistências padrão para calibração, termístor em termómetros, etc.). 2.5. Associar o efeito Joule à energia dissipada nos componentes elétricos, devido à sua resistência, e que é transferida para as vizinhanças através de calor, identificando o LED (díodo emissor de luz) como um componente de elevada eficiência (pequeno efeito Joule). 2.6. Caracterizar um gerador de tensão contínua pela sua força eletromotriz e resistência interna, interpretando o seu significado, e determinar esses valores a partir da curva característica. 2.7. Identificar associações de componentes elétricos em série e paralelo e caracterizá-las quanto às correntes elétricas que os percorrem e à diferença de potencial elétrico nos seus terminais. 2.8. Interpretar a conservação da energia num circuito com gerador de tensão e condutores puramente resistivos, através da transferência de energia do gerador para os condutores, determinando diferenças de potencial elétrico, corrente elétrica, energias dissipadas e potência elétrica do gerador e do condutor.
  • 13. 12 Editável e fotocopiável © Texto | Novo 10 F Orientações e sugestões Os significados das grandezas corrente elétrica, em regime estacionário, e de diferença de potencial elétrico (tensão elétrica), abordados no ensino básico, devem ser revisitados interpretando as respetivas expressões matemáticas sem, contudo, estas constituírem objeto de resolução de exercícios. A dependência da resistividade dos materiais com a temperatura deve ser analisada sem recorrer a quaisquer expressões ou modelos teóricos, privilegiando a interpretação de informação (em texto, tabelas ou gráficos) e as aplicações dessa dependência. A abordagem das associações de resistências em série ou em paralelo, limitada ao máximo de três resistências, deve focar-se na análise e interpretação das diferenças de potencial elétrico e das correntes elétricas, sem se proceder ao cálculo de resistências equivalentes. Como a energia elétrica e as suas diversas aplicações são vitais na sociedade atual, na abordagem dos conceitos pode recorrer-se a contextos como, por exemplo, os da iluminação, aquecimento, alimentação de dispositivos elétricos móveis ou medição de temperaturas. Sublinha-se que o fenómeno resultante do movimento de cargas elétricas se denomina corrente elétrica e que este mesmo nome está adotado na legislação portuguesa (Decreto-Lei n.o 128/2010 de 3 de dezembro) para a grandeza física que se mede com um amperímetro, a qual em normas anteriores se chamou intensidade de corrente elétrica. Os contextos em que se utiliza o termo corrente elétrica permitirão estabelecer a distinção entre os dois conceitos, o fenómeno e a grandeza. Energia, fenómenos térmicos e radiação Este subdomínio deverá ser lecionado em cerca de 5 semanas (15 aulas). Conteúdos e Metas Curriculares Objetivo geral: Compreender os processos e mecanismos de transferências de energia entre sistemas termodinâmicos, interpretando-os com base na Primeira e na Segunda Lei da Termodinâmica. Conteúdos METAS CURRICULARES ͻ Sistema, fronteira e vizinhança; sistema isolado; sistema termodinâmico ͻ Temperatura, equilíbrio térmico e escalas de temperatura ͻ O calor como medida da energia transferida espontaneamente entre sistemas a diferentes temperaturas 3.1. Distinguir sistema, fronteira e vizinhança e definir sistema isolado. 3.2. Identificar um sistema termodinâmico como aquele em que se tem em conta a sua energia interna. 3.3. Indicar que a temperatura é uma propriedade que determina se um sistema está ou não em equilíbrio térmico com outros e que o aumento de temperatura de um sistema implica, em geral, um aumento da energia cinética das suas partículas. 3.4. Indicar que as situações de equilíbrio térmico permitem estabelecer escalas de temperatura, aplicando à escala de temperatura Celsius. 3.5. Relacionar a escala de Celsius com a escala de Kelvin (escala de temperatura termodinâmica) e efetuar conversões de temperatura em graus Celsius e kelvin.
  • 14. Editável e fotocopiável © Texto | Novo 10 F 13 ͻ Radiação e irradiância ͻ Mecanismos de transferência de energia por calor em sólidos e fluidos: condução e convecção ͻ Condução térmica e condutividade térmica ͻ Capacidade térmica mássica ͻ Variação de entalpia de fusão e de vaporização ͻ Primeira Lei da Termodinâmica: transferências de energia e conservação da energia ͻ Segunda Lei da Termodinâmica: degradação da energia e rendimento ͻ AL 3.1. Radiação e potência elétrica de um painel fotovoltaico ͻ AL 3.2. Capacidade térmica mássica ͻ AL 3.3. Balanço energético num sistema termodinâmico 3.6. Identificar calor como a energia transferida espontaneamente entre sistemas a diferentes temperaturas. Identificar a energia transferida espontaneamente entre sistemas a diferentes temperaturas como calor. 3.7. Descrever as experiências de Thompson e de Joule identificando o seu contributo para o reconhecimento de que o calor é energia. 3.8. Distinguir, na transferência de energia por calor, a radiação – transferência de energia através da propagação de luz, sem haver necessariamente contacto entre os sistemas – da condução e da convecção que exigem contacto entre sistemas. 3.9. Indicar que todos os corpos emitem radiação e que à temperatura ambiente emitem predominantemente no infravermelho, dando exemplos de aplicação desta característica (sensores de infravermelhos, visão noturna, termómetros de infravermelhos, etc.). 3.10. Indicar que todos os corpos absorvem radiação e que a radiação visível é absorvida totalmente pelas superfícies pretas. 3.11.Associar a irradiância de um corpo à energia da radiação emitida por unidade de tempo e por unidade de área. 3.12. Identificar uma célula fotovoltaica como um dispositivo que aproveita a energia da luz solar para criar diretamente uma diferença de potencial elétrico nos seus terminais, produzindo uma corrente elétrica contínua. 3.13.Dimensionar a área de um sistema fotovoltaico conhecida a irradiância solar média no local de instalação, o número médio de horas de luz solar por dia, o rendimento e a potência a debitar. 3.14.Distinguir os mecanismos de condução e de convecção. 3.15.Associar a condutividade térmica à taxa temporal de transferência de energia como calor por condução, distinguindo materiais bons e maus condutores do calor. 3.16.Interpretar o significado de capacidade térmica mássica, aplicando-o na explicação de fenómenos do quotidiano. 3.17.Interpretar o conceito de variação de entalpias mássicas de fusão e de vaporização. 3.18.Determinar a variação de energia interna de um sistema num aquecimento ou arrefecimento, aplicando os conceitos de capacidade térmica mássica e de variação de entalpia mássica (de fusão ou de vaporização), interpretando o sinal dessa variação. 3.19.Interpretar o funcionamento de um coletor solar, a partir de informação selecionada, e identificar as suas aplicações. 3.20.Interpretar e aplicar a Primeira Lei da Termodinâmica. 3.21. Associar a Segunda Lei da Termodinâmica ao sentido em que os processos ocorrem espontaneamente, diminuindo a energia útil. 3.22.Efetuar balanços energéticos e calcular rendimentos.
  • 15. 14 Editável e fotocopiável © Texto | Novo 10 F Orientações e sugestões Na apresentação das experiências de Benjamin Thompson e de Joule deve mostrar-se como é que se reconheceu e comprovou que o calor era energia, apontando as razões que levaram Thompson a concluir que calor não poderia ser uma substância (o calórico), mas sim uma energia. Na experiência de Joule, interpretar o aumento de energia interna como resultado do trabalho realizado sobre o sistema e concluir que esse aumento de energia interna poderia ser obtido por absorção de energia por calor. Para exemplificar o aumento da energia interna por realização de trabalho, pode usar-se um tubo de cartão, com esferas de chumbo no seu interior e as extremidades tapadas com rolhas de cortiça, que será invertido repetidamente na vertical; as medidas da massa das esferas, da altura do tubo e das temperaturas das esferas, antes e após um certo número de inversões, permitirão calcular o trabalho do peso e a variação de energia interna. A componente laboratorial deve reforçar as aprendizagens relativas ao subdomínio anterior. Na abordagem da Segunda Lei da Termodinâmica deve recorrer-se a exemplos que mostrem que as máquinas funcionam sempre com dissipação de energia, não utilizando toda a energia disponível na realização de trabalho. Deve destacar-se também que ocorre diminuição da energia útil nos mais diversos processos naturais e que este é o critério que determina o sentido em que evoluem esses processos. Não se deve introduzir o conceito de entropia na formulação da Segunda Lei da Termodinâmica. Avaliação O processo de avaliação desta disciplina decorre dos princípios gerais da avaliação: deve ser contínua, apoiada em diversos instrumentos adaptados às aprendizagens em apreciação, ter um carácter formativo – não só para os alunos, para controlo da sua aprendizagem, mas também para o professor, como reguladora das suas opções de ensino – e culminar em situações de avaliação sumativa. O aluno deve ser envolvido na avaliação, desenvolvendo o sentido crítico relativamente ao seu trabalho e à sua aprendizagem, através, por exemplo, da promoção de atitudes reflexivas e do recurso a processos metacognitivos. Os critérios de avaliação definidos em Conselho Pedagógico, sob proposta dos departamentos curriculares, devem contemplar os critérios de avaliação da componente prática-laboratorial, designadamente as atividades laboratoriais de caráter obrigatório. De acordo com o estabelecido no ponto 5 do art.o 7.o da Portaria n.o 243/2012, são obrigatórios momentos formais de avaliação da dimensão prática ou experimentais integrados no processo de ensino. E, de acordo com a alínea c) do mesmo ponto, na disciplina de Física e Química A a componente prático-laboratorial tem um peso mínimo de 30% no cálculo da classificação a atribuir em cada momento formal de avaliação. Dada a centralidade da componente prática-laboratorial na Física e na Química identificam-se nas Metas Curriculares, para cada uma das atividades laboratoriais, descritores específicos e transversais, os quais devem servir como referência para a avaliação do desempenho dos alunos nessas atividades. Para responder aos diversos itens dos testes de avaliação, os alunos podem consultar um formulário.
