SlideShare uma empresa Scribd logo
1 de 167
Baixar para ler offline
2D Plane Elasticity:
Isoparametric Bilinear Quadrilateral
Lagrange type Element
with 4 Nodes
Filipe Amorim Gonรงalves Giesteira
Supervisors:
Francisco Andrade Pires
Josรฉ Fernando Dias Rodrigues
Finite Element Method (FEM) โ€“ EM065
Integrated Master in Mechanical Engineering
December, 2018
ii
[ blank page ]
iii
Abstract
This report was developed with the main goal of gathering in one single and concise document, the
following three major tasks, namely: (i) review extensively and in detail, the fundamental concepts of
2D plane elasticity theory, from the displacement field definition to the static equilibrium equations of
a generic body; (ii) systematize the basic principles of the FEM, and the steps necessary to formulate
any quadrilateral element for plane elasticity; and finally (iii) produce a document (to be evaluated as
mandatory assignment) within the context of the Finite Element Method (FEM) course from the
Mechanical Engineering department, lectured at Faculty of Engineering of University of Porto (FEUP).
The basic concepts and formulae that govern the plane elasticity of linear elastic solids were first detailed
and several usually omitted demonstrations (in typical FEM technical literature) shown. Then, the FEM
equations were formulated using different variational principles and direct integral statements.
The finite element formulation was detailed specifically for the Isoparametric Bilinear (4-nodes)
Quadrilateral Lagrange type Element. However, all theoretical demonstrations, formulation steps and
isoparametric relations were kept as generic as possible for 2D plane elasticity.
The formulated element was implemented using MATLABยฎ software, and the algorithm was based on
the original script from BaPMEF (Base para Programaรงรฃo do Mรฉtodo dos Elementos Finitos) FEA tool.
From the present work, it is possible to underline the versatility, flexibility, and accuracy of the FEM
for simple and more complex engineering problems. Even though in real-life situations there are almost
no truly 2D problems, during this report the simplification power of 2D analysis and its prediction
capability was highlighted by exploring several engineering examples. The validation of the
quadrilateral finite element was successfully achieved by analytical formulas from linear plane elasticity
theory. Commercially available CAE suites with FEA integrated packages were also used to assess the
computational accuracy from the finite element formulated.
Keywords
2D Elasticity, Plane Elasticity, Plane Stress, Plane Strain, Strong Formulation, Weak Formulation, FEA,
Finite Element Analysis, FEM, Finite Element Method, Finite Element Formulation, Quadrilateral,
Isoparametric, Lagrange Family, Lagrangian Element, Bilinear, 4-nodes, Gauss Quadrature, MATLAB,
Abaqus
iv
[ blank page ]
v
Contents
Contents .............................................................................................................................................v
List of Acronyms ............................................................................................................................... vii
List of Figures .................................................................................................................................... ix
List of Tables ................................................................................................................................... xiii
1 Introduction....................................................................................................................................1
1.1 Context of the Report ......................................................................................................................1
1.2 Report Structure..............................................................................................................................1
1.3 Basic Mathematical Nomenclature...................................................................................................2
2 Theory of Linear Elasticity for Continuum Medium ..........................................................................3
2.1 Introduction.....................................................................................................................................3
2.2 Stress Tensor .................................................................................................................................3
2.3 Strain Tensor..................................................................................................................................8
2.4 Generalized Hookeโ€™s Law..............................................................................................................11
2.5 Transformation Matrix ...................................................................................................................14
2.6 2D Linear Elasticity .......................................................................................................................16
2.6.1 Types of Plane Linear Elastic Problems........................................................................16
2.6.2 Dynamic Equilibrium....................................................................................................17
2.6.3 Transformation Matrix..................................................................................................18
2.6.4 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior..............................................................19
2.6.5 Strain-Displacement Fields Relation.............................................................................22
2.6.6 Eliminating Stress and Strain in the z direction .............................................................23
3 Finite Element Formulation โ€“ Strong and Weak Formulation.........................................................25
3.1 Review of the Governing Equations for 2D Elasticity ......................................................................25
3.1.1 Displacement Field......................................................................................................25
3.1.2 Strain Field..................................................................................................................25
3.1.3 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior..............................................................26
3.1.4 2D Hookeโ€™s Law โ€“ Orthotropic Material Behavior (Extra)...............................................26
3.1.5 Total Stress-Strain Relation (Extra) ..............................................................................27
3.1.6 Dynamic Equilibrium....................................................................................................28
3.2 Strong Formulation........................................................................................................................29
3.3 Weak Formulation โ€“ Direct Variational Formulations ......................................................................32
3.3.1 The Principle of Minimum Total Potential Energy (MTPE) .............................................33
3.3.2 The Principle of Virtual Work (PVW) or The Principle of Virtual Displacements (PVD) ....36
3.3.3 Hamiltonโ€™s Principle.....................................................................................................37
3.4 Weak Formulation โ€“ Weighted-Integral Formulations......................................................................39
3.4.1 Assumption #1 ............................................................................................................39
3.4.2 Assumption #2 ............................................................................................................40
4 Isoparametric Quadrilateral Lagrange Element with 4 nodes ........................................................47
4.1 Interpolation Functions โ€“ Introduction and Lagrange Family ...........................................................47
4.2 Interpolation Function - Generation................................................................................................49
4.3 Isoparametric 2D Mapping and Relations.......................................................................................54
4.4 Numerical Integration ....................................................................................................................64
5 Finite Element Method - Equations...............................................................................................69
5.1 Discretization by the Finite Element Method...................................................................................69
5.2 Properties of the Finite Element.....................................................................................................71
5.2.1 Stiffness Matrix of each element...................................................................................71
5.2.2 Equivalent Nodal Load Vector......................................................................................72
5.3 Discretized Global Model โ€“ Assembly of the Finite Elements ..........................................................76
5.4 Computation Step .........................................................................................................................80
vi
5.4.1 Application of the Fundamental Boundary Conditions ...................................................80
5.4.2 Displacement Field......................................................................................................80
5.5 Post-Processing Step ...................................................................................................................80
5.5.1 Strain and Stress Field ................................................................................................80
5.5.2 Dependent Post-Processing Variables .........................................................................84
6 BaPMEF Script ............................................................................................................................85
6.1 Introduction ..................................................................................................................................85
6.2 Data Input.....................................................................................................................................86
6.2.1 Tool Info .....................................................................................................................86
6.2.2 Body Geometry...........................................................................................................86
6.2.3 Type of 2D Plane Problem...........................................................................................87
6.2.4 Definition of the Body (Element) Thickness ..................................................................87
6.2.5 Type of Meshing Procedure.........................................................................................87
6.2.6 Type of Mesh ..............................................................................................................88
6.2.7 Materials.....................................................................................................................88
6.2.8 Input Mode โ€“ Nodal Coordinates, Nodal Connections and Fundamental Boundary
Conditions ............................................................................................................................89
6.2.9 Fundamental Boundary Conditions ..............................................................................89
6.2.10 Loading Conditions โ€“ Natural Boundary Conditions ......................................................93
6.2.11 Point Loads.................................................................................................................95
6.3 Global Stiffness Matrix ..................................................................................................................95
6.4 Global Equivalent Load Vector ......................................................................................................95
6.5 Static Solution and Plotting of Nodal Displacements.......................................................................96
6.6 Post-processing............................................................................................................................96
7 Finite Element Validation โ€“ Analytical Solutions from Plane Elasticity .........................................101
7.1 Introduction - Airy Stress Function and Biharmonic Equation........................................................ 101
7.2 Rectangular Cross-Section Beam with Constant Section - Pure Bending ...................................... 101
7.3 Rectangular Cross-Section Beam with Constant Section โ€“ Cantilever Beam with Shear Distributed
Load107
7.4 Rectangular Cross-Section Beam with Constant Section โ€“ Simple Supported Beam under Uniform
Surface Traction ......................................................................................................................... 115
8 FEM Tool โ€“ Applications ............................................................................................................125
8.1 Fracture Mechanics โ€“ Infinite Plane with Centered Crack............................................................. 125
8.2 Comparison with Commercially Available Software - Abaqus........................................................ 140
8.2.1 Generic Loading........................................................................................................140
9 Conclusions and Future Work ....................................................................................................149
References.....................................................................................................................................151
vii
List of Acronyms
1D โ€“ One Dimension/Dimensional
2D โ€“ Two Dimension/Dimensional
3D โ€“ Three Dimension/Dimensional
BaPMEF โ€“ Base para Programaรงรฃo do Mรฉtodo dos Elementos Finitos
BC โ€“ Boundary Condition(s)
CAD โ€“ Computer Aided Design
CAE โ€“ Computer Aided Engineering
FEA โ€“ Finite Element Analysis
FEM โ€“ Finite Element Method
FEUP โ€“ Faculty of Engineering of University of Porto
GP โ€“ Gauss Points
MTPE โ€“ Minimum Total Potential Energy
PDE โ€“ Partial Differential Equations
PVD โ€“ Principle of Virtual Displacement
PVW โ€“ Principle of Virtual Work
List of Acronyms
viii
[ blank page ]
ix
List of Figures
Figure 1- Definition of the nomenclature adopted for shear stresses acting on the differential volume
element [1]......................................................................................................................................... 4
Figure 2- a) Cauchy tetrahedron formed by slicing a parallelepiped along an arbitrary plane define by
the normal vector ๐‘›. b) Infinitesimal triangular portion of a generic 2D body. .................................... 6
Figure 3- Nomenclature adopted for the shear stress definition, for the distortion of the differential
Cartesian element..............................................................................................................................10
Figure 4- Illustration of the angles between the transformed ๐‘ฅโ€™-axis and the original cartesian coordinate
system. .............................................................................................................................................14
Figure 5- Illustration of the individual rotations of the Euler angles. Image adapted form [2]. ............14
Figure 6- Definition of the nomenclature used to define the coordinates transformation matrix. The ๐œƒ,
๐œ‘, and ๐œ“, represent the rotation angle about the z, x and y axis respectively. .....................................15
Figure 7- a) Plane Stress schematic geometry. b) Plane Strain schematic geometry............................16
Figure 8- Representation of the transformation of the coordinate system by rotation along the z-axis: a)
Counter Clockwise rotation, and b) Clockwise rotation. ....................................................................18
Figure 9- Lagrange Quadrilateral Element of four nodes in its natural coordinates system and natural
coordinates values.............................................................................................................................48
Figure 10- 3D representation of the four shape functions of the Isoparametric Quadrilateral Lagrange
Element with four nodes. ..................................................................................................................52
Figure 11- 3D surface plot of the determinant of the Jacobian matrix for isoparametric bilinear
quadrilateral elements with multiple degrees of distortion..................................................................55
Figure 12- Illustration of the true area and shape of a differential element of area in Natural coordinate
system. Based on illustrations and equations from [4], [5], [6]...........................................................58
Figure 13- a) Tangential and normal tractions acting on the horizontal boundary of the real distorted
finite element (particular example shown for the upper boundary with ๐œ‚ = 1 ). b) Tangential and normal
tractions acting on the vertical boundary of the real distorted finite element (particular example shown
for the right boundary with ๐œ‰ = 1 ). Illustration adapted from [4]. .....................................................63
Figure 14- Illustration of different cases of surface traction load applied in the a) lower, b) upper, c) left,
and d) right boundaries. Adapted by the author from [4]....................................................................75
Figure 15- Schematic illustration of the process of construction of the Connectivity matrix. The
connection matrix is a rectangular matrix, usually with higher number of rows than columns. ...........79
Figure 16- Schematic illustration of the concept of sub-element used to take advantage of the knowledge
of the strains in the GP......................................................................................................................82
Figure 17- Schematic illustration of the process of smoothing the nodal values for the strains or stresses
after post-processing [4]....................................................................................................................83
Figure 18- Overall structure of the BaPMEF script [3].......................................................................85
Figure 19- First interface that immediately pops-up after running the FEA tool. It should be noticed the
several features of the tool that the user cannot control or change. .....................................................86
Figure 20- A. The input window for the geometric variables comes already with some default values,
to encourage the user to pay attention to the units of length used (mm). .............................................86
Figure 21- Interface used to specify the type of plane problem, in which the user only has to press the
button that contains the desired analysis. ...........................................................................................87
x
Figure 22- Illustration of the two different possibilities of GUI that the user can be face with, after the
user select the desired plane problem: a) After selection of plane stress problem, b) After selection of
plane strain problem..........................................................................................................................87
Figure 23- GUI used to specify the type of meshing procedure desired..............................................87
Figure 24- GUI to input the necessary parameters to define the mesh if: a) The automatic process was
selected, b) The semi-automatic process was selected........................................................................88
Figure 25- Graphic Interface for input of the material properties. ......................................................88
Figure 26- Message window used to inform the user that the input mode of the nodal coordinates and
connections is predefined as automatic and the user cannot control it. ...............................................89
Figure 27- Graphic interface used to choose the input mode of the fundamental BC. .........................89
Figure 28- a) Schematic representation of Essential BC used in simulation of fracture surface of length
2a in the center of a plate. b) Illustration of Symmetry Boundary Conditions.....................................90
Figure 29- GUI for definition of the fundamental Boundary Conditions in case it was selected: a)
Automatic input mode; and c) Manual input mode. b) Interface used to input half of the crack length.
.........................................................................................................................................................91
Figure 30- Graphic output of BaPMEF tool for: a) Default values; and b) Example of a 10x10 finite
element mesh....................................................................................................................................92
Figure 31- Graphic interface that allow the user to freely define the gravitational field and an additional
external field.....................................................................................................................................93
Figure 32- Graphic interface used to define the natural BC in the: a) Left edge, b) Right edge, c) Lower
edge, and d) Upper edge. The four windows appear sequentially after defining each edge. ................94
Figure 33- Graphic interface used to define the cartesian components of the surface traction acting on
the entire edge of the body. ...............................................................................................................94
Figure 34. Graphic interface used to define the surface traction per element. .....................................95
Figure 35- GUI used to define the point loads. ..................................................................................95
Figure 36- Example of the graphic representation of the nodal displacements after surface traction along
the upper edge in a cantilever beam...................................................................................................96
Figure 37- Sequential interface to choose which: a)-c) primary variables (displacements), and d)-i)
primary post-processing variable(s) to plot........................................................................................97
Figure 38- Sequential interface to choose which secondary post-processing variable(s) to plot. .........98
Figure 39- Sequential interface menu windows to choose which predefined example to plot..............98
Figure 40- Spectrum of plots for the displacements: a) Horizontal displacements in the x-direction; b)
Vertical displacements in the y-direction; c) Magnitude of the displacements. Spectrum of plots for the
Strains: d) Linear Strains in the x-direction; e) Linear Strains in the y-direction; f) Shear Strains in the
xy plane............................................................................................................................................99
Figure 41- Spectrum of plots for the Stresses: a) Normal Stresses in the x-direction; b) Normal Stresses
in the y-direction; c) Shear Stresses in the xy plane. Spectrum of plots for the secondary post-processing
variables: d) Von Mises Stresses; e) Safety Factor, f) Stress/Strain in z-direction.............................100
Figure 42- Schematic illustration of the problem too which the analytical solutions using plane elasticity
theory were developed. ...................................................................................................................101
Figure 43- a) Schematic illustration of the problem simulated, with the aim to model pure bending
state.in plane elasticity. Image adapted from [1]. b) Coordinate system used to compute the analytical
solution, in order to match the coordinate system of the FEA solver. ...............................................102
Figure 44- a) Deformed shape of the mesh from the beam under pure bending. b) Horizontal
displacements in the x-direction, determined by the BaPMEF FEA tool. c) Vertical displacements in the
y-direction, determined by the BaPMEF FEA tool. .........................................................................105
xi
Figure 45- Comparison of the horizontal displacements in the x-direction, determined by the BaPMEF
tool against the analytical solution, in: 3D plot a)-b), and in the 2D plot over the neutral axis c). .....106
Figure 46- Physical model of a Cantilever Beam loaded by a shear distributed load P in the left edge. a)
Original coordinate system of the analytical solution from [1]; b) Coordinate system adopted and used
in the FEA tool. ..............................................................................................................................107
Figure 47- a) Deformed shape of the mesh from the cantilever beam. b) Horizontal displacements in the
x-direction, determined by the BaPMEF FEA tool. c) Vertical displacements in the y-direction,
determined by the BaPMEF FEA tool. ............................................................................................110
Figure 48- Comparison of the horizontal displacements in the x-direction, determined by the BaPMEF
tool against the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c). ......111
Figure 49- Comparison of the vertical displacements in the y-direction, determined by the BaPMEF tool
against the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c). .............112
Figure 50- 2D Plot of the vertical displacements in the y-direction with a mesh: a) 1 x 2; b) 2 x 2; c) 4 x
2; d) 6 x 2. ......................................................................................................................................113
Figure 51- 2D Plot of the vertical displacements in the y-direction with a mesh: a) 8 x 2; b) 15 x 2; c)
15 x 4..............................................................................................................................................114
Figure 52- A ...................................................................................................................................115
Figure 53- Plot of the mesh 50x10 used to discretize the simple supported beam. ............................118
Figure 54- Plot of the deformed shape of the simple supported beam after uniform load in the upper
boundary.........................................................................................................................................119
Figure 55- a) Horizontal Displacements in x-direction. b) Vertical Displacements in y-direction. c)
Normal Stresses in x-direction.........................................................................................................119
Figure 56- a) Normal Stresses in x-direction. b) Normal Stresses in y-direction. c) Shear Stresses in xy
plane...............................................................................................................................................120
Figure 57- Comparison of the vertical displacements in the y-direction, determined by the BaPMEF tool
against the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c). .............121
Figure 58- Comparison of the normal stresses in the x-direction, determined by the BaPMEF tool against
the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c)..........................122
Figure 59- Comparison of the normal stresses in the y-direction, determined by the BaPMEF tool against
the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c)..........................123
Figure 60- Comparison of the shear stresses in the xy plane, determined by the BaPMEF tool against
the analytical solution in: 3D plot a), and in the 2D plot over the neutral axis b). c) 3D plot of the Von
Mises Stresses.................................................................................................................................124
Figure 61- a) Infinite plate with a through crack in the center, loaded perpendicularly to the crack
direction. b) Geometry of the simulated problem by FEA. ...............................................................125
Figure 62- Graphic representation of Mesh#A, highlighting the mesh refinement control. ...............131
Figure 63- a) Plot of the Normal Stresses in the y-direction, and b)-c) different degrees of zoom near the
crack tip region. ..............................................................................................................................131
Figure 64- Comparison between the numeric results (achieved with mesh#A) and the analytical results
from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the
y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length.
.......................................................................................................................................................132
Figure 65- Graphic representation of the Mesh#B, highlighting the local mesh refinement control...133
Figure 66- a) Zoom of the Normal Stresses in the y-direction, in the region near the crack tip. b) Vertical
displacements in the y-direction and c) a zoom near the center of the crack. ....................................133
Figure 67- Comparison between the numeric results (achieved with mesh#B) and the analytical results
from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the
xii
y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length.
.......................................................................................................................................................134
Figure 68- Comparison between the numeric results (achieved with mesh#C) and the analytical results
from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the
y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length.
.......................................................................................................................................................135
Figure 69- Comparison between the numeric results (achieved with mesh#D) and the analytical results
from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the
y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length.
.......................................................................................................................................................137
Figure 70- Comparison between the numeric results (achieved with mesh#E) and the analytical results
from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the
y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length.
.......................................................................................................................................................139
Figure 71- Schematic representation of the problem simulated in both Abaqusยฎ FEA solver and
BaPMEF FEA tool..........................................................................................................................140
Figure 72- Plot of the finite element mesh 10 x 5 automatically created...........................................140
Figure 73- Graphic representation of the deformed mesh, computed by: a) FEA BaPMEF tool, and c)
Abaqusยฎ. b) Illustration of the loading conditions and boundary conditions added to the Abaqusยฎ
model. ............................................................................................................................................142
Figure 74- Horizontal displacements in x-direction, determined by: a) MATLABยฎ FEA tool; b)
Abaqusยฎ. Vertical displacements in y-direction, determined by: c) MATLABยฎ FEA tool; d) Abaqusยฎ.
.......................................................................................................................................................143
Figure 75- Magnitude of the displacements, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.144
Figure 76- Linear Strains in the x-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.144
Figure 77- Linear Strains in the y-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.145
Figure 78- Shear Strains xy, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ. .......................145
Figure 79- Normal Stresses in the x-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.
.......................................................................................................................................................146
Figure 80- Normal Stresses in the y-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.
.......................................................................................................................................................146
Figure 81- Shear Stresses xy, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.......................147
Figure 82- Von Mises Equivalent Stresses, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ..147
Figure 83- Normal Stress in z-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ. .....148
xiii
List of Tables
Table 1- Summary of the most important and distinct mathematical nomenclature used throughout the
report................................................................................................................................................. 2
Table 2- Summary of all simplifications made to the general stiffness matrix. ...................................13
Table 3- Type of boundary-value problems for two-variable problems in 2D dimensions and the number
of possible combinations for the different boundary conditions..........................................................32
Table 4- Nomenclature used in the weak formulations.......................................................................32
Table 5- Modified Pascalโ€™s triangle into a rectangular array abacus for Lagrange Quadrilateral Elements
[5].....................................................................................................................................................49
Table 6- Integration Gauss points and weight coefficients for both simple and double integration, up to
3 Gauss Points [6], [32], [35]. The total possible combinations of integration points that the natural
coordinates can assume is also detailed. ............................................................................................65
Table 7- Summary of 1D Gaussian Quadrature (easily extrapolated for 2D quadrature) for 4 and 5 Gauss
points [6],[32], [35]..........................................................................................................................65
Table 8- Gauss points (GP), weight coefficients, and possible combinations that the natural coordinates
can assume, for both simple and double integration, for 4 GP [6], [32], [35]......................................66
Table 9- Standard properties of the material used for finite element validation and comparison with
commercially available software [42]................................................................................................89
Table 10- Numerical data used in the analytical solution. ................................................................103
Table 11- Numerical data and other inputs of the FEM tool.............................................................103
Table 12- Numerical data used in the analytical solution. ................................................................109
Table 13- Numerical data and other inputs of the FEM tool.............................................................109
Table 14- Numerical data used in the analytical solution. ................................................................117
Table 15- Numerical data and other inputs of the FEM tool.............................................................117
Table 16- Numerical data used in the analytical solution. ................................................................127
Table 17- Unchanged numerical data and other inputs of the FEM tool. ..........................................127
Table 18- Several features for two different structured meshes with equally spaced elements. .........128
Table 19- Mesh properties of Mesh#A, introduced during the BaPMEF input routine. .....................129
Table 20- Mesh properties of Mesh#B, introduced during the BaPMEF input routine. .....................129
Table 21- Mesh properties of Mesh#C, introduced during the BaPMEF input routine. .....................130
Table 22- Mesh properties of Mesh#D, introduced during the BaPMEF input routine. .....................136
Table 23- Mesh properties of Mesh#E, introduced during the BaPMEF input routine. .....................138
Table 24- Numerical data and other inputs of the FEM tool.............................................................141
xiv
[ blank page ]
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
1
1 Introduction
1.1 Context of the Report
This report was developed within the Finite Element Course, lectured in the Integrated Master
in Mechanical Engineering โ€“ Specialty Structural Engineering and Machine Design, at Faculty of
Engineering of University of Porto (FEUP). The first (but not necessarily major) goal of this report is
divided in: (i) formulate an isoparametric bilinear quadrilateral element of the Lagrange family; and (ii)
using the algorithm base of the BaPMEF (Base para Programaรงรฃo do Mรฉtodo dos Elementos Finitos)
MATLABยฎ script, implement and present the major changes and upgrades to the code and its potential
capabilities for simulating plane elasticity problems. However, the author was slightly beyond this task
and also sought to demonstrate the background behind some important features of finite element
discretization.
1.2 Report Structure
The present report is divided in 9 main chapters, being the last numbered chapter dedicated to
the conclusion. Chapter 2 is essentially theoretical, and can be seen as an extra topic that was exported
from any classic elasticity theory literature, but completely reformulated in order to demonstrate and
explain only the concepts fundamental to chapter 3 and necessary to really understand the Finite Element
Method. Thus, this chapter can be omitted if a more practical reading is desired, without risks of
misunderstanding the next chapters.
In chapter 3, first a brief summary of the formulae that govern the linear elastic behavior for 2D
problems is done. Then, with the concepts fresh and clear in the readerโ€™s mind, the concepts of strong
and weak formulation are exposed and compared. In some FEM literature [4], the concept of strong and
weak form is derived generically (i.e. for specific and different finite elements such as bar elements,
triangular elements, etc.) and sometimes for problems different from solid mechanics (e.g. heat transfer
field). Thus, in order to better understand the FEM background, the author:
โ€ข Derived the final strong form of a 2D plane elasticity problem, which governs the mechanical
behavior of any plane geometry, and theoretically allows to compute the continuous
displacement field (only viable and practicable for simple geometries and boundary conditions);
โ€ข Derived the weak form of the system of coupled partial differential equations, using different
principles from solid mechanics and dynamics. Which, gives the reader different perspectives
of the physical and mathematical meaning of weak form or weak formulation.
Chapter 4, along with chapter 5 can be considered to be more closely related to the FEM
formulation in practical terms. In the first mentioned chapter, the formulae and relation used in the
discretizing process with the Isoparametric Quadrilateral bilinear Lagrange element were demonstrated
and summarized. The numerical integration additional subchapter was added since it helps to make the
bridge between chapter 4 and chapter 5.
The goal of chapter 5 is to merge all the specific information detailed in chapter 4 (regarding
the finite element used); with the weak form (ready to be discretized in finite domains) derived by last
in chapter 3.
Chapter 6 consists of a bullet list with all the modifications and changes added to the original
BaPMEF script. The major upgrades detailed can be summarized as:
โ€ข Pre-processing step โ€“ illustration of the interface created to easily introduce the input data by
user. And elucidation of the mesh generation capabilities and mesh controls;
โ€ข Processing โ€“ exposition of the major changes in the global stiffness matrix and global
equivalent nodal forces;
โ€ข Post-processing capabilities โ€“ illustration of the developed graphic representation capabilities
(3D surfaces and/or color-plots for: displacements, strains, stresses) and the computation of the
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
2
post-processing variables (strains or stresses in the z-direction, Von Mises equivalent stress,
and safety factor);
During Chapter 7, the formulated element and implemented code will be tested and validated.
For this, the coded FEA tool was run in academic problems of plane elasticity. The numerical solution
achieved, was compared with the known analytical solutions of the problem. The geometry and loading
conditions tested were simple (to allow analytical solutions) and their goal different from the next
chapter.
In the final chapter 8, some applications of the developed FEA tool were detailed. The main
difference between this chapter and the previous one, is that the physical problems run have no analytical
solution, or are outside the Solid Mechanics field. The chapter is divided in the following subchapters:
โ€ข Application 8.1 โ€“ Widen the spectrum of application, changing from the classic Solid
mechanics, to the field of Fracture Mechanics. Introducing to mesh control features and
study the effect of mesh refinement;
โ€ข Applications 8.2.1 โ€“ Problems without analytical solution and comparison with commercially
available FEA software (Abaqus)
1.3 Basic Mathematical Nomenclature
In order to ease the understanding of the (sometimes heavy) mathematical treatment, the author
slightly drifted away from the nomenclature usually seen in technical FEM classic literature [4], [5], [6],
[7], [8]. The nomenclature used was similar to the one adopted in the Kinematics and Dynamics course,
lectured at FEUP, and considered by the author more intuitive. Thus, in order to avoid
misunderstandings, Table 1 details the most relevant nomenclature adopted. This only concerns generic
nomenclature; each variable and symbol will be defined whenever necessary and convenient.
Table 1- Summary of the most important and distinct mathematical nomenclature used throughout the report.
| | Column Vector
| | ๐‘‡ Row Vector
[ ]
Matrix of any general dimension, with the exception of a
column vector
det() Determinant of a square matrix
โˆฌ ( ) ๐‘‘๐ด
๐ด
= โˆซ ( ) ๐‘‘๐ด
๐ด
Double Integral over a generic Area (A)
โˆญ ( ) ๐‘‘๐‘‰
๐‘‰
= โˆซ ( ) ๐‘‘๐‘‰
๐‘‰
Triple Integral over a generic Volume (V)
โˆฏ ( ) ๐‘‘๐‘†
๐‘†
= โˆฎ ( ) ๐‘‘๐‘†
๐‘†
Surface Integral over a generic surface (S)
โˆฎ ()
๐‘™
๐‘‘๐‘  Line Integral over a generic curve (l)
[ ๐ถ ] Stiffness tensor (or matrix) whose terms are material properties
[ ๐พ ]
Stiffness matrix whose terms are structure/element properties
(depending on the geometry and material)
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
3
2 Theory of Linear Elasticity for Continuum Medium
2.1 Introduction
The linear elastic theory tries to model the mechanical behavior of continuum linear elastic
solids. And until the current century as proven its potential in a variety of engineering problems.
However, its usability lies on the capacity of assuming proper simplifications [9]
In this chapter, the basic constitutive equations for 2D linear elasticity will be derived. The
equations here demonstrated, are fundamental and will be directly used for the formulation of the finite
element. Thus, this chapter can be considered as a literature review section. And, if the reader already
masters the basic concepts of linear elasticity, it can skip directly to chapter 3.
The approach followed is similar to the one typically carried in solid mechanics or strength of
materials classic literature. Basic concepts (valid for generic 3D anisotropic behavior) are progressively
simplified and particularized aiming the physical or engineering application in hands, in this case, the
2D problem constitutive equations. The major difference might be the depth of study. The starting point
was the formulation of the stress and strain tensor in their generic form (considering already the linear
elastic assumptions). After deriving the two second order tensors, and underlining their assumptions,
the relation between the two was considered. Videlicet, the generalized Hookeโ€™s Law was stated and
explored. Supported in concepts previously discussed, and some referred within the last subchapter, the
Generalized Hookeโ€™s Law will be continuously simplified until reaching the most often used and refined
formula in 2D linear elasticity. The equations of motion will first be presented within the stress tensor
definition subchapter. However, later it will be dedicated a specific section for 2D dynamic equilibrium.
2.2 Stress Tensor
In terms of continuum mechanics, anisotropic materials are materials that have different
mechanical properties depending on the direction of measurement. Concerning the mechanical behavior,
only the stiffness moduli and limit elastic stress parameters will be relevant. Concerning others fields of
interest, the anisotropy concept can be generalized, and we end up with anisotropy throughout the solid
relating to: thermal conductivity, magnetic permeability, refraction index, etc. [10].
From the solid mechanics of homogeneous materials1
[10], the tension matrix is a second order
tensor with 3x3 dimension. This second order Cartesian tensor is also called the Cauchy Stress Tensor
and has the form [11]:
[ ๐œŽ ] = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
] ( 2.1 )
The nomenclature adopted in the definition of the stresses, is illustrated in Figure 1. In index
notation, the stress ( )๐‘–๐‘— corresponds to the stress component acting in the j-direction, on a surface or
plane normal to i-direction. In other words, the first subscript refers to the plane in which the stress acts;
and the second subscript the direction about which the stress acts. Regarding the algebraic value, the
positive sign will be left for tension stresses and the negative for compression stresses.
1
Homogeneous materials are materials in which the mechanical properties of any given point are
equal to the specific properties of the solid. In other words, macroscopically, the specific properties are
independent of the point of analysis [10].
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
4
The previous tensor shown in equation ( 2.1 ) has 9 terms; however, it can be shown that only
6 of them are independent. The stress matrix is symmetric to its main diagonal, and the symmetry
conditions or relations are also called the reciprocity property of the stress tensor. The symmetry
relations can be derived by the following principles or Cauchy Equations of Motion [1]:
โ€ข According to the principle of conservation of linear momentum, if the continuum body is in
static equilibrium it can be demonstrated that the components of the Cauchy stress tensor in
every material point in the body satisfies the linear equilibrium equation (equation of motion
for null acceleration)2
.
[ ๐œŽ ] โˆ‡ + | ๐‘“ | = | ๐‘Ž | = | 0 | โ‡’ ( 2.2 )
[
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
[
๐œ•
๐œ•๐‘ฅ
๐œ•
๐œ•๐‘ฆ
๐œ•
๐œ•๐‘ฅ ]
๐œŒ๐‘‘๐‘‰ + |
๐‘“๐‘ฅ
๐‘“๐‘ฆ
๐‘“๐‘ง
| ๐œŒ๐‘‘๐‘‰ = |
๐‘Ž ๐‘ฅ
๐‘Ž ๐‘ฆ
๐‘Ž ๐‘ง
| ๐œŒ๐‘‘๐‘‰ = |
0
0
0
| ( 2.3 )
Or making explicit each component of the vector equation comes:
(
๐œ•๐œŽ๐‘ฅ๐‘ฅ
๐œ•๐‘ฅ
+
๐œ•๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ฆ
+
๐œ•๐œ ๐‘ฅ๐‘ง
๐œ•๐‘ง
) + ๐‘“๐‘ฅ = ๐œŒ โˆ™ ๐‘Ž ๐‘ฅ = ๐œŒ โˆ™
๐œ•2
๐œ•๐‘ก2
๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 2.4 )
(
๐œ•๐œ ๐‘ฆ๐‘ฅ
๐œ•๐‘ฅ
+
๐œ•๐œŽ ๐‘ฆ๐‘ฆ
๐œ•๐‘ฆ
+
๐œ•๐œ ๐‘ฆ๐‘ง
๐œ•๐‘ง
) + ๐‘“๐‘ฆ = ๐œŒ โˆ™ ๐‘Ž ๐‘ฆ = ๐œŒ โˆ™
๐œ•2
๐œ•๐‘ก2
๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 2.5 )
(
๐œ•๐œ ๐‘ง๐‘ฅ
๐œ•๐‘ฅ
+
๐œ•๐œ ๐‘ง๐‘ฆ
๐œ•๐‘ฆ
+
๐œ•๐œŽ๐‘ง๐‘ง
๐œ•๐‘ง
) + ๐‘“๐‘ง = ๐œŒ โˆ™ ๐‘Ž ๐‘ง = ๐œŒ โˆ™
๐œ•2
๐œ•๐‘ก2
๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 2.6 )
๐‘Ž Total acceleration = local acceleration + convective acceleration
๐‘“๐‘ฅ, ๐‘“๐‘ฆ, ๐‘“๐‘ง Volume forces acting on the x, y, and z direction respectively
๐‘‘๐‘‰ Differential of Volume, ๐‘‘๐‘‰ = ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง
2
The Cauchy Equation for the Conservation of Linear Momentum will be important in the formulation of the finite
element.
๐œ ๐‘ฆ๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ
๐‘ฆ
๐‘ฅ๐œ ๐‘ฆ๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฅ๐‘ง
๐‘ง
๐‘ฅ๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฆ๐‘ง
๐‘ง
๐‘ฆ๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฆ๐‘ง
Figure 1- Definition of the nomenclature adopted for shear stresses acting on the differential volume element [1].
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
5
โ€ข According to the analogous principle regarding the conservation of angular momentum, the
angular equilibrium requires that the summation of moments with respect to an arbitrary axis is
null. Analytically it can be written:
[(๐œ ๐‘ฆ๐‘ง +
๐œ•๐œ ๐‘ฆ๐‘ง
๐œ•๐‘ฆ
๐‘‘๐‘ฆ
2
) + (๐œ ๐‘ฆ๐‘ง โˆ’
๐œ•๐œ ๐‘ฆ๐‘ง
๐œ•๐‘ฆ
๐‘‘๐‘ฆ
2
) โˆ’ (๐œ ๐‘ง๐‘ฆ +
๐œ•๐œ ๐‘ง๐‘ฆ
๐œ•๐‘ง
๐‘‘๐‘ง
2
)
โˆ’ (๐œ ๐‘ง๐‘ฆ โˆ’
๐œ•๐œ ๐‘ง๐‘ฆ
๐œ•๐‘ง
๐‘‘๐‘ง
2
)]
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง
2
= 0
( 2.7 )
[โˆ’ (๐œ ๐‘ฅ๐‘ง +
๐œ•๐œ ๐‘ฅ๐‘ง
๐œ•๐‘ฅ
๐‘‘๐‘ฅ
2
) โˆ’ (๐œ ๐‘ฅ๐‘ง โˆ’
๐œ•๐œ ๐‘ฅ๐‘ง
๐œ•๐‘ฅ
๐‘‘๐‘ฅ
2
) + (๐œ ๐‘ง๐‘ฅ +
๐œ•๐œ ๐‘ง๐‘ฅ
๐œ•๐‘ง
๐‘‘๐‘ง
2
)
+ (๐œ ๐‘ง๐‘ฅ โˆ’
๐œ•๐œ ๐‘ง๐‘ฅ
๐œ•๐‘ง
๐‘‘๐‘ง
2
)]
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง
2
= 0
( 2.8 )
[(๐œ ๐‘ฅ๐‘ฆ +
๐œ•๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ฅ
๐‘‘๐‘ฅ
2
) + (๐œ ๐‘ฅ๐‘ฆ โˆ’
๐œ•๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ฅ
๐‘‘๐‘ฅ
2
) โˆ’ (๐œ ๐‘ฆ๐‘ฅ +
๐œ•๐œ ๐‘ฆ๐‘ฅ
๐œ•๐‘ฆ
๐‘‘๐‘ฆ
2
)
โˆ’ (๐œ ๐‘ฆ๐‘ฅ โˆ’
๐œ•๐œ ๐‘ฆ๐‘ฅ
๐œ•๐‘ฆ
๐‘‘๐‘ฆ
2
)]
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง
2
= 0
( 2.9 )
The vector equilibrium equation will degenerate in the symmetry relations. They can now be
easily obtained by just solving the three angular momentum equilibrium equations. The final relations
are:
๐œ ๐‘ฆ๐‘ง = ๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฅ๐‘ง = ๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ = ๐œ ๐‘ฆ๐‘ฅ
( 2.10 )
From equation ( 2.1 ) and ( 2.10 ) we can finally write:
[ ๐œŽ ] = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
] = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง
] = [
๐œŽ ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง
] ( 2.11 )
As indexed in the definition of second order tensor, equation ( 2.1 ) encloses the cartesian
components for a surface perpendicular to each one of the cartesian coordinate axis, as detailed in the
following equation:
[ ๐œŽ ] = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
] = [
| ๐‘‡ ๐‘’ ๐‘ฅ | ๐‘‡
| ๐‘‡ ๐‘’ ๐‘ฆ | ๐‘‡
| ๐‘‡ ๐‘’ ๐‘ง | ๐‘‡
] ( 2.12 )
Where:
| ๐‘‡ ๐‘’ ๐‘ฅ | Stress vector acting on plane normal to x-direction
| ๐‘‡ ๐‘’ ๐‘ฆ | Stress vector acting on plane normal to y-direction
| ๐‘‡ ๐‘’ ๐‘ง | Stress vector acting on plane normal to z-direction
In a similar manner, the Cauchy Equation [1], allows to compute the resulting stress vector,
perpendicular to any arbitrary plane, acting on a generic point of coordinates (x,y,z). The Cauchy relation
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
6
can be given in two matrix forms, a condensed and a more explicit form. The two are respectively given
by:
| ๐‘‡ | = [ ๐œŽ ] ๐‘‡ | ๐‘› | โ‡’ | ๐‘‡ | = [
| ๐‘‡ ๐‘’ ๐‘ฅ | ๐‘‡
| ๐‘‡ ๐‘’ ๐‘ฆ | ๐‘‡
| ๐‘‡ ๐‘’ ๐‘ง | ๐‘‡
]
๐‘‡
| ๐‘› | ( 2.13 )
|
๐‘‡๐‘ฅ
๐‘‡๐‘ฆ
๐‘‡๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
|
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง
] |
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| ( 2.14 )
Where:
| ๐‘› | Vector of the direction cosines perpendicular to an arbitrary plane
[ ๐œŽ ] Stress tensor matrix
| ๐‘‡ | Stress vector acting on a plane with normal unit vector | ๐‘›|
Or considering the symmetry stated in the final equation ( 2.11 ), by the properties of the transposition
operation of a matrix it results:
[
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
= [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
= [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง
] ( 2.15 )
|
๐‘‡๐‘ฅ
๐‘‡๐‘ฆ
๐‘‡๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
|
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง
] |
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
|
( 2.16 )
The Cauchy equation can be usually demonstrated by writing the static equilibrium equations:
(i) for an infinitesimal interior tetrahedron element of a linear elastic body - in the case of 3D general
case; (ii) or for an infinitesimal triangle - in the case of 2D particular case. Figure 2 illustrates both cases.
z
x
y๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด ๐‘ง
โˆ’๐‘‡ ๐‘’ ๐‘ง
โˆ’๐‘‡ ๐‘’ ๐‘ฅ
โˆ’๐‘‡ ๐‘’ ๐‘ฆ
๐‘‡
๐‘‘๐‘š = ๐œŒ๐‘‘๐‘‰
a) b)
Figure 2- a) Cauchy tetrahedron formed by slicing a parallelepiped along an arbitrary plane define by the
normal vector | ๐‘›|. b) Infinitesimal triangular portion of a generic 2D body.
๐‘‘๐›ค
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ฆ๐‘ฅ
y
x
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐‘› ๐‘ฆ
๐‘› ๐‘ฅ
๐‘›โƒ— ๐‘‡
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
7
Regarding the 3D general case:
โ€ข By basic analytical geometry it is possible to derive the following relations between the
infinitesimal quantities [12]:
{
๐‘‘๐ด ๐‘ฅ = ๐‘‘๐ด ๐‘› ๐‘ฅ
๐‘‘๐ด ๐‘ฆ = ๐‘‘๐ด ๐‘› ๐‘ฆ
๐‘‘๐ด ๐‘ง = ๐‘‘๐ด ๐‘› ๐‘ง
โ‡’
{
๐‘› ๐‘ฅ =
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด
๐‘› ๐‘ฆ =
๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด
๐‘› ๐‘ง =
๐‘‘๐ด ๐‘ง
๐‘‘๐ด
( 2.17 )
โ€ข Verifying the Static Equilibrium condition comes:
{
โˆ‘ ๐น๐‘ฅ = 0
โˆ‘ ๐น๐‘ฆ = 0
โˆ‘ ๐น๐‘ง = 0
โ‡’ {
โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ฅ ๐‘‘๐ด = 0
โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฆ ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ฆ ๐‘‘๐ด = 0
โˆ’๐œ ๐‘ฅ๐‘ง ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ง ๐‘‘๐ด = 0
( 2.18 )
โ€ข Dividing both members of each equation by the area of the arbitrarily inclined surface ( dA ):
{
โˆ’๐œŽ๐‘ฅ๐‘ฅ
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด
โˆ’ ๐œ ๐‘ฆ๐‘ฅ
๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด
โˆ’ ๐œ ๐‘ง๐‘ฅ
๐‘‘๐ด ๐‘ง
๐‘‘๐ด
+ ๐‘‡๐‘ฅ = 0
โˆ’๐œ ๐‘ฅ๐‘ฆ
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด
โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ
๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด
โˆ’ ๐œ ๐‘ง๐‘ฆ
๐ด ๐‘ง
๐‘‘๐ด
+ ๐‘‡๐‘ฆ = 0
โˆ’๐œ ๐‘ฅ๐‘ง
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด
โˆ’ ๐œ ๐‘ฆ๐‘ง
๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด
โˆ’ ๐œŽ๐‘ง๐‘ง
๐‘‘๐ด ๐‘ง
๐‘‘๐ด
+ ๐‘‡๐‘ง = 0
( 2.19 )
โ€ข By the relations between the infinitesimals, equation ( 2.17 ), and manipulating the terms comes:
{
โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘› ๐‘ง + ๐‘‡๐‘ฅ = 0
โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฆ ๐‘› ๐‘ง + ๐‘‡๐‘ฆ = 0
โˆ’๐œ ๐‘ฅ๐‘ง ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘› ๐‘ฆ โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘› ๐‘ง + ๐‘‡๐‘ง = 0
โ‡’ {
๐‘‡๐‘ฅ = ๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ + ๐œ ๐‘ง๐‘ฅ ๐‘› ๐‘ง
๐‘‡๐‘ฆ = ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ + ๐œ ๐‘ง๐‘ฆ ๐‘› ๐‘ง
๐‘‡๐‘ง = ๐œ ๐‘ฅ๐‘ง ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ง ๐‘› ๐‘ฆ + ๐œŽ๐‘ง๐‘ง ๐‘› ๐‘ง
( 2.20 )
โ€ข In the matrix form comes:
|
๐‘‡๐‘ฅ
๐‘‡๐‘ฆ
๐‘‡๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง
] |
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
|
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| ( 2.21 )
Or regarding the 2D case:
โ€ข The previous relations between the infinitesimals come:
{
๐‘‘๐ด ๐‘ฅ = ๐‘‘๐ด ๐‘› ๐‘ฅ
๐‘‘๐ด ๐‘ฆ = ๐‘‘๐ด ๐‘› ๐‘ฆ
โ‡’ {
๐‘‘๐‘ฆ๐‘‘๐‘ง = ๐‘‘๐›ค๐‘‘๐‘ง ๐‘› ๐‘ฅ
๐‘‘๐‘ฅ๐‘‘๐‘ง = ๐‘‘๐›ค๐‘‘๐‘ง ๐‘› ๐‘ฆ
โ‡’ {
๐‘‘๐‘ฅ = ๐‘‘๐›ค ๐‘› ๐‘ฅ
๐‘‘๐‘ฆ = ๐‘‘๐›ค ๐‘› ๐‘ฆ
โ‡’
{
๐‘› ๐‘ฅ =
๐‘‘๐‘ฆ
๐‘‘๐›ค
๐‘› ๐‘ฆ =
๐‘‘๐‘ฅ
๐‘‘๐›ค
( 2.22 )
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
8
โ€ข Verifying the Static Equilibrium condition comes:
{
โˆ‘ ๐น๐‘ฅ = 0
โˆ‘ ๐น๐‘ฆ = 0
โ‡’ {
โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐‘ฆ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐‘ฅ + ๐‘‡๐‘ฅ ๐‘‘๐›ค = 0
โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐‘ฅ โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ + ๐‘‡๐‘ฆ ๐‘‘๐›ค = 0
( 2.23 )
โ€ข Dividing both members of each equation by the length of the arbitrarily inclined surface ( dฮ“ ):
{
โˆ’๐œŽ๐‘ฅ๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐›ค
โˆ’ ๐œ ๐‘ฆ๐‘ฅ
๐‘‘๐‘ฅ
๐‘‘๐›ค
+ ๐‘‡๐‘ฅ = 0
โˆ’๐œŽ ๐‘ฆ๐‘ฆ
๐‘‘๐‘ฅ
๐‘‘๐›ค
โˆ’ ๐œ ๐‘ฅ๐‘ฆ
๐‘‘๐‘ฆ
๐‘‘๐›ค
+ ๐‘‡๐‘ฆ = 0
( 2.24 )
โ€ข By the relations between the infinitesimals, equation ( 2.22 ), and manipulating the terms comes:
{
โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ + ๐‘‡๐‘ฅ = 0
โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐‘‡๐‘ฆ = 0
โ‡’ {
๐‘‡๐‘ฅ = ๐œŽ ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ
๐‘‡๐‘ฆ = ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฅ
( 2.25 )
โ€ข In the matrix form comes:
|
๐‘‡๐‘ฅ
๐‘‡๐‘ฆ
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ
] |
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ
]
๐‘‡
|
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
| ( 2.26 )
2.3 Strain Tensor
The magnitude of the strains and displacements (linear displacements or rotations) can influence
the mathematical definition of strain. The main theories applied to the continuum mechanics are [13],
[14]:
โ€ข Small Strains and small Displacements/rotations theory or infinitesimal strain theoryโ€“ used to
solve most practical engineering problems that deal with common materials like wood, steel and
other alloys;
โ€ข Small Strains and large Displacements theory โ€“ essential to model materials and structures that
can withstand large displacements without entering the plastic domain, i.e. remaining elastic;
โ€ข Finite Strains and Displacements theory โ€“ necessary to model structures and materials where
the deformed and undeformed configuration is significantly different. These arbitrarily large
strains and displacements (linear or angular) can occur in materials with the mechanical
behavior of elastomers, fluids, biological (or not) soft tissues.
For small strains and small displacements (both linear and angular) the change in the geometry
and constitutive properties of the structure, due to deformation, doesnโ€™t need to be considered after the
force is applied. In other words, physical and mechanical properties of the material e.g. density, stiffness,
etc. at each point of the infinitesimally deformed solid, can be assumed constant [10]. This definition of
strain is also designed by Cauchy strains, and it will be the strain concept used throughout the report.
The strain tensor or Cauchy strain tensor is also a second order tensor, and its 3x3 matrix is given by:
[ ๐œ€ ] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง
] ( 2.27 )
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
9
The nomenclature adopted in the definition of the strains is rather different from the stress
nomenclature. In index notation, the strain term ( )๐‘–๐‘— means: when ๐‘– = ๐‘— , the term corresponds to
the extension along the ๐‘–-direction; when ๐‘– โ‰  ๐‘— , the term of the strain matrix corresponds to the rotation
about the ij plane. Regarding its algebraic value, as schematized in Figure 3, the positive sign will be
ascribed when the angle between the two faces of the conceptual parallelogram is reduced, and the
negative sign when the angle increases.
The geometric definition of strains is demonstrated and detailed in [11], [1]. The linear strain
(also designated by longitudinal strain, linear deformation, extension, etc.) is quantified by the on-
diagonal matrix components ๐œ€ ๐‘ฅ๐‘ฅ , ๐œ€ ๐‘ฆ๐‘ฆ , ๐œ€ ๐‘ง๐‘ง . The remaining non-diagonal terms correspond to the
angular strain (also designated by shear strain, angular deformation, distortion, etc.). The relation of
each term of the strain tensor, with the displacement field is given by [1]:
๐œ€ ๐‘ฅ๐‘ฅ =
๐œ•๐‘ข
๐œ•๐‘ฅ
; ๐œ€ ๐‘ฆ๐‘ฆ =
๐œ•๐‘ฃ
๐œ•๐‘ฆ
; ๐œ€ ๐‘ง๐‘ง =
๐œ•๐‘ค
๐œ•๐‘ง
( 2.28 )
๐œ€ ๐‘ฅ๐‘ฆ = ๐œ€ ๐‘ฆ๐‘ฅ =
1
2
(
๐œ•๐‘ข
๐œ•๐‘ฆ
+
๐œ•๐‘ฃ
๐œ•๐‘ฅ
) ; ๐œ€ ๐‘ฆ๐‘ง = ๐œ€ ๐‘ง๐‘ฆ =
1
2
(
๐œ•๐‘ฃ
๐œ•๐‘ง
+
๐œ•๐‘ค
๐œ•๐‘ฆ
) ; ๐œ€ ๐‘ฅ๐‘ง = ๐œ€ ๐‘ง๐‘ฅ =
1
2
(
๐œ•๐‘ข
๐œ•๐‘ง
+
๐œ•๐‘ค
๐œ•๐‘ฅ
) ( 2.29 )
The geometric relation between strain and displacements can also be written in matrix form as:
| ๐œ€ | =
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐œ€ ๐‘ฅ๐‘ฆ
๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ฅ๐‘ง
|
|
|
=
[
๐œ•
๐œ•๐‘ฅ
0 0
0
๐œ•
๐œ•๐‘ฆ
0
0 0
๐œ•
๐œ•๐‘ง
1
2
๐œ•
๐œ•๐‘ฆ
1
2
๐œ•
๐œ•๐‘ฅ
0
0
1
2
๐œ•
๐œ•๐‘ง
1
2
๐œ•
๐œ•๐‘ฆ
1
2
๐œ•
๐œ•๐‘ง
0
1
2
๐œ•
๐œ•๐‘ฅ ]
|
๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง)
๐‘ฃ( ๐‘ฅ, ๐‘ฆ, ๐‘ง)
๐‘ค( ๐‘ฅ, ๐‘ฆ, ๐‘ง)
| ( 2.30 )
Other main contrast regarding the stress tensor and strain tensor, is the difference between
tensorial and engineering strain for angular distortion. The angular distortion can be quantified in terms
of engineering shear strain (also called global strain), or tensorial shear strain. The engineering shear
strain can be considered as the total rotation of the 2D cartesian element subjected to shear stresses or
the total change of the original angle formed by the undeformed element; whereas the tensorial shear
strain can be understood as the average of the two displacements or the amount that each edge rotates
in average. This difference is illustrated in Figure 3, and the two are related by the following vector
equation [11]:
|
|
|
๐›พ๐‘ฅ๐‘ฆ
๐›พ๐‘ฆ๐‘ฅ
๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ง๐‘ฆ
๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ง๐‘ฅ
|
|
|
=
|
|
|
2๐œ€ ๐‘ฅ๐‘ฆ
2๐œ€ ๐‘ฆ๐‘ฅ
2๐œ€ ๐‘ฆ๐‘ง
2๐œ€ ๐‘ง๐‘ฆ
2๐œ€ ๐‘ฅ๐‘ง
2๐œ€ ๐‘ง๐‘ฅ
|
|
|
( 2.31 )
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
10
Their importance arises from the convenience of replacing the general symmetry of the stiffness
matrix (after continuous simplifications), as it will be explored in the next subchapter (see Page 12). In
the matrix form, the previous relations can be written as:
[ ๐œ€ ] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง
] =
1
2
[
2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ 2๐œ€ ๐‘ง๐‘ง
] ( 2.32 )
The properties of a tensor wonโ€™t be remembered in this report [10]; however, it is always worth
notice that the following matrix is not a tensor!!
[
๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง
] ( 2.33 )
The symmetry property for the strain tensor matrix is derived meticulously in [11]. By the
displacement field geometric definition, and neglecting the second order terms (for small strains and
displacements, both linear and angular) itโ€™s possible to verify the strain tensor symmetry. The symmetry
relations relating the shear distortion come:
๐›พ๐‘ฆ๐‘ง = ๐›พ๐‘ง๐‘ฆ
๐›พ๐‘ฅ๐‘ง = ๐›พ๐‘ง๐‘ฅ
๐›พ๐‘ฅ๐‘ฆ = ๐›พ๐‘ฆ๐‘ฅ
( 2.34 )
From equation ( 2.27 ), ( 2.32 ) and ( 2.34 ) it is possible to finally write the strain tensor in
tensorial strains or engineering strains as:
[ ๐œ€ ] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง
] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ง
] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
โ€ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œ€ ๐‘ง๐‘ง
] ( 2.35 )
[ ๐œ€ ] =
1
2
[
2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ 2๐œ€ ๐‘ง๐‘ง
] =
1
2
[
2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฅ๐‘ฆ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ง 2๐œ€ ๐‘ง๐‘ง
] =
1
2
[
2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
โ€ฆ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ 2๐œ€ ๐‘ง๐‘ง
] ( 2.36 )
Figure 3- Nomenclature adopted for the shear stress definition, for the distortion of the differential Cartesian
element.
๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ข
๐œ•๐‘ฆ
๐‘ฅ
๐œ•๐‘ฃ
๐œ•๐‘ฅ
๐‘ฆ
๐‘ฅ
๐›พ =
๐œ•๐‘ข
๐œ•๐‘ฆ
+
๐œ•๐‘ฃ
๐œ•๐‘ฅ
๐›พ/2
๐‘ฆ
๐‘ฅ
๐›พ =
๐œ•๐‘ข
๐œ•๐‘ฆ
+
๐œ•๐‘ฃ
๐œ•๐‘ฅ๐›พ/2
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
11
2.4 Generalized Hookeโ€™s Law
Cauchy Elastic Materials or Simple Elastic Materials are materials for which the stress at a given
point is just function of the instantaneous strain. In other words, the stresses donโ€™t depend of the strain
path, strain history, strain rate, and the time taken to achieve a given deformation field [15]. Cauchy
materials theoretical definition also implies:
โ€ข Homogeneous materials โ€“ the constitutive properties are independent of the point of analysis,
i.e. the terms of the stiffness matrix are not point functions;
โ€ข Temperature effect is ignored โ€“ even if there are thermal strains and/or residual stresses, the
effect of the temperature change in the properties of the material is neglected.
Assuming the previous hypothesis, the stress second order tensor is related by a second order-
valued function with the strain second order tensor as follows:
[ ๐œŽ ] = ๐‘“ ( [ ๐œ€ ] ) ( 2.37 )
Considering that the stresses are a linear and homogeneous combination or function of the
strains, the contribution factors are in fact the elastic coefficients that characterize the mechanical
behavior of the material, i.e. are a property of the material. Historically the British engineer Robert
Hooke was the first to study this linear relation between the stress and strain [1]. Thatโ€™s why the
generalize relationship of anisotropic materials - for spatial or triaxial stresses and strains - is called
Generalize Hookeโ€™s Law. Itโ€™s a constitutive model for infinitesimal deformation of a linear elastic
material, in which the relation between stress and strains is model by a 4th
order tensor that linearly maps
between second-order tensors [14].
The elasticity tensor will result in a 9x9 elastic coefficient matrix. Hookeโ€™s law can be presented:
in terms of a stiffness tensor or matrix ([ ๐ถ ]), putting in evidence the stress; or in terms of compliance
tensor or matrix ([ ๐‘† ]), in which the response function linking strain to the deforming stress is the
compliance tensor of the material. The matrix form of Hookeโ€™s Law can be written as:
| ๐œŽ | = [ ๐ถ ] | ๐œ€ | = [ ๐ท ] | ๐œ€ | ( 2.38 )
| ๐œ€ | = [ ๐‘† ] | ๐œŽ | ( 2.39 )
Or explicitly as:
|
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฆ๐‘ฅ
|
|
|
=
[
๐ถ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฅ
๐ถ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ๐‘ง๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ๐‘ง๐‘ฅ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ ๐‘ฆ๐‘ฅ ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ ๐‘ฆ๐‘ฅ ๐‘ฆ๐‘ฅ ]
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฅ๐‘ฆ
๐œ€ ๐‘ง๐‘ฆ
๐œ€ ๐‘ง๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฅ
|
|
|
( 2.40 )
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฅ๐‘ฆ
๐œ€ ๐‘ง๐‘ฆ
๐œ€ ๐‘ง๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฅ
|
|
|
=
[
๐‘† ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฅ
๐‘† ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘†๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘† ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘† ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘† ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘†๐‘ง๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘†๐‘ง๐‘ฅ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘† ๐‘ฆ๐‘ฅ ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘† ๐‘ฆ๐‘ฅ ๐‘ฆ๐‘ฅ ]
|
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฆ๐‘ฅ
|
|
|
( 2.41 )
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
12
The main root of the indexical notation is very similar for the coefficients of both stiffness and
compliance matrixes. However, its meaning is exactly the opposite:
โ€ข The generic stiffness coefficient ๐ถ ๐‘–๐‘—, corresponds to the stress component acting on the i-
direction due to a strain imposed in j-direction, while constraining to zero the strains in the
remaining directions;
โ€ข Whereas the generic compliance coefficient ๐‘† ๐‘–๐‘—, corresponds to the strain component about the
๐‘–-direction due to a stress applied in the ๐‘—-direction, while keeping null the remaining stresses.
Without making any further assumption, to apply the Generalized Hookeโ€™s Law it would be
necessary to define 81 elastic terms to compute the coefficient matrix (whether in its Stiffness or
Compliance form). From the stress symmetry and strain symmetry relations (reciprocity relations),
detailed in subchapter 2.2 and 2.3 respectively, it is possible to further simplify this matrix to a more
treatable form, as schematized in the following schematic equation:
|
|
|
( ) ๐‘ฅ๐‘ฅ
( ) ๐‘ฆ๐‘ฆ
( ) ๐‘ง๐‘ง
( ) ๐‘ฆ๐‘ง
( ) ๐‘ฅ๐‘ง
( ) ๐‘ฅ๐‘ฆ
โˆ’
โˆ’
โˆ’
|
|
|
=
[
๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’
๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’
๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ง๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’
๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’
๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ง๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’
๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’
โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’
โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’
โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’]
|
|
|
( ) ๐‘ฅ๐‘ฅ
( ) ๐‘ฆ๐‘ฆ
( ) ๐‘ง๐‘ง
( ) ๐‘ฆ๐‘ง
( ) ๐‘ฅ๐‘ง
( ) ๐‘ฅ๐‘ฆ
โˆ’
โˆ’
โˆ’
|
|
|
( 2.42 )
In order to simplify equation ( 2.42 ), it is not possible to directly eliminate all unnecessary
terms. Thus, in order that equation ( 2.42 ) preserves its meaning, the reciprocity property from both
stresses and strains implies the addition of the term 2 (due to the equal in value missing terms that were
eliminated).
|
|
( ) ๐‘ฅ๐‘ฅ
( ) ๐‘ฆ๐‘ฆ
( ) ๐‘ง๐‘ง
( ) ๐‘ฆ๐‘ง
( ) ๐‘ฅ๐‘ง
( ) ๐‘ฅ๐‘ฆ
|
|
=
[
๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ
๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฆ
๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฆ
๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฆ
๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฆ
๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆ]
|
|
( ) ๐‘ฅ๐‘ฅ
( ) ๐‘ฆ๐‘ฆ
( ) ๐‘ง๐‘ง
( ) ๐‘ฆ๐‘ง
( ) ๐‘ฅ๐‘ง
( ) ๐‘ฅ๐‘ฆ
|
|
( 2.43 )
After simplification of the 4th
order coefficientsโ€™ tensor, the matrix lost its symmetry. The
importance of the engineering strains can now be fully understood. Instead of using the tensorial strains,
if the engineering strains were used, the symmetry of the matrix is restored, as detailed in [16].
Applying any energetic theorem e.g. Virtual Work Theorem, Minimum Potential Energy,
Maxwell-Betti Theorem, etc. [17], it is possible to prove that the matrix from the 4th
order tensor that
relates stress and strains in an elastic and loaded rigid body is symmetric. However, a different approach
was taken. In order to prove the symmetry of the elastic coefficient matrix, the concept of strain energy
density function is introduced. Conservative materials or Green Materials or Hyper-elastic materials are
a special case of Cauchy elastic materials (or simple elastic material), for which the stress-strain relation
derives from a strain energy density function [18]:
โ€ข Conservative materials possess a strain energy density function or energy potential, and this
energy potential is given by,
๐œŽ๐‘Ÿ๐‘  =
๐œ•๐‘ˆ๐‘Ÿ๐‘ 
๐œ•๐œ€ ๐‘Ÿ๐‘ 
( 2.44 )
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
13
โ€ข Assuming linear stresses and strains,
| ๐œŽ | = [ ๐ถ ] | ๐œ€ | โ‡’ ๐œŽ๐‘–๐‘— = ๐ถ๐‘–๐‘— ๐‘˜๐‘™ โˆ™ ๐œ€ ๐‘˜๐‘™ ( 2.45 )
โ€ข The elastic energy is finally given by,
๐ถ๐‘–๐‘— ๐‘˜๐‘™ โˆ™ ๐œ€ ๐‘Ÿ๐‘  =
๐œ•๐‘ˆ๐‘Ÿ๐‘ 
๐œ•๐œ€ ๐‘Ÿ๐‘ 
; ๐‘Ÿ๐‘  = ๐‘˜๐‘™ ( 2.46 )
โ€ข Differentiating the previous equation to respect to ๐œ€ ๐‘˜๐‘™ or ๐œ€๐‘–๐‘— we get,
๐ถ๐‘–๐‘— ๐‘˜๐‘™ =
๐œ•2
๐‘ˆ๐‘–๐‘—
๐œ•๐œ€๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™
๐ถ๐‘˜๐‘™ ๐‘–๐‘— =
๐œ•2
๐‘ˆ๐‘–๐‘—
๐œ•๐œ€ ๐‘˜๐‘™ ๐œ•๐œ€๐‘–๐‘—
( 2.47 )
โ€ข Which finally ends up in the symmetry relation:
๐ถ๐‘–๐‘— ๐‘˜๐‘™ =
๐œ•2
๐‘ˆ๐‘–๐‘—
๐œ•๐œ€๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™
=
๐œ•2
๐‘ˆ๐‘–๐‘—
๐œ•๐œ€ ๐‘˜๐‘™ ๐œ•๐œ€๐‘–๐‘—
= ๐ถ๐‘˜๐‘™ ๐‘–๐‘— โ‡’ ๐ถ๐‘–๐‘— ๐‘˜๐‘™ = ๐ถ๐‘˜๐‘™ ๐‘–๐‘— ( 2.48 )
The vast majority of engineering materials are conservative, as a result, the symmetry of the
stiffness and compliance matrices is verified for most of common engineering problems. After all
previous simplifications summarized in Table 2, the Generalized Hookeโ€™s Law for a conservative
anisotropic material is a 6x6 elastic matrix, and now only involves the knowledge of 21 unknown elastic
terms or parameters (only 21 stiffness components are actually independent in Hooke's law), and it can
be written in the form bellow:
|
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
|
=
[
๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16
โ€ฆ ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26
โ€ฆ โ€ฆ ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36
โ€ฆ โ€ฆ โ€ฆ ๐ถ44 ๐ถ45 ๐ถ46
โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ55 ๐ถ56
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ66 ]
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
|
( 2.49 )
Table 2- Summary of all simplifications made to the general stiffness matrix.
Property
Number of
Dependent terms
Original Number of terms 81 = 9 x 9
Stress Reciprocity 18 + 9* After Reciprocity
Reduction
36 = 6 x 6
Strain Reciprocity 18 + 9*
Symmetry of the
Stiffness matrix
15
After Matrix Symmetry
Reduction 21 =
6 โˆ™ (6 + 1)
2
* 9 terms are automatically and simultaneously eliminated by the reciprocity property of both stresses and
strains
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
14
2.5 Transformation Matrix
The transformation matrix allows to change the stress, the strain, or even the
stiffness/compliance tensor from one coordinate system to another generically transformed coordinate
system. In its completely general form, the transformation matrix is given by:
[ ๐‘‡ ] =
[
cos( ๐›ผ ๐‘ฅโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘ฅโ€ฒ ๐‘ฆ) cos( ๐›ผ ๐‘ฅโ€ฒ ๐‘ง)
cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ฆ) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ง)
cos( ๐›ผ ๐‘งโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘งโ€ฒ ๐‘ฆ) cos( ๐›ผ ๐‘งโ€ฒ ๐‘ง) ]
( 2.50 )
The mathematical meaning of the angles of
the transformation matrix, equation ( 2.50 ), is
illustrated in Figure 4 for the particular case of the
transformed ๐‘ฅโ€™-axis. Using a similar principle, the
remaining rotation angles could also be drawn.
Usually, the direction cosines from equation ( 2.50 ), are hard to compute individually. So, the
transformation matrix can also be determined by the combination of three (simpler) transformation in
respect to only one axis. The most used combination is designated as Euler Angles (or x-convention)
and is determined by:
[๐‘‡] = [ โˆ’
cos( ๐œ“) sin( ๐œ“) 0
sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
๐‘ง
[
1 0 0
0 cos( ๐œƒ) sin( ๐œƒ)
0 โˆ’sin( ๐œƒ) cos( ๐œƒ)
]
๐‘ฅ
[ โˆ’
cos( ๐œ‘) sin( ๐œ‘) 0
sin( ๐œ‘) cos( ๐œ‘) 0
0 0 1
]
๐‘ง
( 2.51 )
The physical meaning of the three rotation angles is given in Figure 5 and Figure 6. Since the
matrix multiplication operation isnโ€™t commutative, the order of rotation matters, Counter-clockwise
rotation was considered as a positive rotation for all angles.
๐‘ง
๐‘ฅ
๐‘ฆ
๐‘ฅโ€ฒ
๐›ผ ๐‘ฅโ€ฒ ๐‘ฅ
๐›ผ ๐‘ฅโ€ฒ ๐‘ฆ
๐›ผ ๐‘ฅโ€ฒ ๐‘ง
Figure 4- Illustration of the angles between the
transformed ๐‘ฅโ€™-axis and the original cartesian
coordinate system.
Figure 5- Illustration of the individual rotations of the Euler angles. Image adapted from [2].
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
15
Since this report is essentially dedicated to plane elasticity, for the 2D case, the only possible
transformation consists in a rotation around the z-axis, and the transformation matrix s given by:
[๐‘‡] = [ โˆ’
cos( ๐œ“) sin( ๐œ“) 0
sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
๐‘ง
( 2.52 )
If orthotropic or other material behaviors were considered, it would be necessary to apply the
transformation matrix to the stress, strain and stiffness tensor as follows [16]:
[ ๐œŽโ€ฒ ] = [ ๐‘‡ ] [ ๐œŽ ] [ ๐‘‡ ] ๐‘‡
( 2.53 )
[ ๐œ€โ€ฒ ] = [ ๐‘‡ ] [ ๐œ€ ] [ ๐‘‡ ] ๐‘‡ ( 2.54 )
[ ๐œ‘โ€ฒ ] = [ ๐‘‡ ] [ ๐œ‘ ] [ ๐‘‡ ] ๐‘‡ ( 2.55 )
The demonstration wonโ€™t be detailed here [10], since it wasnโ€™t necessary for this report and a similar
demonstration was conducted in subchapter 5.3. However, after the several simplifications applied to
all tensors, the stress vector, strain vector, and stiffness matrix, would be computed by [16]:
| ๐œŽโ€ฒ | = [ ๐‘‡โˆ— ] | ๐œŽ | ( 2.56 )
| ๐œ€โ€ฒ | = [ ๐‘‡โˆ—โˆ— ] | ๐œ€ | ( 2.57 )
[ ๐ถโ€ฒ ] = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ—โˆ— ] ๐‘‡ ( 2.58 )
A final comment should be done, regarding the misguiding meaning of the transformation
matrix in technical literature of different fields. In solid mechanics, the transformation matrix assumes
that the mathematical entities are static, while the coordinate system is changed. Whereas the rotation
matrix usually designated also as transformation matrix, changes the entities while the coordinate system
remains the same.
๐œ“
๐‘ฅโ€ฒ
๐‘ฆโ€ฒ
๐‘ฆ
๐‘ฅ
๐œ“
๐œƒ
๐‘ฆโ€ฒโ€ฒ
๐‘งโ€ฒ
๐‘ง
๐‘ฆ
๐œƒ
Figure 6- Definition of the nomenclature
used to define the coordinates
transformation matrix. The ๐œƒ, ๐œ‘, and ๐œ“,
represent the rotation angle about the z, x
and y axis respectively.
๐œ‘
๐‘ฅโ€ฒโ€ฒ
๐‘ฆโ€ฒโ€ฒโ€ฒ
๐‘ฆโ€ฒโ€ฒ
๐‘ฅโ€ฒโ€ฒ
๐œ‘
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
16
2.6 2D Linear Elasticity
2D linear elasticity theory provides the mathematical model and the theoretical background by
which the behavior of a real 3D structure or body is represented by a 2D geometry. In order to facilitate
the understanding of this subchapter and the previous chapters, a brief comment regarding the specific
2D plane problemsโ€™ nomenclature will be made. In Figure 7, the definition of the body geometry (with
the designation of the main reference dimensions); and the coordinate system used (with the respective
displacements associated to it) is outlined.
The solution of any general 2D plane problem using the linear elasticity theory implies (in a
preliminary analysis), the determination for each point of the body, of 11 unknown variables: ๐œŽ๐‘ฅ๐‘ฅ , ๐œŽ ๐‘ฆ๐‘ฆ ,
๐œŽ๐‘ง๐‘ง , ๐œ ๐‘ฅ๐‘ฆ , ๐œ€ ๐‘ฅ๐‘ฅ , ๐œ€ ๐‘ฆ๐‘ฆ , ๐œ€ ๐‘ง๐‘ง , ๐›พ๐‘ฅ๐‘ฆ , ๐‘ข( ๐‘ฅ, ๐‘ฆ), ๐‘ฃ( ๐‘ฅ, ๐‘ฆ), ๐‘ค( ๐‘ฅ, ๐‘ฆ). In other words, the main goal of a general solid
mechanics problem is to compute the stresses, strains, and displacement vector, compatible with the:
Body Forces, Surface Tractions, and Boundary Conditions. In order to determine these 11 variables, we
have only 10 independent equations: 2 equations from the dynamic equilibrium defined by the Cauchy
Vector Equation, 4 equations from the Generalized Hookeโ€™s Law, and 4 equations from the geometric
definition of strains. Thus, in order to solve any problem from plane elasticity, it is necessary to introduce
an additional simplification, which may arise from a particular stress distribution or a particular strain
distribution. Hence, giving rise to the two types of plane problems: Plane Stress and Plane Strain
problems.
2.6.1 Types of Plane Linear Elastic Problems
Plane linear elastic problems are a class of situations that due to their geometry (sort of
prismatic), boundary conditions, and loading conditions, two unknown fields (Stresses and Strains)
donโ€™t depend from the third coordinate (usually designated by z). There are two types of plane problems
of relevant practical interest in mechanical engineering:
โ€ข Plane stresses โ€“ particularly accurate for thin plates (ideally infinitely thin), deep beams and
walls under in-plane loading, buttress dams, etc. in which the two dimensions (length and width)
are much higher than their thickness. In this type of problems, the following
assumptions/simplifications are made [4], [1]:
๐œŽ๐‘ง๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง = ยฑ ๐‘ก/2) = ๐œ ๐‘ฆ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง = ยฑ ๐‘ก/2) = ๐œ ๐‘ฅ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง = ยฑ ๐‘ก/2) = 0 ( 2.59 )
๐‘ก โ‰ช ๐‘™ โ‹€ ๐‘ก โ‰ช ๐‘ค โ‡’ ๐œŽ๐‘ง๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐œ ๐‘ฆ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐œ ๐‘ฅ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 2.60 )
๐‘ก โ‰ช ๐‘™ โ‹€ ๐‘ก โ‰ช ๐‘ค โ‡’ {
๐œŽ๐‘ฅ๐‘ฅ = ๐‘“๐‘ฅ ๐‘ฅ(๐‘ฅ, ๐‘ฆ)
๐œŽ ๐‘ฆ๐‘ฆ = ๐‘“๐‘ฆ ๐‘ฆ( ๐‘ฅ, ๐‘ฆ)
๐œ ๐‘ฅ๐‘ฆ = ๐‘“๐‘ฅ ๐‘ฆ(๐‘ฅ, ๐‘ฆ)
( 2.61 )
Figure 7- a) Plane Stress schematic geometry. b) Plane Strain schematic geometry.
a) b)y
x
l t
w
z
๐‘ขโƒ—
๐‘ฃ
๐‘คโƒ—โƒ—
y
xl
t
w z
๐‘ฃ
๐‘ขโƒ—
๐‘คโƒ—โƒ—
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
17
โ€ข Plane Strains โ€“ particularly accurate for thick geometries (ideally infinitely long), such as
containing walls, gravity dams, pressurized pipes, geotechnical engineering problems (e.g.
tunnels, foundations, etc.), etc.in which the dimension of section development (generatrix) is
much higher than the remaining dimensions (length and width). In this type of problems, the
following assumptions/simplifications are made [4], [1]:
๐‘ก โ‰ซ ๐‘™ โ‹€ ๐‘ก โ‰ซ ๐‘ค โ‡’ ๐œŽ๐‘ง๐‘ง( ๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐ถ ๐‘ก๐‘’ ( 2.62 )
{
๐‘ค( ๐‘ฅ, ๐‘ฆ, ยฑ๐‘ก/2) = 0
๐‘ค( ๐‘ฅ, ๐‘ฆ, 0) = 0, ๐‘๐‘ฆ ๐‘ ๐‘ฆ๐‘š๐‘š๐‘’๐‘ก๐‘Ÿ๐‘ฆ
โ‡’ ๐‘ค( ๐‘ฅ, ๐‘ฆ, ๐‘ง) โ‰ˆ 0 ( 2.63 )
๐‘ค( ๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 โ‡’
{
๐œ€ ๐‘ง๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐›พ๐‘ฆ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐›พ๐‘ฅ๐‘ง(๐‘ฅ, ๐‘ฆ๐‘ง, ๐‘ง) = 0
๐œ€ ๐‘ฅ๐‘ฅ = ๐‘“๐‘ฅ ๐‘ฅ(๐‘ฅ, ๐‘ฆ)
๐œ€ ๐‘ฆ๐‘ฆ = ๐‘“๐‘ฆ ๐‘ฆ(๐‘ฅ, ๐‘ฆ)
๐›พ๐‘ฅ๐‘ฆ = ๐‘“๐‘ฅ ๐‘ฆ(๐‘ฅ, ๐‘ฆ)
( 2.64 )
In addition, both simplifications or type of plane problems also consider that
{
๐‘“๐‘ฅ = ๐‘“๐‘ฅ( ๐‘ฅ, ๐‘ฆ)
๐‘“๐‘ฆ = ๐‘“๐‘ฆ( ๐‘ฅ, ๐‘ฆ)
๐‘“๐‘ง = 0
( 2.65 )
After plane stress or plane strain simplification (as concluded in section 2.6.6), the solid
mechanics problem is resumed to the resolution of two coupled Partial Differential Equations (PDE),
for two dependent variables: the two terms of the displacement vector, u(x,y) and v(x,y).
2.6.2 Dynamic Equilibrium
The dynamic equilibrium equations are the same, to whether plane stress or plane strain is
concerned. The dynamic equilibrium of a generic 2D rigid body can be written as:
โ€ข The classic formulations seen in the majority of the technical literature:
[ ๐œŽ ] โˆ‡ + | ๐‘“ | = ๐œŒ | ๐‘Ž | โ‡’ [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ
]
[
๐œ•
๐œ•๐‘ฅ
๐œ•
๐œ•๐‘ฆ ]
+ |
๐‘“๐‘ฅ
๐‘“๐‘ฆ
| = ๐œŒ |
๐‘ขฬˆ (๐‘ฅ, ๐‘ฆ)
๐‘ฃฬˆ(๐‘ฅ, ๐‘ฆ)
| โ‡’ ( 2.66 )
(
๐œ•๐œŽ๐‘ฅ๐‘ฅ
๐œ•๐‘ฅ
+
๐œ•๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ฆ
) + ๐‘“๐‘ฅ = ๐œŒ ๐‘ขฬˆ (๐‘ฅ, ๐‘ฆ) = ๐œŒ โˆ™
๐œ•2
๐œ•๐‘ก2
๐‘ข(๐‘ฅ, ๐‘ฆ) ( 2.67 )
(
๐œ•๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ฅ
+
๐œ•๐œŽ ๐‘ฆ๐‘ฆ
๐œ•๐‘ฆ
) + ๐‘“๐‘ฆ = ๐œŒ ๐‘ฃฬˆ(๐‘ฅ, ๐‘ฆ) = ๐œŒ โˆ™
๐œ•2
๐œ•๐‘ก2
๐‘ฃ(๐‘ฅ, ๐‘ฆ) ( 2.68 )
๐‘“๐‘ฅ, ๐‘“๐‘ฆ Volume forces acting on the x, and y direction respectively
โ€ข Instead of using the Nabla operator, in the Finite Element Method (FEM) formulation, the
matrix formulation is adopted due to its computational calculation suitability. The matrix of the
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
18
partial derivatives operator will be designated by [ ๐ฟ ], and corresponds to the transposed of the
same matrix used to relate strains and displacements.
[ ๐ฟ ] ๐‘‡| ๐œŽ | + | ๐‘“ | = ๐œŒ | ๐‘Ž | โ‡’
[
๐œ•
๐œ•๐‘ฅ
0
0
๐œ•
๐œ•๐‘ฆ
๐œ•
๐œ•๐‘ฆ
๐œ•
๐œ•๐‘ฅ ]
๐‘‡
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
| + |
๐‘“๐‘ฅ
๐‘“๐‘ฆ
| = ๐œŒ |
๐‘ขฬˆ (๐‘ฅ, ๐‘ฆ)
๐‘ฃฬˆ(๐‘ฅ, ๐‘ฆ)
| ( 2.69 )
2.6.3 Transformation Matrix
In the context of this report, the transformation matrix always refers to a matrix acting upon a
coordinate system. It is really important to outline this fact. Since in some literature this designation is
also misused to refer to geometric transformation matrices of vectors and matrices (e.g. rotation,
stretching, squeezing, shearing, reflection, etc.). The transformation matrices for 2D coordinate systems
are summarized below, along with its schematic illustration in Figure 8:
โ€ข Transformation Matrix of the coordinate system by Counter clockwise rotation of the coordinate
system:
[ ๐‘‡ ] = [
cos( ๐œ“) sin( ๐œ“)
โˆ’ sin( ๐œ“) cos( ๐œ“)
] ( 2.70 )
โ€ข Clockwise rotation of the coordinate system
[ ๐‘‡ ] = [
cos( ๐œ“) โˆ’sin( ๐œ“)
sin( ๐œ“) cos( ๐œ“)
] ( 2.71 )
a) b)
๐œ“
๐‘ฅโ€ฒ
๐‘ฆโ€ฒ
๐‘ฆ
๐‘ฅ
๐œ“
๐œ“
๐‘ฅโ€ฒ
๐‘ฆโ€ฒ
๐‘ฆ
๐‘ฅ
๐œ“
Figure 8- Representation of the transformation of the coordinate system by rotation along the z-axis: a)
Counter Clockwise rotation, and b) Clockwise rotation.
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
19
2.6.4 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior
In 2D elasticity, the Generalized Hookeโ€™s Law can be further simplified (by eliminating the
terms that account for the shear behavior in the third dimension), and the matrix relation can be simply
written in the stiffness and compliance form, respectively, as:
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
=
[
๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14
โ€ฆ ๐ถ22 ๐ถ23 ๐ถ24
โ€ฆ โ€ฆ ๐ถ24 ๐ถ34
โ€ฆ โ€ฆ โ€ฆ ๐ถ44 ]
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
( 2.72 )
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
=
[
๐‘†11 ๐‘†12 ๐‘†13 ๐‘†14
โ€ฆ ๐‘†23 ๐‘†23 ๐‘†24
โ€ฆ โ€ฆ ๐‘†33 ๐‘†34
โ€ฆ โ€ฆ โ€ฆ ๐‘†44 ]
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
( 2.73 )
Isotropic material behavior results from two necessary conditions: (i) linear elastic deformation
of an (ii) isotropic material - hyperelastic material whose scaler components of the stiffness tensor are
invariant (symmetric) with respect to all possible orthogonal transformations [10]. As demonstrated in
detail by [16], the stiffness and compliance coefficients are related respectively by:
{
๐ถ11 = ๐ถ22 = ๐ถ33
๐ถ12 = ๐ถ13 = ๐‘ ๐‘ฆ๐‘š = ๐ถ21 = ๐ถ31
๐ถ44 =
๐ถ11 โˆ’ ๐ถ22
2
๐ถ14 = ๐ถ24 = ๐ถ34 = 0 = ๐‘ ๐‘ฆ๐‘š = ๐ถ14 = ๐ถ24 = ๐ถ34 = 0
( 2.74 )
{
๐‘†11 = ๐‘†22 = ๐‘†33
๐‘†12 = ๐‘†13 = ๐‘ ๐‘ฆ๐‘š = ๐‘†21 = ๐‘†31
๐‘†44 = 2( ๐‘†11 โˆ’ ๐‘†22)
๐‘†14 = ๐‘†24 = ๐‘†34 = 0 = ๐‘ ๐‘ฆ๐‘š = ๐‘†14 = ๐‘†24 = ๐‘†34 = 0
( 2.75 )
Examples of typical engineering materials that can be considered isotopic with reasonable
accuracy are the major metal alloys: machined steel, Cast Iron. Cast Aluminum, etc. Considering
isotropic behavior, the โ€œ2Dโ€ Generalized Hookeโ€™s Law comes [19]:
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
=
[
๐ถ11 ๐ถ12 ๐ถ12 0
โ€ฆ ๐ถ11 ๐ถ12 0
โ€ฆ โ€ฆ ๐ถ11 0
0 0 0 ( ๐ถ11 โˆ’ ๐ถ12)/2 ]
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
( 2.76 )
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
=
[
๐‘†11 ๐‘†12 ๐‘†12 0
โ€ฆ ๐‘†11 ๐‘†12 0
โ€ฆ โ€ฆ ๐‘†11 0
0 0 0 2( ๐‘†11 โˆ’ ๐‘†12) ]
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
( 2.77 )
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
20
The stiffness or compliance coefficients are usually given in terms of engineering parameters.
Elastic engineering parameters or constants, are properties frequently and easily determined by Lab
testing e.g. Young Modulus, Poisson Ratio, Shear Modulus, etc. The most relevant engineering
constants within the context of this report are: Principal or Youngโ€™s Modulus in the ๐‘– direction ( ๐ธ ๐‘–๐‘–) โ€“
ratio of the stress in the ๐‘– direction, to a strain in the ๐‘– direction; Poisson Coefficient or Poisson Ratio
(๐‘ฃ ๐‘–๐‘—) โ€“ the negative of the ratio of the transverse strain in the ๐‘— direction when a stress is applied in the
๐‘– direction, to the longitudinal strain in the ๐‘– direction when a stress is applied in the ๐‘– direction [1]. The
mathematical definition of the elastic engineering coefficients or parameters is then given as [16]:
{
๐ธ ๐‘–๐‘– =
๐œŽ ๐‘–
๐œ€ ๐‘–
, ๐‘™๐‘œ๐‘›๐‘”๐‘–๐‘ก๐‘ข๐‘‘๐‘–๐‘›๐‘Ž๐‘™ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›
๐‘ฃ ๐‘–๐‘— = โˆ’
๐‘† ๐‘—๐‘–
๐‘† ๐‘–๐‘–
, ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘Ž๐‘™ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›
( 2.78 )
Concerning the physical understanding of the elastic coefficients, it is usually easy to: i) write
the compliance coefficients in terms of the engineering constants; ii) compute the stiffness matrix by
inverting the compliance matrix; and finally, iii) define the stiffness coefficients by simply looking at
the components of the stiffness matrix. This has to do with the fact that the stiffness coefficients are
computed constraining the strains in the remaining directions (by applying external stresses), whereas
the compliance coefficients are computed by simply considering the remaining stresses null. Thus, it is
possible to construct the compliance matrix column by column considering the meaning of the
compliance coefficients, and the elastic engineering parameters can be calculated as:
{
๐‘†11 =
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฅ๐‘ฅ
=
1
๐ธ11
=
1
๐ธ
๐‘†22 =
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ ๐‘ฆ๐‘ฆ
=
1
๐ธ22
=
1
๐ธ
๐‘†33 =
๐œ€ ๐‘ง๐‘ง
๐œŽ๐‘ง๐‘ง
=
1
๐ธ33
=
1
๐ธ
( 2.79 )
{
๐‘†12 =
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
=
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
(
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ ๐‘ฆ๐‘ฆ
โˆ™
๐œŽ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ฆ๐‘ฆ
) =
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
(
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ ๐‘ฆ๐‘ฆ
โˆ™ 1
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ ๐‘ฆ๐‘ฆ
โ„ ) =
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ ๐‘ฆ๐‘ฆ
โ„ โˆ™
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ ๐‘ฆ๐‘ฆ
๐‘†21 =
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ฅ๐‘ฅ
=
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ฅ๐‘ฅ
(
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฅ๐‘ฅ
โˆ™
๐œŽ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฅ๐‘ฅ
) =
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ ๐‘ฅ๐‘ฅ
(
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ๐‘ฅ๐‘ฅ
โˆ™ 1
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฅ๐‘ฅ
โ„ ) =
๐œ€ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฅ๐‘ฅ
โ„ โˆ™
๐œ€ ๐‘ฅ๐‘ฅ
๐œŽ๐‘ฅ๐‘ฅ
โ‡’ ( 2.80 )
{
๐‘†12 =
๐‘†12
๐‘†22
โˆ™ ๐‘†22 = โˆ’๐‘ฃ21 โˆ™ ๐‘†22 = โˆ’๐‘ฃ21 โˆ™
1
๐ธ22
= โˆ’
๐‘ฃ21
๐ธ22
= โˆ’
๐‘ฃ
๐ธ
๐‘†21 =
๐‘†21
๐‘†11
โˆ™ ๐‘†11 = โˆ’๐‘ฃ12 โˆ™ ๐‘†11 = โˆ’๐‘ฃ12 โˆ™
1
๐ธ11
= โˆ’
๐‘ฃ12
๐ธ11
= โˆ’
๐‘ฃ
๐ธ
( 2.81 )
๐‘†44 = 2( ๐‘†11 โˆ’ ๐‘†12) = 2 (
1
๐ธ11
+ ๐‘ฃ21 โˆ™ ๐‘†22) = 2 (
1
๐ธ11
+ ๐‘ฃ21 โˆ™
1
๐ธ22
) =
2(1 + ๐‘ฃ)
๐ธ
( 2.82 )
In the compliance form, the โ€œ2Dโ€ Generalized Hookโ€™s Law for linear elastic isotropic materials
now comes:
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
21
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
=
[
1
๐ธ
โˆ’
๐‘ฃ
๐ธ
โˆ’
๐‘ฃ
๐ธ
0
โˆ’
๐‘ฃ
๐ธ
1
๐ธ
โˆ’
๐‘ฃ
๐ธ
0
โˆ’
๐‘ฃ
๐ธ
โˆ’
๐‘ฃ
๐ธ
1
๐ธ
0
0 0 0
2(1 + ๐‘ฃ)
๐ธ ]
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
( 2.83 )
The stiffness form of the โ€œ2Dโ€ Generalized Hookโ€™s law for linear elastic isotropic materials is
calculated by simply inverting the previous equation ( 2.84 ) comes:
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
=
[
๐ธ(1 โˆ’ ๐‘ฃ)
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
๐ธ๐‘ฃ
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
๐ธ๐‘ฃ
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
0
๐ธ๐‘ฃ
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
๐ธ(1 โˆ’ ๐‘ฃ)
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
๐ธ๐‘ฃ
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
0
๐ธ๐‘ฃ
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
๐ธ๐‘ฃ
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
๐ธ(1 โˆ’ ๐‘ฃ)
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
0
0 0 0
๐ธ
2(1 + ๐‘ฃ) ]
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
( 2.84 )
The plane assumption (plane stress or plane strain), conditions the process used to determine
Hookโ€™s Law for plane problems. In order to compute Hookโ€™s Law for plane stress, the compliance matrix
of the Generalized Hookโ€™s Law is used; whereas to compute Hookโ€™s Law for plane strain, the stiffness
matrix of the Generalized Hookโ€™s Law is used [4]:
โ€ข Plane Stress
Assuming ๐œŽ๐‘ง๐‘ง = 0:
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
=
[
1
๐ธ
โˆ’
๐‘ฃ
๐ธ
โˆ’
๐‘ฃ
๐ธ
0
โˆ’
๐‘ฃ
๐ธ
1
๐ธ
โˆ’
๐‘ฃ
๐ธ
0
โˆ’
๐‘ฃ
๐ธ
โˆ’
๐‘ฃ
๐ธ
1
๐ธ
0
0 0 0
2(1 + ๐‘ฃ)
๐ธ ]
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
0
๐œ ๐‘ฅ๐‘ฆ
|
|
( 2.85 )
The Compliance matrix is determined simply by ignoring the columns, in the generalized
compliance matrix, associated with the zero stress entries in the stress vector, coming:
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐›พ๐‘ฅ๐‘ฆ
| =
[
1
๐ธ
โˆ’
๐‘ฃ
๐ธ
0
โˆ’
๐‘ฃ
๐ธ
1
๐ธ
0
0 0
2(1 + ๐‘ฃ)
๐ธ ]
|
๐œŽ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
|
( 2.86 )
2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes
22
The Stiffness matrix is determined simply by inverting the compliance matrix, and is given by:
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
| =
๐ธ
(1 โˆ’ ๐‘ฃ2)
[
1 ๐‘ฃ 0
๐‘ฃ 1 0
0 0 (1 โˆ’ ๐‘ฃ)/2
] |
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐›พ๐‘ฅ๐‘ฆ
| ( 2.87 )
Comment: Note that the compliance matrix for plane stress canโ€™t be found by removing columns
and rows from the general isotropic stiffness matrix
โ€ข Plane Strain
Assuming ๐œ€ ๐‘ง๐‘ง = 0:
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
=
๐ธ
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
[
(1 โˆ’ ๐‘ฃ) ๐‘ฃ ๐‘ฃ 0
๐‘ฃ (1 โˆ’ ๐‘ฃ) ๐‘ฃ 0
๐‘ฃ ๐‘ฃ (1 โˆ’ ๐‘ฃ) 0
0 0 0 (1 โˆ’ 2๐‘ฃ)/2 ]
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
0
๐›พ๐‘ฅ๐‘ฆ
|
|
( 2.88 )
The Stiffness matrix is determined simply by ignoring the columns, in the generalized stiffness
matrix, associated with the zero strain entries in the strain vector, coming:
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
| =
๐ธ
(1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ)
[
(1 โˆ’ ๐‘ฃ) ๐‘ฃ 0
๐‘ฃ (1 โˆ’ ๐‘ฃ) 0
0 0 (1 โˆ’ 2๐‘ฃ)/2
] |
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐›พ๐‘ฅ๐‘ฆ
| ( 2.89 )
The Compliance matrix is determined simply by inverting the stiffness matrix, and is given by:
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐›พ๐‘ฅ๐‘ฆ
| =
1
๐ธ
[
1 โˆ’ ๐‘ฃ2
โˆ’๐‘ฃ(1 + ๐‘ฃ) 0
โˆ’๐‘ฃ(1 + ๐‘ฃ) 1 โˆ’ ๐‘ฃ2
0
0 0 2(1 + ๐‘ฃ)
] |
๐œŽ ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
| ( 2.90 )
Comment: Note that the compliance matrix for plane strain canโ€™t be found by removing columns
and rows from the general isotropic compliance matrix.
2.6.5 Strain-Displacement Fields Relation
The geometric definition of infinitesimal strains, within the context of FEM, is usually written
in the matrix form. The strain in the z direction (๐œ€ ๐‘ง๐‘ง) will be considered for now, since the ๐œ€ ๐‘ง๐‘ง isnโ€™t null
for the case of plane stress. However, in the next section further details regarding this topic will be given.
The strain field can then be written as:
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element
Isoparametric bilinear quadrilateral element