  • 16. Editável e fotocopiável © Texto | Novo 10 F 15 Planificações Indicações gerais O Programa do 10.o para a componente de Física apresenta um único domínio, a Energia e sua conservação, que se desenvolve em três subdomínios, Energia e movimentos, Energia e fenómenos elétricos e Energia, fenómenos térmicos e radiação. Para cada subdomínio são sugeridas respeti- vamente 15 aulas, 9 aulas e 15 aulas, a que corresponde um total aproximado de 13 semanas. No entanto, de acordo com o calendário escolar, o número de semanas de metade de ano letivo, que corresponde à componente de Física, ronda as 16. Por isso, de acordo com a previsão do Programa, haverá cerca de 3 semanas para uma gestão flexível, a concretizar tendo em atenção o projeto educativo de cada escola (visitas de estudo a laboratórios, indústrias, museus/centros de ciência etc.), as características de cada turma e eventuais situações imprevistas. Com o intuito de elaborar um guia que enquadrasse os conteúdos em toda a extensão do período letivo disponível para a Física, assim como possíveis momentos formais de avaliação (testes), concebeu-se uma tabela de calendarização para 16 semanas. Contudo, ponderando a necessária flexibilidade, distribuíram-se os conteúdos e os momentos formais de avaliação por 13 semanas, indo ao encontro do sugerido no Programa. A opção tomada para as tabelas de calendarização, com 16 semanas, foi a de deixar livre aproximadamente uma semana por cada subdomínio. No plano de aulas, as aulas que correspondem a esta situação estão indicadas com «Gestão flexível». A tabela de calendarização a médio prazo, para as 16 semanas, é de fácil leitura. E o enquadramento nas semanas letivas que essa tabela perspetiva para os subdomínios e para a distribuição e desenvolvimento adotados nos conteúdos no manual certamente facilitará a organização do trabalho. O plano de aulas por semana inclui sugestões para as três aulas de cada semana e um desenvolvimento para cada uma dessas aulas, privilegiando-se uma ligação ao manual e a propostas do projeto. Para complementar as propostas do manual foram elaboradas duas fichas de diagnóstico, duas fichas formativas para cada um dos subdomínios e uma ficha formativa que inclui conteúdos dos três subdomínios. Na planificação sugere-se que a primeira ficha de diagnóstico seja usada para diagnóstico, ao se iniciar a componente de Física e a segunda ficha no final. Para as fichas formativas também se indica um possível momento de implementação. De igual forma, no sentido de apoiar o trabalho dos professores, elaboraram-se para este projeto propostas de testes de avaliação para cada um dos subdomínios e um teste global. Na planificação a médio prazo e para as planificações semanais apenas se sugerem possíveis momentos de uso destes instrumentos de avaliação por subdomínio. Os recursos da plataforma multimédia Aula Digital – animações, animações laboratoriais, atividades, folhas de cálculo Excel, PowerPoint, resolução animada de exercícios, simulações, testes interativos e vídeos – devem ser utilizados, sempre que possível, de forma a promover o papel ativo do aluno. Os recursos multimédia devem ser acompanhados de um guião de exploração didática (escrito ou oral) que inclua ações diversificadas a realizar pelos autores. Assim, devem ser utilizadas estratégias de exploração desses recursos que envolvam um constante questionamento dos alunos sobre as suas observações, solicitando a interpretação de imagens, esquemas, fórmulas, tabelas, gráficos, entre outros. Podem igualmente ser usados no final de uma discussão, como síntese ou revisão de alguns pontos essenciais. O objetivo é que o
  • 17. 16 Editável e fotocopiável © Texto | Novo 10 F desempenho dos alunos traduza os conhecimentos a adquirir e as capacidades que se querem ver desenvolvidas, de acordo com o estabelecido nas Metas Curriculares. As atividades práticas (resolução de exercícios e de problemas, trabalho laboratorial e outras) devem ser feitas pelos alunos, individualmente ou em pequeno grupo. Este trabalho prático será orientado pelo professor, que dará os esclarecimentos individuais adequados, para que cada aluno adquira os desempenhos pretendidos. Na resolução de exercícios devem ser destacados os procedimentos comuns a adotar (organização dos dados, esquema do que é solicitado e expressões algébricas das grandezas envolvidas), assim como os aspetos fundamentais das grandezas físicas mobilizadas em cada exercício ou problema. Pelo que já foi referido, é evidente que esta calendarização não pode ser seguida rigidamente. De igual forma se reforça que apenas se apresentam sugestões para o desenvolvimento das aulas. A calendarização e as sugestões para as aulas servirão como um bom orientador do trabalho a desenvolver com o manual e com o projeto que o compõe. Todavia, à realidade de cada escola/professor/turma caberá a necessária adaptação da calendarização e dos materiais disponibilizados. Sugestões de boas práticas na atividade docente x Incentivar o estudo. x Resumir o que os alunos deveriam ter aprendido. x Fazer perguntas para suscitar justificações e explicações. x Fazer perguntas para verificar se os alunos aprenderam. x Encorajar todos os alunos a melhorar o seu desempenho. x Elogiar os alunos pelo seu bom desempenho. x Propor tarefas que constituam um desafio. x Encorajar o debate. x Relacionar novos conteúdos com conhecimentos anteriores. x Solicitar aos alunos que escolham os seus próprios processos de resolução. x Tornar a física um assunto relevante para os alunos. x Gerir a aula de modo a evitar a indisciplina. x Ensinar física utilizando uma abordagem exploratória e investigativa (inquiry). x Resolver problemas e exercícios. x Utilizar computadores, tablets, calculadoras ou smartphones durante as aulas (para processar dados, traçar gráficos e utilizar modelações e simulações). Abreviaturas e siglas usadas AD – Aula Digital AL – Atividade Laboratorial Anm – Animação AnmL – Animação laboratorial CAP – Caderno de Apoio ao Professor fig. – figura M – Manual p. – página; pp. – páginas PWP – PowerPoint TI – Teste Interativo TL – Trabalho de Laboratório TPC – Trabalho Para Casa
  • 18. Editável e fotocopiável © Texto | Novo 10 F 17 Recursos de 20 Aula Digital Documentos PowerPoint (PWP) Página (M) Energia e movimentos 1.1.1 Energia e tipos fundamentais de energia. Energia interna 10 1.1.2 Sistema mecânico redutível a uma partícula 14 1.1.3 Transferências de energia por ação de forças. Trabalho de uma força constante 16 1.1.4 Trabalho do peso 21 1.1.5 Teorema da Energia Cinética (ou Lei do Trabalho-Energia) 25 1.1.6 Forças conservativas e não conservativas 27 1.1.7 Trabalho do peso, variação da energia potencial gravítica e energia potencial gravítica 29 1.1.8 Energia mecânica, forças conservativas e conservação da energia mecânica 33 1.1.9 Forças não conservativas, variação da energia mecânica e dissipação de energia 34 1.1.10 Potência, energia dissipada e rendimento 37 Medições e incertezas associadas 40 Energia e fenómenos elétricos 1.2.1 Energia e correntes elétricas 70 1.2.2 Grandezas elétricas: diferença de potencial elétrico e corrente elétrica. Corrente contínua e corrente alternada 71 1.2.3 Grandezas elétricas: resistência elétrica de um condutor 76 1.2.4 Energia transferida para um componente de um circuito elétrico. Efeito Joule 81 1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito 84 1.2.6 Associações de componentes elétricos em série e em paralelo 87 Energia, fenómenos térmicos e radiação 1.3.1 Sistema termodinâmico. Sistema isolado 108 1.3.2 Temperatura, equilíbrio térmico e escalas de temperatura 109 1.3.3 Transferências de energia por calor 113 1.3.4 Radiação e irradiância. Painéis fotovoltaicos 115 1.3.5 Condução térmica 122 1.3.6 Convecção térmica 124 1.3.7 Transferências de energia como calor num coletor solar 125 1.3.8 Aquecimento e arrefecimento de sistemas: capacidade térmica mássica 126 1.3.9 Aquecimento e mudanças de estado: variação das entalpias de fusão e de vaporização 129 1.3.10 Primeira Lei da Termodinâmica: transferências de energia e conservação da energia 131 1.3.11 Segunda Lei da Termodinâmica: degradação da energia e rendimento 133