Mais conteรบdo relacionado

Mais procurados

Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1
SHAMJITH KM
ย 
An Introduction to the Finite Element Method
An Introduction to the Finite Element MethodAn Introduction to the Finite Element Method
An Introduction to the Finite Element Method
Mohammad Tawfik
ย 
Me2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesMe2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notes
Amit Ghongade
ย 
ABAQUS Lecture Part I
ABAQUS Lecture Part IABAQUS Lecture Part I
ABAQUS Lecture Part I
chimco.net
ย 

Mais procurados (20)

Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1
ย 
Solution of engineering problems
Solution of engineering problemsSolution of engineering problems
Solution of engineering problems
ย 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and Shells
ย 
An Introduction to the Finite Element Method
An Introduction to the Finite Element MethodAn Introduction to the Finite Element Method
An Introduction to the Finite Element Method
ย 
Finite element analysis of space truss by abaqus
Finite element analysis of space truss by abaqus Finite element analysis of space truss by abaqus
Finite element analysis of space truss by abaqus
ย 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
ย 
Chapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
Chapter 8: Transformation of Stress and Strain; Yield and Fracture CriteriaChapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
Chapter 8: Transformation of Stress and Strain; Yield and Fracture Criteria
ย 
Introduction to Finite Elements
Introduction to Finite ElementsIntroduction to Finite Elements
Introduction to Finite Elements
ย 
Static Stress Analysis of Connecting Rod Using Finite Element Approach
Static Stress Analysis of Connecting Rod Using Finite Element ApproachStatic Stress Analysis of Connecting Rod Using Finite Element Approach
Static Stress Analysis of Connecting Rod Using Finite Element Approach
ย 
Me2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesMe2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notes
ย 
Finite element method
Finite element methodFinite element method
Finite element method
ย 
Fem lecture
Fem lectureFem lecture
Fem lecture
ย 
Introduction to the theory of plates
Introduction to the theory of platesIntroduction to the theory of plates
Introduction to the theory of plates
ย 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
ย 
Finite Element Analysis -Dr.P.Parandaman
Finite Element Analysis  -Dr.P.ParandamanFinite Element Analysis  -Dr.P.Parandaman
Finite Element Analysis -Dr.P.Parandaman
ย 
Timoshenko beam-element
Timoshenko beam-elementTimoshenko beam-element
Timoshenko beam-element
ย 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element method
ย 
Flat plate deflection-chapter13 (1)
Flat plate deflection-chapter13 (1)Flat plate deflection-chapter13 (1)
Flat plate deflection-chapter13 (1)
ย 
Introduction to FEA and applications
Introduction to FEA and applicationsIntroduction to FEA and applications
Introduction to FEA and applications
ย 
ABAQUS Lecture Part I
ABAQUS Lecture Part IABAQUS Lecture Part I
ABAQUS Lecture Part I
ย 

Semelhante a Isoparametric bilinear quadrilateral element

Names_BJ_T_2016
Names_BJ_T_2016Names_BJ_T_2016
Names_BJ_T_2016
Ben Names
ย 
Finite_Element_Analysis_with_MATLAB_GUI
Finite_Element_Analysis_with_MATLAB_GUIFinite_Element_Analysis_with_MATLAB_GUI
Finite_Element_Analysis_with_MATLAB_GUI
Colby White
ย 
NOVEL NUMERICAL PROCEDURES FOR LIMIT ANALYSIS OF STRUCTURES: MESH-FREE METHODS
NOVEL NUMERICAL PROCEDURES FOR LIMIT ANALYSIS OF STRUCTURES: MESH-FREE METHODSNOVEL NUMERICAL PROCEDURES FOR LIMIT ANALYSIS OF STRUCTURES: MESH-FREE METHODS
NOVEL NUMERICAL PROCEDURES FOR LIMIT ANALYSIS OF STRUCTURES: MESH-FREE METHODS
Canh Le
ย 
Graham Ziervogel Masters Dissertation
Graham Ziervogel Masters DissertationGraham Ziervogel Masters Dissertation
Graham Ziervogel Masters Dissertation
Graham Ziervogel
ย 

Semelhante a Isoparametric bilinear quadrilateral element (20)

Composite systems - Trace approach
Composite systems - Trace approachComposite systems - Trace approach
Composite systems - Trace approach
ย 
Cek fe primer
Cek fe primerCek fe primer
Cek fe primer
ย 
Names_BJ_T_2016
Names_BJ_T_2016Names_BJ_T_2016
Names_BJ_T_2016
ย 
Master Thesis
Master Thesis Master Thesis
Master Thesis
ย 
11 019-maldonado-jesus-bericht
11 019-maldonado-jesus-bericht11 019-maldonado-jesus-bericht
11 019-maldonado-jesus-bericht
ย 
Finite_Element_Analysis_with_MATLAB_GUI
Finite_Element_Analysis_with_MATLAB_GUIFinite_Element_Analysis_with_MATLAB_GUI
Finite_Element_Analysis_with_MATLAB_GUI
ย 
I044083842
I044083842I044083842
I044083842
ย 
Fk259991002
Fk259991002Fk259991002
Fk259991002
ย 
FULLTEXT01
FULLTEXT01FULLTEXT01
FULLTEXT01
ย 
Optimization of Design Parameters for Crane Hook Using Finite Element Analysis
Optimization of Design Parameters for Crane Hook Using Finite Element AnalysisOptimization of Design Parameters for Crane Hook Using Finite Element Analysis
Optimization of Design Parameters for Crane Hook Using Finite Element Analysis
ย 
colorado.pdf
colorado.pdfcolorado.pdf
colorado.pdf
ย 
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docxAnalysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
ย 
NOVEL NUMERICAL PROCEDURES FOR LIMIT ANALYSIS OF STRUCTURES: MESH-FREE METHODS
NOVEL NUMERICAL PROCEDURES FOR LIMIT ANALYSIS OF STRUCTURES: MESH-FREE METHODSNOVEL NUMERICAL PROCEDURES FOR LIMIT ANALYSIS OF STRUCTURES: MESH-FREE METHODS
NOVEL NUMERICAL PROCEDURES FOR LIMIT ANALYSIS OF STRUCTURES: MESH-FREE METHODS
ย 
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docxAnalysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
ย 
Graham Ziervogel Masters Dissertation
Graham Ziervogel Masters DissertationGraham Ziervogel Masters Dissertation
Graham Ziervogel Masters Dissertation
ย 
Analysis and Design of Mid-Rise Building_2023.docx
Analysis and Design of Mid-Rise Building_2023.docxAnalysis and Design of Mid-Rise Building_2023.docx
Analysis and Design of Mid-Rise Building_2023.docx
ย 
Thesis
ThesisThesis
Thesis
ย 
Analysis and Design of Mid-Rise Building_2023.docx
Analysis and Design of Mid-Rise Building_2023.docxAnalysis and Design of Mid-Rise Building_2023.docx
Analysis and Design of Mid-Rise Building_2023.docx
ย 
main
mainmain
main
ย 
ANALYSIS OF A TRUSS USING FINITE ELEMENT METHODS
ANALYSIS OF A TRUSS USING FINITE ELEMENT METHODSANALYSIS OF A TRUSS USING FINITE ELEMENT METHODS
ANALYSIS OF A TRUSS USING FINITE ELEMENT METHODS
ย 

Mais de Filipe Giesteira

Fatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Fatigue and fracture mechanics _ fadiga e mecรขnica da fracturaFatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Fatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Filipe Giesteira
ย 

Mais de Filipe Giesteira (20)

My Resume
My ResumeMy Resume
My Resume
ย 
Fatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Fatigue and fracture mechanics _ fadiga e mecรขnica da fracturaFatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Fatigue and fracture mechanics _ fadiga e mecรขnica da fractura
ย 
Composite Systems - Trace Approach _ PPT Presentation
Composite Systems - Trace Approach _ PPT PresentationComposite Systems - Trace Approach _ PPT Presentation
Composite Systems - Trace Approach _ PPT Presentation
ย 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentation
ย 
Mechanical speed reducer Design Report _ Motoredutor de Engrenagens cilรญndric...
Mechanical speed reducer Design Report _ Motoredutor de Engrenagens cilรญndric...Mechanical speed reducer Design Report _ Motoredutor de Engrenagens cilรญndric...
Mechanical speed reducer Design Report _ Motoredutor de Engrenagens cilรญndric...
ย 
Involute gear interference _ Interferรชncia em rodas dentadas cilรญndricas
Involute gear interference _ Interferรชncia em rodas dentadas cilรญndricasInvolute gear interference _ Interferรชncia em rodas dentadas cilรญndricas
Involute gear interference _ Interferรชncia em rodas dentadas cilรญndricas
ย 
Relation between contact ratio and interference _ Relaรงรฃo entre razรฃo de Cond...
Relation between contact ratio and interference _ Relaรงรฃo entre razรฃo de Cond...Relation between contact ratio and interference _ Relaรงรฃo entre razรฃo de Cond...
Relation between contact ratio and interference _ Relaรงรฃo entre razรฃo de Cond...
ย 
Tribology Design - Equation Summary _ Tribologia
Tribology Design - Equation Summary _ TribologiaTribology Design - Equation Summary _ Tribologia
Tribology Design - Equation Summary _ Tribologia
ย 
Fatigue design - Equation Summary _ Dimensionamento ร  Fadiga
Fatigue design - Equation Summary _ Dimensionamento ร  FadigaFatigue design - Equation Summary _ Dimensionamento ร  Fadiga
Fatigue design - Equation Summary _ Dimensionamento ร  Fadiga
ย 
Screw design - Equation summary _ Dimensionamento de Parafusos
Screw design - Equation summary _ Dimensionamento de ParafusosScrew design - Equation summary _ Dimensionamento de Parafusos
Screw design - Equation summary _ Dimensionamento de Parafusos
ย 
Mechanical vibration - equation summary
Mechanical vibration - equation summaryMechanical vibration - equation summary
Mechanical vibration - equation summary
ย 
Mechanical vibration mec iii
Mechanical vibration mec iiiMechanical vibration mec iii
Mechanical vibration mec iii
ย 
Photo-realistic Rendered Images of 3D CAD Model
Photo-realistic Rendered Images of 3D CAD ModelPhoto-realistic Rendered Images of 3D CAD Model
Photo-realistic Rendered Images of 3D CAD Model
ย 
Shaft - specification drawing
Shaft - specification drawingShaft - specification drawing
Shaft - specification drawing
ย 
Mechanical speed reducer - 3D Exploded View (SolidWorks)
Mechanical speed reducer - 3D Exploded View (SolidWorks)Mechanical speed reducer - 3D Exploded View (SolidWorks)
Mechanical speed reducer - 3D Exploded View (SolidWorks)
ย 
Mechanical speed reducer assembly drawing
Mechanical speed reducer assembly drawingMechanical speed reducer assembly drawing
Mechanical speed reducer assembly drawing
ย 
Prediction of joint strength and effect of the surface treatment on the singl...
Prediction of joint strength and effect of the surface treatment on the singl...Prediction of joint strength and effect of the surface treatment on the singl...
Prediction of joint strength and effect of the surface treatment on the singl...
ย 
Processos de Fundiรงรฃo do Titรขnio e suas Ligas
Processos de Fundiรงรฃo do Titรขnio e suas LigasProcessos de Fundiรงรฃo do Titรขnio e suas Ligas
Processos de Fundiรงรฃo do Titรขnio e suas Ligas
ย 
Incremental sheet Forming (ISF)
Incremental sheet  Forming (ISF)Incremental sheet  Forming (ISF)
Incremental sheet Forming (ISF)
ย 
Tรชmpera Bainรญtica do Aรงo G15 Special
Tรชmpera Bainรญtica do Aรงo G15 SpecialTรชmpera Bainรญtica do Aรงo G15 Special
Tรชmpera Bainรญtica do Aรงo G15 Special
ย 

รšltimo

Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
BalamuruganV28
ย 
Microkernel in Operating System | Operating System
Microkernel in Operating System | Operating SystemMicrokernel in Operating System | Operating System
Microkernel in Operating System | Operating System
Sampad Kar
ย 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
drjose256
ย 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
MaherOthman7
ย 

รšltimo (20)

"United Nations Park" Site Visit Report.
"United Nations Park" Site  Visit Report."United Nations Park" Site  Visit Report.
"United Nations Park" Site Visit Report.
ย 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
ย 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
ย 
Electrical shop management system project report.pdf
Electrical shop management system project report.pdfElectrical shop management system project report.pdf
Electrical shop management system project report.pdf
ย 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
ย 
Microkernel in Operating System | Operating System
Microkernel in Operating System | Operating SystemMicrokernel in Operating System | Operating System
Microkernel in Operating System | Operating System
ย 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
ย 
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
ย 
Vip โ„‚all Girls Karkardooma Phone No 9999965857 High Profile โ„‚all Girl Delhi N...
Vip โ„‚all Girls Karkardooma Phone No 9999965857 High Profile โ„‚all Girl Delhi N...Vip โ„‚all Girls Karkardooma Phone No 9999965857 High Profile โ„‚all Girl Delhi N...
Vip โ„‚all Girls Karkardooma Phone No 9999965857 High Profile โ„‚all Girl Delhi N...
ย 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdf
ย 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
ย 
Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2
ย 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
ย 
Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)
ย 
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
ย 
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbineLow rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
ย 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
ย 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
ย 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
ย 
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
ย 