  • 19. 18 Editável e fotocopiável © Texto | Novo 10 F Animações (Anm) Página (M) Cálculo da energia cinética 11 Tipos fundamentais de energia 12 Centro de massa 15 Cálculo do trabalho de uma força 19 Cálculo do trabalho do peso 22 Cálculo do trabalho da resultante das forças através do Teorema da Energia Cinética 25 Forças conservativas e não conservativas 28 Cálculo da energia mecânica de um sistema 33 Potência e rendimento 37 Cálculo da potência e do rendimento em sistemas mecânicos 38 Cálculo da incerteza absoluta e da incerteza relativa 41 Grandezas elétricas: diferença de potencial elétrico e corrente elétrica 72 Efeito Joule 81 Cálculo da força eletromotriz e da resistência interna a partir da curva característica 85 Cálculo das grandezas elétricas de um gerador e de um condutor 90 Temperatura e equilíbrio térmico 109 Transferências de energia por calor 113 Emissão e absorção de radiação 116 Cálculo da irradiância 118 Condução e convecção 122 Cálculo da capacidade térmica mássica 127 Cálculo da variação de energia interna de um sistema 132 Cálculo do balanço energético de um sistema 134 Simulações Página (M) Trabalho de uma força 18 Trabalho do peso 21 Conservação da energia mecânica 33 Resistência elétrica de um condutor 78 Associações de componentes elétricos em série e em paralelo 87 Capacidade térmica mássica 127 Variação de energia interna de um sistema 132 Atividades Página (M) Trabalho do peso 24 Conservação e variação da energia mecânica 36 Medições e incertezas associadas 46 Balanço energético num circuito 86 Associação de resistências em série e em paralelo 88 Irradiância de um corpo 119 Variação das entalpias de fusão e de vaporização 130 Balanços energéticos 134
  • 20. Editável e fotocopiável © Texto | Novo 10 F 19 Animação laboratorial Página (M) AL 1.1 Movimento num plano inclinado: variação da energia cinética e distância percorrida 49 AL 1.2 Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia 53 AL 2.1 Características de uma pilha 96 AL 3.1 Radiação e potência elétrica de um painel fotovoltaico 137 AL 3.2 Capacidade térmica mássica 139 AL 3.3 Balanço energético num sistema termodinâmico 142 Folha de cálculo Página (M) AL 1.1 Movimento num plano inclinado: variação da energia cinética e distância percorrida 50 AL 1.2 Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia 54 AL 2.1 Características de uma pilha 96 AL 3.1 Radiação e potência elétrica de um painel fotovoltaico 137 AL 3.2 Capacidade térmica mássica 139 AL 3.3 Balanço energético num sistema termodinâmico 142 Testes interativos Página (M) 1.1.1 Energia e tipos fundamentais de energia. Energia interna 13 1.1.2 Sistema mecânico redutível a uma partícula 15 1.1.3 Transferências de energia por ação de forças. Trabalho de uma força constante 20 1.1.4 Trabalho do peso 24 1.1.5 Teorema da Energia Cinética (ou Lei do Trabalho-Energia) 26 1.1.6 Forças conservativas e não conservativas 28 1.1.7 Trabalho do peso, variação da energia potencial gravítica e energia potencial gravítica 30 1.1.8 Energia mecânica, forças conservativas e conservação da energia mecânica 33 1.1.9 Forças não conservativas, variação da energia mecânica e dissipação de energia 36 1.1.10 Potência, energia dissipada e rendimento 38 1.1 Energia e movimentos 55 1.2.1 Energia e correntes elétricas 70 1.2.2 Grandezas elétricas: diferença de potencial elétrico e corrente elétrica. Corrente contínua e corrente alternada 75 1.2.3 Grandezas elétricas: resistência elétrica de um condutor 79 1.2.4 Energia transferida para um componente de um circuito elétrico. Efeito Joule 83 1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito 86 1.2.6 Associações de componentes elétricos em série e em paralelo 91 1.2 Eletricidade 98 1.3.1 Sistema termodinâmico. Sistema isolado 108 1.3.2 Temperatura, equilíbrio térmico e escalas de temperatura 112 1.3.3 Transferências de energia por calor 114 1.3.4 Radiação e irradiância. Painéis fotovoltaicos 119
  • 21. 20 Editável e fotocopiável © Texto | Novo 10 F Testes interativos Página (M) 1.3.5 Condução térmica 123 1.3.6 Convecção térmica 124 1.3.7 Transferências de energia como calor num coletor solar 125 1.3.8 Aquecimento e arrefecimento de sistemas: capacidade térmica mássica 128 1.3.9 Aquecimento e mudanças de estado: variação das entalpias de fusão e de vaporização 130 1.3.10 Primeira Lei da Termodinâmica: transferências de energia e conservação da energia 132 1.3.11 Segunda Lei da Termodinâmica: degradação da energia e rendimento 134 1.3 Fenómenos térmicos 143 Vídeos Página (M) Escolha de lâmpadas 83 LED's 83 Temperatura 110 Termografia 118 Células fotovoltaicas 118 Painéis fotovoltaicos 119 Isolamento térmico 123 Coletor solar 125
  • 22. Editável e fotocopiável © Texto | Novo 10 F 21 Planificação a médio prazo Energia e sua conservação Conteúdos Semanas Fichas Formativas e testes 1.1. Energia e movimentos (18 aulas) 1 2 3 4 5 6 Ficha de Diagnóstico X Diagnóstico 1.1.1 Energia e tipos fundamentais de energia. Energia interna X 1.1.2 Sistema mecânico redutível a uma partícula X 1.1.3 Transferências de energia por ação de forças. Trabalho de uma força constante X X 1.1.4 Trabalho do peso X 1.1.5 Teorema da Energia Cinética (ou Lei do Trabalho-Energia) X Ficha 1 – Energia e movimentos X Ficha 1 1.1.6 Forças conservativas e não conservativas X 1.1.7 Trabalho do peso, variação da energia potencial gravítica e energia potencial gravítica X 1.1.8 Energia mecânica, forças conservativas e conservação da energia mecânica X 1.1.9 Forças não conservativas, variação da energia mecânica e dissipação de energia X X 1.1.10 Potência, energia dissipada e rendimento X AL 1.1. Movimento num plano inclinado: variação da energia cinética e distância percorrida X AL 1.2. Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia X Ficha 2 – Energia e movimentos X Ficha 2 Teste 1 – Energia e movimentos X Conteúdos Semanas Fichas Formativas e testes 1.2. Energia e fenómenos elétricos (12 aulas) 7 8 9 10 1.2.1 Energia e correntes elétricas X 1.2.2 Grandezas elétricas: diferença de potencial elétrico e corrente elétrica. Corrente contínua e corrente alternada X 1.2.3 Grandezas elétricas: resistência elétrica de um condutor X 1.2.4 Energia transferida para um componente de um circuito elétrico. Efeito Joule X X Ficha 3 – Energia e Fenómenos Elétricos X Ficha 3 1.2.5 Características de um gerador de tensão contínua. Balanço energético num circuito X 1.2.6 Associações de componentes elétricos em série e em paralelo X X AL 2.1. Características de uma pilha X Ficha 4 – Energia e Fenómenos Elétricos X Ficha 4 Teste 2 – Energia e Fenómenos Elétricos X Teste 2
  • 23. 22 Editável e fotocopiável © Texto | Novo 10 F Conteúdos Semanas Fichas Formativas e testes 1.3. Energia fenómenos térmicos e radiação (18 aulas) 11 12 13 14 15 16 1.3.1 Sistema termodinâmico. Sistema isolado X 1.3.2 Temperatura, equilíbrio térmico e escalas de temperatura X 1.3.3 Transferências de energia por calor X 1.3.4 Radiação e irradiância. Painéis fotovoltaicos X 1.3.5 Condução térmica X 1.3.6 Convecção térmica X 1.3.7 Transferências de energia como calor num coletor solar X Ficha 5 – Energia e Fenómenos Térmicos X Ficha 5 1.3.8 Aquecimento e arrefecimento de sistemas: capacidade térmica mássica X X 1.3.9 Aquecimento e mudanças de estado: variação das entalpias de fusão e de vaporização X 1.3.10 Primeira Lei da Termodinâmica: transferências de energia e conservação da energia X X 1.3.11 Segunda Lei da Termodinâmica: degradação da energia e rendimento X X Ficha 6 – Energia e Fenómenos Térmicos X Ficha 6 AL 3.1. Radiação e potência elétrica de um painel fotovoltaico X AL 3.2. Capacidade térmica mássica X AL 3.3. Balanço energético num sistema termodinâmico X Ficha 7 – Energia e Sua Conservação (ficha global) X Ficha 7 Teste 3 – Energia, Fenómenos Térmicos e Radiação X Teste 3