Isoparametric bilinear quadrilateral element

  • 1. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes Filipe Amorim Gonรงalves Giesteira Supervisors: Francisco Andrade Pires Josรฉ Fernando Dias Rodrigues Finite Element Method (FEM) โ€“ EM065 Integrated Master in Mechanical Engineering December, 2018
  • 3. iii Abstract This report was developed with the main goal of gathering in one single and concise document, the following three major tasks, namely: (i) review extensively and in detail, the fundamental concepts of 2D plane elasticity theory, from the displacement field definition to the static equilibrium equations of a generic body; (ii) systematize the basic principles of the FEM, and the steps necessary to formulate any quadrilateral element for plane elasticity; and finally (iii) produce a document (to be evaluated as mandatory assignment) within the context of the Finite Element Method (FEM) course from the Mechanical Engineering department, lectured at Faculty of Engineering of University of Porto (FEUP). The basic concepts and formulae that govern the plane elasticity of linear elastic solids were first detailed and several usually omitted demonstrations (in typical FEM technical literature) shown. Then, the FEM equations were formulated using different variational principles and direct integral statements. The finite element formulation was detailed specifically for the Isoparametric Bilinear (4-nodes) Quadrilateral Lagrange type Element. However, all theoretical demonstrations, formulation steps and isoparametric relations were kept as generic as possible for 2D plane elasticity. The formulated element was implemented using MATLABยฎ software, and the algorithm was based on the original script from BaPMEF (Base para Programaรงรฃo do Mรฉtodo dos Elementos Finitos) FEA tool. From the present work, it is possible to underline the versatility, flexibility, and accuracy of the FEM for simple and more complex engineering problems. Even though in real-life situations there are almost no truly 2D problems, during this report the simplification power of 2D analysis and its prediction capability was highlighted by exploring several engineering examples. The validation of the quadrilateral finite element was successfully achieved by analytical formulas from linear plane elasticity theory. Commercially available CAE suites with FEA integrated packages were also used to assess the computational accuracy from the finite element formulated. Keywords 2D Elasticity, Plane Elasticity, Plane Stress, Plane Strain, Strong Formulation, Weak Formulation, FEA, Finite Element Analysis, FEM, Finite Element Method, Finite Element Formulation, Quadrilateral, Isoparametric, Lagrange Family, Lagrangian Element, Bilinear, 4-nodes, Gauss Quadrature, MATLAB, Abaqus
  • 5. v Contents Contents .............................................................................................................................................v List of Acronyms ............................................................................................................................... vii List of Figures .................................................................................................................................... ix List of Tables ................................................................................................................................... xiii 1 Introduction....................................................................................................................................1 1.1 Context of the Report ......................................................................................................................1 1.2 Report Structure..............................................................................................................................1 1.3 Basic Mathematical Nomenclature...................................................................................................2 2 Theory of Linear Elasticity for Continuum Medium ..........................................................................3 2.1 Introduction.....................................................................................................................................3 2.2 Stress Tensor .................................................................................................................................3 2.3 Strain Tensor..................................................................................................................................8 2.4 Generalized Hookeโ€™s Law..............................................................................................................11 2.5 Transformation Matrix ...................................................................................................................14 2.6 2D Linear Elasticity .......................................................................................................................16 2.6.1 Types of Plane Linear Elastic Problems........................................................................16 2.6.2 Dynamic Equilibrium....................................................................................................17 2.6.3 Transformation Matrix..................................................................................................18 2.6.4 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior..............................................................19 2.6.5 Strain-Displacement Fields Relation.............................................................................22 2.6.6 Eliminating Stress and Strain in the z direction .............................................................23 3 Finite Element Formulation โ€“ Strong and Weak Formulation.........................................................25 3.1 Review of the Governing Equations for 2D Elasticity ......................................................................25 3.1.1 Displacement Field......................................................................................................25 3.1.2 Strain Field..................................................................................................................25 3.1.3 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior..............................................................26 3.1.4 2D Hookeโ€™s Law โ€“ Orthotropic Material Behavior (Extra)...............................................26 3.1.5 Total Stress-Strain Relation (Extra) ..............................................................................27 3.1.6 Dynamic Equilibrium....................................................................................................28 3.2 Strong Formulation........................................................................................................................29 3.3 Weak Formulation โ€“ Direct Variational Formulations ......................................................................32 3.3.1 The Principle of Minimum Total Potential Energy (MTPE) .............................................33 3.3.2 The Principle of Virtual Work (PVW) or The Principle of Virtual Displacements (PVD) ....36 3.3.3 Hamiltonโ€™s Principle.....................................................................................................37 3.4 Weak Formulation โ€“ Weighted-Integral Formulations......................................................................39 3.4.1 Assumption #1 ............................................................................................................39 3.4.2 Assumption #2 ............................................................................................................40 4 Isoparametric Quadrilateral Lagrange Element with 4 nodes ........................................................47 4.1 Interpolation Functions โ€“ Introduction and Lagrange Family ...........................................................47 4.2 Interpolation Function - Generation................................................................................................49 4.3 Isoparametric 2D Mapping and Relations.......................................................................................54 4.4 Numerical Integration ....................................................................................................................64 5 Finite Element Method - Equations...............................................................................................69 5.1 Discretization by the Finite Element Method...................................................................................69 5.2 Properties of the Finite Element.....................................................................................................71 5.2.1 Stiffness Matrix of each element...................................................................................71 5.2.2 Equivalent Nodal Load Vector......................................................................................72 5.3 Discretized Global Model โ€“ Assembly of the Finite Elements ..........................................................76 5.4 Computation Step .........................................................................................................................80
  • 6. vi 5.4.1 Application of the Fundamental Boundary Conditions ...................................................80 5.4.2 Displacement Field......................................................................................................80 5.5 Post-Processing Step ...................................................................................................................80 5.5.1 Strain and Stress Field ................................................................................................80 5.5.2 Dependent Post-Processing Variables .........................................................................84 6 BaPMEF Script ............................................................................................................................85 6.1 Introduction ..................................................................................................................................85 6.2 Data Input.....................................................................................................................................86 6.2.1 Tool Info .....................................................................................................................86 6.2.2 Body Geometry...........................................................................................................86 6.2.3 Type of 2D Plane Problem...........................................................................................87 6.2.4 Definition of the Body (Element) Thickness ..................................................................87 6.2.5 Type of Meshing Procedure.........................................................................................87 6.2.6 Type of Mesh ..............................................................................................................88 6.2.7 Materials.....................................................................................................................88 6.2.8 Input Mode โ€“ Nodal Coordinates, Nodal Connections and Fundamental Boundary Conditions ............................................................................................................................89 6.2.9 Fundamental Boundary Conditions ..............................................................................89 6.2.10 Loading Conditions โ€“ Natural Boundary Conditions ......................................................93 6.2.11 Point Loads.................................................................................................................95 6.3 Global Stiffness Matrix ..................................................................................................................95 6.4 Global Equivalent Load Vector ......................................................................................................95 6.5 Static Solution and Plotting of Nodal Displacements.......................................................................96 6.6 Post-processing............................................................................................................................96 7 Finite Element Validation โ€“ Analytical Solutions from Plane Elasticity .........................................101 7.1 Introduction - Airy Stress Function and Biharmonic Equation........................................................ 101 7.2 Rectangular Cross-Section Beam with Constant Section - Pure Bending ...................................... 101 7.3 Rectangular Cross-Section Beam with Constant Section โ€“ Cantilever Beam with Shear Distributed Load107 7.4 Rectangular Cross-Section Beam with Constant Section โ€“ Simple Supported Beam under Uniform Surface Traction ......................................................................................................................... 115 8 FEM Tool โ€“ Applications ............................................................................................................125 8.1 Fracture Mechanics โ€“ Infinite Plane with Centered Crack............................................................. 125 8.2 Comparison with Commercially Available Software - Abaqus........................................................ 140 8.2.1 Generic Loading........................................................................................................140 9 Conclusions and Future Work ....................................................................................................149 References.....................................................................................................................................151
  • 7. vii List of Acronyms 1D โ€“ One Dimension/Dimensional 2D โ€“ Two Dimension/Dimensional 3D โ€“ Three Dimension/Dimensional BaPMEF โ€“ Base para Programaรงรฃo do Mรฉtodo dos Elementos Finitos BC โ€“ Boundary Condition(s) CAD โ€“ Computer Aided Design CAE โ€“ Computer Aided Engineering FEA โ€“ Finite Element Analysis FEM โ€“ Finite Element Method FEUP โ€“ Faculty of Engineering of University of Porto GP โ€“ Gauss Points MTPE โ€“ Minimum Total Potential Energy PDE โ€“ Partial Differential Equations PVD โ€“ Principle of Virtual Displacement PVW โ€“ Principle of Virtual Work List of Acronyms
  • 9. ix List of Figures Figure 1- Definition of the nomenclature adopted for shear stresses acting on the differential volume element [1]......................................................................................................................................... 4 Figure 2- a) Cauchy tetrahedron formed by slicing a parallelepiped along an arbitrary plane define by the normal vector ๐‘›. b) Infinitesimal triangular portion of a generic 2D body. .................................... 6 Figure 3- Nomenclature adopted for the shear stress definition, for the distortion of the differential Cartesian element..............................................................................................................................10 Figure 4- Illustration of the angles between the transformed ๐‘ฅโ€™-axis and the original cartesian coordinate system. .............................................................................................................................................14 Figure 5- Illustration of the individual rotations of the Euler angles. Image adapted form [2]. ............14 Figure 6- Definition of the nomenclature used to define the coordinates transformation matrix. The ๐œƒ, ๐œ‘, and ๐œ“, represent the rotation angle about the z, x and y axis respectively. .....................................15 Figure 7- a) Plane Stress schematic geometry. b) Plane Strain schematic geometry............................16 Figure 8- Representation of the transformation of the coordinate system by rotation along the z-axis: a) Counter Clockwise rotation, and b) Clockwise rotation. ....................................................................18 Figure 9- Lagrange Quadrilateral Element of four nodes in its natural coordinates system and natural coordinates values.............................................................................................................................48 Figure 10- 3D representation of the four shape functions of the Isoparametric Quadrilateral Lagrange Element with four nodes. ..................................................................................................................52 Figure 11- 3D surface plot of the determinant of the Jacobian matrix for isoparametric bilinear quadrilateral elements with multiple degrees of distortion..................................................................55 Figure 12- Illustration of the true area and shape of a differential element of area in Natural coordinate system. Based on illustrations and equations from [4], [5], [6]...........................................................58 Figure 13- a) Tangential and normal tractions acting on the horizontal boundary of the real distorted finite element (particular example shown for the upper boundary with ๐œ‚ = 1 ). b) Tangential and normal tractions acting on the vertical boundary of the real distorted finite element (particular example shown for the right boundary with ๐œ‰ = 1 ). Illustration adapted from [4]. .....................................................63 Figure 14- Illustration of different cases of surface traction load applied in the a) lower, b) upper, c) left, and d) right boundaries. Adapted by the author from [4]....................................................................75 Figure 15- Schematic illustration of the process of construction of the Connectivity matrix. The connection matrix is a rectangular matrix, usually with higher number of rows than columns. ...........79 Figure 16- Schematic illustration of the concept of sub-element used to take advantage of the knowledge of the strains in the GP......................................................................................................................82 Figure 17- Schematic illustration of the process of smoothing the nodal values for the strains or stresses after post-processing [4]....................................................................................................................83 Figure 18- Overall structure of the BaPMEF script [3].......................................................................85 Figure 19- First interface that immediately pops-up after running the FEA tool. It should be noticed the several features of the tool that the user cannot control or change. .....................................................86 Figure 20- A. The input window for the geometric variables comes already with some default values, to encourage the user to pay attention to the units of length used (mm). .............................................86 Figure 21- Interface used to specify the type of plane problem, in which the user only has to press the button that contains the desired analysis. ...........................................................................................87
  • 10. x Figure 22- Illustration of the two different possibilities of GUI that the user can be face with, after the user select the desired plane problem: a) After selection of plane stress problem, b) After selection of plane strain problem..........................................................................................................................87 Figure 23- GUI used to specify the type of meshing procedure desired..............................................87 Figure 24- GUI to input the necessary parameters to define the mesh if: a) The automatic process was selected, b) The semi-automatic process was selected........................................................................88 Figure 25- Graphic Interface for input of the material properties. ......................................................88 Figure 26- Message window used to inform the user that the input mode of the nodal coordinates and connections is predefined as automatic and the user cannot control it. ...............................................89 Figure 27- Graphic interface used to choose the input mode of the fundamental BC. .........................89 Figure 28- a) Schematic representation of Essential BC used in simulation of fracture surface of length 2a in the center of a plate. b) Illustration of Symmetry Boundary Conditions.....................................90 Figure 29- GUI for definition of the fundamental Boundary Conditions in case it was selected: a) Automatic input mode; and c) Manual input mode. b) Interface used to input half of the crack length. .........................................................................................................................................................91 Figure 30- Graphic output of BaPMEF tool for: a) Default values; and b) Example of a 10x10 finite element mesh....................................................................................................................................92 Figure 31- Graphic interface that allow the user to freely define the gravitational field and an additional external field.....................................................................................................................................93 Figure 32- Graphic interface used to define the natural BC in the: a) Left edge, b) Right edge, c) Lower edge, and d) Upper edge. The four windows appear sequentially after defining each edge. ................94 Figure 33- Graphic interface used to define the cartesian components of the surface traction acting on the entire edge of the body. ...............................................................................................................94 Figure 34. Graphic interface used to define the surface traction per element. .....................................95 Figure 35- GUI used to define the point loads. ..................................................................................95 Figure 36- Example of the graphic representation of the nodal displacements after surface traction along the upper edge in a cantilever beam...................................................................................................96 Figure 37- Sequential interface to choose which: a)-c) primary variables (displacements), and d)-i) primary post-processing variable(s) to plot........................................................................................97 Figure 38- Sequential interface to choose which secondary post-processing variable(s) to plot. .........98 Figure 39- Sequential interface menu windows to choose which predefined example to plot..............98 Figure 40- Spectrum of plots for the displacements: a) Horizontal displacements in the x-direction; b) Vertical displacements in the y-direction; c) Magnitude of the displacements. Spectrum of plots for the Strains: d) Linear Strains in the x-direction; e) Linear Strains in the y-direction; f) Shear Strains in the xy plane............................................................................................................................................99 Figure 41- Spectrum of plots for the Stresses: a) Normal Stresses in the x-direction; b) Normal Stresses in the y-direction; c) Shear Stresses in the xy plane. Spectrum of plots for the secondary post-processing variables: d) Von Mises Stresses; e) Safety Factor, f) Stress/Strain in z-direction.............................100 Figure 42- Schematic illustration of the problem too which the analytical solutions using plane elasticity theory were developed. ...................................................................................................................101 Figure 43- a) Schematic illustration of the problem simulated, with the aim to model pure bending state.in plane elasticity. Image adapted from [1]. b) Coordinate system used to compute the analytical solution, in order to match the coordinate system of the FEA solver. ...............................................102 Figure 44- a) Deformed shape of the mesh from the beam under pure bending. b) Horizontal displacements in the x-direction, determined by the BaPMEF FEA tool. c) Vertical displacements in the y-direction, determined by the BaPMEF FEA tool. .........................................................................105
  • 11. xi Figure 45- Comparison of the horizontal displacements in the x-direction, determined by the BaPMEF tool against the analytical solution, in: 3D plot a)-b), and in the 2D plot over the neutral axis c). .....106 Figure 46- Physical model of a Cantilever Beam loaded by a shear distributed load P in the left edge. a) Original coordinate system of the analytical solution from [1]; b) Coordinate system adopted and used in the FEA tool. ..............................................................................................................................107 Figure 47- a) Deformed shape of the mesh from the cantilever beam. b) Horizontal displacements in the x-direction, determined by the BaPMEF FEA tool. c) Vertical displacements in the y-direction, determined by the BaPMEF FEA tool. ............................................................................................110 Figure 48- Comparison of the horizontal displacements in the x-direction, determined by the BaPMEF tool against the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c). ......111 Figure 49- Comparison of the vertical displacements in the y-direction, determined by the BaPMEF tool against the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c). .............112 Figure 50- 2D Plot of the vertical displacements in the y-direction with a mesh: a) 1 x 2; b) 2 x 2; c) 4 x 2; d) 6 x 2. ......................................................................................................................................113 Figure 51- 2D Plot of the vertical displacements in the y-direction with a mesh: a) 8 x 2; b) 15 x 2; c) 15 x 4..............................................................................................................................................114 Figure 52- A ...................................................................................................................................115 Figure 53- Plot of the mesh 50x10 used to discretize the simple supported beam. ............................118 Figure 54- Plot of the deformed shape of the simple supported beam after uniform load in the upper boundary.........................................................................................................................................119 Figure 55- a) Horizontal Displacements in x-direction. b) Vertical Displacements in y-direction. c) Normal Stresses in x-direction.........................................................................................................119 Figure 56- a) Normal Stresses in x-direction. b) Normal Stresses in y-direction. c) Shear Stresses in xy plane...............................................................................................................................................120 Figure 57- Comparison of the vertical displacements in the y-direction, determined by the BaPMEF tool against the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c). .............121 Figure 58- Comparison of the normal stresses in the x-direction, determined by the BaPMEF tool against the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c)..........................122 Figure 59- Comparison of the normal stresses in the y-direction, determined by the BaPMEF tool against the analytical solution in: 3D plot a)-b), and in the 2D plot over the neutral axis c)..........................123 Figure 60- Comparison of the shear stresses in the xy plane, determined by the BaPMEF tool against the analytical solution in: 3D plot a), and in the 2D plot over the neutral axis b). c) 3D plot of the Von Mises Stresses.................................................................................................................................124 Figure 61- a) Infinite plate with a through crack in the center, loaded perpendicularly to the crack direction. b) Geometry of the simulated problem by FEA. ...............................................................125 Figure 62- Graphic representation of Mesh#A, highlighting the mesh refinement control. ...............131 Figure 63- a) Plot of the Normal Stresses in the y-direction, and b)-c) different degrees of zoom near the crack tip region. ..............................................................................................................................131 Figure 64- Comparison between the numeric results (achieved with mesh#A) and the analytical results from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length. .......................................................................................................................................................132 Figure 65- Graphic representation of the Mesh#B, highlighting the local mesh refinement control...133 Figure 66- a) Zoom of the Normal Stresses in the y-direction, in the region near the crack tip. b) Vertical displacements in the y-direction and c) a zoom near the center of the crack. ....................................133 Figure 67- Comparison between the numeric results (achieved with mesh#B) and the analytical results from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the
  • 12. xii y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length. .......................................................................................................................................................134 Figure 68- Comparison between the numeric results (achieved with mesh#C) and the analytical results from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length. .......................................................................................................................................................135 Figure 69- Comparison between the numeric results (achieved with mesh#D) and the analytical results from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length. .......................................................................................................................................................137 Figure 70- Comparison between the numeric results (achieved with mesh#E) and the analytical results from different approximation solutions and the general analytical solution (iv): a) Normal Stress in the y-direction near the crack tip. b) Vertical Displacement in the y-direction along the semi-crack length. .......................................................................................................................................................139 Figure 71- Schematic representation of the problem simulated in both Abaqusยฎ FEA solver and BaPMEF FEA tool..........................................................................................................................140 Figure 72- Plot of the finite element mesh 10 x 5 automatically created...........................................140 Figure 73- Graphic representation of the deformed mesh, computed by: a) FEA BaPMEF tool, and c) Abaqusยฎ. b) Illustration of the loading conditions and boundary conditions added to the Abaqusยฎ model. ............................................................................................................................................142 Figure 74- Horizontal displacements in x-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ. Vertical displacements in y-direction, determined by: c) MATLABยฎ FEA tool; d) Abaqusยฎ. .......................................................................................................................................................143 Figure 75- Magnitude of the displacements, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.144 Figure 76- Linear Strains in the x-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.144 Figure 77- Linear Strains in the y-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.145 Figure 78- Shear Strains xy, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ. .......................145 Figure 79- Normal Stresses in the x-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ. .......................................................................................................................................................146 Figure 80- Normal Stresses in the y-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ. .......................................................................................................................................................146 Figure 81- Shear Stresses xy, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ.......................147 Figure 82- Von Mises Equivalent Stresses, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ..147 Figure 83- Normal Stress in z-direction, determined by: a) MATLABยฎ FEA tool; b) Abaqusยฎ. .....148
  • 13. xiii List of Tables Table 1- Summary of the most important and distinct mathematical nomenclature used throughout the report................................................................................................................................................. 2 Table 2- Summary of all simplifications made to the general stiffness matrix. ...................................13 Table 3- Type of boundary-value problems for two-variable problems in 2D dimensions and the number of possible combinations for the different boundary conditions..........................................................32 Table 4- Nomenclature used in the weak formulations.......................................................................32 Table 5- Modified Pascalโ€™s triangle into a rectangular array abacus for Lagrange Quadrilateral Elements [5].....................................................................................................................................................49 Table 6- Integration Gauss points and weight coefficients for both simple and double integration, up to 3 Gauss Points [6], [32], [35]. The total possible combinations of integration points that the natural coordinates can assume is also detailed. ............................................................................................65 Table 7- Summary of 1D Gaussian Quadrature (easily extrapolated for 2D quadrature) for 4 and 5 Gauss points [6],[32], [35]..........................................................................................................................65 Table 8- Gauss points (GP), weight coefficients, and possible combinations that the natural coordinates can assume, for both simple and double integration, for 4 GP [6], [32], [35]......................................66 Table 9- Standard properties of the material used for finite element validation and comparison with commercially available software [42]................................................................................................89 Table 10- Numerical data used in the analytical solution. ................................................................103 Table 11- Numerical data and other inputs of the FEM tool.............................................................103 Table 12- Numerical data used in the analytical solution. ................................................................109 Table 13- Numerical data and other inputs of the FEM tool.............................................................109 Table 14- Numerical data used in the analytical solution. ................................................................117 Table 15- Numerical data and other inputs of the FEM tool.............................................................117 Table 16- Numerical data used in the analytical solution. ................................................................127 Table 17- Unchanged numerical data and other inputs of the FEM tool. ..........................................127 Table 18- Several features for two different structured meshes with equally spaced elements. .........128 Table 19- Mesh properties of Mesh#A, introduced during the BaPMEF input routine. .....................129 Table 20- Mesh properties of Mesh#B, introduced during the BaPMEF input routine. .....................129 Table 21- Mesh properties of Mesh#C, introduced during the BaPMEF input routine. .....................130 Table 22- Mesh properties of Mesh#D, introduced during the BaPMEF input routine. .....................136 Table 23- Mesh properties of Mesh#E, introduced during the BaPMEF input routine. .....................138 Table 24- Numerical data and other inputs of the FEM tool.............................................................141
  • 15. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 1 1 Introduction 1.1 Context of the Report This report was developed within the Finite Element Course, lectured in the Integrated Master in Mechanical Engineering โ€“ Specialty Structural Engineering and Machine Design, at Faculty of Engineering of University of Porto (FEUP). The first (but not necessarily major) goal of this report is divided in: (i) formulate an isoparametric bilinear quadrilateral element of the Lagrange family; and (ii) using the algorithm base of the BaPMEF (Base para Programaรงรฃo do Mรฉtodo dos Elementos Finitos) MATLABยฎ script, implement and present the major changes and upgrades to the code and its potential capabilities for simulating plane elasticity problems. However, the author was slightly beyond this task and also sought to demonstrate the background behind some important features of finite element discretization. 1.2 Report Structure The present report is divided in 9 main chapters, being the last numbered chapter dedicated to the conclusion. Chapter 2 is essentially theoretical, and can be seen as an extra topic that was exported from any classic elasticity theory literature, but completely reformulated in order to demonstrate and explain only the concepts fundamental to chapter 3 and necessary to really understand the Finite Element Method. Thus, this chapter can be omitted if a more practical reading is desired, without risks of misunderstanding the next chapters. In chapter 3, first a brief summary of the formulae that govern the linear elastic behavior for 2D problems is done. Then, with the concepts fresh and clear in the readerโ€™s mind, the concepts of strong and weak formulation are exposed and compared. In some FEM literature [4], the concept of strong and weak form is derived generically (i.e. for specific and different finite elements such as bar elements, triangular elements, etc.) and sometimes for problems different from solid mechanics (e.g. heat transfer field). Thus, in order to better understand the FEM background, the author: โ€ข Derived the final strong form of a 2D plane elasticity problem, which governs the mechanical behavior of any plane geometry, and theoretically allows to compute the continuous displacement field (only viable and practicable for simple geometries and boundary conditions); โ€ข Derived the weak form of the system of coupled partial differential equations, using different principles from solid mechanics and dynamics. Which, gives the reader different perspectives of the physical and mathematical meaning of weak form or weak formulation. Chapter 4, along with chapter 5 can be considered to be more closely related to the FEM formulation in practical terms. In the first mentioned chapter, the formulae and relation used in the discretizing process with the Isoparametric Quadrilateral bilinear Lagrange element were demonstrated and summarized. The numerical integration additional subchapter was added since it helps to make the bridge between chapter 4 and chapter 5. The goal of chapter 5 is to merge all the specific information detailed in chapter 4 (regarding the finite element used); with the weak form (ready to be discretized in finite domains) derived by last in chapter 3. Chapter 6 consists of a bullet list with all the modifications and changes added to the original BaPMEF script. The major upgrades detailed can be summarized as: โ€ข Pre-processing step โ€“ illustration of the interface created to easily introduce the input data by user. And elucidation of the mesh generation capabilities and mesh controls; โ€ข Processing โ€“ exposition of the major changes in the global stiffness matrix and global equivalent nodal forces; โ€ข Post-processing capabilities โ€“ illustration of the developed graphic representation capabilities (3D surfaces and/or color-plots for: displacements, strains, stresses) and the computation of the
  • 16. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 2 post-processing variables (strains or stresses in the z-direction, Von Mises equivalent stress, and safety factor); During Chapter 7, the formulated element and implemented code will be tested and validated. For this, the coded FEA tool was run in academic problems of plane elasticity. The numerical solution achieved, was compared with the known analytical solutions of the problem. The geometry and loading conditions tested were simple (to allow analytical solutions) and their goal different from the next chapter. In the final chapter 8, some applications of the developed FEA tool were detailed. The main difference between this chapter and the previous one, is that the physical problems run have no analytical solution, or are outside the Solid Mechanics field. The chapter is divided in the following subchapters: โ€ข Application 8.1 โ€“ Widen the spectrum of application, changing from the classic Solid mechanics, to the field of Fracture Mechanics. Introducing to mesh control features and study the effect of mesh refinement; โ€ข Applications 8.2.1 โ€“ Problems without analytical solution and comparison with commercially available FEA software (Abaqus) 1.3 Basic Mathematical Nomenclature In order to ease the understanding of the (sometimes heavy) mathematical treatment, the author slightly drifted away from the nomenclature usually seen in technical FEM classic literature [4], [5], [6], [7], [8]. The nomenclature used was similar to the one adopted in the Kinematics and Dynamics course, lectured at FEUP, and considered by the author more intuitive. Thus, in order to avoid misunderstandings, Table 1 details the most relevant nomenclature adopted. This only concerns generic nomenclature; each variable and symbol will be defined whenever necessary and convenient. Table 1- Summary of the most important and distinct mathematical nomenclature used throughout the report. | | Column Vector | | ๐‘‡ Row Vector [ ] Matrix of any general dimension, with the exception of a column vector det() Determinant of a square matrix โˆฌ ( ) ๐‘‘๐ด ๐ด = โˆซ ( ) ๐‘‘๐ด ๐ด Double Integral over a generic Area (A) โˆญ ( ) ๐‘‘๐‘‰ ๐‘‰ = โˆซ ( ) ๐‘‘๐‘‰ ๐‘‰ Triple Integral over a generic Volume (V) โˆฏ ( ) ๐‘‘๐‘† ๐‘† = โˆฎ ( ) ๐‘‘๐‘† ๐‘† Surface Integral over a generic surface (S) โˆฎ () ๐‘™ ๐‘‘๐‘  Line Integral over a generic curve (l) [ ๐ถ ] Stiffness tensor (or matrix) whose terms are material properties [ ๐พ ] Stiffness matrix whose terms are structure/element properties (depending on the geometry and material)
  • 17. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 3 2 Theory of Linear Elasticity for Continuum Medium 2.1 Introduction The linear elastic theory tries to model the mechanical behavior of continuum linear elastic solids. And until the current century as proven its potential in a variety of engineering problems. However, its usability lies on the capacity of assuming proper simplifications [9] In this chapter, the basic constitutive equations for 2D linear elasticity will be derived. The equations here demonstrated, are fundamental and will be directly used for the formulation of the finite element. Thus, this chapter can be considered as a literature review section. And, if the reader already masters the basic concepts of linear elasticity, it can skip directly to chapter 3. The approach followed is similar to the one typically carried in solid mechanics or strength of materials classic literature. Basic concepts (valid for generic 3D anisotropic behavior) are progressively simplified and particularized aiming the physical or engineering application in hands, in this case, the 2D problem constitutive equations. The major difference might be the depth of study. The starting point was the formulation of the stress and strain tensor in their generic form (considering already the linear elastic assumptions). After deriving the two second order tensors, and underlining their assumptions, the relation between the two was considered. Videlicet, the generalized Hookeโ€™s Law was stated and explored. Supported in concepts previously discussed, and some referred within the last subchapter, the Generalized Hookeโ€™s Law will be continuously simplified until reaching the most often used and refined formula in 2D linear elasticity. The equations of motion will first be presented within the stress tensor definition subchapter. However, later it will be dedicated a specific section for 2D dynamic equilibrium. 2.2 Stress Tensor In terms of continuum mechanics, anisotropic materials are materials that have different mechanical properties depending on the direction of measurement. Concerning the mechanical behavior, only the stiffness moduli and limit elastic stress parameters will be relevant. Concerning others fields of interest, the anisotropy concept can be generalized, and we end up with anisotropy throughout the solid relating to: thermal conductivity, magnetic permeability, refraction index, etc. [10]. From the solid mechanics of homogeneous materials1 [10], the tension matrix is a second order tensor with 3x3 dimension. This second order Cartesian tensor is also called the Cauchy Stress Tensor and has the form [11]: [ ๐œŽ ] = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ( 2.1 ) The nomenclature adopted in the definition of the stresses, is illustrated in Figure 1. In index notation, the stress ( )๐‘–๐‘— corresponds to the stress component acting in the j-direction, on a surface or plane normal to i-direction. In other words, the first subscript refers to the plane in which the stress acts; and the second subscript the direction about which the stress acts. Regarding the algebraic value, the positive sign will be left for tension stresses and the negative for compression stresses. 1 Homogeneous materials are materials in which the mechanical properties of any given point are equal to the specific properties of the solid. In other words, macroscopically, the specific properties are independent of the point of analysis [10].
  • 18. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 4 The previous tensor shown in equation ( 2.1 ) has 9 terms; however, it can be shown that only 6 of them are independent. The stress matrix is symmetric to its main diagonal, and the symmetry conditions or relations are also called the reciprocity property of the stress tensor. The symmetry relations can be derived by the following principles or Cauchy Equations of Motion [1]: โ€ข According to the principle of conservation of linear momentum, if the continuum body is in static equilibrium it can be demonstrated that the components of the Cauchy stress tensor in every material point in the body satisfies the linear equilibrium equation (equation of motion for null acceleration)2 . [ ๐œŽ ] โˆ‡ + | ๐‘“ | = | ๐‘Ž | = | 0 | โ‡’ ( 2.2 ) [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] [ ๐œ• ๐œ•๐‘ฅ ๐œ• ๐œ•๐‘ฆ ๐œ• ๐œ•๐‘ฅ ] ๐œŒ๐‘‘๐‘‰ + | ๐‘“๐‘ฅ ๐‘“๐‘ฆ ๐‘“๐‘ง | ๐œŒ๐‘‘๐‘‰ = | ๐‘Ž ๐‘ฅ ๐‘Ž ๐‘ฆ ๐‘Ž ๐‘ง | ๐œŒ๐‘‘๐‘‰ = | 0 0 0 | ( 2.3 ) Or making explicit each component of the vector equation comes: ( ๐œ•๐œŽ๐‘ฅ๐‘ฅ ๐œ•๐‘ฅ + ๐œ•๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ฆ + ๐œ•๐œ ๐‘ฅ๐‘ง ๐œ•๐‘ง ) + ๐‘“๐‘ฅ = ๐œŒ โˆ™ ๐‘Ž ๐‘ฅ = ๐œŒ โˆ™ ๐œ•2 ๐œ•๐‘ก2 ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 2.4 ) ( ๐œ•๐œ ๐‘ฆ๐‘ฅ ๐œ•๐‘ฅ + ๐œ•๐œŽ ๐‘ฆ๐‘ฆ ๐œ•๐‘ฆ + ๐œ•๐œ ๐‘ฆ๐‘ง ๐œ•๐‘ง ) + ๐‘“๐‘ฆ = ๐œŒ โˆ™ ๐‘Ž ๐‘ฆ = ๐œŒ โˆ™ ๐œ•2 ๐œ•๐‘ก2 ๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 2.5 ) ( ๐œ•๐œ ๐‘ง๐‘ฅ ๐œ•๐‘ฅ + ๐œ•๐œ ๐‘ง๐‘ฆ ๐œ•๐‘ฆ + ๐œ•๐œŽ๐‘ง๐‘ง ๐œ•๐‘ง ) + ๐‘“๐‘ง = ๐œŒ โˆ™ ๐‘Ž ๐‘ง = ๐œŒ โˆ™ ๐œ•2 ๐œ•๐‘ก2 ๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 2.6 ) ๐‘Ž Total acceleration = local acceleration + convective acceleration ๐‘“๐‘ฅ, ๐‘“๐‘ฆ, ๐‘“๐‘ง Volume forces acting on the x, y, and z direction respectively ๐‘‘๐‘‰ Differential of Volume, ๐‘‘๐‘‰ = ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง 2 The Cauchy Equation for the Conservation of Linear Momentum will be important in the formulation of the finite element. ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐‘ฆ ๐‘ฅ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฅ๐‘ง ๐‘ง ๐‘ฅ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐‘ง ๐‘ฆ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฆ๐‘ง Figure 1- Definition of the nomenclature adopted for shear stresses acting on the differential volume element [1].
  • 19. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 5 โ€ข According to the analogous principle regarding the conservation of angular momentum, the angular equilibrium requires that the summation of moments with respect to an arbitrary axis is null. Analytically it can be written: [(๐œ ๐‘ฆ๐‘ง + ๐œ•๐œ ๐‘ฆ๐‘ง ๐œ•๐‘ฆ ๐‘‘๐‘ฆ 2 ) + (๐œ ๐‘ฆ๐‘ง โˆ’ ๐œ•๐œ ๐‘ฆ๐‘ง ๐œ•๐‘ฆ ๐‘‘๐‘ฆ 2 ) โˆ’ (๐œ ๐‘ง๐‘ฆ + ๐œ•๐œ ๐‘ง๐‘ฆ ๐œ•๐‘ง ๐‘‘๐‘ง 2 ) โˆ’ (๐œ ๐‘ง๐‘ฆ โˆ’ ๐œ•๐œ ๐‘ง๐‘ฆ ๐œ•๐‘ง ๐‘‘๐‘ง 2 )] ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง 2 = 0 ( 2.7 ) [โˆ’ (๐œ ๐‘ฅ๐‘ง + ๐œ•๐œ ๐‘ฅ๐‘ง ๐œ•๐‘ฅ ๐‘‘๐‘ฅ 2 ) โˆ’ (๐œ ๐‘ฅ๐‘ง โˆ’ ๐œ•๐œ ๐‘ฅ๐‘ง ๐œ•๐‘ฅ ๐‘‘๐‘ฅ 2 ) + (๐œ ๐‘ง๐‘ฅ + ๐œ•๐œ ๐‘ง๐‘ฅ ๐œ•๐‘ง ๐‘‘๐‘ง 2 ) + (๐œ ๐‘ง๐‘ฅ โˆ’ ๐œ•๐œ ๐‘ง๐‘ฅ ๐œ•๐‘ง ๐‘‘๐‘ง 2 )] ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง 2 = 0 ( 2.8 ) [(๐œ ๐‘ฅ๐‘ฆ + ๐œ•๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ฅ ๐‘‘๐‘ฅ 2 ) + (๐œ ๐‘ฅ๐‘ฆ โˆ’ ๐œ•๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ฅ ๐‘‘๐‘ฅ 2 ) โˆ’ (๐œ ๐‘ฆ๐‘ฅ + ๐œ•๐œ ๐‘ฆ๐‘ฅ ๐œ•๐‘ฆ ๐‘‘๐‘ฆ 2 ) โˆ’ (๐œ ๐‘ฆ๐‘ฅ โˆ’ ๐œ•๐œ ๐‘ฆ๐‘ฅ ๐œ•๐‘ฆ ๐‘‘๐‘ฆ 2 )] ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง 2 = 0 ( 2.9 ) The vector equilibrium equation will degenerate in the symmetry relations. They can now be easily obtained by just solving the three angular momentum equilibrium equations. The final relations are: ๐œ ๐‘ฆ๐‘ง = ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฅ๐‘ง = ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ = ๐œ ๐‘ฆ๐‘ฅ ( 2.10 ) From equation ( 2.1 ) and ( 2.10 ) we can finally write: [ ๐œŽ ] = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง ] = [ ๐œŽ ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง ] ( 2.11 ) As indexed in the definition of second order tensor, equation ( 2.1 ) encloses the cartesian components for a surface perpendicular to each one of the cartesian coordinate axis, as detailed in the following equation: [ ๐œŽ ] = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] = [ | ๐‘‡ ๐‘’ ๐‘ฅ | ๐‘‡ | ๐‘‡ ๐‘’ ๐‘ฆ | ๐‘‡ | ๐‘‡ ๐‘’ ๐‘ง | ๐‘‡ ] ( 2.12 ) Where: | ๐‘‡ ๐‘’ ๐‘ฅ | Stress vector acting on plane normal to x-direction | ๐‘‡ ๐‘’ ๐‘ฆ | Stress vector acting on plane normal to y-direction | ๐‘‡ ๐‘’ ๐‘ง | Stress vector acting on plane normal to z-direction In a similar manner, the Cauchy Equation [1], allows to compute the resulting stress vector, perpendicular to any arbitrary plane, acting on a generic point of coordinates (x,y,z). The Cauchy relation
  • 20. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 6 can be given in two matrix forms, a condensed and a more explicit form. The two are respectively given by: | ๐‘‡ | = [ ๐œŽ ] ๐‘‡ | ๐‘› | โ‡’ | ๐‘‡ | = [ | ๐‘‡ ๐‘’ ๐‘ฅ | ๐‘‡ | ๐‘‡ ๐‘’ ๐‘ฆ | ๐‘‡ | ๐‘‡ ๐‘’ ๐‘ง | ๐‘‡ ] ๐‘‡ | ๐‘› | ( 2.13 ) | ๐‘‡๐‘ฅ ๐‘‡๐‘ฆ ๐‘‡๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง ] | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | ( 2.14 ) Where: | ๐‘› | Vector of the direction cosines perpendicular to an arbitrary plane [ ๐œŽ ] Stress tensor matrix | ๐‘‡ | Stress vector acting on a plane with normal unit vector | ๐‘›| Or considering the symmetry stated in the final equation ( 2.11 ), by the properties of the transposition operation of a matrix it results: [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง ] ( 2.15 ) | ๐‘‡๐‘ฅ ๐‘‡๐‘ฆ ๐‘‡๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง ] | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | ( 2.16 ) The Cauchy equation can be usually demonstrated by writing the static equilibrium equations: (i) for an infinitesimal interior tetrahedron element of a linear elastic body - in the case of 3D general case; (ii) or for an infinitesimal triangle - in the case of 2D particular case. Figure 2 illustrates both cases. z x y๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด ๐‘ง โˆ’๐‘‡ ๐‘’ ๐‘ง โˆ’๐‘‡ ๐‘’ ๐‘ฅ โˆ’๐‘‡ ๐‘’ ๐‘ฆ ๐‘‡ ๐‘‘๐‘š = ๐œŒ๐‘‘๐‘‰ a) b) Figure 2- a) Cauchy tetrahedron formed by slicing a parallelepiped along an arbitrary plane define by the normal vector | ๐‘›|. b) Infinitesimal triangular portion of a generic 2D body. ๐‘‘๐›ค ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฆ๐‘ฅ y x ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ ๐‘› ๐‘ฅ ๐‘›โƒ— ๐‘‡
  • 21. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 7 Regarding the 3D general case: โ€ข By basic analytical geometry it is possible to derive the following relations between the infinitesimal quantities [12]: { ๐‘‘๐ด ๐‘ฅ = ๐‘‘๐ด ๐‘› ๐‘ฅ ๐‘‘๐ด ๐‘ฆ = ๐‘‘๐ด ๐‘› ๐‘ฆ ๐‘‘๐ด ๐‘ง = ๐‘‘๐ด ๐‘› ๐‘ง โ‡’ { ๐‘› ๐‘ฅ = ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด ๐‘› ๐‘ฆ = ๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด ๐‘› ๐‘ง = ๐‘‘๐ด ๐‘ง ๐‘‘๐ด ( 2.17 ) โ€ข Verifying the Static Equilibrium condition comes: { โˆ‘ ๐น๐‘ฅ = 0 โˆ‘ ๐น๐‘ฆ = 0 โˆ‘ ๐น๐‘ง = 0 โ‡’ { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ฅ ๐‘‘๐ด = 0 โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฆ ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ฆ ๐‘‘๐ด = 0 โˆ’๐œ ๐‘ฅ๐‘ง ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ง ๐‘‘๐ด = 0 ( 2.18 ) โ€ข Dividing both members of each equation by the area of the arbitrarily inclined surface ( dA ): { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘‘๐ด ๐‘ง ๐‘‘๐ด + ๐‘‡๐‘ฅ = 0 โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด โˆ’ ๐œ ๐‘ง๐‘ฆ ๐ด ๐‘ง ๐‘‘๐ด + ๐‘‡๐‘ฆ = 0 โˆ’๐œ ๐‘ฅ๐‘ง ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘‘๐ด ๐‘ง ๐‘‘๐ด + ๐‘‡๐‘ง = 0 ( 2.19 ) โ€ข By the relations between the infinitesimals, equation ( 2.17 ), and manipulating the terms comes: { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘› ๐‘ง + ๐‘‡๐‘ฅ = 0 โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฆ ๐‘› ๐‘ง + ๐‘‡๐‘ฆ = 0 โˆ’๐œ ๐‘ฅ๐‘ง ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘› ๐‘ฆ โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘› ๐‘ง + ๐‘‡๐‘ง = 0 โ‡’ { ๐‘‡๐‘ฅ = ๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ + ๐œ ๐‘ง๐‘ฅ ๐‘› ๐‘ง ๐‘‡๐‘ฆ = ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ + ๐œ ๐‘ง๐‘ฆ ๐‘› ๐‘ง ๐‘‡๐‘ง = ๐œ ๐‘ฅ๐‘ง ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ง ๐‘› ๐‘ฆ + ๐œŽ๐‘ง๐‘ง ๐‘› ๐‘ง ( 2.20 ) โ€ข In the matrix form comes: | ๐‘‡๐‘ฅ ๐‘‡๐‘ฆ ๐‘‡๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง ] | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | ( 2.21 ) Or regarding the 2D case: โ€ข The previous relations between the infinitesimals come: { ๐‘‘๐ด ๐‘ฅ = ๐‘‘๐ด ๐‘› ๐‘ฅ ๐‘‘๐ด ๐‘ฆ = ๐‘‘๐ด ๐‘› ๐‘ฆ โ‡’ { ๐‘‘๐‘ฆ๐‘‘๐‘ง = ๐‘‘๐›ค๐‘‘๐‘ง ๐‘› ๐‘ฅ ๐‘‘๐‘ฅ๐‘‘๐‘ง = ๐‘‘๐›ค๐‘‘๐‘ง ๐‘› ๐‘ฆ โ‡’ { ๐‘‘๐‘ฅ = ๐‘‘๐›ค ๐‘› ๐‘ฅ ๐‘‘๐‘ฆ = ๐‘‘๐›ค ๐‘› ๐‘ฆ โ‡’ { ๐‘› ๐‘ฅ = ๐‘‘๐‘ฆ ๐‘‘๐›ค ๐‘› ๐‘ฆ = ๐‘‘๐‘ฅ ๐‘‘๐›ค ( 2.22 )
  • 22. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 8 โ€ข Verifying the Static Equilibrium condition comes: { โˆ‘ ๐น๐‘ฅ = 0 โˆ‘ ๐น๐‘ฆ = 0 โ‡’ { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐‘ฆ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐‘ฅ + ๐‘‡๐‘ฅ ๐‘‘๐›ค = 0 โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐‘ฅ โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ + ๐‘‡๐‘ฆ ๐‘‘๐›ค = 0 ( 2.23 ) โ€ข Dividing both members of each equation by the length of the arbitrarily inclined surface ( dฮ“ ): { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐›ค โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐›ค + ๐‘‡๐‘ฅ = 0 โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐‘ฅ ๐‘‘๐›ค โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ ๐‘‘๐›ค + ๐‘‡๐‘ฆ = 0 ( 2.24 ) โ€ข By the relations between the infinitesimals, equation ( 2.22 ), and manipulating the terms comes: { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ + ๐‘‡๐‘ฅ = 0 โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐‘‡๐‘ฆ = 0 โ‡’ { ๐‘‡๐‘ฅ = ๐œŽ ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ ๐‘‡๐‘ฆ = ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฅ ( 2.25 ) โ€ข In the matrix form comes: | ๐‘‡๐‘ฅ ๐‘‡๐‘ฆ | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ] | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ] ๐‘‡ | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ | ( 2.26 ) 2.3 Strain Tensor The magnitude of the strains and displacements (linear displacements or rotations) can influence the mathematical definition of strain. The main theories applied to the continuum mechanics are [13], [14]: โ€ข Small Strains and small Displacements/rotations theory or infinitesimal strain theoryโ€“ used to solve most practical engineering problems that deal with common materials like wood, steel and other alloys; โ€ข Small Strains and large Displacements theory โ€“ essential to model materials and structures that can withstand large displacements without entering the plastic domain, i.e. remaining elastic; โ€ข Finite Strains and Displacements theory โ€“ necessary to model structures and materials where the deformed and undeformed configuration is significantly different. These arbitrarily large strains and displacements (linear or angular) can occur in materials with the mechanical behavior of elastomers, fluids, biological (or not) soft tissues. For small strains and small displacements (both linear and angular) the change in the geometry and constitutive properties of the structure, due to deformation, doesnโ€™t need to be considered after the force is applied. In other words, physical and mechanical properties of the material e.g. density, stiffness, etc. at each point of the infinitesimally deformed solid, can be assumed constant [10]. This definition of strain is also designed by Cauchy strains, and it will be the strain concept used throughout the report. The strain tensor or Cauchy strain tensor is also a second order tensor, and its 3x3 matrix is given by: [ ๐œ€ ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง ] ( 2.27 )
  • 23. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 9 The nomenclature adopted in the definition of the strains is rather different from the stress nomenclature. In index notation, the strain term ( )๐‘–๐‘— means: when ๐‘– = ๐‘— , the term corresponds to the extension along the ๐‘–-direction; when ๐‘– โ‰  ๐‘— , the term of the strain matrix corresponds to the rotation about the ij plane. Regarding its algebraic value, as schematized in Figure 3, the positive sign will be ascribed when the angle between the two faces of the conceptual parallelogram is reduced, and the negative sign when the angle increases. The geometric definition of strains is demonstrated and detailed in [11], [1]. The linear strain (also designated by longitudinal strain, linear deformation, extension, etc.) is quantified by the on- diagonal matrix components ๐œ€ ๐‘ฅ๐‘ฅ , ๐œ€ ๐‘ฆ๐‘ฆ , ๐œ€ ๐‘ง๐‘ง . The remaining non-diagonal terms correspond to the angular strain (also designated by shear strain, angular deformation, distortion, etc.). The relation of each term of the strain tensor, with the displacement field is given by [1]: ๐œ€ ๐‘ฅ๐‘ฅ = ๐œ•๐‘ข ๐œ•๐‘ฅ ; ๐œ€ ๐‘ฆ๐‘ฆ = ๐œ•๐‘ฃ ๐œ•๐‘ฆ ; ๐œ€ ๐‘ง๐‘ง = ๐œ•๐‘ค ๐œ•๐‘ง ( 2.28 ) ๐œ€ ๐‘ฅ๐‘ฆ = ๐œ€ ๐‘ฆ๐‘ฅ = 1 2 ( ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐œ•๐‘ฃ ๐œ•๐‘ฅ ) ; ๐œ€ ๐‘ฆ๐‘ง = ๐œ€ ๐‘ง๐‘ฆ = 1 2 ( ๐œ•๐‘ฃ ๐œ•๐‘ง + ๐œ•๐‘ค ๐œ•๐‘ฆ ) ; ๐œ€ ๐‘ฅ๐‘ง = ๐œ€ ๐‘ง๐‘ฅ = 1 2 ( ๐œ•๐‘ข ๐œ•๐‘ง + ๐œ•๐‘ค ๐œ•๐‘ฅ ) ( 2.29 ) The geometric relation between strain and displacements can also be written in matrix form as: | ๐œ€ | = | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ฅ๐‘ง | | | = [ ๐œ• ๐œ•๐‘ฅ 0 0 0 ๐œ• ๐œ•๐‘ฆ 0 0 0 ๐œ• ๐œ•๐‘ง 1 2 ๐œ• ๐œ•๐‘ฆ 1 2 ๐œ• ๐œ•๐‘ฅ 0 0 1 2 ๐œ• ๐œ•๐‘ง 1 2 ๐œ• ๐œ•๐‘ฆ 1 2 ๐œ• ๐œ•๐‘ง 0 1 2 ๐œ• ๐œ•๐‘ฅ ] | ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง) ๐‘ฃ( ๐‘ฅ, ๐‘ฆ, ๐‘ง) ๐‘ค( ๐‘ฅ, ๐‘ฆ, ๐‘ง) | ( 2.30 ) Other main contrast regarding the stress tensor and strain tensor, is the difference between tensorial and engineering strain for angular distortion. The angular distortion can be quantified in terms of engineering shear strain (also called global strain), or tensorial shear strain. The engineering shear strain can be considered as the total rotation of the 2D cartesian element subjected to shear stresses or the total change of the original angle formed by the undeformed element; whereas the tensorial shear strain can be understood as the average of the two displacements or the amount that each edge rotates in average. This difference is illustrated in Figure 3, and the two are related by the following vector equation [11]: | | | ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฆ๐‘ฅ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ง๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ง๐‘ฅ | | | = | | | 2๐œ€ ๐‘ฅ๐‘ฆ 2๐œ€ ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ง 2๐œ€ ๐‘ง๐‘ฆ 2๐œ€ ๐‘ฅ๐‘ง 2๐œ€ ๐‘ง๐‘ฅ | | | ( 2.31 )
  • 24. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 10 Their importance arises from the convenience of replacing the general symmetry of the stiffness matrix (after continuous simplifications), as it will be explored in the next subchapter (see Page 12). In the matrix form, the previous relations can be written as: [ ๐œ€ ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง ] = 1 2 [ 2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ 2๐œ€ ๐‘ง๐‘ง ] ( 2.32 ) The properties of a tensor wonโ€™t be remembered in this report [10]; however, it is always worth notice that the following matrix is not a tensor!! [ ๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง ] ( 2.33 ) The symmetry property for the strain tensor matrix is derived meticulously in [11]. By the displacement field geometric definition, and neglecting the second order terms (for small strains and displacements, both linear and angular) itโ€™s possible to verify the strain tensor symmetry. The symmetry relations relating the shear distortion come: ๐›พ๐‘ฆ๐‘ง = ๐›พ๐‘ง๐‘ฆ ๐›พ๐‘ฅ๐‘ง = ๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ = ๐›พ๐‘ฆ๐‘ฅ ( 2.34 ) From equation ( 2.27 ), ( 2.32 ) and ( 2.34 ) it is possible to finally write the strain tensor in tensorial strains or engineering strains as: [ ๐œ€ ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ง ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง โ€ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œ€ ๐‘ง๐‘ง ] ( 2.35 ) [ ๐œ€ ] = 1 2 [ 2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ 2๐œ€ ๐‘ง๐‘ง ] = 1 2 [ 2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฅ๐‘ฆ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ง 2๐œ€ ๐‘ง๐‘ง ] = 1 2 [ 2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง โ€ฆ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง โ€ฆ โ€ฆ 2๐œ€ ๐‘ง๐‘ง ] ( 2.36 ) Figure 3- Nomenclature adopted for the shear stress definition, for the distortion of the differential Cartesian element. ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ข ๐œ•๐‘ฆ ๐‘ฅ ๐œ•๐‘ฃ ๐œ•๐‘ฅ ๐‘ฆ ๐‘ฅ ๐›พ = ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐œ•๐‘ฃ ๐œ•๐‘ฅ ๐›พ/2 ๐‘ฆ ๐‘ฅ ๐›พ = ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐œ•๐‘ฃ ๐œ•๐‘ฅ๐›พ/2