  • 24. Editável e fotocopiável © Texto | Novo 10 F 23 Planos de aulas semana N.o 1 Data : Sumário: Apresentação da componente de Física. Transferência de energia: fonte de energia e recetor de energia. Ficha de Diagnóstico 1. Conteúdos: Energia e o seu papel no desenvolvimento social humano. Metas Curriculares: 1.1 e 1.2 Atividades/Estratégias: Apresentação do Programa de Física usando o Manual, apresentação da estrutura e organização do Manual. Informação sobre as fichas e os testes: data de realização; número, tipologia e organização das questões; material; duração e critérios gerais de classificação dos testes. Indicações sobre a organização do estudo ao longo do ano. Breve discussão do papel da energia na sociedade moderna (alguns aspetos da história recente da produção e consumo de energia) com base na interpretação do texto e figuras da p. 8 do M. Identificar a fonte e o recetor de energia (analisar a fig. 1 da p. 10 do M). Ficha de Diagnóstico 1 (60 min). Recursos: M: pp. 8 e 10 CAP: Ficha de Diagnóstico 1 Observações: Pode destacar-se a importância da energia na Revolução Industrial e o papel da eletricidade no mundo atual. Com o TPC pretende-se uma revisão dos conhecimentos incluídos nas metas 3.1, 3.2 e 3.4 do subdomínio Forças, movimentos e energia do 9. o ano: tipos fundamentais de energia e fatores de que dependem. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Ficha de Diagnóstico 1. Sugestões aos alunos: TPC – a) Quantos e quais são os tipos fundamentais de energia e de que fatores depende a energia cinética? b) Questão 1, p. 55 do M. Data : Sumário: Correção do TPC. Energia cinética de um corpo. Energia potencial e interações entre corpos. Energia interna de um sistema. Sistema mecânico. Aplicação dos conceitos na resolução de questões. Conteúdos: Energia cinética e energia potencial; energia interna. Sistema mecânico. Conservação de energia. Metas Curriculares: 1.1, 1.2, 1.3, 1.4 e 1.5 Atividades/Estratégias: Correção da Ficha de Diagnóstico 1. Apresentação do TPC pelos alunos e síntese das principais conclusões (esquematização das conclusões, ou PWP 1.1.1, ou Anm Tipos fundamentais de energia). Destacar as unidades SI. Apresentação de alguns tipos de energia potencial (analisar a fig. 3 da p. 12 do M). Resolução de dois exercícios de cálculo da energia cinética: determinação da energia cinética e do módulo da velocidade (interpretar a Questão Resolvida 1 da p. 11 do M e Anm 1.1.1). Desafio aos alunos: conversão de valores de velocidade km/h para m/s e vice-versa. Atividade prática: questões 1, 3 e 4 da p. 55 e TI 1.1.1. A partir da questão Pode um carro considerar-se um sistema mecânico? identificar o que é um sistema mecânico (contextualizar com as figs. 5 e 6 da p. 14 do M). Recursos: M: pp. 11- 14, 55 CAP: Proposta de resolução da Ficha de Diagnóstico 1 AD: ƒ PWP 1.1.1 ƒ Anm Tipos fundamentais de energia ƒ Anm 1.1.1 Cálculo da energia cinética ƒ Anm Centro de massa x TI 1.1.1 Observações: Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões 2 e 5 da p. 55 do M. 90 min 100 min 90 min 100 min Aulas n.o 1/2 Aulas n.o 3/4
  • 25. 24 Editável e fotocopiável © Texto | Novo 10 F Data : Sumário: Correção do TPC. Modelo do centro de massa. A grandeza trabalho e o seu significado físico. Determinação do trabalho realizado por forças constantes em movimentos retilíneos. Aplicação dos conceitos na resolução de questões. Conteúdos: Sistema redutível a uma partícula (centro de massa). O trabalho como medida da energia transferida por ação de forças; trabalho realizado por forças constantes. Metas Curriculares: 1.6 e 1.7 Atividades/Estratégias: Apresentação do TPC (questões 2 e 5 da p. 55 do M) esclarecimento das dúvidas. Explicar o modelo do centro de massa, interpretando a fig. 7 da p. 15 do M, e identificar algumas das suas limitações (contextualizar com a Anm Centro de massa e com a Questão Resolvida 2 da p. 15 do M). Atividade prática: questão 6 da p. 55 do M e TI 1.1.2. Revisão do conceito de trabalho como processo de transferência de energia entre sistemas através da atuação de forças (fig. 8 da p. 16 do M). Representação das forças exercidas sobre um corpo assente numa superfície horizontal (fig. 10 da p. 17 do M). A partir da questão Uma força aplicada sobre um corpo realiza sempre trabalho? concluir em que situações o trabalho de uma força é nulo (interpretar a Questão Resolvida 3 da p. 17 do M). Identificação dos fatores de que depende o trabalho de uma força (interpretação das figs. 13 e 14 da p. 16 do M, e da fig. 16 da p. 17). Identificação do trabalho de uma força com o trabalho da sua componente na direção do deslocamento. Apresentação e interpretação da expressão algébrica do trabalho de uma força constante, salientando as unidades SI. Relacionar o facto de o trabalho ser potente, resistente ou nulo com o ângulo entre a força e o deslocamento. Atividade prática: interpretação da Questão Resolvida 4 da p. 20 do M e Anm 1.1.3. Recursos: M: pp. 15-20, 55 AD: ƒ Anm Centro de massa ƒ TI 1.1.2 ƒ PWP 1.1.3 ƒ Simulação Trabalho de uma força ƒAnm Cálculo do trabalho de uma força Observações: Revisão dos conceitos da meta 3.6 do subdomínio Forças, movimentos e energia do 9. o ano (transferir energia através de trabalho). Explorar os recursos, e as atividades de aplicação incluídas na Aula Digital, que seguem os exemplos do M. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões 9, 10, 11 e 13 da p. 56 do M. Registo de Notas 135 min 150 min Aulas n.o 5/6/7
  • 26. Editável e fotocopiável © Texto | Novo 10 F 25 Planos de aulas semana N.o 2 Data : Sumário: Correção do TPC. Transferências de energia por ação de forças. Trabalho de uma força constante. Trabalho do peso. Aplicação dos conceitos na resolução de questões. Conteúdos: Trabalho de forças constantes. Metas Curriculares: 1.6 e 1.7 Atividades/Estratégias: Apresentação do TPC (questões 9, 10, 11 e 13 da p. 56 do M) e esclarecimento de dúvidas. Atividade prática: questões 7 e 8 da p. 55 e 12 e 14 da p. 56 do M; TI 1.1.3. Determinação do trabalho do peso em trajetórias retilíneas horizontais e verticais (interpretação da figura 10 da p. 21 do M). Representação das forças que atuam sobre um corpo num plano inclinado. Decomposição do peso e identificação do trabalho do peso com o trabalho da componente do peso na direção do deslocamento (pode recorrer-se ao PWP 1.1.4 ou à simulação 1.1.4). Recursos: M: pp. 21-23, 55-56 AD: ƒ TI 1.1.3 Transferências de energia por ação de forças. Trabalho de uma força constante ƒ PWP 1.1.4 Trabalho do peso ƒ Simulação 1.1.4 Trabalho do peso Observações: A simulação 1.1.4 está estruturada em três partes: breve animação sobre o cálculo do trabalho do peso no plano inclinado; simulação (o ângulo do plano e a massa do corpo podem ser alterados, marcam-se as forças, mostra-se as componentes do peso e num gráfico de barras os valores dos trabalhos do peso, da força de atrito e da força resultante); questões para resolver. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões 15 e 16 da p. 57 do M. Data : Sumário: Correção do TPC. Transferências de energia por ação de forças. Trabalho de uma força constante. Trabalho do peso. Aplicação dos conceitos na resolução de questões. Conteúdos: Trabalho de forças constantes. Metas de aprendizagem: 1.7 Atividades/Estratégias: Apresentação do TPC (questões 15 e 16 da p. 57 do M) e esclarecimento de dúvidas. Resolução animada de exercícios 1.1.4. Interpretação da inclinação de uma estrada expressa em percentagem. Análise da Questão resolvida 5 da p. 24 do M. Atividade prático-laboratorial: Medição do trabalho do peso (p. 24 do M). Atividade prática: questões 18 da p. 57 e 19 da p. 58. Recursos: M: pp. 24, 57-58 AD: ƒ Resolução animada de exercícios 1.1.4 Cálculo do trabalho do peso ƒ Atividade Trabalho do peso Observações: Sugere-se que a atividade Medição do trabalho do peso seja feita em grupos de dois. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questão 17 da p. 57 do M. 90 min 100 min 90 min 100 min Aulas n.o 10/11 Aulas n.o 8/9
  • 27. 26 Editável e fotocopiável © Texto | Novo 10 F Data : Sumário: Correção do TPC. Teorema da Energia Cinética (ou Lei do Trabalho-Energia). Aplicação dos conceitos na resolução de questões. Conteúdos: Trabalho de forças constantes. Variação de energia cinética. Lei do trabalho energia. Metas de aprendizagem: 1.8 Atividades/Estratégias: Apresentação do TPC (questão 17 da p. 57 do M) e esclarecimento de dúvidas. Apresentação do teorema da energia cinética (interpretação das figs. 27 e 28 da p. 25 do M e da expressão algébrica que traduz este teorema). Identificação do trabalho total com o trabalho da resultante das forças para um corpo apenas com movimento de translação. Interpretação da Questão Resolvida 6 (p. 26 do M). Atividade prática: Anm 1.1.5 e questões 20, 21, 22, 25, 26 da p. 58 e 29, 31 e 32 da p. 59. Recursos: M: pp. 25-26, 57-59 AD: ƒ PowerPoint 1.1.5 Teorema da Energia Cinética (ou Lei do Trabalho- Energia) ƒ Resolução animada de exercícios 1.1.5 Cálculo do trabalho da resultante das forças através do Teorema da Energia Cinética. ƒ TI 1.1.5 Teorema da Energia Cinética (ou Lei do Trabalho-Energia) Simulação Stopping Distance – Distância de travagem (http://goo.gl/W1qOV1) do Physics Classroom Observações: Na apresentação do teorema da energia cinética pode recorrer-se ao PWP 1.1.5. Se o ritmo de progressão da turma assim o permitir poderá ainda resolver-se o Teste interativo 1.1.5. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões 23 e 27 da p. 58 e 30 da p. 59 do M. Registo de Notas 135 min 150 min Aulas n.o 12/13/14
  • 28. Editável e fotocopiável © Texto | Novo 10 F 27 Planos de aulas semana N.o 3 Data : Sumário: Correção do TPC. Ficha Formativa 1: Energia e movimentos. Forças conservativas e não conservativas. Conteúdos: Trabalho de forças constantes. Energia cinética. Variação de energia cinética. Lei do trabalho energia. Forças conservativas e não conservativas. Metas de aprendizagem: 1.3, 1.6, 1.7, 1.8 e 1.9 Atividades/Estratégias: Apresentação do TPC (questões 23, 27 da p. 58 e 30 da p. 59 do M) e esclarecimento de dúvidas. Ficha 1 – Energia e movimentos (60 min). Comparação do trabalho realizado pelo peso, entre dois pontos, seguindo diferentes trajetórias (interpretação das figs. 30, 31 e 32 da p. 27 do M). Determinação do trabalho do peso numa trajetória fechada (interpretação da fig. 33 da p. 28 do M). Recursos: M: pp. 27-28 ƒ CAP: Ficha 1 – Energia e movimentos Observações: Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Estudar a definição de força conservativa; justificar o facto de o peso ser uma força conservativa; indicar dois exemplos de forças não conservativas. Data : Sumário: Correção da Ficha Formativa 1 – Energia e movimentos – e do TPC. Forças conservativas e não conservativas. Medição e incertezas associadas. Aplicação dos conceitos na resolução de questões. Preparação da AL 1.1. Conteúdos: Medição, medição direta e indireta. Incerteza de medida numa medição direta. Exatidão e precisão. Metas de aprendizagem: 1.9 e do TL conceptuais 7, 9, 11 a 15 e 18 a 23 Atividades/Estratégias: Correção da Ficha 1 – Energia e movimentos. Apresentação do TPC (definição de força conservativa, concluindo-se que o peso é uma força conservativa e indicação de alguns exemplos de forças não conservativas) e esclarecimento de dúvidas. Atividade prática: questões 33 e 34 da p. 59 do M. Apresentação dos conceitos de medição direta e indireta. Determinação da incerteza absoluta de uma medida quando há uma só medição direta (exemplificação com balança, régua e cronómetros digital e interpretação da Questão Resolvida 11 da p. 43 do M). Determinação da incerteza absoluta de uma medida quando existem várias medições diretas nas mesmas condições. Explicação dos conceitos de exatidão e de precisão (interpretação da Questão Resolvida 12 da p. 47 do M). Recursos: M: pp. 40-45; 59 CAP: Proposta de resolução da Ficha 1 – Energia e movimentos AD: ƒ Anm Forças conservativas e não conservativas ƒ PWP Medições e incertezas associadas ƒ Atividade Medições e incertezas associadas Observações: Pode recorrer-se à Anm Forças conservativas e não conservativas e à Atividade Medições e incertezas associadas. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões pré-laboratoriais da AL 1.1 (p. 48 do M). 90 min 100 min 90 min 100 min Aulas n.o 15/16 Aulas n.o 17/18
  • 29. 28 Editável e fotocopiável © Texto | Novo 10 F Data : Sumário: AL 1.1: Movimento num plano inclinado: variação da energia cinética e distância percorrida. Conteúdos: Trabalho de forças constantes. Energia cinética. Medição, medição direta e indireta. Incerteza de medida numa medição direta. Metas de aprendizagem: Específicas da AL: 1 a 6; Processuais 1, 6 e 8 a 12; Conceptuais 1 a 3, 6 e 7, 9, 11 a 15 e 18 a 23 Atividades/Estratégias: Esclarecimento de dúvidas sobre as questões pré-laboratoriais da AL 1.1 (p. 48 do M). Atividade laboratorial 1.1 (pp. 49 e 50 do M). Resolução das questões pós-laboratoriais da AL 1.1 (p. 51 do M). No final da execução laboratorial os alunos poderão fazer uma apresentação dos resultados de cada grupo. Recursos: Material necessário para a AL 1.1 (p. 49 do M) M: pp. 48-51 CAP: AL 1.1 - Respostas às questões pré e pós-laboratoriais, resultados obtidos em trabalho laboratorial e grelha de avaliação da atividade laboratorial ƒ AD: AnmL 1.1 Movimento num plano inclinado: variação da energia cinética e distância percorrida Observações: Ver indicações e sugestões de realização desta AL no CAP. Parte da avaliação da AL pode ser concretizada com as questões, indicadas no CAP. Pode utilizar-se a AnmL 1.1 para expor os aspetos fundamentais do trabalho laboratorial. Avaliação: Registo de intervenção e participação. Respostas a questões pré e pós-laboratoriais. Ficha de avaliação específica. Comportamento e atitudes. Sugestões aos alunos: TPC – De que fatores depende a energia potencial gravítica? Registo de Notas Aulas n.o 19/20/21 135 min 150 min
  • 30. Editável e fotocopiável © Texto | Novo 10 F 29 Planos de aulas semana N.o 4 Data : Sumário: Correção do TPC. Trabalho do peso, variação de energia potencial gravítica e energia potencial gravítica. Energia mecânica. Aplicação dos conceitos na resolução de questões. Aplicação dos conceitos na resolução de questões. Conteúdos: Trabalho de forças constantes. Trabalho do peso. Variação de energia potencial e energia potencial. Metas de aprendizagem: 1.7, 1.9, 1.10 e 1.11 Atividades/Estratégias: Apresentação do TPC (fatores de que depende a energia potencial gravítica) e esclarecimento de dúvidas. Escrita e interpretação da expressão da energia potencial gravítica de um sistema corpo + Terra. Estabelecimento da relação entre a variação de energia potencial gravítica e o trabalho do peso (poderá recorrer-se ao PWP 1.1.7). Os alunos deverão explicar o sinal da variação da energia potencial gravítica e do trabalho do peso, na subida e na descida, relacionando os sinais dos valores dessas duas grandezas. Análise da questão resolvida 7 da p. 30 do M. Atividade prática: questões 35, 36, 38 da pp. 59-60 do M e TI 1.1.7. Apresentação da definição de energia mecânica de um sistema corpo + Terra. Interpretação de situações em que ocorrem transformações de energia cinética em potencial gravítica e vice-versa (exemplificar com movimentos em desportos e atividades de lazer). Recursos: M: pp. 29-32; 59-60 AD: ƒ PWP 1.1.7 Trabalho do peso, variação da energia potencial gravítica e energia potencial gravítica ƒ TI 1.1.7 Trabalho do peso, variação da energia potencial gravítica e energia potencial gravítica Observações: Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões 37 e 39 da p. 60 do M. Data : Sumário: Correção do TPC. Energia mecânica, forças conservativas e conservação da energia mecânica. Aplicação dos conceitos na resolução de questões. Conteúdos: Forças conservativas. Energia potencial, energia cinética e energia mecânica. Metas de aprendizagem: 1.8, 1.9, 1.10, 1.11. 1.12, 1.13 e 1.14 Atividades/Estratégias: Apresentação do TPC (questões 37 e 39 da p. 60 do M) e esclarecimento de dúvidas. Conclusão da conservação da energia mecânica num sistema conservativo, ou se o trabalho das forças não conservativas for nulo, a partir do teorema da energia cinética (pode recorrer-se ao PWP 1.1.8). Utilização de uma simulação (simulação 1.1.8 ou outras) para questionamento oral dos alunos sobre variações de energia cinética, potencial gravítica e mecânica e suas relações. Interpretação da Questão Resolvida 8 (p. 33 do M). Atividade prática: Anm 1.1.8 e questões 40, 41, 43 e 44 da pp. 60-61 do M. Recursos: M: pp. 32-33; 60-61 AD: ƒ PWP 1.1.8 Energia mecânica, forças conservativas e conservação da energia mecânica ƒ Simulação 1.1.8 Conservação da energia mecânica ƒ Anm 1.1.8 Cálculo da energia mecânica de um sistema Outras simulações: Energia do Parque de Skate: Básico (http://goo.gl/jWKjtd) do projeto PhET ou Roller Coaster Model (http://goo.gl/wLPcWa) do Physics Classroom Observações: Revisão das metas 3.3 e 3.5 do subdomínio Forças, movimentos e energia do 9. o ano. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões 45 e 46 da p. 62 do M. 90 min 100 min 90 min 100 min Aulas n.o 22/23 Aulas n.o 24/25
  • 31. 30 Editável e fotocopiável © Texto | Novo 10 F Data : Sumário: Correção do TPC. Entrega dos trabalhos de laboratório relativos à atividade laboratorial 1.1. Análise dos resultados obtidos. Forças não conservativas, variação da energia mecânica e dissipação de energia. Conteúdos: Forças não conservativas. Variação de energia mecânica. Metas de aprendizagem: 1.7, 1.8, 1.10, 1.12, 1.15 e 1.16 Atividades/Estratégias: Apresentação do TPC (questões 45 e 46 da p. 62 do M) e esclarecimento de dúvidas. Interpretação de uma demonstração experimental em vídeo com base na conservação da energia mecânica. Atividade prática: questões 50, 51, 53 e 54 das pp. 62-63 do M. Discussão dos resultados obtidos pelos diversos grupos na AL 1.1. Estabelecimento da relação entre o trabalho das forças não conservativas e a variação de energia mecânica (exemplificação com a força de atrito e a força de resistência do ar – interpretação da fig. 39 da p. 34 do M e fig. 40 da p. 35). Recursos: Vídeo Potential Energy to Kinetic Energy (http://youtu.be/L2mdAvdPhT4) do canal MIT Tech TV M: pp. 34-35; 62-63 AD: ƒ PWP 1.1.9 Forças não conservativas, variação da energia mecânica e dissipação de energia Observações: Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões 55, 58 e 59 da p. 64 do M. Registo de Notas 135 min 150 min Aulas n.o 26/27/28
  • 32. Editável e fotocopiável © Texto | Novo 10 F 31 Planos de aulas semana N.o 5 Data : Sumário: Correção do TPC. Forças não conservativas, variação da energia mecânica e dissipação de energia. Potência, energia dissipada e rendimento. Aplicação dos conceitos na resolução de questões. Conteúdos: Forças não conservativas. Variação de energia mecânica. Metas de aprendizagem: 1.7, 1.8, 1.10, 1.12, 1.15, 1.16 e 1.18 Atividades/Estratégias: Apresentação do TPC (questões 55, 58 e 59 da p. 64 do M) e esclarecimento de dúvidas. Estabelecimento das relações entre forças dissipativas, energia dissipada e variação da energia mecânica (contextualizar a discussão com exemplos de movimentos reais – pêndulo gravítico, esfera numa calha semicircular, queda de uma folha de papel, corpo que desce um plano inclinado, etc. – e com simulações). Interpretação da Questão Resolvida 9 (p. 36 do M). Atividade prática: questões 61, 62 e 63 da p. 64 e TI 1.1.8. Estabelecimento das relações entre energia, potência, energia útil, energia dissipada e rendimento. Recursos: M: pp. 34-36; 64 Simulações: Energia do Parque de Skate: Básico (http://goo.gl/jWKjtd) do projeto PhET ou Roller Coaster Model (http://goo.gl/wLPcWa) do Physics Classroom AD: ƒ TI 1.1.8 Energia mecânica, forças conservativas e conservação da energia mecânica ƒ Atividade Conservação e variação da energia mecânica ƒ PWP 1.1.10 Potência, energia dissipada e rendimento ƒ Anm Potência e rendimento Observações: Pode recorrer-se ao PWP 1.1.10 para apresentação dos conceitos de potência e rendimento (rever do ensino básico o conceito de potência – metas 2.2 a 2.4 do subdomínio Efeitos da corrente elétrica e energia elétrica). Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questão 60 da p. 64 do M. Data : Sumário: Correção do TPC. Potência, energia dissipada e rendimento. Preparação da AL 1.2. Aplicação dos conceitos na resolução de questões. Conteúdos: Energia, potência e rendimento. Metas de aprendizagem: 1.15, 1.16, 1.17 e 1.18 e do TL Conceptuais 18 e 20 Atividades/Estratégias: Apresentação do TPC (questões 60 da p. 64 do M) e esclarecimento de dúvidas. Interpretação da Questão Resolvida 10 da p. 38. Atividade prática: resolução animada do exercício 1.1.10 e das questões 67, 68 e 69 e 70, da p. 65. Utilização do vídeo para relacionar os conceitos de trabalho, energia e potência. Construção de um gráfico e determinação da reta de regressão a partir de um conjunto de dados experimentais (pode recorrer-se ao anexo 1 das pp. 156-159 do M que tem instruções para as calculadoras TEXAS TI-84 Plus C Silver Edition e CASIO FX–CG20). Recursos: M: pp. 37-38; 65; 156-159 Vídeo How does work...work? - Peter Bohacek (http://youtu.be/u6y2RPQw7E0) do canal TED Ed AD: ƒ Anm 1.1.10 Cálculo da potência e do rendimento em sistemas mecânicos Observações: Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões pré-laboratoriais da AL 1.2 (pp. 52-53 do M). 90 min 100 min 90 min 100 min Aulas n.o 29/30 Aulas n.o 31/32
  • 33. 32 Editável e fotocopiável © Texto | Novo 10 F Data : Sumário: AL 1.2. Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia. Conteúdos: Trabalho do peso. Transformações de energia. Conservação de energia mecânica. Metas de aprendizagem: Específicas da AL: 1 a 7; Processuais 1, 7, 10 e 11; Conceptuais 1, 2, 4, 9, 13, 14 e 18 a 21 Atividades/Estratégias: Correção das questões pré-laboratoriais da AL 1.2 (pp. 52-53 do M). Trabalho laboratorial da AL 1.2 (p. 54 do M). Resolução das questões pós-laboratoriais da AL 1.2 (p. 54 do M). Recursos: Material necessário para a AL 1.2 (p. 54 do M) M: pp. 52-54 CAP: AL 1.2 – Respostas às questões pré e pós-laboratoriais, resultados obtidos em trabalho laboratorial e grelha de avaliação da atividade laboratorial AD: ƒ AnmL 1.2 Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia Observações: Ver indicações e sugestões de realização desta AL no CAP. Parte da avaliação da AL pode ser concretizada com as questões, indicadas no CAP. Avaliação: Registo de intervenção e participação. Respostas a questões pré e pós-laboratoriais. Ficha de avaliação específica. Comportamento e atitudes. Sugestões aos alunos: TPC – Produzir um documento em folha de cálculo com os dados organizados em tabela e sua interpretação gráfica. Registo de Notas 135 min 150 min Aulas n.o 33/34/35
  • 34. S C A D I O r e c e o q o q c v q S C A O s q p S C A O Plano Sumário: Ficha Conteúdos: Ene Atividades/Est Discussão da pro ndicações para a Observações: A realização do tes estar concentrad com muita atenç em conta o tipo organizar a respo que tenha dúvida outra estratégia questões de mai como os dados s vice-versa); quan questões; caso a Sumário: Teste Conteúdos: Ene Atividades/Est Observações: S seja disponibiliza que seja projetad podem ser dados Sumário: Gestã Conteúdos: Atividades/Est Observações: Au n.o 3 Au n.o 3 Au n.o 40/ os de au N.o Formativa 2 – E ergia e movimen tratégias: Ficha oposta de resolu a realização do t Algumas das sug ste: levar todo o do e com uma at ção e responder de questão; qua osta de modo cla as na resposta, m de resolução, nã or complexidade e podem relacio ndo terminar, ve inda tenha temp Escrito n.º 1 (co ergia e movimen tratégias: Realiz Sugere-se que a p da em PDF (por da numa aula seg s nessa aula. o flexível tratégias: las 6/37 las 8/39 las /41/42 las sema 6 nergia e movime ntos. 2 – Energia e m ção da ficha 2 e teste. gestões a transm material necess titude positiva; l apenas ao que é ando tiver de esc aro e conciso; na mas não consiga ão deve riscar a e, procurar esqu onar com o que é erificar se respon po, reler todas a omponente de Fí ntos. zação do Teste E proposta de reso exemplo, na plat guinte. Eventuais 135 150 90 m 100 90 m 100 Editável e fotoco ana Data entos. Esclarecim movimentos (60 m autocorreção. mitir para a sário; ter calma, er cada questão é pedido, tendo crever um texto as questões em a estabelecer resposta; nas uematizar a form é solicitado (e ndeu a todas as as respostas. Data ísica) de avaliaçã Escrito n. o 1. olução do teste taforma Moodle s esclarecimento Data min min min min min min opiável © Texto | : mento de dúvida min). o ma Avaliação: e atitudes. Sugestões (p. 39 do M Resolução d : ão. ) e os Avaliação: Sugestões : Avaliação: Sugestões | Novo 10 F as e revisões. : Registo de inte s aos alunos: Le M) e revisão dos c da Questão Glob : Critérios de cla s aos alunos: : s aos alunos: Metas de a Recursos: CAP: Ficha 2 respetiva Pr ervenção e parti eitura atenta do conceitos estudo bal 76 (pp. 67-68 Metas de a Recursos: CAP: Teste E assificação do Te Metas de a Recursos: aprendizagem 2 – Energia e mo roposta de Reso cipação. Compo o resumo dos co os. 8). aprendizagem Escrito n. o 1 este Escrito n. o 1 aprendizagem 33 m: 1.1 a 1.18 ovimentos e olução ortamento onteúdos m: 1.1 a1.18 1. m:
  • 35. 34 Editável e fotocopiável © Texto | Novo 10 F Planos de aulas semana N.o 7 Data : Sumário: Energia e correntes elétricas. Grandezas elétricas: diferença de potencial elétrico e corrente elétrica. Corrente contínua e corrente alternada. Resistência elétrica e resistividade. Aplicação dos conceitos na resolução de questões. Conteúdos: Carga elétrica. Fenómeno da corrente elétrica. Diferença de potencial elétrico. Corrente elétrica. Corrente contínua e corrente alternada. Resistência de condutores filiformes e resistividade. Metas de aprendizagem: 2.1, 2.2 e 2.3 Atividades/Estratégias: Apresentação de alguns exemplos do dia a dia que mostrem o uso da eletricidade e da energia. Apresentação das principais características da corrente contínua e da corrente alternada (interpretação das figs. 10 e 12 da p. 74 do M) e indicação de exemplos de aplicação. Atividade prática: questões 1, 2, 3 e 5 da p. 98 do M. Distinção entre resistência e resistividade. Análise de tabelas de resistividade de modo a distinguir bons condutores de maus condutores (fig. 17 da p. 76 e tabela da p. 77 do M). Apresentação da dependência da resistência elétrica de um condutor filiforme com a resistividade do material que o constitui, o seu comprimento e a sua área da secção reta. Recursos: M: pp. 71-78; 98 AD: ƒ PWP 1.2.1 Energia e correntes elétricas ƒ PWP 1.2.2 Diferença de potencial elétrico e corrente elétrica. Corrente contínua e corrente alternada ƒ Anm Diferença de potencial elétrico e corrente elétrica Observações: Com o TPC pretende-se uma revisão dos conhecimentos incluídos nas metas 1.2, 1.5, 1.7, 1.9 e 1.11 do subdomínio Corrente elétrica e circuitos elétricos do 9. o ano. Para contextualizar os conceitos, sugere-se a medição de diferenças de potencial elétrico de diferentes componentes (lâmpada e pilha) de um circuito elétrico simples, assim como da corrente elétrica, em circuito aberto e em circuito fechado. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – questões 4, 6, 7 e 8 da p. 98 do M. Data : Sumário: Correção do TPC. Resistência de condutores filiformes; resistividade e variação da resistividade com a temperatura. Aplicação dos conceitos na resolução de questões. Conteúdos: Resistência elétrica. Resistividade. Resistência elétrica de fios cilíndricos. Metas de aprendizagem: 2.3 e 2.4. Atividades/Estratégias: Apresentação do TPC e esclarecimento de dúvidas. Apresentação da variação da resistividade com a temperatura de alguns tipos de materiais e interpretação de aplicações que tiram partido dessa variação (interpretação da fig. 18 da p. 77 e fig. 19 da p. 78 do M). Interpretação do funcionamento de dispositivos com resistência variável (potenciómetro, reóstato e caixas de resistências).Utilização da simulação Resistência elétrica de um condutor para relacionar a resistência e características geométricas de um condutor filiforme. Síntese dos aspetos principais (PWP 1.2.3). Interpretação das questões resolvidas 1 e 2 da p. 79 do M. Atividade prática: questões 10, 13, 16 e 18 da p. 99, 21 e 23 da p. 100 do M. Recursos: M: pp. 77-79; 99-100 AD: ƒ PWP 1.2.3 Grandezas elétricas: resistência elétrica de um condutor ƒ Simulação Resistência elétrica de um condutor Outras: simulação Resistência num condutor (http://goo.gl/agMefS) do projeto PhET Observações: Em alternativa à simulação Resistência elétrica de um condutor pode utilizar-se a simulação Resistência num condutor do PhET. Sugere-se que se faça a medição da resistência elétrica de vários dispositivos (termístores, lâmpadas etc.) a diferentes temperaturas. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – questões 12 e 15 da p. 99, 20 e 22 da p. 100. Aulas n.o 45/46 90 min 100 min Aulas n.o 43/44 90 min 100 min
  • 36. Editável e fotocopiável © Texto | Novo 10 F 35 Data : Sumário: Correção do TPC. Energia transferida para um componente de um circuito elétrico. Efeito Joule. Aplicação dos conceitos na resolução de questões. Conteúdos: Resistência elétrica de fios cilíndricos. Corrente elétrica. Energia elétrica transferida e dissipada por efeito Joule. Potência elétrica. Metas de aprendizagem: 2.4 e 2.5 Atividades/Estratégias: Apresentação do TPC e esclarecimento de dúvidas. Apresentação do efeito Joule (PWP 1.2.4 ou Anm Efeito Joule). Dedução da expressão da energia e potência transferidas para um componente de um circuito elétrico, e sua interpretação. Distinção entre componentes puramente resistivos e não puramente resistivos, indicando-se alguns exemplos. Dedução das expressões da energia e potência dissipadas num componente puramente resistivo e sua interpretação. Interpretação da questão resolvida 3 da p. 83. Atividade prática: questões 24, 28 e 29 da p. 100 e 32, 34, 36 e 37 da p. 101. Recursos: M: pp. 80-83; 99-101 AD: ƒ PWP 1.2.4 Energia transferida para um componente de um circuito elétrico. Efeito Joule ƒ Anm Efeito Joule Observações: Os trabalhos sobre a tecnologia LED podem ser feitos em grupos de dois a concluir no prazo de uma semana. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – questões 26 e 30 da p. 100 e 31, 35, 38 da p. 101 (aula seguinte); atividade de pesquisa Lâmpadas LED (p. 83 do M). Registo de Notas 135 min 150 min Aulas n.o 47/48/49
  • 37. 36 S F C e r A F D O S q C C A e C f A I A c O p R 6 Plano Sumário: Energ Ficha formativa 3 Conteúdos: Gra elétrica. Corrent resistividade e va Atividades/Est Ficha 3 – Energia Discussão da pro Observações: Sumário: Carac questões. Conteúdos: Ene CC, força eletrom Atividades/Est e dissipada (inte Características d orça eletromotr Análise da conse nterpretação da Atividade prática característica e q Observações: D potencial elétrico Registo de No Au n.o 5 Au n.o 5 os de au N.o gia transferida pa 3 – Energia e fen andezas elétrica e contínua e cor ariação da resist tratégias: Apres a e fenómenos el oposta de resolu terísticas de um ergia elétrica dis motriz, resistênc tratégias: Análi rpretação das tr e um gerador (s riz e resistência i ervação da energ a questão resolv a: Anm Cálculo d questões 40 e 41 Deve ser feita a m o de diversas pil otas las 0/51 las 2/53 las sema 8 ara um compone nómenos elétrico s: corrente elétr rrente alternada tividade com a te sentação do TPC létricos (60 min) ção da ficha 3 e gerador de ten ssipada num rec ia interna e curv se da energia e ransferências e t ignificado físico interna. gia num circuito ida 4, p. 86. da força eletrom 1 da p. 101 e 42, medição da dife has em circuito 90 m 100 90 m 100 Editável e fotoco ana Data ente de um circu os. rica, diferença d a. Resistência de emperatura. Efe C e esclarecimen ). autocorreção. Data são contínua. Ba etor. Potência e va característica potência num ge transformações e determinação elétrico. otriz e da resistê , 43, 47 da p. 10 rença de aberto e fechad min min min min opiável © Texto | : uito elétrico. Efe e potencial elétr condutores filif eito Joule. nto de dúvidas. Avaliação: e atitudes. Sugestões : alanço energétic elétrica de um ge . erador: fornecid de energia num o a partir da curv ência interna a p 2 do M. do. Avaliação: e atitudes. Sugestões | Novo 10 F eito Joule. rico e resistência formes; : Registo de inte s aos alunos: co num circuito. erador. Gerador da ao circuito (út circuito elétrico va característica partir da curva : Registo de inte s aos alunos: T a Metas de a Recursos: M: pp. 100- CAP: Ficha 3 elétricos e r resolução. ervenção e parti Aplicação dos c r Metas de a til) o). ): Recursos: M: pp. 84-8 AD:  Anm Cálc da resistê curva car  Atividade circuito ervenção e parti TPC – questões 4 aprendizagem -101 3 – Energia e fen respetiva Propos cipação. Compo conceitos na reso aprendizagem 86, 101-102 culo da força ele ência interna a p racterística Balanço energé cipação. Compo 44, 45 e 46 da p. m: 2.1 a 2.5 nómenos sta de ortamento olução de m: 2.5 e 2.6 tromotriz e partir da ético num ortamento 102 do M.
  • 38. Editável e fotocopiável © Texto | Novo 10 F 37 Data : Sumário: Correção do TPC. Iluminação LED. Balanço energético num circuito. Associações de componentes elétricos em série e em paralelo. Aplicação dos conceitos na resolução de questões. Conteúdos: Efeito Joule. Geradores de corrente contínua: força eletromotriz e resistência interna; curva característica. Associações em série e em paralelo: diferença de potencial elétrico e corrente elétrica. Metas de aprendizagem: 2.5 a 2.8 Atividades/Estratégias: Apresentação do TPC e esclarecimento de dúvidas. Apresentação dos trabalhos sobre a tecnologia LED. Análise da corrente elétrica e da diferença de potencial de uma associação de resistências em série, e de uma associação em paralelo (PWP 1.2.6 ou simulação Associações de componentes elétricos em série e em paralelo), comprovando-se as relações com medições de tensões elétricas e correntes elétricas em circuitos elétricos simples. Análise da força eletromotriz de uma associação de pilhas em série e de uma associação em paralelo. Interpretação das questões resolvidas 5 e 6, p. 86. Atividade prática: Anm Cálculo das grandezas elétricas de um gerador e de um condutor (ou atividade 1.2.6) e questões 49 e 50 da p. 103 do M. Recursos: M: pp. 87-90, 92-93, 103 AD: ƒ PWP 1.2.6 Associações de componentes elétricos em série e em paralelo ƒ Simulação Associações de componentes elétricos em série e em paralelo ƒ Atividade 1.2.6 Associação de resistências em série e em paralelo ƒ Anm Cálculo das grandezas elétricas de um gerador e de um condutor Observações: Na apresentação dos trabalhos cada grupo pode apresentar aspetos diferentes (evolução histórica; material utilizado; tipos de LED, tipo de corrente elétrica que usam e valores de potência; vantagens e desvantagens das lâmpadas LED). Os grupos que estão a assistir à apresentação dos colegas devem confrontar os resultados apresentados com os seus, discutindo-se eventuais divergências. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – questões 51 e 52 da p. 103 do M. Registo de Notas 135 min 150 min Aulas n.o 54/55/56
  • 39. 38 Editável e fotocopiável © Texto | Novo 10 F Planos de aulas semana N.o 9 Data : Sumário: Correção do TPC. Balanço energético num circuito. Associações de componentes elétricos em série e em paralelo. Aplicação dos conceitos na resolução de questões. Conteúdos: Efeito Joule. Geradores de corrente contínua: força eletromotriz e resistência interna; curva característica. Associações em série e em paralelo: diferença de potencial elétrico e corrente elétrica. Metas de aprendizagem: 2.5 a 2.8 Atividades/Estratégias: Apresentação do TPC e esclarecimento de dúvidas. Interpretação da questão resolvida 7, p. 87. Exploração da simulação Circuitos de Corrente Contínua (DC) para colocar, oralmente, diversas questões sobre as relações entre as diferenças de potencial elétrico em diferentes componentes de um circuito, assim como das relações entre correntes elétricas e interpretar as respostas com o auxílio da própria simulação. Atividade prática: questões 53 e 54 da p. 103; 55 a 58 da p. 104; 62 e 63 da p. 105; 64 e 65 da p. 106. Recursos: M: pp. 87, 103-106 Simulação: Circuitos de Corrente Contínua (DC) (http://goo.gl/eYAXfE) do projeto PhET Observações: Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: Data : Sumário: Ficha formativa 4 – Energia e fenómenos elétricos. Revisões e esclarecimento de dúvidas. Preparação da AL 2.1. Características de uma pilha. Conteúdos: Energia e fenómenos elétricos. Metas de aprendizagem: 2.1 a 2.8 Atividades/Estratégias: Ficha 4 - Energia e fenómenos elétricos (60 min). Discussão da proposta de resolução da ficha 4 e autocorreção. Síntese da AL 2.1 explicitando-se o respetivo objetivo geral. Recursos: CAP: Ficha 4 - Energia e fenómenos elétricos e respetiva proposta de resolução Observações:. Avaliação: Registo de intervenção e participação. Comportamento e atitudes. Sugestões aos alunos: TPC – Questões pré-laboratoriais da AL 2.1 (p. 95 do M). Data : Sumário: AL 2.1. Características de uma pilha. Conteúdos: Gerador CC, força eletromotriz, resistência interna e curva característica. Metas de aprendizagem: Específicas da AL: 1 a 5; Processuais: 1, 7, 8, 10 a 12; Conceptuais: 1 a 3, 5, 7 a 9, 11, 12, 18 a 21 e 23 Atividades/Estratégias: Correção das questões pré-laboratoriais da AL 2.1 (p. 95 do M). Trabalho laboratorial da AL 2.1 (pp. 96-97 do M). Resolução das questões pós-laboratoriais da AL 2.1 (p. 97 do M). Recursos: Material necessário para a AL 2.1 (p. 96 do M) CAP: AL 2.1 – Respostas às questões pré e pós-laboratoriais, resultados obtidos em trabalho laboratorial e grelha de avaliação da atividade laboratorial Observações: Parte da avaliação da AL pode ser concretizada com as questões indicadas neste CAP. Avaliação: Registo de intervenção e participação. Respostas a questões pré e pós-laboratoriais. Ficha de avaliação específica. Comportamento e atitudes. Sugestões aos alunos: questões globais 62 e 63 (p. 105 do M). 90 min 100 min 90 min 100 min 135 min 150 min Aulas n.o 57/58 Aulas n.o 59/60 Aulas n.o 61/62/63
  • 40. Editável e fotocopiável © Texto | Novo 10 F 39 Planos de aulas semana N.o 10 Data : Sumário: Gestão flexível Conteúdos: Metas de aprendizagem: Atividades/Estratégias: Indicações para a realização do teste. Recursos: Observações: Algumas das sugestões a transmitir para a realização do teste: levar todo o material necessário; ter calma, estar concentrado e com uma atitude positiva; ler cada questão com muita atenção e responder apenas ao que é pedido, tendo em conta o tipo de questão; para escrever um texto, organizar a resposta de modo claro e conciso; nas questões em que tenha dúvidas e não consiga estabelecer outra estratégia de resolução, não deve riscar a resposta; nas questões de maior complexidade procurar esquematizar como é que os dados se podem relacionar com o que é solicitado (e vice-versa); quando terminar, verificar se respondeu a todas as questões; e, caso ainda tenha tempo, deve reler todas as respostas. Avaliação: Sugestões aos alunos: TPC – Leitura atenta do resumo dos conteúdos (p. 94 do M) e revisão dos conceitos estudados; questões 66 e 67 da p. 106 do M. Data : Sumário: Teste Escrito n. o 2 (componente de Física) de avaliação. Conteúdos: Energia e fenómenos eléctricos. Metas de aprendizagem: 2.1 a 2.8 Atividades/Estratégias: Realização do Teste Escrito n. o 2. Recursos: CAP: Teste Escrito n. o 2 Observações: Sugere-se que a proposta de resolução do teste seja disponibilizada em PDF (por exemplo na plataforma Moodle) e que seja projetada numa aula seguinte. Eventuais esclarecimentos podem ser dados nessa aula. Avaliação: Critérios de classificação do Teste Escrito n. o 2. Sugestões aos alunos: Data : Sumário: Gestão flexível Conteúdos: Metas de aprendizagem: Atividades/Estratégias: Recursos Observações: Avaliação: Sugestões aos alunos: Registo de Notas Aulas n.o 64/65 Aulas n.o 66/67 Aulas n.o 68/69/70 90 min 100 min 90 min 100 min 135 min 150 min