  • 25. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 11 2.4 Generalized Hookeโ€™s Law Cauchy Elastic Materials or Simple Elastic Materials are materials for which the stress at a given point is just function of the instantaneous strain. In other words, the stresses donโ€™t depend of the strain path, strain history, strain rate, and the time taken to achieve a given deformation field [15]. Cauchy materials theoretical definition also implies: โ€ข Homogeneous materials โ€“ the constitutive properties are independent of the point of analysis, i.e. the terms of the stiffness matrix are not point functions; โ€ข Temperature effect is ignored โ€“ even if there are thermal strains and/or residual stresses, the effect of the temperature change in the properties of the material is neglected. Assuming the previous hypothesis, the stress second order tensor is related by a second order- valued function with the strain second order tensor as follows: [ ๐œŽ ] = ๐‘“ ( [ ๐œ€ ] ) ( 2.37 ) Considering that the stresses are a linear and homogeneous combination or function of the strains, the contribution factors are in fact the elastic coefficients that characterize the mechanical behavior of the material, i.e. are a property of the material. Historically the British engineer Robert Hooke was the first to study this linear relation between the stress and strain [1]. Thatโ€™s why the generalize relationship of anisotropic materials - for spatial or triaxial stresses and strains - is called Generalize Hookeโ€™s Law. Itโ€™s a constitutive model for infinitesimal deformation of a linear elastic material, in which the relation between stress and strains is model by a 4th order tensor that linearly maps between second-order tensors [14]. The elasticity tensor will result in a 9x9 elastic coefficient matrix. Hookeโ€™s law can be presented: in terms of a stiffness tensor or matrix ([ ๐ถ ]), putting in evidence the stress; or in terms of compliance tensor or matrix ([ ๐‘† ]), in which the response function linking strain to the deforming stress is the compliance tensor of the material. The matrix form of Hookeโ€™s Law can be written as: | ๐œŽ | = [ ๐ถ ] | ๐œ€ | = [ ๐ท ] | ๐œ€ | ( 2.38 ) | ๐œ€ | = [ ๐‘† ] | ๐œŽ | ( 2.39 ) Or explicitly as: | | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ | | | = [ ๐ถ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฅ ๐ถ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ๐‘ง๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ๐‘ง๐‘ฅ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ ๐‘ฆ๐‘ฅ ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ ๐‘ฆ๐‘ฅ ๐‘ฆ๐‘ฅ ] | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฅ | | | ( 2.40 ) | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฅ | | | = [ ๐‘† ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฅ ๐‘† ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘†๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘† ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘† ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘† ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘†๐‘ง๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘†๐‘ง๐‘ฅ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘† ๐‘ฆ๐‘ฅ ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘† ๐‘ฆ๐‘ฅ ๐‘ฆ๐‘ฅ ] | | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ | | | ( 2.41 )
  • 26. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 12 The main root of the indexical notation is very similar for the coefficients of both stiffness and compliance matrixes. However, its meaning is exactly the opposite: โ€ข The generic stiffness coefficient ๐ถ ๐‘–๐‘—, corresponds to the stress component acting on the i- direction due to a strain imposed in j-direction, while constraining to zero the strains in the remaining directions; โ€ข Whereas the generic compliance coefficient ๐‘† ๐‘–๐‘—, corresponds to the strain component about the ๐‘–-direction due to a stress applied in the ๐‘—-direction, while keeping null the remaining stresses. Without making any further assumption, to apply the Generalized Hookeโ€™s Law it would be necessary to define 81 elastic terms to compute the coefficient matrix (whether in its Stiffness or Compliance form). From the stress symmetry and strain symmetry relations (reciprocity relations), detailed in subchapter 2.2 and 2.3 respectively, it is possible to further simplify this matrix to a more treatable form, as schematized in the following schematic equation: | | | ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ง๐‘ง ( ) ๐‘ฆ๐‘ง ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ | | | = [ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’ ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ง๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ง๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ง โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’] | | | ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ง๐‘ง ( ) ๐‘ฆ๐‘ง ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ | | | ( 2.42 ) In order to simplify equation ( 2.42 ), it is not possible to directly eliminate all unnecessary terms. Thus, in order that equation ( 2.42 ) preserves its meaning, the reciprocity property from both stresses and strains implies the addition of the term 2 (due to the equal in value missing terms that were eliminated). | | ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ง๐‘ง ( ) ๐‘ฆ๐‘ง ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฅ๐‘ฆ | | = [ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆ] | | ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ง๐‘ง ( ) ๐‘ฆ๐‘ง ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฅ๐‘ฆ | | ( 2.43 ) After simplification of the 4th order coefficientsโ€™ tensor, the matrix lost its symmetry. The importance of the engineering strains can now be fully understood. Instead of using the tensorial strains, if the engineering strains were used, the symmetry of the matrix is restored, as detailed in [16]. Applying any energetic theorem e.g. Virtual Work Theorem, Minimum Potential Energy, Maxwell-Betti Theorem, etc. [17], it is possible to prove that the matrix from the 4th order tensor that relates stress and strains in an elastic and loaded rigid body is symmetric. However, a different approach was taken. In order to prove the symmetry of the elastic coefficient matrix, the concept of strain energy density function is introduced. Conservative materials or Green Materials or Hyper-elastic materials are a special case of Cauchy elastic materials (or simple elastic material), for which the stress-strain relation derives from a strain energy density function [18]: โ€ข Conservative materials possess a strain energy density function or energy potential, and this energy potential is given by, ๐œŽ๐‘Ÿ๐‘  = ๐œ•๐‘ˆ๐‘Ÿ๐‘  ๐œ•๐œ€ ๐‘Ÿ๐‘  ( 2.44 )
  • 27. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 13 โ€ข Assuming linear stresses and strains, | ๐œŽ | = [ ๐ถ ] | ๐œ€ | โ‡’ ๐œŽ๐‘–๐‘— = ๐ถ๐‘–๐‘— ๐‘˜๐‘™ โˆ™ ๐œ€ ๐‘˜๐‘™ ( 2.45 ) โ€ข The elastic energy is finally given by, ๐ถ๐‘–๐‘— ๐‘˜๐‘™ โˆ™ ๐œ€ ๐‘Ÿ๐‘  = ๐œ•๐‘ˆ๐‘Ÿ๐‘  ๐œ•๐œ€ ๐‘Ÿ๐‘  ; ๐‘Ÿ๐‘  = ๐‘˜๐‘™ ( 2.46 ) โ€ข Differentiating the previous equation to respect to ๐œ€ ๐‘˜๐‘™ or ๐œ€๐‘–๐‘— we get, ๐ถ๐‘–๐‘— ๐‘˜๐‘™ = ๐œ•2 ๐‘ˆ๐‘–๐‘— ๐œ•๐œ€๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™ ๐ถ๐‘˜๐‘™ ๐‘–๐‘— = ๐œ•2 ๐‘ˆ๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™ ๐œ•๐œ€๐‘–๐‘— ( 2.47 ) โ€ข Which finally ends up in the symmetry relation: ๐ถ๐‘–๐‘— ๐‘˜๐‘™ = ๐œ•2 ๐‘ˆ๐‘–๐‘— ๐œ•๐œ€๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™ = ๐œ•2 ๐‘ˆ๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™ ๐œ•๐œ€๐‘–๐‘— = ๐ถ๐‘˜๐‘™ ๐‘–๐‘— โ‡’ ๐ถ๐‘–๐‘— ๐‘˜๐‘™ = ๐ถ๐‘˜๐‘™ ๐‘–๐‘— ( 2.48 ) The vast majority of engineering materials are conservative, as a result, the symmetry of the stiffness and compliance matrices is verified for most of common engineering problems. After all previous simplifications summarized in Table 2, the Generalized Hookeโ€™s Law for a conservative anisotropic material is a 6x6 elastic matrix, and now only involves the knowledge of 21 unknown elastic terms or parameters (only 21 stiffness components are actually independent in Hooke's law), and it can be written in the form bellow: | | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | | = [ ๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16 โ€ฆ ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26 โ€ฆ โ€ฆ ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36 โ€ฆ โ€ฆ โ€ฆ ๐ถ44 ๐ถ45 ๐ถ46 โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ55 ๐ถ56 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ66 ] | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | | ( 2.49 ) Table 2- Summary of all simplifications made to the general stiffness matrix. Property Number of Dependent terms Original Number of terms 81 = 9 x 9 Stress Reciprocity 18 + 9* After Reciprocity Reduction 36 = 6 x 6 Strain Reciprocity 18 + 9* Symmetry of the Stiffness matrix 15 After Matrix Symmetry Reduction 21 = 6 โˆ™ (6 + 1) 2 * 9 terms are automatically and simultaneously eliminated by the reciprocity property of both stresses and strains
  • 28. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 14 2.5 Transformation Matrix The transformation matrix allows to change the stress, the strain, or even the stiffness/compliance tensor from one coordinate system to another generically transformed coordinate system. In its completely general form, the transformation matrix is given by: [ ๐‘‡ ] = [ cos( ๐›ผ ๐‘ฅโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘ฅโ€ฒ ๐‘ฆ) cos( ๐›ผ ๐‘ฅโ€ฒ ๐‘ง) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ฆ) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ง) cos( ๐›ผ ๐‘งโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘งโ€ฒ ๐‘ฆ) cos( ๐›ผ ๐‘งโ€ฒ ๐‘ง) ] ( 2.50 ) The mathematical meaning of the angles of the transformation matrix, equation ( 2.50 ), is illustrated in Figure 4 for the particular case of the transformed ๐‘ฅโ€™-axis. Using a similar principle, the remaining rotation angles could also be drawn. Usually, the direction cosines from equation ( 2.50 ), are hard to compute individually. So, the transformation matrix can also be determined by the combination of three (simpler) transformation in respect to only one axis. The most used combination is designated as Euler Angles (or x-convention) and is determined by: [๐‘‡] = [ โˆ’ cos( ๐œ“) sin( ๐œ“) 0 sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] ๐‘ง [ 1 0 0 0 cos( ๐œƒ) sin( ๐œƒ) 0 โˆ’sin( ๐œƒ) cos( ๐œƒ) ] ๐‘ฅ [ โˆ’ cos( ๐œ‘) sin( ๐œ‘) 0 sin( ๐œ‘) cos( ๐œ‘) 0 0 0 1 ] ๐‘ง ( 2.51 ) The physical meaning of the three rotation angles is given in Figure 5 and Figure 6. Since the matrix multiplication operation isnโ€™t commutative, the order of rotation matters, Counter-clockwise rotation was considered as a positive rotation for all angles. ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ฅโ€ฒ ๐›ผ ๐‘ฅโ€ฒ ๐‘ฅ ๐›ผ ๐‘ฅโ€ฒ ๐‘ฆ ๐›ผ ๐‘ฅโ€ฒ ๐‘ง Figure 4- Illustration of the angles between the transformed ๐‘ฅโ€™-axis and the original cartesian coordinate system. Figure 5- Illustration of the individual rotations of the Euler angles. Image adapted from [2].
  • 29. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 15 Since this report is essentially dedicated to plane elasticity, for the 2D case, the only possible transformation consists in a rotation around the z-axis, and the transformation matrix s given by: [๐‘‡] = [ โˆ’ cos( ๐œ“) sin( ๐œ“) 0 sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] ๐‘ง ( 2.52 ) If orthotropic or other material behaviors were considered, it would be necessary to apply the transformation matrix to the stress, strain and stiffness tensor as follows [16]: [ ๐œŽโ€ฒ ] = [ ๐‘‡ ] [ ๐œŽ ] [ ๐‘‡ ] ๐‘‡ ( 2.53 ) [ ๐œ€โ€ฒ ] = [ ๐‘‡ ] [ ๐œ€ ] [ ๐‘‡ ] ๐‘‡ ( 2.54 ) [ ๐œ‘โ€ฒ ] = [ ๐‘‡ ] [ ๐œ‘ ] [ ๐‘‡ ] ๐‘‡ ( 2.55 ) The demonstration wonโ€™t be detailed here [10], since it wasnโ€™t necessary for this report and a similar demonstration was conducted in subchapter 5.3. However, after the several simplifications applied to all tensors, the stress vector, strain vector, and stiffness matrix, would be computed by [16]: | ๐œŽโ€ฒ | = [ ๐‘‡โˆ— ] | ๐œŽ | ( 2.56 ) | ๐œ€โ€ฒ | = [ ๐‘‡โˆ—โˆ— ] | ๐œ€ | ( 2.57 ) [ ๐ถโ€ฒ ] = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ—โˆ— ] ๐‘‡ ( 2.58 ) A final comment should be done, regarding the misguiding meaning of the transformation matrix in technical literature of different fields. In solid mechanics, the transformation matrix assumes that the mathematical entities are static, while the coordinate system is changed. Whereas the rotation matrix usually designated also as transformation matrix, changes the entities while the coordinate system remains the same. ๐œ“ ๐‘ฅโ€ฒ ๐‘ฆโ€ฒ ๐‘ฆ ๐‘ฅ ๐œ“ ๐œƒ ๐‘ฆโ€ฒโ€ฒ ๐‘งโ€ฒ ๐‘ง ๐‘ฆ ๐œƒ Figure 6- Definition of the nomenclature used to define the coordinates transformation matrix. The ๐œƒ, ๐œ‘, and ๐œ“, represent the rotation angle about the z, x and y axis respectively. ๐œ‘ ๐‘ฅโ€ฒโ€ฒ ๐‘ฆโ€ฒโ€ฒโ€ฒ ๐‘ฆโ€ฒโ€ฒ ๐‘ฅโ€ฒโ€ฒ ๐œ‘
  • 30. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 16 2.6 2D Linear Elasticity 2D linear elasticity theory provides the mathematical model and the theoretical background by which the behavior of a real 3D structure or body is represented by a 2D geometry. In order to facilitate the understanding of this subchapter and the previous chapters, a brief comment regarding the specific 2D plane problemsโ€™ nomenclature will be made. In Figure 7, the definition of the body geometry (with the designation of the main reference dimensions); and the coordinate system used (with the respective displacements associated to it) is outlined. The solution of any general 2D plane problem using the linear elasticity theory implies (in a preliminary analysis), the determination for each point of the body, of 11 unknown variables: ๐œŽ๐‘ฅ๐‘ฅ , ๐œŽ ๐‘ฆ๐‘ฆ , ๐œŽ๐‘ง๐‘ง , ๐œ ๐‘ฅ๐‘ฆ , ๐œ€ ๐‘ฅ๐‘ฅ , ๐œ€ ๐‘ฆ๐‘ฆ , ๐œ€ ๐‘ง๐‘ง , ๐›พ๐‘ฅ๐‘ฆ , ๐‘ข( ๐‘ฅ, ๐‘ฆ), ๐‘ฃ( ๐‘ฅ, ๐‘ฆ), ๐‘ค( ๐‘ฅ, ๐‘ฆ). In other words, the main goal of a general solid mechanics problem is to compute the stresses, strains, and displacement vector, compatible with the: Body Forces, Surface Tractions, and Boundary Conditions. In order to determine these 11 variables, we have only 10 independent equations: 2 equations from the dynamic equilibrium defined by the Cauchy Vector Equation, 4 equations from the Generalized Hookeโ€™s Law, and 4 equations from the geometric definition of strains. Thus, in order to solve any problem from plane elasticity, it is necessary to introduce an additional simplification, which may arise from a particular stress distribution or a particular strain distribution. Hence, giving rise to the two types of plane problems: Plane Stress and Plane Strain problems. 2.6.1 Types of Plane Linear Elastic Problems Plane linear elastic problems are a class of situations that due to their geometry (sort of prismatic), boundary conditions, and loading conditions, two unknown fields (Stresses and Strains) donโ€™t depend from the third coordinate (usually designated by z). There are two types of plane problems of relevant practical interest in mechanical engineering: โ€ข Plane stresses โ€“ particularly accurate for thin plates (ideally infinitely thin), deep beams and walls under in-plane loading, buttress dams, etc. in which the two dimensions (length and width) are much higher than their thickness. In this type of problems, the following assumptions/simplifications are made [4], [1]: ๐œŽ๐‘ง๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง = ยฑ ๐‘ก/2) = ๐œ ๐‘ฆ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง = ยฑ ๐‘ก/2) = ๐œ ๐‘ฅ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง = ยฑ ๐‘ก/2) = 0 ( 2.59 ) ๐‘ก โ‰ช ๐‘™ โ‹€ ๐‘ก โ‰ช ๐‘ค โ‡’ ๐œŽ๐‘ง๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐œ ๐‘ฆ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐œ ๐‘ฅ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 2.60 ) ๐‘ก โ‰ช ๐‘™ โ‹€ ๐‘ก โ‰ช ๐‘ค โ‡’ { ๐œŽ๐‘ฅ๐‘ฅ = ๐‘“๐‘ฅ ๐‘ฅ(๐‘ฅ, ๐‘ฆ) ๐œŽ ๐‘ฆ๐‘ฆ = ๐‘“๐‘ฆ ๐‘ฆ( ๐‘ฅ, ๐‘ฆ) ๐œ ๐‘ฅ๐‘ฆ = ๐‘“๐‘ฅ ๐‘ฆ(๐‘ฅ, ๐‘ฆ) ( 2.61 ) Figure 7- a) Plane Stress schematic geometry. b) Plane Strain schematic geometry. a) b)y x l t w z ๐‘ขโƒ— ๐‘ฃ ๐‘คโƒ—โƒ— y xl t w z ๐‘ฃ ๐‘ขโƒ— ๐‘คโƒ—โƒ—
  • 31. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 17 โ€ข Plane Strains โ€“ particularly accurate for thick geometries (ideally infinitely long), such as containing walls, gravity dams, pressurized pipes, geotechnical engineering problems (e.g. tunnels, foundations, etc.), etc.in which the dimension of section development (generatrix) is much higher than the remaining dimensions (length and width). In this type of problems, the following assumptions/simplifications are made [4], [1]: ๐‘ก โ‰ซ ๐‘™ โ‹€ ๐‘ก โ‰ซ ๐‘ค โ‡’ ๐œŽ๐‘ง๐‘ง( ๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐ถ ๐‘ก๐‘’ ( 2.62 ) { ๐‘ค( ๐‘ฅ, ๐‘ฆ, ยฑ๐‘ก/2) = 0 ๐‘ค( ๐‘ฅ, ๐‘ฆ, 0) = 0, ๐‘๐‘ฆ ๐‘ ๐‘ฆ๐‘š๐‘š๐‘’๐‘ก๐‘Ÿ๐‘ฆ โ‡’ ๐‘ค( ๐‘ฅ, ๐‘ฆ, ๐‘ง) โ‰ˆ 0 ( 2.63 ) ๐‘ค( ๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 โ‡’ { ๐œ€ ๐‘ง๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐›พ๐‘ฆ๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐›พ๐‘ฅ๐‘ง(๐‘ฅ, ๐‘ฆ๐‘ง, ๐‘ง) = 0 ๐œ€ ๐‘ฅ๐‘ฅ = ๐‘“๐‘ฅ ๐‘ฅ(๐‘ฅ, ๐‘ฆ) ๐œ€ ๐‘ฆ๐‘ฆ = ๐‘“๐‘ฆ ๐‘ฆ(๐‘ฅ, ๐‘ฆ) ๐›พ๐‘ฅ๐‘ฆ = ๐‘“๐‘ฅ ๐‘ฆ(๐‘ฅ, ๐‘ฆ) ( 2.64 ) In addition, both simplifications or type of plane problems also consider that { ๐‘“๐‘ฅ = ๐‘“๐‘ฅ( ๐‘ฅ, ๐‘ฆ) ๐‘“๐‘ฆ = ๐‘“๐‘ฆ( ๐‘ฅ, ๐‘ฆ) ๐‘“๐‘ง = 0 ( 2.65 ) After plane stress or plane strain simplification (as concluded in section 2.6.6), the solid mechanics problem is resumed to the resolution of two coupled Partial Differential Equations (PDE), for two dependent variables: the two terms of the displacement vector, u(x,y) and v(x,y). 2.6.2 Dynamic Equilibrium The dynamic equilibrium equations are the same, to whether plane stress or plane strain is concerned. The dynamic equilibrium of a generic 2D rigid body can be written as: โ€ข The classic formulations seen in the majority of the technical literature: [ ๐œŽ ] โˆ‡ + | ๐‘“ | = ๐œŒ | ๐‘Ž | โ‡’ [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ] [ ๐œ• ๐œ•๐‘ฅ ๐œ• ๐œ•๐‘ฆ ] + | ๐‘“๐‘ฅ ๐‘“๐‘ฆ | = ๐œŒ | ๐‘ขฬˆ (๐‘ฅ, ๐‘ฆ) ๐‘ฃฬˆ(๐‘ฅ, ๐‘ฆ) | โ‡’ ( 2.66 ) ( ๐œ•๐œŽ๐‘ฅ๐‘ฅ ๐œ•๐‘ฅ + ๐œ•๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ฆ ) + ๐‘“๐‘ฅ = ๐œŒ ๐‘ขฬˆ (๐‘ฅ, ๐‘ฆ) = ๐œŒ โˆ™ ๐œ•2 ๐œ•๐‘ก2 ๐‘ข(๐‘ฅ, ๐‘ฆ) ( 2.67 ) ( ๐œ•๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ฅ + ๐œ•๐œŽ ๐‘ฆ๐‘ฆ ๐œ•๐‘ฆ ) + ๐‘“๐‘ฆ = ๐œŒ ๐‘ฃฬˆ(๐‘ฅ, ๐‘ฆ) = ๐œŒ โˆ™ ๐œ•2 ๐œ•๐‘ก2 ๐‘ฃ(๐‘ฅ, ๐‘ฆ) ( 2.68 ) ๐‘“๐‘ฅ, ๐‘“๐‘ฆ Volume forces acting on the x, and y direction respectively โ€ข Instead of using the Nabla operator, in the Finite Element Method (FEM) formulation, the matrix formulation is adopted due to its computational calculation suitability. The matrix of the
  • 32. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 18 partial derivatives operator will be designated by [ ๐ฟ ], and corresponds to the transposed of the same matrix used to relate strains and displacements. [ ๐ฟ ] ๐‘‡| ๐œŽ | + | ๐‘“ | = ๐œŒ | ๐‘Ž | โ‡’ [ ๐œ• ๐œ•๐‘ฅ 0 0 ๐œ• ๐œ•๐‘ฆ ๐œ• ๐œ•๐‘ฆ ๐œ• ๐œ•๐‘ฅ ] ๐‘‡ | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ | + | ๐‘“๐‘ฅ ๐‘“๐‘ฆ | = ๐œŒ | ๐‘ขฬˆ (๐‘ฅ, ๐‘ฆ) ๐‘ฃฬˆ(๐‘ฅ, ๐‘ฆ) | ( 2.69 ) 2.6.3 Transformation Matrix In the context of this report, the transformation matrix always refers to a matrix acting upon a coordinate system. It is really important to outline this fact. Since in some literature this designation is also misused to refer to geometric transformation matrices of vectors and matrices (e.g. rotation, stretching, squeezing, shearing, reflection, etc.). The transformation matrices for 2D coordinate systems are summarized below, along with its schematic illustration in Figure 8: โ€ข Transformation Matrix of the coordinate system by Counter clockwise rotation of the coordinate system: [ ๐‘‡ ] = [ cos( ๐œ“) sin( ๐œ“) โˆ’ sin( ๐œ“) cos( ๐œ“) ] ( 2.70 ) โ€ข Clockwise rotation of the coordinate system [ ๐‘‡ ] = [ cos( ๐œ“) โˆ’sin( ๐œ“) sin( ๐œ“) cos( ๐œ“) ] ( 2.71 ) a) b) ๐œ“ ๐‘ฅโ€ฒ ๐‘ฆโ€ฒ ๐‘ฆ ๐‘ฅ ๐œ“ ๐œ“ ๐‘ฅโ€ฒ ๐‘ฆโ€ฒ ๐‘ฆ ๐‘ฅ ๐œ“ Figure 8- Representation of the transformation of the coordinate system by rotation along the z-axis: a) Counter Clockwise rotation, and b) Clockwise rotation.
  • 33. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 19 2.6.4 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior In 2D elasticity, the Generalized Hookeโ€™s Law can be further simplified (by eliminating the terms that account for the shear behavior in the third dimension), and the matrix relation can be simply written in the stiffness and compliance form, respectively, as: | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | = [ ๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 โ€ฆ ๐ถ22 ๐ถ23 ๐ถ24 โ€ฆ โ€ฆ ๐ถ24 ๐ถ34 โ€ฆ โ€ฆ โ€ฆ ๐ถ44 ] | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | ( 2.72 ) | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | = [ ๐‘†11 ๐‘†12 ๐‘†13 ๐‘†14 โ€ฆ ๐‘†23 ๐‘†23 ๐‘†24 โ€ฆ โ€ฆ ๐‘†33 ๐‘†34 โ€ฆ โ€ฆ โ€ฆ ๐‘†44 ] | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | ( 2.73 ) Isotropic material behavior results from two necessary conditions: (i) linear elastic deformation of an (ii) isotropic material - hyperelastic material whose scaler components of the stiffness tensor are invariant (symmetric) with respect to all possible orthogonal transformations [10]. As demonstrated in detail by [16], the stiffness and compliance coefficients are related respectively by: { ๐ถ11 = ๐ถ22 = ๐ถ33 ๐ถ12 = ๐ถ13 = ๐‘ ๐‘ฆ๐‘š = ๐ถ21 = ๐ถ31 ๐ถ44 = ๐ถ11 โˆ’ ๐ถ22 2 ๐ถ14 = ๐ถ24 = ๐ถ34 = 0 = ๐‘ ๐‘ฆ๐‘š = ๐ถ14 = ๐ถ24 = ๐ถ34 = 0 ( 2.74 ) { ๐‘†11 = ๐‘†22 = ๐‘†33 ๐‘†12 = ๐‘†13 = ๐‘ ๐‘ฆ๐‘š = ๐‘†21 = ๐‘†31 ๐‘†44 = 2( ๐‘†11 โˆ’ ๐‘†22) ๐‘†14 = ๐‘†24 = ๐‘†34 = 0 = ๐‘ ๐‘ฆ๐‘š = ๐‘†14 = ๐‘†24 = ๐‘†34 = 0 ( 2.75 ) Examples of typical engineering materials that can be considered isotopic with reasonable accuracy are the major metal alloys: machined steel, Cast Iron. Cast Aluminum, etc. Considering isotropic behavior, the โ€œ2Dโ€ Generalized Hookeโ€™s Law comes [19]: | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | = [ ๐ถ11 ๐ถ12 ๐ถ12 0 โ€ฆ ๐ถ11 ๐ถ12 0 โ€ฆ โ€ฆ ๐ถ11 0 0 0 0 ( ๐ถ11 โˆ’ ๐ถ12)/2 ] | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | ( 2.76 ) | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | = [ ๐‘†11 ๐‘†12 ๐‘†12 0 โ€ฆ ๐‘†11 ๐‘†12 0 โ€ฆ โ€ฆ ๐‘†11 0 0 0 0 2( ๐‘†11 โˆ’ ๐‘†12) ] | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | ( 2.77 )
  • 34. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 20 The stiffness or compliance coefficients are usually given in terms of engineering parameters. Elastic engineering parameters or constants, are properties frequently and easily determined by Lab testing e.g. Young Modulus, Poisson Ratio, Shear Modulus, etc. The most relevant engineering constants within the context of this report are: Principal or Youngโ€™s Modulus in the ๐‘– direction ( ๐ธ ๐‘–๐‘–) โ€“ ratio of the stress in the ๐‘– direction, to a strain in the ๐‘– direction; Poisson Coefficient or Poisson Ratio (๐‘ฃ ๐‘–๐‘—) โ€“ the negative of the ratio of the transverse strain in the ๐‘— direction when a stress is applied in the ๐‘– direction, to the longitudinal strain in the ๐‘– direction when a stress is applied in the ๐‘– direction [1]. The mathematical definition of the elastic engineering coefficients or parameters is then given as [16]: { ๐ธ ๐‘–๐‘– = ๐œŽ ๐‘– ๐œ€ ๐‘– , ๐‘™๐‘œ๐‘›๐‘”๐‘–๐‘ก๐‘ข๐‘‘๐‘–๐‘›๐‘Ž๐‘™ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘ฃ ๐‘–๐‘— = โˆ’ ๐‘† ๐‘—๐‘– ๐‘† ๐‘–๐‘– , ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘Ž๐‘™ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ( 2.78 ) Concerning the physical understanding of the elastic coefficients, it is usually easy to: i) write the compliance coefficients in terms of the engineering constants; ii) compute the stiffness matrix by inverting the compliance matrix; and finally, iii) define the stiffness coefficients by simply looking at the components of the stiffness matrix. This has to do with the fact that the stiffness coefficients are computed constraining the strains in the remaining directions (by applying external stresses), whereas the compliance coefficients are computed by simply considering the remaining stresses null. Thus, it is possible to construct the compliance matrix column by column considering the meaning of the compliance coefficients, and the elastic engineering parameters can be calculated as: { ๐‘†11 = ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฅ๐‘ฅ = 1 ๐ธ11 = 1 ๐ธ ๐‘†22 = ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ = 1 ๐ธ22 = 1 ๐ธ ๐‘†33 = ๐œ€ ๐‘ง๐‘ง ๐œŽ๐‘ง๐‘ง = 1 ๐ธ33 = 1 ๐ธ ( 2.79 ) { ๐‘†12 = ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ = ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ( ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ โˆ™ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ฆ ) = ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ( ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ โˆ™ 1 ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ โ„ ) = ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ โ„ โˆ™ ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘†21 = ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ฅ๐‘ฅ = ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ฅ๐‘ฅ ( ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฅ๐‘ฅ โˆ™ ๐œŽ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฅ ) = ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ ๐‘ฅ๐‘ฅ ( ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ๐‘ฅ๐‘ฅ โˆ™ 1 ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฅ๐‘ฅ โ„ ) = ๐œ€ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฅ๐‘ฅ โ„ โˆ™ ๐œ€ ๐‘ฅ๐‘ฅ ๐œŽ๐‘ฅ๐‘ฅ โ‡’ ( 2.80 ) { ๐‘†12 = ๐‘†12 ๐‘†22 โˆ™ ๐‘†22 = โˆ’๐‘ฃ21 โˆ™ ๐‘†22 = โˆ’๐‘ฃ21 โˆ™ 1 ๐ธ22 = โˆ’ ๐‘ฃ21 ๐ธ22 = โˆ’ ๐‘ฃ ๐ธ ๐‘†21 = ๐‘†21 ๐‘†11 โˆ™ ๐‘†11 = โˆ’๐‘ฃ12 โˆ™ ๐‘†11 = โˆ’๐‘ฃ12 โˆ™ 1 ๐ธ11 = โˆ’ ๐‘ฃ12 ๐ธ11 = โˆ’ ๐‘ฃ ๐ธ ( 2.81 ) ๐‘†44 = 2( ๐‘†11 โˆ’ ๐‘†12) = 2 ( 1 ๐ธ11 + ๐‘ฃ21 โˆ™ ๐‘†22) = 2 ( 1 ๐ธ11 + ๐‘ฃ21 โˆ™ 1 ๐ธ22 ) = 2(1 + ๐‘ฃ) ๐ธ ( 2.82 ) In the compliance form, the โ€œ2Dโ€ Generalized Hookโ€™s Law for linear elastic isotropic materials now comes:
  • 35. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 21 | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | = [ 1 ๐ธ โˆ’ ๐‘ฃ ๐ธ โˆ’ ๐‘ฃ ๐ธ 0 โˆ’ ๐‘ฃ ๐ธ 1 ๐ธ โˆ’ ๐‘ฃ ๐ธ 0 โˆ’ ๐‘ฃ ๐ธ โˆ’ ๐‘ฃ ๐ธ 1 ๐ธ 0 0 0 0 2(1 + ๐‘ฃ) ๐ธ ] | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | ( 2.83 ) The stiffness form of the โ€œ2Dโ€ Generalized Hookโ€™s law for linear elastic isotropic materials is calculated by simply inverting the previous equation ( 2.84 ) comes: | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | = [ ๐ธ(1 โˆ’ ๐‘ฃ) (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) ๐ธ๐‘ฃ (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) ๐ธ๐‘ฃ (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) 0 ๐ธ๐‘ฃ (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) ๐ธ(1 โˆ’ ๐‘ฃ) (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) ๐ธ๐‘ฃ (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) 0 ๐ธ๐‘ฃ (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) ๐ธ๐‘ฃ (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) ๐ธ(1 โˆ’ ๐‘ฃ) (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) 0 0 0 0 ๐ธ 2(1 + ๐‘ฃ) ] | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | ( 2.84 ) The plane assumption (plane stress or plane strain), conditions the process used to determine Hookโ€™s Law for plane problems. In order to compute Hookโ€™s Law for plane stress, the compliance matrix of the Generalized Hookโ€™s Law is used; whereas to compute Hookโ€™s Law for plane strain, the stiffness matrix of the Generalized Hookโ€™s Law is used [4]: โ€ข Plane Stress Assuming ๐œŽ๐‘ง๐‘ง = 0: | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | = [ 1 ๐ธ โˆ’ ๐‘ฃ ๐ธ โˆ’ ๐‘ฃ ๐ธ 0 โˆ’ ๐‘ฃ ๐ธ 1 ๐ธ โˆ’ ๐‘ฃ ๐ธ 0 โˆ’ ๐‘ฃ ๐ธ โˆ’ ๐‘ฃ ๐ธ 1 ๐ธ 0 0 0 0 2(1 + ๐‘ฃ) ๐ธ ] | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ 0 ๐œ ๐‘ฅ๐‘ฆ | | ( 2.85 ) The Compliance matrix is determined simply by ignoring the columns, in the generalized compliance matrix, associated with the zero stress entries in the stress vector, coming: | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฅ๐‘ฆ | = [ 1 ๐ธ โˆ’ ๐‘ฃ ๐ธ 0 โˆ’ ๐‘ฃ ๐ธ 1 ๐ธ 0 0 0 2(1 + ๐‘ฃ) ๐ธ ] | ๐œŽ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ | ( 2.86 )
  • 36. 2D Plane Elasticity: Isoparametric Bilinear Quadrilateral Lagrange type Element with 4 Nodes 22 The Stiffness matrix is determined simply by inverting the compliance matrix, and is given by: | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ | = ๐ธ (1 โˆ’ ๐‘ฃ2) [ 1 ๐‘ฃ 0 ๐‘ฃ 1 0 0 0 (1 โˆ’ ๐‘ฃ)/2 ] | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฅ๐‘ฆ | ( 2.87 ) Comment: Note that the compliance matrix for plane stress canโ€™t be found by removing columns and rows from the general isotropic stiffness matrix โ€ข Plane Strain Assuming ๐œ€ ๐‘ง๐‘ง = 0: | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | = ๐ธ (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) [ (1 โˆ’ ๐‘ฃ) ๐‘ฃ ๐‘ฃ 0 ๐‘ฃ (1 โˆ’ ๐‘ฃ) ๐‘ฃ 0 ๐‘ฃ ๐‘ฃ (1 โˆ’ ๐‘ฃ) 0 0 0 0 (1 โˆ’ 2๐‘ฃ)/2 ] | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ 0 ๐›พ๐‘ฅ๐‘ฆ | | ( 2.88 ) The Stiffness matrix is determined simply by ignoring the columns, in the generalized stiffness matrix, associated with the zero strain entries in the strain vector, coming: | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ | = ๐ธ (1 + ๐‘ฃ)(1 โˆ’ 2๐‘ฃ) [ (1 โˆ’ ๐‘ฃ) ๐‘ฃ 0 ๐‘ฃ (1 โˆ’ ๐‘ฃ) 0 0 0 (1 โˆ’ 2๐‘ฃ)/2 ] | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฅ๐‘ฆ | ( 2.89 ) The Compliance matrix is determined simply by inverting the stiffness matrix, and is given by: | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฅ๐‘ฆ | = 1 ๐ธ [ 1 โˆ’ ๐‘ฃ2 โˆ’๐‘ฃ(1 + ๐‘ฃ) 0 โˆ’๐‘ฃ(1 + ๐‘ฃ) 1 โˆ’ ๐‘ฃ2 0 0 0 2(1 + ๐‘ฃ) ] | ๐œŽ ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ | ( 2.90 ) Comment: Note that the compliance matrix for plane strain canโ€™t be found by removing columns and rows from the general isotropic compliance matrix. 2.6.5 Strain-Displacement Fields Relation The geometric definition of infinitesimal strains, within the context of FEM, is usually written in the matrix form. The strain in the z direction (๐œ€ ๐‘ง๐‘ง) will be considered for now, since the ๐œ€ ๐‘ง๐‘ง isnโ€™t null for the case of plane stress. However, in the next section further details regarding this topic will be given. The strain field can then be written as: