SlideShare uma empresa Scribd logo
1 de 96
Baixar para ler offline
ENSAIOS NÃO DESTRUTIVOS




Silvério Ferreira da Silva Junior

Paulo Villani Marques




                        Belo Horizonte, Novembro de 2006
Capítulo 1

                 Introdução aos Ensaios Não Destrutivos

1. Conceitos Fundamentais
A arte de inspecionar sem destruir evoluiu, principalmente a partir da década de 50, de simples
curiosidade de laboratório até se tornar uma ferramenta indispensável de produção. Hoje os ensaios não
destrutivos são largamente utilizados na indústria moderna em todo o mundo para avaliação da
qualidade e detecção de variações na estrutura, pequenas falhas superficiais, presença de trincas e
outras interrupções físicas, medida de espessura de materiais e revestimentos e determinação de outras
características de materiais e produtos industriais.

Classicamente, são considerados ensaios não destrutivos aqueles que quando realizados em peças
acabadas ou semi-acabadas não interferem nem prejudicam seu uso futuro ou processamento posterior.
Eles são usados para determinação de algumas propriedades dos materiais e para a detecção de
possíveis descontinuidades em peças e produtos industriais.

Descontinuidades são interrupções na estrutura normal de um material, em nível macro ou microscópico,
passíveis de serem percebidas durante a realização de um END.

Uma característica marcante dos END é que eles raramente medem diretamente a propriedade de
interesse. O valor dessa propriedade geralmente é obtido a partir de sua correlação com uma outra
grandeza que é medida durante a realização do teste.

As diversas técnicas e métodos de inspeção não destrutiva serão vistos em detalhes nos capítulos a
seguir, mas antes é conveniente saber por que se usam estes ensaios.


2. Razões para uso dos ensaios não destrutivos (END)
As principais razões para uso dos END são:
    • garantir a qualidade dos produtos e a reputação dos fabricantes;
    • prevenir acidentes e a perda de vidas humanas e a paralisação de serviços básicos;
    • aumentar os lucros dos fabricantes.

O comprador de um produto tem sempre a expectativa de que poderá usufruir deste por um longo
período, sem a ocorrência de defeitos ou necessidade de manutenção. O comprador de um automóvel
ou o usuário de um meio de transporte público espera poder usar os veículos sem atrasos ou falhas
devidas a defeitos mecânicos. Um industrial deseja que seus equipamentos funcionem melhor, mais
rápido, e, se possível, automaticamente, independentemente da sua complexidade. Em outras palavras,
a confiabilidade é indispensável.

Se a probabilidade de falha de um componente é de uma em mil, isto pode ser aceitável. Contudo, a
confiabilidade de um equipamento ou conjunto é dada pelo produto da confiabilidade de seus
componentes críticos. Assim, a confiabilidade (R) de um produto montado a partir de, por exemplo, 100
componentes críticos, será dada por:
                                                                       100
                      R = 0,999 x 0,999 x 0,999 x ...... x 0,999 = 0,999     = 0,9048

A possibilidade de falha será dada então pela diferença (1 – 0,9048) = 0,0952, ou seja,
aproximadamente 0,1 ou uma em dez. Claro que o comprador de um produto ficará extremamente
insatisfeito se ele falhar uma a cada dez tentativas de uso. Portanto, a confiabilidade de um componente
precisa ser imensamente maior que a do produto montado final.

Por exemplo, o motor de um automóvel de 4 cilindros possui um virabrequim, conectado a quatro bielas,
quatro cabeças de pistão, oito válvulas, oito molas, anéis de segmento e centenas de outras partes, que


                                                                                                      2
são críticas para seu funcionamento e qualquer falha em uma dessas partes causará a parada do motor.
A incidência incrivelmente baixa de falhas em motores é devida à capacidade de projetistas e
engenheiros de fabricação e de qualidade de conceber, fabricar e montar conjuntos corretamente, de
acordo com normas de fabricação bem estabelecidas.

Em geral, a ocorrência de acidentes ou falhas causa incômodo e inconveniência, mas em certos casos,
são totalmente impensáveis ou inadmissíveis. A falha no sistema de direção de um ônibus ou trem de
ferro a 100 km por hora ou do trem de aterrisagem de um avião durante um pouso poderá resultar na
perda de dezenas ou centenas de vidas humanas. O vazamento de pequenas quantidades de material
radiativo de uma usina nuclear pode matar e/ou afetar a vida de milhares ou milhões de pessoas. Nestes
casos, não se pode contar apenas com a sorte para evitar tais ocorrências.

Mas se por um lado a garantia de qualidade e confiabilidade de produtos é uma importante razão para
uso dos END, igualmente importante é que isto gere lucro para os seus usuários. Isto pode ocorrer
implícita ou explícitamente. A garantia de satisfação do comprador é uma fonte implícita de lucro,
conseqüência direta da reputação do fabricante, que aumenta sua vantagem competitiva.

Os END também podem contribuir para o aumento dos lucros na medida em que, quando aplicados na
produção experimental de um lote de novos produtos, indicam aos projetistas necessidades de
mudanças no projeto, através, por exemplo, da análise experimental de tensões, resultando em produtos
mais leves, resistentes, confiáveis e de menor custo.

Durante a fabricação, o controle dos processos produtivos é fundamental para a manutenção da
qualidade e evitar que se produza sucata. Por exemplo, numa operação de tratamento térmico, todo o
procedimento deve ser estabelecido de modo a se obter determinadas características para o produto.
Assim, um END aplicado a algumas ou todas as peças pode determinar se a variabilidade da análise
química do material pode resultar em dureza inadequada ou geração de trincas. Um outro teste aplicado
às peças antes de entrarem para tratamento pode evitar que peças inadequadas sejam tratadas e
produzam sucata. Um terceiro teste aplicado depois da operação poderá indicar se a dureza desejada
está sendo atingida e indicar necessidade de mudanças na operação, economizando recursos para o
produtor.

A inspeção de lingotes antes do forjamento, por exemplo, pode detectar a presença de trincas ou
inclusões que resultariam em peças defeituosas, evitando a utilização de recursos produtivos em
material impróprio, reduzindo os custos de fabricação.

Finalmente, um produto não precisa ser necessariamente “perfeito”, mas deve apresentar um nível de
qualidade adequado para uma determinada finalidade. A manutenção do nível adequado de qualidade e
uniformidade da produção pode ser mais facilmente atingida com o uso dos END, aumentando os lucros
da empresa. A Figura 1 mostra a relação entre o custo de produção e o valor de venda de um produto
em função de sua “perfeição”.


                                                                             Custo de
                                                  Tolerância de              produção
                                             Tolerância                       Valor de
                                                                              venda
              Custo (valor   Tolerância do
              monetário)                                                     Máximo valor
                                                                             agregado




                                    Nível de perfeição
     Figura 1 – Relação entre os custos de produção e venda de produtos e seu nível de qualidade.



                                                                                                    3
O custo de produção tende a se tornar mais alto à medida que as tolerâncias de fabricação diminuem,
aproximando-se da perfeição, tendendo ao infinito. O valor de venda vai desde zero, para um produto
imprestável, aumentando até um valor máximo, aceito pelo mercado, quando se aproxima da perfeição.
O nível de qualidade ótimo para o fabricante é o que permite o maior lucro, isto é, a máxima diferença
entre o valor de produção e o de venda.


3. Elementos Básicos dos Ensaios Não Destrutivos
Qualquer END envolve cinco elementos básicos:
   • uma fonte que fornece e distribui de forma adequada um meio de inspeção ao objeto em teste;
   • uma modificação do meio de inspeção ou sua distribuição no objeto ensaiado como resultado da
       presença de descontinuidades ou de variações da propriedade de interesse;
   • um detector sensível a essas modificações ou variação de distribuição do meio de inspeção;
   • uma indicação ou registro das indicações do detector de forma útil para interpretação e,
       finalmente
   • um observador ou dispositivo capaz de interpretar as indicações ou registros em termos da
       propriedade de interesse ou da presença e localização de descontinuidades.

O meio de inspeção geralmente é suprido por uma fonte externa, como uma fonte de raios-X ou uma
bobina de magnetização. Ele pode ser distribuído sobre inteiramente sobre o volume do objeto em teste
ou concentrado em uma região deste. Alguns meios podem penetrar no material a grandes
profundidades enquanto outros são escolhidos de forma a não penetrar profundamente, ficando limitados
a uma distância mínima abaixo da superfície.

Como não é possível introduzir de forma não destrutiva um detector no objeto sob teste, a modificação
ou variação de distribuição do meio de inspeção causada pela variação da propriedade medida ou pela
presença de descontinuidades deve ser externa a esse e conseqüentemente deve ser diferente em
peças homogêneas e não homogêneas.

O detector deve ser sensível às modificações do meio de teste, sem contudo ser muito influenciado por
outras fontes de modificações que não aquela de interesse ou, em outras palavras, deve apresentar
baixo ruído.

Se o sinal de saída do detector é muito baixo, algumas dificuldades quanto à calibração e estabilidade do
sistema podem ser encontradas quando é necessária grande amplificação. Por isso, algumas condições
de teste possíveis em laboratório não são adequadas para aplicação prática em campo.

Uma maneira de contornar estas dificuldades é usar valores comparativos ao invés de valores absolutos
ou medidas fundamentais. Assim, peças ou materiais padrão, cujas características ou propriedades são
bem conhecidas podem ser usadas para comparação com objetos ou materiais com propriedades ou
características desconhecidas. Contudo, esses padrões têm de ser escolhidos com bastante critério, de
forma a não introduzir novas variáveis no ensaio. Se o objeto em teste e o padrão são sujeitos
simultaneamente a idênticas condições de medição, efeitos causados pela instrumentação usada e pelas
condições ambientais são cancelados.

Por fim, as indicações ou registros produzidos num END devem ser tais que possam ser interpretados
em termos das propriedades de interesse ou da adequação ao uso do objeto ensaiado. Em alguns casos
isso pode ser feito automaticamente em função da amplitude ou valor do sinal de saída. Em outros, nos
quais este sinal pode sofrer variações por múltiplas causas, é necessário um inspetor experiente para
essa função.




                                                                                                       4
4. Tipos de END’s
Várias formas de energia e matéria podem ser usadas como meio de inspeção. Qualquer lei da natureza
pode ser usada como base para um END se meios práticos forem desenvolvidos para propiciar cada um
dos cinco elementos básicos dos END vistos anteriormente. De modo geral, os meios de inspeção
envolvem:
    • movimento de matéria,
    • transmissão de energia ou
    • combinação de movimento de matéria e transmissão de energia.

Matéria nos estados sólido, líquido ou gasoso é usada em muitos testes, respectivamente como
revestimento frágil para indicação de deformações, indicação da presença de trincas superficiais ou
detecção de vazamentos em testes de estanqueidade.

Energia eletromagnética ou vibração mecânica, por exemplo, são usadas em testes para determinação
de propriedades dos materiais como condutividade elétrica ou permeabilidade magnética ou para a
detecção da presença de descontinuidades como trincas ou vazios.

As propriedades ou características típicas medidas em ensaios não destrutivos são:
    • propriedades geométricas, tais como tamanho, forma, espessura e descontinuidades dos
       materiais como trincas, porosidades e delaminação;
    • propriedades mecânicas, como dureza, constantes elásticas e estados de tensão e deformação;
    • propriedades estruturais e composição, como tamanho de grão, inclusões, segregação e teor de
       elementos de liga;
    • propriedades de absorção, reflexão e espalhamento, como reflexão e refração de raios-x e raios-
       γ, elétrons, e vibrações mecânicas sonoras ou ultrasônicas, freqüentemente relacionadas com
       densidade, espessura, espaçamento atômico, tensões, tamanho de grão e temperatura;
    • propriedades elétricas e magnéticas, como condutividade elétrica, permeabilidade magnética,
       distribuição de correntes parasitas, energia armazenada, muitas vezes relacionadas com
       composição química e teor de liga, estrutura cristalina, resultado de tratamentos térmicos,
       dureza, tensões;
    • propriedades térmicas, como condutividade e expansão térmicas.

Estas propriedades podem ser medidas de forma absoluta, diferencial ou relativa, tanto em regiões
localizadas ou de forma generalizada, usando diferentes meios de inspeção ou combinações destes.


5. Comparação com Ensaios Destrutivos
Ensaios destrutivos e não destrutivos não são concorrentes, mas complementares. Há duas maneiras
práticas de se provar a correlação entre propriedade de interesse e propriedade medida nos testes: a
primeira é acumular experiência em serviço, de forma adequada, com aquele material ou peça; a
segunda é usar ambos os tipos de ensaios, destrutivos e não destrutivos, cada um sendo usado para
verificar as suposições implícitas no outro método. Por exemplo, ensaio não destrutivo como a
radiografia industrial pode ser usado para comparar todas as peças de um lote de produção,
estabelecendo a similaridade entre todas as peças e algumas delas podem ser ensaiadas
destrutivamente e as outras colocadas em serviço. Alternativamente, ensaios destrutivos podem ser
usados para estabelecer a correlação entre a propriedade de interesse e a propriedade medida nos
END.




                                                                                                   5
Em relação aos ensaios destrutivos, os END apresentam vantagens e desvantagens:

             Ensaios Destrutivos                                        END
                 Vantagens                                           Limitações

Os testes geralmente simulam uma ou mais            Os testes envolvem medidas indiretas das
condições    de  serviço,  medindo   assim          propriedades, sem significação direta com as
diretamente a propriedade de interesse de           condições de serviço.
forma confiável.

Os testes usualmente medem quantitativamente        Os testes são geralmente qualitativos e
cargas de falha, quantidade de distorção ou         raramente quantitativos. Eles não medem
dano ou tempo de vida sob determinadas              diretamente cargas de falha ou vida útil, mesmo
condições de operação; fornecendo valores           indiretamente. Eles podem contudo revelar
numéricos que podem ser usados diretamente          danos ou mecanismos de falha.
no projeto ou em especificações.

A correlação entre as medidas feitas no ensaio      Julgamento por pessoas capacitadas ou
e a propriedade de interesse é direta, de forma     experiência em serviço são geralmente
que diferentes observadores, em geral,              necessárias na interpretação dos resultados.
concordam entre si quanto aos valores medidos       Quando a correlação essencial entre a
e sua significação em termos de condições de        propriedade medida e a de interesse não está
uso.                                                claramente provada ou a experiência é limitada,
                                                    pode      haver    discrepâncias  quanto     à
                                                    interpretação dos resultados.


             Ensaios Destrutivos                                        END
                 Limitações                                           Vantagens

Os ensaios não são realizados nas peças que         Os testes são feitos diretamente nas peças que
realmente vão ser usadas e a similaridade ou        serão colocadas em serviço, não deixando
correlação com as que serão usadas deve ser         dúvidas quanto à sua representatividade
provada por outros meios.

Os testes só podem ser feitos em parte do lote      Os ensaios podem ser realizados em cada peça
de produção e podem ser pouco úteis quando a        produzida, se justificável economicamente e
propriedade medida pode variar de forma             assim elas podem ser usadas mesmo que
imprevisível de uma peça para outra.                apresentem diferenças entre unidades ou lotes.

Os testes não podem, em geral, ser feitos em        Os testes podem ser feitos em toda a produção
peças finais mas apenas pedaços do material         ou em todas as regiões críticas, de forma que a
processado de forma similar às peças que serão      avaliação é feita nas peças como um todo.
colocadas em serviço.                               Muitas seções podem ser examinadas
                                                    simultaneamente ou seqüencialmente.

Um único ensaio pode medir apenas uma ou            Muitos END são sensíveis a diferentes
poucas propriedades críticas do material em         propriedades ou regiões do material ou peça,
condições de serviço.                               podendo ser aplicados seqüencialmente ou
                                                    simultaneamente,     sendo    possível   medir
                                                    diferentes propriedades correlacionadas com o
                                                    desempenho em serviço.

Geralmente ensaios destrutivos não são              Freqüentemente os END podem ser aplicados a
aplicáveis a peças durante serviço. Este precisa    peças durante o serviço, sem necessidade de
ser interrompido e as peças precisam ser            parada e desmontagem. Não há perda da peça
definitivamente removidas.                          ou de suas condições de serviço.




                                                                                                 6
Ensaios Destrutivos                                          END
                 Limitações                                             Vantagens

Efeitos cumulativos em um certo período de            Os END permitem inspeções repetidas numa
tempo não podem ser medidos em uma única              mesma peça ao longo do tempo, permitindo
peça. Se várias peças de um mesmo lote são            acompanhar a evolução do desgaste ou dano,
testadas com essa finalidade, é necessário            facilitando estabelecer a correlação destes com
verificar se essas são similares inicialmente. Se     as condições de serviço.
peças usadas são testadas após vários
períodos de tempo de uso é necessário provar
que cada uma delas foi submetida a condições
de serviço equivalentes antes de validar os
dados.

O custo de reposição pode ser muito alto se as        Peças aceitáveis de alto custo não são perdidas
peças testadas tiverem alto custo de material ou      devido ao ensaio. A repetição de testes, quando
de fabricação, o que pode ser proibitivo.             economicamente justificável, pode ser feita
                                                      durante a produção ou serviço.

Em geral a preparação de corpos de prova              Pouca ou nenhuma preparação é necessária
envolve intensa usinagem ou outros meios, às          para muitos ensaios. Alguns equipamentos de
vezes de precisão, o que aumenta os custos ou         ensaio são portáteis. Muitos são capazes de
limita o número de corpos de prova a serem            testar e qualificar as peças rapidamente e, em
ensaiados. Além disso, pode requerer muitas           algumas situações, de forma automática. Em
horas de trabalho de pessoal altamente                muitos casos, os custos dos END são baixos,
qualificado.                                          tanto por objeto testado quanto para toda a
                                                      produção, em comparação com os ensaios
                                                      destrutivos.

Os requisitos de tempo e mão de obra para             Muitos END são rápidos e requerem menos
estes ensaios são altos, o que aumenta os             mão de obra que os testes destrutivos, sendo os
custos de produção se os ensaios são usados           custos de inspeção de toda a produção, em
como método primário de controle de qualidade         muitos casos, equivalente ao da inspeção
da produção.                                          destrutiva de apenas uma parte dos lotes
                                                      produzidos.




6. Confiabilidade dos END
Como já dito anteriormente, um END raramente mede diretamente a propriedade de interesse, mas sim
propriedades a elas relacionadas. A confiabilidade dos END depende fortemente da correlação entre a
propriedade de interesse e a propriedade realmente medida. A validade desta correlação não pode ser
assumida sem uma prova convincente para cada situação específica. Esta correlação deve ser bem
conhecida para
    • cada material específico,
    • cada método de produção ou fabricação,
    • cada método específico de teste e
    • cada aplicação ou condição de serviço do objeto inspecionado.

Se qualquer um destes fatores é modificado, novas evidências da correlação entre propriedade medida e
de interesse devem ser buscadas.

Numa análise probabilística, existem quatro possíveis situações ao término de uma avaliação não
destrutiva:
    1. a peça pode ser utilizada e o ensaio demonstrou que pode,
    2. a peça não pode ser utilizada e o ensaio demonstrou que não pode,
    3. a peça pode ser utilizada e o ensaio demonstrou que não pode e
    4. a peça não pode ser utilizada e o ensaio demonstrou que pode.
As situações 1 e 2 são desejáveis e sua ocorrência resulta em sucesso da inspeção. A situação 3 implica
em prejuízo desnecessário e a situação 4 implica em alto risco de falha. Assim, o sucesso da inspeção
deve ser procurado e maximizado.

Em geral, as normas de inspeção impõem regras e critérios que devem ser rigorosamente seguidos para
se obter sucesso na inspeção, tendo como base o conhecimento acumulado ao longo do tempo e os
novos conhecimentos adquiridos sobre as correlações entre propriedade medida e propriedade de
interesse, considerando os diferentes fatores citados anteriormente.


7. Descontinuidades e Defeitos
Como se viu anteriormente, descontinuidades são interrupções na estrutura normal de um material, em
nível macro ou microscópico, passíveis de serem percebidas durante a realização de um END. Defeitos
são descontinuidades inaceitáveis em uma peça para uma determinada aplicação. Assim, todo defeito é
uma descontinuidade, mas nem toda descontinuidade é um defeito. Descontinuidades idênticas em
peças para aplicações diferentes podem ser consideradas defeitos num caso e em outros não. Em geral,
as normas técnicas definem que tipo e tamanho de descontinuidade é aceitável em uma peça para uma
determinada aplicação, ou em outras palavras, definem o que é um defeito neste caso.

A seguir, serão apresentados alguns tipos de descontinuidades comuns em diferentes tipos de
processamento de materiais.


7.1   Descontinuidades em laminados

Durante a laminação de produtos planos, os grãos dos materiais metálicos são quebrados e deformados
na direção de laminação. As inclusões e porosidades existentes também se deformam, sendo achatadas
e aumentando sua área em todas as direções, mas principalmente na direção de laminação, gerando o
que se chama de delaminação. No caso de barras e tubos, as inclusões se deformam e geram costuras
(“seams”) e estrias (“stringers”) e porosidades geram porosidade tubular (“pipes”). Estas
descontinuidades estão ilustradas na figura 2.




                  (a)                                             (b)




                               (c)                                      (d)


         Figura 2 – Descontinuidades em laminados. (a) delaminação, (b) costuras, (c) estrias e
                                       (d) porosidade tubular.



                                                                                                     8
7.2   Descontinuidades em forjados

Durante o forjamento, o material metálico é deformado por martelamento ou prensagem em matrizes que
têm o formato desejado para a peça. Se as matrizes de forjamento estão desalinhadas, dobras são
geradas, como mostrado na figura 3.




                         Figura 3 – Geração de dobras durante o forjamento.


As dobras também podem ser causadas por fluxo incorreto de metal durante o forjamento, como mostra
a figura 4.




               Fig.4 – Dobra causada por fluxo incorreto de metal durante o forjamento.


Se o material é forjado a uma temperatura incorreta, “burst” podem ser formados, tanto interna quanto
externamente,como mostra a figura 5.




                             Fig. 5 – “Burst” gerado durante o forjamento.




                                                                                                   9
7.3   Descontinuidades em fundidos

Vários tipos de descontinuidades são formados tipicamente em peças fundidas. As gotas frias ocorrem
durante o vazamento do metal líquido no molde e as trincas (“hot tears”) e cavidades de contração como
mostra a figura 6.




                      Fig. 6 – Formação de gotas frias e problemas de contração.

Bolhas de gás podem ocorrer na superfície do fundido ou internamente (“blow holes”), e porosidades,
como mostra a figura 7.




                              Fig. 7 – Vazios e porosidades em fundidos.


7.4   Descontinuidades em soldas

As principais descontinuidades em soldas são as trincas na cratera final do cordão, trincas de restrição,
porosidades, inclusões de escória ou de tungstênio, falta de penetração, falta de fusão lateral e
mordeduras, mostradas na figura 8.

As trincas geradas na cratera do final de cordão podem ser longitudinais, transversas ou em múltiplas
direções, ditas em estrela.

As trincas de restrição são conseqüência das tensões de origem térmica geradas durante a soldagem e
da incapacidade do material se deformar para absorver estas tensões. Quanto maiores as restrições
externas à solda que impedem a peça soldada de se mover durante o processo, maior a probabilidade
de formação de trincas.

Porosidades são causadas por gases que não conseguiram escapar durante a solidificação da solda.

As inclusões de escória são, em geral, devidas à limpeza insuficiente entre passes ou à manipulação
incorreta do eletrodo durante a operação.




                                                                                                      10
Fig. 8 – Principais descontinuidades de soldas.


Inclusões de tungstênio podem ocorrer em soldas feitas pelo processo TIG quando o eletrodo toca a
peça ou correntes muito elevadas para o tipo e diâmetro do eletrodo empregado são usadas.

Falta de penetração e falta de fusão lateral são causadas por falta de energia suficiente para promover a
fusão adequada da junta. Isto pode ser conseqüência de velocidade de soldagem muito alta, corrente
muito baixa, manipulação incorreta do eletrodo, entre outras causas.

As mordeduras são causadas por velocidade de soldagem ou comprimento de arco excessivos.




                                                                                                      11
Capítulo 2

                                    A Inspeção Visual

1. INTRODUÇÃO

O ensaio visual é o primeiro método de ensaio que deve ser utilizado para avaliar peças ou componentes
que deverão ser submetidos a outros métodos de ensaios não destrutivos. Isso se deve ao fato de que a
maior parte dos métodos de ensaios não destrutivos requer, em maior ou menor grau, uma boa condição
da superfície, Com a realização do ensaio visual como primeiro método de ensaio, qualquer condição da
superfície da peça ou componente que possa vir a inviabilizar a realização de um determinado ensaio
posteriormente será detectada e corrigida, evitando perdas de tempo e recursos.

O ensaio visual também é utilizado em uma série de outras situações, como a inspeção de tubos em
condensadores de vapor e geradores de vapor na região próxima aos espelhos, em regiões de difícil
acesso em componentes em geral, como motores turbinas; para localização de partes perdidas em
centrais termoelétricas e nucleares, bem com em tubulações de diversos diâmetros, inacessíveis para o
ensaio visual direto, neste caso o exame sendo realizado com o auxílio de dispositivos automatizados
para transportar a instrumentação de captura de imagem até o local. Um dispositivo desse tipo pode ser
observado na figura 1.




             Fig. 1 - Inspeção visual de tubulação com auxílio de dispositivo automatizado.

O ensaio visual deve ser realizado de acordo com um procedimento escrito. Este procedimento deverá
descrever qual o processo utilizado para demonstrar a sua adequação. De uma maneira geral, uma linha
com 0,8 mm de diâmetro ou uma imperfeição artificial localizada na superfície a ser examinada ou em
uma superfície similar à mesma pode ser considerados como um método adequado para a
demonstração do procedimento. O dispositivo utilizado para a simulação deve ser posicionado no local
de mais difícil avaliação dentro da região a ser examinada para validar o procedimento.



2. Equipamentos

O equipamento utilizado nas técnicas de ensaio visual direto, remoto ou translúcido deve ser capaz de
atender às condições especificadas no procedimento para a execução do ensaio, como condições de
visualização, aumento, identificação, realização de medições e/ou gravação de informações de acordo
com os requerimentos da seção específica da norma ou código de fabricação.


                                                                                                   12
3. Aplicações

O ensaio visual é utilizado geralmente para determinar a condição da superfície de um componente, o
alinhamento de superfícies deste componente que se encontram, a forma ou evidências de vazamento.
Adicionalmente, o ensaio visual é utilizado para determinar a condição da região sub-superficial em
materiais compostos translúcidos.



3.1 Exame Visual Direto

O ensaio visual direto pode ser realizado quando o acesso é suficiente para que o examinador posicione
os olhos a até 600 mm da superfície a ser examinada e a um ângulo não menor do que 30º. Podem ser
utilizados espelhos para aumentar o ângulo de visão e instrumentos auxiliares como lentes de aumento
ou outros dispositivos, para melhorar a condição da inspeção. Um instrumento para esta aplicação pode
ser observado na figura 2. A intensidade mínima de luz na superfície examinada deve ser de 1000 lux e
as condições de realização do exame, como a fonte de luz utilizada, técnica utilizada e intensidade de
luz medida, devem ser registrados e guardados. Para juntas soldadas existem ainda alguns gabaritos
que são utilizados para facilitar a avaliação das características geométricas dos cordões de solda,
conforme pode ser observado na figura 3.




                                     Fig. 2 - Microscópio portátil.




        Fig. 3 - Gabaritos para avaliação das características geométricas de cordões de solda..




                                                                                                   13
3.2 Exame Visual Remoto

Nos casos em que não for possível a realização do exame visual direto, o ensaio visual é realizado de
maneira remota. Para a sua execução podem ser utilizados dispositivos como espelhos, telescópios,
boroscópios, fibras óticas, câmeras ou outros instrumentos adequados. Os sistemas utilizados devem
apresentar uma resolução pelo menos equivalente à obtida através do ensaio visual direto. Alguns
destes instrumentos podem ser observados na figura 4.




                  Fig. 4 - Boroscópio e fibroscópio para a realização do ensaio visual.

Estão disponíveis no mercado, também, aparelhos de videoscopia, em que a transmissão de imagem é
feita através de um CCD. Um esquema destes equipamentos pode ser observado na figura 5.




                        Fig. 5 - Endoscópio para a realização do ensaio visual.



3.3 Avaliação

As avaliações devem ser realizadas de acordo com os padrões de aceitação especificados no código de
fabricação ou norma de referência. Deve-se elaborar uma lista de verificação para o planejamento do
ensaio visual e para verificar que as observações requeridas foram realizadas. Esta lista de verificação
deverá conter os requisitos mínimos de exame, não indicando ou limitando a quantidade máxima de
requisitos que devem ser avaliados.




                                                                                                     14
Capítulo 3

                                  O Ensaio Radiográfico

1    INTRODUÇÃO
O ensaio radiográfico baseia-se na absorção diferenciada da radiação pela matéria. Consiste,
basicamente, em fazer passar um feixe de radiação X, radiação γ ou nêutrons através do objeto em
estudo e registrar as características da radiação emergente do objeto utilizando um meio adequado,
como um filme radiográfico, uma tela fluorescente ou dispositivos eletrônicos de detecção da imagem
radiográfica.

Dependendo das características do objeto em exame, como a sua geometria e o tipo de
descontinuidades apresentadas pelo mesmo, o feixe de radiação sofrerá uma maior ou menor absorção,
sensibilizando em maior ou menor grau o meio utilizado para o registro da imagem radiográfica.

O arranjo básico utilizado para a realização do ensaio radiográfico pode ser observado na figura 1,
referente à radiografia de uma peça com diferentes espessuras e com dois tipos de descontinuidades
comuns de serem encontradas em uma inspeção radiográfica. Na figura também é apresentada a
radiografia obtida, com a aparência radiográfica das diversas regiões da peça.




                                                 Fonte de
                                                 Radiação




                                                      Inclusão de
                           Poro                      material pouco
                                                      absorvedor
           Cassete
                                                                                        Peça
       contendo o filme
         radiográfico




                 Fig. 1 – Arranjo básico utilizado para a realização do ensaio radiográfico.


A porção do feixe de radiação que atravessa as regiões da peça com maior espessura sofre uma maior
absorção, o contrário ocorrendo com as regiões com menor espessura. Na imagem radiográfica,
portanto, as regiões mais espessas da peça apresentarão uma tonalidade mais clara do que as regiões
menos espessas. A porção do feixe de radiação que atravessa a região onde se localiza o poro também
sofrerá uma menor absorção. Consequentemente a imagem radiográfica resultante apresentará uma
tonalidade escura. O mesmo ocorre com a inclusão de um material pouco absorvedor, como por



                                                                                                15
exemplo, uma escória. Caso a inclusão seja de um material mais absorvedor do que o material base, a
imagem radiográfica correspondente apresentará uma tonalidade tanto mais clara quanto maior for a
absorção da radiação. Um exemplo é o de uma inclusão de tungstênio em uma junta soldada de aço
inoxidável. Na figura 2 é apresentada a imagem radiográfica obtida para a peça da figura1, indicando o
aspecto das regiões de maior e menor espessura, bem como o aspecto radiográfico do poro e da
inclusão.

      Aparência de               Aparência de uma                       Região menos                Região mais       Radiografia
      um poro na                    inclusão na                         espessa da peça           espessa da peça
      radiografia                    radiografia




                           Fig. 2 – Imagem radiográfica da peça apresentada na Figura 1.1.1.

Apesar de ser baseado em princípios simples, o ensaio radiográfico deve ser realizado de acordo com
metodologias que assegurem uma sensibilidade adequada para a detecção das descontinuidades de
interesse, bem como o estabelecimento de uma fácil correlação entre a localização de uma determinada
descontinuidade na radiografia e a sua respectiva localização na peça examinada, de forma a facilitar a
realização dos reparos, quando necessários ou possíveis.

O ensaio radiográfico pode ser aplicado, a princípio, a qualquer tipo de material. A única limitação é a
capacidade de absorção apresentada por alguns materiais, como o chumbo e o urânio, utilizados como
blindagens, que pode inviabilizar a realização deste tipo de ensaio.


2       PRINCÍPIOS FÍSICOS DO ENSAIO RADIOGRÁFICO

2.1     Natureza da Radiação Penetrante

2.1.1 O espectro eletromagnético

Os raios-X e a radiação gama são radiações eletromagnéticas, como a luz visível, as microondas, as
ondas de rádio. Elas não possuem carga ou massa, não são influenciadas por campos elétricos e
magnéticos e se propagam em linha reta. Sua posição no espectro eletromagnético pode ser observada
na figura 3.



                                                  Comprimento de Onda da Radiação (nm)

       106     105       104         103              102       101             10-1      10-2       10-3    10-4    10-5    10-6

                                                                                        Raios-X
                                            Visível




      Radio          Infravermelho                     Ultravioleta                                                 Raios Cósmicos
                                                                                             Gama


       10-9    10-8       10-7       10-6             10-5      10-4    10-3     10-2     10-1       100      101    102     103

                                                            Energia dos Fótons (MeV)


                                                      Fig. 3 – Espectro eletromagnético.



                                                                                                                                     16
2.1.2    Características das radiações X e gama

Os raios-X e a radiação gama podem ser caracterizados por sua freqüência, comprimento de onda e
velocidade. Devido ao seu pequeno comprimento de onda, eles possuem energia suficiente para
penetrar a matéria, sendo o grau de penetração dependente do tipo de matéria e da energia da radiação
X ou gama. Os raios-X e a radiação gama apresentam as seguintes características:

         Deslocam-se em linha reta, à velocidade da luz;
         Não são detectados pelos sentidos humanos;
         Suas trajetórias não são afetadas pela presença de campos elétricos e magnéticos;
         Eles podem ser difratados de forma semelhante à luz;
         A sua capacidade de penetrar a matéria depende de sua energia e das características de
         absorção do material através do qual se deslocam;
         Tem a capacidade de ionizar a matéria e podem danificar ou destruir células vivas.


2.2     Raios-X

Raios-X são gerados quando elétrons acelerados interagem com o campo elétrico de núcleos de um
material de número atômico elevado ou com a eletrosfera, com a conseqüente alteração de sua direção
e redução em sua energia cinética, sendo a diferença de energia entre o início e o término da interação
emitida sob a forma de ondas eletromagnéticas denominadas de raios-X de frenamento e raios-X
característicos.

A energia dos raios-X de frenamento depende da energia dos elétrons incidentes no material. Sendo o
processo de interação dependente da energia, intensidade e trajetória do elétron incidente, a energia da
radiação X produzida pode variar de zero até um valor máximo, definido pela energia cinética do elétron
antes da interação, dando origem a um espectro contínuo de energia. Os raios-X característicos gerados
se sobrepõem ao espectro dos raios-X contínuos. A forma final do espectro da radiação gerada pode ser
observada na figura 4.




                  Fig. 4 – Espectro típico de emissão de raios-X contínuos e característicos.


3       Equipamentos de Raios-X
Os raios-X são produzidos a partir da interação de elétrons acelerados com a matéria. Portanto, para
que haja a produção de raios-X é necessário:




                                                                                                     17
a) Uma fonte de elétrons
b) Um meio para acelerar os elétrons
c) Um alvo de um material adequado para receber o feixe de elétrons

Os raios-X são normalmente produzidos em um dispositivo denominado ampola de raios-X. Uma ampola
de raios-X consiste, basicamente, de um recipiente normalmente de vidro, contendo dois eletrodos em
seu interior, um positivo e outro negativo, denominados anodo e catodo, respectivamente. O interior
deste recipiente é mantido sob vácuo. O catodo consiste de um filamento de tungstênio, circundado por
uma cúpula de focalização, que atua como uma lente eletrostática e controla a forma do feixe de elétrons
emitido pelo filamento, fazendo com que ele atinja o anodo em uma pequena região denominada região
focal. O anodo é construído de um metal com uma alta condutividade térmica, normalmente o cobre, no
qual está inserido o alvo metálico, que receberá o impacto do feixe de elétrons. A face do alvo metálico
não é paralela ao filamento, apresentando um ângulo com relação ao mesmo. O conjunto anodo/catodo
pode ser observado na figura 5.




                 Fig. 5 – Conjunto anodo/catodo de um equipamento de raios-X típico.

O filamento atua como uma fonte de elétrons, o primeiro requisito para a geração de raios-X. Uma
corrente elétrica circulando pelo mesmo provoca o seu aquecimento e, quanto maior o seu aquecimento
maior a sua capacidade de emitir elétrons (emissão termiônica).

A aceleração dos elétrons em direção ao anodo do tubo, onde se encontra o alvo metálico, é obtida pela
aplicação de uma diferença de potencial entre o anodo e o catodo. Quanto maior a diferença de
potencial aplicada, maior a energia cinética adquirida pelos elétrons, maior a energia dos raios-X
gerados e, consequentemente, maior o seu poder de penetração. Assim o segundo requisito para a
geração de raios-X é atendido.

A corrente que se estabelece entre o anodo e o catodo é denominada corrente do tubo. Ela é controlada,
principalmente, pelo aquecimento do filamento. Quanto maior o aquecimento do filamento maior a
quantidade de elétrons disponíveis para serem acelerados em direção ao anodo.

A maior parte da energia dos elétrons é transformada em calor na região focal, no alvo, razão da alta
condutividade térmica necessária aos materiais do anodo. O material do alvo, por sua vez, deve
apresentar características especiais, como um alto ponto de fusão e um elevado número atômico. O
material mais utilizado como alvo é o tungstênio. Ele apresenta um elevado número atômico, o que
aumenta a quantidade de raios-X gerados durante a interação feixe de elétrons/material e um elevado
ponto de fusão, o que possibilita suportar o aquecimento gerado durante as interações na região focal
sem que ocorra a fusão. Desta forma, o terceiro requisito para a geração de raios-X é atendido.

Os tubos de raios-X podem ser direcionais ou panorâmicos. Anodos com formatos especiais são
projetados para a obtenção de feixes panorâmicos. Um anodo típico para gerar este tipo de feixe possui


                                                                                                     18
a forma de um cone, de maneira que, quando o feixe de elétrons o atinge, são gerados raios-X em um
ângulo de 360° redor do alvo. Este tipo de equipamento pode ser utilizado para a radiografia
                 ao
panorâmica de soldas circunferenciais em tubos e componentes cilíndricos. Um equipamento de raios-X
típico pode ser observado na figura 6.




        Fig. 6 – Equipamento de raios-X típico, constituído de ampola, unidade de controle e dois
                                    transformadores de alta tensão.

Outros dispositivos utilizados como fontes de raios-X são os aceleradores lineares, os Betatrons e
geradores Van de Graff. Equipamentos de raios-X com potencial constante, com tensão máxima de 450
kV, possibilitam a inspeção de peças de aço de até 110 mm de espessura.


4      Fontes de Radiação Gama
Fontes radioativas utilizadas em radiografia industrial são produzidas em reatores nucleares. Os
materiais utilizados como matéria prima para a obtenção destas fontes são introduzidos em reatores
nucleares, onde são submetidos a um alto fluxo de nêutrons, Quando os núcleos dos átomos destes
materiais capturam um nêutron, estes átomos se tornam instáveis, tendendo a recuperar a sua
instabilidade pela emissão de partículas e de energia sob a forma de radiação gama. A radiação gama
emitida por estes átomos é utilizada para a obtenção de radiografias. Na Tabela 1.2.1 podem ser
observados alguns os principais materiais utilizados como fontes radioativas em radiografia industrial e
suas características principais.


Tabela 1 – Principais radioisótopos utilizados em radiografia industrial.


    Elemento      Meia-Vida          Energia da Radiação γ         Faixa de Espessuras para Aço (mm)

Césio 137          30,1 anos                0,66 MeV                            25 a 87

Cobalto 60         5,27 anos            1,33 e 1,17 MeV                         65 a 225

Irídio 192         74,3 dias       0,310 – 0,470 – 0,600 keV                    19 a 65

Itérbio 169         32 dias               49 a 308 keV                          2,5 a 15

Selênio 75         120 dias                 279,5 keV                            5 a 40

Túlio 160          129 dias                84 e 52 keV                           Até 13




                                                                                                     19
4.1 Atividade de uma Fonte Radioativa

A atividade A de uma fonte radioativa é a taxa de mudança dos átomos instáveis da fonte em um
determinado instante, seja:

     dN
A=      , onde:
     dt
A é a atividade da fonte,
N é o número de átomos que ainda não decaiu, ou seja, de átomos radiativos, e
t é o tempo.

A atividade de uma fonte, no Sistema Internacional, é medida em unidades de transformação por
segundo, denominada Becquerel (Bq), sendo 1 Bq = 1/s, ou seja, uma desintegração por segundo.

A unidade anterior utilizada para representar a atividade é o Curie (Ci). Esta unidade ainda é encontrada
em equipamentos antigos e é definida por;
              10                                      10
1 Ci = 3,7 . 10    desintegrações por segundo = 3,7 . 10 Bq


4.2 Constante de Decaimento

Em uma amostra de material radioativo, a constante de decaimento (λ) expressa a probabilidade de
decaimento por átomo por segundo, sendo uma característica de cada material.


4.3 Cálculo da Atividade

A atividade A de um determinado material radioativo, em um determinado instante, pode ser determinada
através da equação:

A = A0e − λt , onde

A0 – é a atividade inicial do material
A – é a atividade em um determinado instante t
λ – é a constante de decaimento
t – tempo de decaimento

O cálculo da atividade no instante de uso da fonte é importante para se determinar o tempo de exposição
que deverá ser utilizado para se radiografar uma determinada peça. Para uma mesma fonte radioativa e
um determinado objeto, quanto menor a atividade da fonte maior o tempo de exposição necessário para
a obtenção da radiografia. Uma curva de decaimento típica pode ser observada na figura 7.




                                                                                                      20
100

                                                        90                                                      Irídio 192
                                                        80                                                              -λ t
                                                                                                                A = A0.e




                           Atividade remanescente (%)
                                                        70

                                                        60

                                                        50

                                                        40

                                                        30

                                                        20

                                                        10

                                                         0
                                                              0   25   50   75    100   125   150   175   200    225       250   275
                                                                                 Tempo decorrido (dias)


                                                        Fig. 7 – Curva de decaimento para o Irídio 192.


4.4 Meia-vida de um material radioativo

Corresponde ao intervalo de tempo contado a partir de um certo instante, necessário para que metade
dos átomos radioativos decaiam. A relação entre a meia-vida e a constante de decaimento é dada por:

T1/2 = 0,693/λ, onde

T1/2 – é a meia-vida do elemento e
λ - é a constante de desintegração.


4.5 Irradiadores

Para serem utilizadas com segurança nos trabalhos de radiografia industrial, as fontes radioativas são
armazenadas em equipamentos chamados irradiadores. Os irradiadores possuem uma blindagem,
normalmente de chumbo ou de urânio exaurido, envolta por uma carcaça de um material resistente a
impactos. Quando não estão sendo utilizadas, as fontes permanecem armazenadas nos irradiadores.
Como cada tipo de fonte, dependendo do material (como cobalto 60 ou irídio 192, por exemplo), emite
radiação gama com diferentes energias, eles são projetados para armazenar com segurança um
determinado tipo de fonte, com uma determinada atividade. Assim, existem irradiadores apropriados
para armazenar fontes de cobalto 60, outros para armazenar fontes de Irídio 192 e assim por diante, não
devendo o irradiador destinado a um certo tipo de fonte (radioisótopo e atividade) ser utilizado para
armazenar outros tipos de fonte.

Para que a exposição seja feita de forma segura, as fontes radioativas são encapsuladas em recipientes
cilíndricos de aço inoxidável. Na figura 8 pode ser observada uma fonte selada de Irídio 192 antes de ser
encapsulada. São mostrados dois discos de Irídio 192, o recipiente cilíndrico no interior do qual os discos
de material radioativo serão encapsulados e a mola que mantém estes discos fixos no interior do
mesmo.




                       Fig. 8 – Fonte selada de Irídio 192 antes de ser encapsulada.



                                                                                                                                       21
Este recipiente é então acoplado à extremidade de um cabo de aço que tem, em sua outra extremidade,
um engate para possibilitar a retirada e introdução da fonte no irradiador para a execução de
radiografias. O conjunto montado pode ser observado isoladamente na figura 9 e montado no irradiador
na figura 10. Para a realização da radiografia, a fonte é retirada do irradiador, como pode ser observado
na figura 11.




                                      Fig. 9 – Fonte selada montada.




        Fig. 10 – Corte de um irradiador mostrando o tubo em S e a fonte encapsulada montada.




                                                                        Suporte
                                                                                      Fonte Selada
           Cabo de
                                Irradiador
           Controle




            Cabo de
            Cabo de            Dispositivo    Blindagem      Saída da        Tubos Guia
            Controle
            Controle            de Trava                      Fonte


                  Fig. 11 – Irradiador em posição para a realização de uma radiografia.



                                                                                                      22
5     Formação da Imagem Radiográfica
A geometria utilizada para a realização do ensaio radiográfico é de extrema importância para a obtenção
de bons resultados no ensaio radiográfico. Dependendo da posição e das dimensões da fonte de
radiação utilizada, da distância entre a fonte de radiação e objeto radiografado e entre o objeto e o filme,
podem ser obtidas imagens radiográficas com grandes diferenças, com conseqüência direta na
sensibilidade radiográfica.

Os princípios geométricos que regem a formação da imagem radiográfica são semelhantes aos da
formação de sombras com a luz comum, podendo ocorrer efeitos como a ampliação e distorção da
imagem e formação de penumbra geométrica. Considerando-se uma fonte de radiação puntiforme,
alguns dos fatores que afetam a imagem radiográfica formada é a distância entre a fonte de radiação e o
objeto radiografado e entre o objeto radiografado e o filme, como pode ser observado na figura 12 e
figura 13, respectivamente.


                            Fonte




                                                Fonte




                                                                   Fonte


                         Objeto             Objeto             Objeto




                  Fig. 12 – Efeito da variação da distância entre a fonte e o objeto.




                          Fonte                Fonte                Fonte



                                                                 Objeto


                                            Objeto



                       Objeto




                  Fig. 13 – Efeito da variação da distância entre o objeto e o filme.



                                                                                                         23
Caso o plano do filme não seja perpendicular ao feixe de radiação incidente, pode ocorrer ainda o efeito
de distorção da imagem formada.


5.1 Penumbra Geométrica

A penumbra geométrica consiste na perda de definição da imagem radiográfica devido aos fatores
geométricos presentes no ensaio, tanto relativos ao equipamento quanto à geometria de exposição. Ela
é provocada, basicamente, pelo fato da fonte de radiação não ser puntiforme, ou seja, a radiação se
origina de uma área e não de um ponto. O efeito da penumbra geométrica na imagem radiográfica pode
ser observado na figura 14.




                                    Fig. 14 – Penumbra geométrica.


Como pode ser observado pela análise da figura 14, o valor da penumbra geométrica é função das
dimensões da fonte (F), da distância fonte-objeto (DFO) e da espessura do objeto (e), relacionados da
seguinte forma:

        F .e                                              F .e
Pg =                           ou                 DFO =
       DFO                                                Pg


Ou ainda

                    F .e      F (e + 1)
DFF = DFO + e =          +e =           , onde
                    Pg           Pg

DFF = distância fonte-filme
DFO = distância fonte-objeto
e = espessura do objeto
F = tamanho efetivo do foco emissor de radiação
Pg = penumbra geométrica




                                                                                                     24
A distância fonte-filme (DFF) mínima utilizada para o ensaio radiográfico deve ser tal que limite a
penumbra geométrica a valores que não prejudiquem a avaliação da radiografia. O Código ASME
(Seção V, Artigo 2) define os valores máximos permissíveis para a penumbra geométrica, em função da
espessura do objeto radiografado, conforme indicado na Tabela 2.


Tabela 2 – Valores máximos para a penumbra geométrica em função da espessura do objeto
radiografado.

           Espessura do Objeto (mm)         Valor Máximo da Penumbra Geométrica (mm)

                  Abaixo de 50                                  0,51
                  De 50 até 75                                  0,76
                  De 75 até 100                                 1,02
                  Maior que 100                                 1,78



5.2 Lei do Inverso do Quadrado da Distância

A intensidade da radiação emitida por uma fonte de pontual diminui, à medida que aumenta a distância
da fonte emissora, de acordo com a lei do inverso do quadrado da distância. Como pode ser observado
na figura 15, a uma distância (d) da fonte emissora, a radiação emitida pela mesma, colimada através de
um diafragma, atinge uma determinada área no plano1. A uma distância duas vezes maior (2d), a
mesma quantidade de radiação atinge uma área quatro vezes maior, no plano 2, ou seja, com a
duplicação da distância a intensidade se tornou quatro vezes menor.




                 Fig. 15 – Representação da Lei do Inverso do Quadrado da Distância.



                                                                                                    25
Chamando-se a distância d na figura 15 de d1 e a distância 2d de d2, a Lei do Inverso do Quadrado da
Distância pode ser escrita como:


      2
I1 d 2
   = 2 , onde
I 2 d1

I1 – é intensidade da radiação no plano 1, a uma distância d1 da fonte emissora
I2 – é intensidade da radiação no plano 2, a uma distância d2 da fonte emissora
d1 – é distância da fonte emissora ao plano 1
d2 – é distância da fonte emissora ao plano 2.


Em radiografia industrial, a exposição radiográfica é definida como o produto da corrente do tubo pelo
tempo de exposição (quando se utilizam equipamentos de raios-X) ou como o produto da atividade da
fonte pelo tempo de exposição (quando se utilizam fontes de radiação gama), ou seja:

E r = i .t , onde

Er = exposição radiográfica
i = corrente no tubo em mA - miliamperes
t = tempo de exposição em minutos ou segundos

ou

E r = A.t , onde

Er = exposição radiográfica
A = atividade da fonte radioativa em GBq
t = tempo de exposição em horas


A intensidade de radiação que atinge o objeto durante a realização de uma radiografia é proporcional ao
valor da exposição radiográfica utilizada. Uma radiografia executada com uma determinada distância
fonte filme apresentará uma determinada densidade ótica. Caso a distância fonte-filme seja duplicada, a
intensidade de radiação que atinge o filme será quatro vezes menor do que na condição anterior. Para
que a radiografia obtida apresente o mesmo valor de densidade ótica da radiografia original, o valor da
exposição radiográfica deverá ser quatro vezes maior, ou seja, a corrente do tubo ou o tempo de
exposição deverão ser quatro vezes maior (quando se utilizam equipamentos de raios-X ) ou o tempo de
exposição deverá ser quatro vezes maior (quando se utilizam fontes de radiação gama).

Este fato deve ser considerado quando se aumentar ou diminuir, por um motivo qualquer, a distância
fonte-filme para a realização de uma determinada radiografia, de forma a não resultar em tempos
excessivos de exposição.



6     Diagramas de Exposição

Os diagramas de exposição possibilitam a determinação dos parâmetros de teste mais adequados para
a execução da radiografia de uma determinada peça, de um determinado material. Eles são construídos
para um determinado material, para um determinado tipo de filme, para um determinado conjunto de
telas intensificadoras, para condições de processamento padronizadas, para uma distância fonte-filme
fixa e para uma determinada densidade ótica. Embora sejam fornecidos quando se adquire um
equipamento de raios-X, normalmente o laboratório radiográfico deve elaborar os diagramas para cada



                                                                                                    26
um dos equipamentos de raios-X com os quais trabalha. Um diagrama de exposição típico para
equipamentos de raios-X pode ser observado na figura 16.

Para que o diagrama contendo as curvas de exposição possa ser utilizado com eficiência, as condições
de exposição para a realização de uma radiografia devem ser as mesmas utilizadas para a elaboração
das curvas, sendo possível, entretanto, corrigir o valor das exposições para diferentes tipos de filmes ou
diferentes distâncias fonte-filme.

                                   100 kV   120 kV     140 kV   160 kV        180 kV       200 kV
                   100




                                                                                             220 kV
     Exposição (mA.min)




                                                                                            240 kV


                          10                                                                 260 kV




                          1
                               5       10      15      20       25       30      35        40
                                              Espessura da Peça (mm)

 Fig. 16 – Diagrama típico contendo curvas de exposição para um equipamento de raios-X para tensões
   entre 100 kV e 260 kV e as seguintes condições: aço, filme Classe 2, tela dianteira de chumbo com
  0,125 mm de espessura, tela traseira de chumbo com 0,250 mm de espessura, revelação 5 minutos a
                   20° distância fonte-filme de 700 mm, densidade ótica igual a 2,0.
                      C,


De posse do diagrama, a radiografia de uma peça de aço com 25 mm de espessura, utilizando-se um
filme classe 2, telas dianteiras e traseiras com espessuras de 0,125 e 0, 250 mm respectivamente, uma
distância fonte-filme de 700 mm, utilizando-se uma tensão de 180 kV, deverá ser feita com uma
exposição radiográfica de 50 mA.min, para que a radiografia obtida tenha uma densidade ótica igual a
2,0. Isto significa que, se utilizarmos uma corrente do tubo igual a 5 mA, o tempo de exposição
necessário será de 10 minutos. Caso a corrente seja de 10 mA, o tempo de exposição necessário será
de 5 minutos.


7        O Filme Radiográfico

Os filmes de raios-X consistem de uma base de poliéster, revestida em ambos os lados por um substrato
sobre o qual é depositada uma camada de emulsão, composta principalmente de cristais de haletos de
prata, como o brometo de prata ou o cloreto de prata. O substrato tem como finalidade assegurar a



                                                                                                       27
aderência da emulsão à base de poliéster. Sobre a emulsão é depositada uma camada de gelatina
endurecida, que tem como finalidade proteger a mesma. Ao todo, portanto, o filme radiográfico é
formado por sete camadas, como pode ser observado na figura 17.




                            Fig. 17 – Constituição de um filme radiográfico.

Na maior parte dos filmes radiográficos, a emulsão é depositada em ambos os lados da base, dobrando,
portanto, a quantidade de haletos de prata que pode ser sensibilizada, tendo como conseqüência um
aumento da velocidade do filme. Estas camadas são finas o bastante para serem processadas em um
tempo razoável. Em alguns filmes especiais, a emulsão é depositada em apenas um lado da base, o que
torna o filme mais lento, aumentando, entretanto, a definição da imagem radiográfica.

Quando a radiação X, gama ou a luz atingem a emulsão, as regiões do filme que recebem uma
                                                                         -
quantidade suficiente de radiação sofrem uma mudança. Alguns íons de Br são liberados e capturados
               +
por íons de Ag , Esta mudança é tão pequena que não é perceptível sem um processamento posterior
do filme e é chamada de imagem latente. Os grãos expostos tornam-se mais sensíveis ao processo de
redução quando em contato com uma solução química chamada revelador e a reação que ocorre
durante o processo de revelação resulta na formação de prata metálica, de coloração preta. Esta prata,
em suspensão na gelatina em ambos os lados da base, dá origem à imagem radiográfica. A quantidade
de partículas de prata metálica produzida é maior nas regiões da emulsão que receberam maiores
quantidades de radiação e menor naquelas que receberam uma quantidade menor. A distribuição da
prata metálica no filme, em maior ou menor quantidade, dá origem à imagem radiográfica.


7.1 Processamento

O processamento do filme radiográfico compreende um conjunto de operações em que o filme é
colocado em contato com uma série de substâncias químicas. O processamento envolve as seguintes
etapas:

Revelação - é o tratamento pelo qual a imagem latente é convertida em uma imagem visível, pela
redução seletiva dos cristais de haleto de prata da emulsão em prata metálica. O tempo de revelação
deve ser cuidadosamente controlado, de forma permitir a conversão dos cristais expostos em prata
metálica enquanto mantém os cristais não expostos como haletos de prata. O tempo de revelação é
função da temperatura do revelador e, normalmente, são fornecidos pelos fabricantes de filmes e
soluções de processamento tabelas que indicam o tempo de exposição adequado para uma determinada
faixa de temperaturas.

Banho de parada - o banho de parada tem como objetivo interromper a ação do revelador, retirando o
mesmo da superfície do filme. Pode ser utilizada a água comum, corrente, devendo todo o excesso de
revelador ser retirado antes de o filme ser colocado no banho fixador.

Fixação - é o tratamento pelo qual os cristais de haleto de prata não expostos são removidos do filme. O
fixador remove os cristais de haleto de prata, não reagindo com a prata metálica formada.



                                                                                                     28
Lavagem final - a lavagem final tem como objetivo eliminar resíduos das soluções de processamento da
superfície do filme, de forma a evitar a sua degradação e possibilitar o seu posterior arquivamento pelo
tempo necessário.

Secagem - realizada em secadoras apropriadas e executada de forma a não produzir manchas que
possam prejudicar a análise posterior.

Após estas operações, a radiografia é guardada em um envelope apropriado e está pronta para ser
analisada.

O processamento pode ser realizado manualmente ou em processadora automática. Em qualquer uma
das situações, o processo deve ser realizado sob condições controladas e padronizadas.

7.2 Densidade ótica

Durante a avaliação de uma radiografia em um negatoscópio, pode-se observar que as imagens
presentes na mesma são formadas por regiões com diferentes graus de escurecimento, resultantes da
moior ou menor sensibilização do filme durante a exposição. O grau de escurecimento apresentado pela
radiografia é denominado densidade ótica ou densidade fotográfica, definida por:


          Ii
D = log      , sendo
          It
D = densidade ótica da radiografia em uma determinada região
Ii = intensidade de luz incidente na radiografia
It = intensidade de luz transmitida pela radiografia.

A densidade ótica de uma radiografia ou de um filme fotográfico exposto e processado é determinada
utilizando-se um equipamento denominado densitômetro. Ele possui uma fonte emissora de luz e um
sensor fotoelétrico. Quando a radiografia é posicionada entre a fonte emissora de luz e o sensor, a
densidade ótica da mesma pode ser determinada pelo equipamento.

Como exemplo, um valor de densidade ótica em uma determinada região de uma radiografia, igual a 1,
significa que naquela região, somente 10% da luz incidente foi transmitida. Para uma densidade ótica
igual a 2 este valor cai para 1%. Em geral, os negatoscópios disponíveis para a avaliação de radiografias
industriais possibilitam a avaliação de radiografias com densidades óticas até 4.



7.3 Curvas Características

Os diferentes tipos de filmes radiográficos comportam-se de forma diferente quando expostos e
processados nas mesmas condições. Para caracterizar o comportamento de um determinado filme, são
elaboradas curvas que associam a exposição à qual um determinado filme foi submetido e a densidade
ótica correspondente. Estas curvas são chamadas curvas características. A forma típica de uma curva
característica pode ser observada na figura 18. Em geral, no eixo horizontal são apresentados os valores
das exposições relativas e no eixo vertical os valores das densidades óticas correspondentes, para um
filme em particular ou para um conjunto de diferentes filmes.

As curvas apresentadas na figura18 se referem a dois filmes hipotéticos A e B. No eixo horizontal estão
representados os valores referentes ao logaritmo das exposições relativas e no eixo vertical os valores
das densidades óticas correspondentes. As curvas características possibilitam o cálculo da exposição
necessária para produzir uma radiografia com uma determinada densidade ótica para um filme
específico. Podem também ser utilizadas para o cálculo da exposição necessária para produzir
radiografias com a mesma densidade ótica em filmes diferentes.




                                                                                                      29
Filme A           Filme B
                       4,0


                       3,5


                       3,0
   Densidade Ótica




                       2,5


                       2,0


                       1,5


                       1,0


                       0,5


                       0,0
                               1,0                  1,5                    2,0                2,5                3,0
                                                          log exposição relativa

                                  Fig. 18 – Curvas características de dois filmes hipotéticos A e B.



As curvas características são fornecidas preparadas pelos fabricantes de filmes. Dois exemplos de sua
utilização são apresentados a seguir.

a) Uma radiografia de uma peça de aço, realizada, com 150 Kv, 5 mA e 1 minuto utilizando-se o Filme
   A, apresentou uma densidade ótica, na região de interesse, igual a 1,5. Deve-se elevar este valor
   para 2,0. Qual deve ser o novo valor da exposição para se obter o novo valor de densidade?

                     Utilizando-se como referência a FIG. 3.6, curva referente ao filme A, verifica-se que para um
                     valor de densidade ótica igual a 1,5 o logaritmo da exposição relativa é igual a 2. Para uma
                     densidade ótica igual a 2,0 o logaritmo da exposição relativa é igual a 2,12, ou seja:

                     Filme A


                     Para D = 1,5 → log da exposição relativa = 2
                     Para D = 2,0 → log da exposição relativa = 2,12

                     A diferença entre os logaritmos das exposições relativas, é igual a:

                                                                        0,12
                     ∆ log Er = (2,12 - 2) = 0,12   ou seja   Er = 10          ∴   Er = 1,3




                                                                                                                       30
Isto significa que a relação entre as duas exposições, para as densidades óticas iguais a 2 e 1,5, é igual
a 1,3. Dessa forma, para que a densidade ótica da radiografia possa ser elevada de 1,5 para 2 é
necessário que o valor da exposição inicial seja 1,3 vezes maior, ou seja, igual a 6,5 mA.min.

b) Uma radiografia de uma peça de aço, realizada, com 150 Kv, 1 mA e 6,5 minutos utilizando-se o
   Filme A, apresentou uma densidade ótica, na região de interesse, igual a 2,0. Deve-se realizar a
   radiografia da mesma peça utilizando-se o filme B, devendo-se obter o mesmo valor de densidade
   ótica. Qual deve ser o novo valor da exposição?

         Utilizando-se como referência a FIG. 3.6, curva referente ao filme A, verifica-se que para um
         valor de densidade ótica igual a 2, o logaritmo da exposição relativa é igual a 2,12. Para o filme
         B e um valor de densidade ótica igual a 2, o logaritmo da exposição relativa é igual a 2,67, ou
         seja:

         Filme A - para D = 2,0 → log da exposição relativa = 2,12
         Filme B - para D = 2,0 → log da exposição relativa = 2,67

         A diferença entre os logaritmos das exposições relativas, é igual a:

                                                               0,55
         ∆ log Er = (2,67 - 2,12) = 0,55   ou seja   Er = 10          ∴   Er = 3,5

Isto significa que a relação entre as duas exposições, para as densidades óticas iguais a 2 em ambos os
filmes, é igual a 3,5, Dessa forma, para que a densidade ótica da radiografia possa ser mantida ao se
mudar do filme A para o filme B, é necessário que o valor da exposição inicial seja 3,5 vezes maior, ou
seja, aproximadamente 23 mA.min.



8       Indicadores da Qualidade da Imagem
Os Indicadores da Qualidade da Imagem (IQI) ou penetrâmetros são dispositivos utilizados para a
avaliação da qualidade da imagem radiográfica. Eles são fabricados a partir de materiais idênticos ou
radiograficamente similares aos materiais a serem radiografados e são posicionados, em geral, sobre a
peça em exame, voltados para a fonte de radiação, sendo sua imagem formada na radiografia, junto com
a imagem da peça. Existem indicadores com diferentes configurações geométricas, dependendo de sua
origem. Entretanto, o objetivo da sua utilização é o mesmo: possibilitar a avaliação da qualidade da
imagem radiográfica obtida e, consequentemente, da sensibilidade do ensaio para a detecção de
descontinuidades. Dentre os indicadores mais utilizados podem-se citar os indicadores ASTM (tipo placa
ou tipo fio) e os indicadores DIN (tipo fio), apresentados a seguir.


8.1 Indicadores da Qualidade da Imagem ASTM

8.1.1    Indicador ASTM Tipo Placa

Estes indicadores consistem de uma lâmina de um material radiograficamente similar ao material a ser
radiografado, com uma espessura definida T, contendo três furos. Os furos possuem diâmetros iguais a
1T, 2T e 4T e são identificados como furos 1T, 2T e 4T, respectivamente. Em cada um destes
indicadores existe uma identificação, feita com letras de chumbo, que indica a sua espessura em
milésimos de polegada. O grupo de materiais ao qual pertence o IQI, ou seja, para o qual ele pode ser
utilizado, é indicado através de entalhes existentes no corpo do IQI, sendo previstos indicadores para
oito grupos de materiais. Um IQI tipo placa, para aço carbono e aço inoxidável, com uma espessura T de
vinte milésimos de polegada, pode ser observado na figura 19.




                                                                                                        31
Furo 4T      Furo 1T     Furo 2T




                                      Número do IQI – espessura T
                                      em milésimos de polegada


                     Fig. 19 – Indicador da Qualidade da Imagem ASTM tipo placa.


Para a avaliação da qualidade da imagem são estabelecidos diferentes níveis de qualidade da imagem.
Estes níveis são designados por dois números. O primeiro indica a espessura percentual do IQI com
relação à espessura do material radiografado e o segundo o diâmetro do fio que deverá ser observado
na radiografia. Os níveis típicos da qualidade da imagem podem ser observados na Tabela 3.


Tabela 3 – Níveis típicos da qualidade da imagem ASTM.

 Níveis de Qualidade da Imagem              Espessura do IQI          Furo perceptível na radiografia

                               Níveis de Qualidade de Imagem Padrões

               2 – 1T                                                                 1T
               2 – 2T                  2% da espessura do objeto                      2T
               2 – 4T                                                                 4T

                              Níveis de Qualidade de Imagem Especiais

               1 – 1T                                                                 1T
                                       1% da espessura do objeto
               1 – 2T                                                                 2T
               4 – 2T                  4% da espessura do objeto                      2T


Como exemplo, quando um nível de qualidade 2 – 2T é especificado para o ensaio, isto significa que o
furo com diâmetro 2T, em um IQI com espessura equivalente a 2% da espessura do objeto examinado,
deve ser perceptível na radiografia.

Para a realização da radiografia de juntas soldadas, este tipo de IQI deve ser posicionado sobre a peça,
ao lado do cordão de solda, não devendo ser posicionado sobre o cordão. Neste caso, a espessura total
do material radiografado corresponde à espessura nominal da peça mais a sobre espessura do cordão
de solda de ambos os lados. Para que o IQI possa ser utilizado para a avaliação da sensibilidade
radiográfica, ele deverá ser posicionado sobre um calço de material radiograficamente similar ao metal
base, com espessura igual à sobre espessura do cordão de solda de ambos os lados.


8.1.2   Indicador ASTM Tipo Fio

Consiste de um conjunto de fios com diferentes diâmetros, de um material radiograficamente similar ao
material a ser radiografado, inseridos em um invólucro de plástico transparente. Os fios deste tipo de IQI
são numerados de 1 a 21, em ordem crescente de seus diâmetros. Eles são montados em grupos de 6,
formando 4 conjuntos distintos, denominados A, B, C e D, respectivamente. Os conjuntos A, B, C e D
compreendem os fios de número 1 a 6; 6 a 11; 11 a 16 e 16 a 21, respectivamente. Como no caso do IQI


                                                                                                       32
tipo placa, existem indicadores para oito grupos de materiais, indicados pelos números 1 a 3 e 01 a 05.
Um IQI tipo fio, para aço carbono e aço inoxidável, pode ser observado na figura 20. Nele pode-se
observar o número de identificação da classe de materiais a que o IQI se aplica (1), a norma (ASTM), o
conjunto de fios (A). O número 6 representa o último fio do conjunto.




                        Fig. 20 – Indicador da Qualidade da Imagem ASTM tipo fio.


8.1.3   Seleção

A seleção dos Indicadores da Qualidade da Imagem ASTM deve ser feita em função da posição do IQI
em relação a fonte de radiação e da espessura de material radiografada. Deve-se utilizar como
referência a Tabela 4.


Tabela 4 – Seleção de indicadores da Qualidade da Imagem tipo placa e tipo fio.
                               Indicador da Qualidade da Imagem ASTM

                                                                   Lado da Fonte      Lado do Filme
        Espessura Nominal de uma Parede do Material
                                                                         Tipo               Tipo

          Polegadas                        Milímetros             Placa         Fio   Placa        Fio

Até 0,25 inclusive                 Até 6,4 inclusive                12          5      10          4
Acima de 0,25 até 0,375            Acima de 6,4 até 9,5             15          6      12          5
Acima de 0,375 até 0,50            Acima de 9,5 até 12,7            17          7      15          6
Acima de 0,50 até 0,75             Acima de 12,7 até 19,0           20          8      17          7
Acima de 0,75 até 1,00             Acima de 19,0 até 25,4           25          9      20          8
Acima de 1,00 até 1,50             Acima de 25,4 até 38,1           30          10     25          9
Acima de 1,50 até 2,00             Acima de 38,1 até 50,8           35          11     30          10
Acima de 2,00até 2,50              Acima de 50,8 até 63,5           40          12     35          11
Acima de 2,50 até 4,00             Acima de 63,5 até 101,6          50          13     40          12
Acima de 4,00 até 6,00             Acima de 101,6 até 152,4         60          14     50          13



                                                                                                        33
Tabela 4 – Seleção de indicadores da Qualidade da Imagem tipo placa e tipo fio (continuação).
                             Indicador da Qualidade da Imagem ASTM

                                                                  Lado da Fonte       Lado do Filme
      Espessura Nominal de uma Parede do Material
                                                                         Tipo                Tipo

         Polegadas                        Milímetros              Placa         Fio   Placa         Fio

Acima de 6,00 até 8,00            Acima de 152,4 até 203,2         80           16      60          14
Acima de 8,00 até 10,00           Acima de 203,2 até 254,0         100          17      80          16
Acima de 10,00 até 12,00          Acima de 254,0 até 304,8         120          18     100          17
Acima de 12,00 até 16,00          Acima de 304,8 até 406,4         160          20     120          18
Acima de 16,00 até 20,00          Acima de 406,4 até 508,0         200          21     160          20




8.2 Indicadores da Qualidade da Imagem DIN

Os indicadores da qualidade da imagem DIN consistem de um conjunto de fios com diferentes
diâmetros, de um material radiograficamente similar ao material a ser radiografado, inseridos em um
invólucro de plástico transparente. Os fios deste tipo de IQI são numerados de 1 a 16, em ordem
decrescente de seus diâmetros. Eles são montados em grupos de 7, formando 3 conjuntos distintos. O
primeiro conjunto compreende os fios de 1 a 7, o segundo os fios de 6 a 12 e o terceiro os fios de 10 a
16, identificados pela designação 1 ISO 7, 6 ISO 12 e 10 ISO 16, respectivamente. Como no caso dos
indicadores ASTM, existem indicadores para diferentes tipos de materiais. Um IQI DIN, para aço carbono
e aço inoxidável, pode ser observado na figura 21. Nele pode-se observar a identificação da norma de
referência (DIN), o número 62 (indicativo do ano em que este tipo de IQI passou a ser utilizado) e o
símbolo FE, indicando o grupo de materiais para o qual o IQI pode ser utilizado. Na parte inferior, a
designação 10 ISO 16 indica que o conjunto compreende os fios de números 10 a 16.




                           Fig. 21 – Indicador da Qualidade da Imagem DIN.




                                                                                                         34
8.2.1     Seleção

A seleção dos Indicadores da Qualidade da Imagem DIN deve ser feita de acordo com a Tabela 5, em
função da espessura do material a ser radiografada e da sensibilidade do ensaio.


Tabela 5 – Seleção de indicadores da Qualidade da Imagem DIN.

                                   Índice da Qualidade da Imagem (BZ)

                                   Categoria de Qualidade da Imagem

                            I                                                II

    Espessura do Material       Índice da Qualidade   Espessura do Material       Índice da Qualidade
       em Exame (mm)              da Imagem (BZ)         em Exame (mm)              da Imagem (BZ)
    Até 6, inclusive                    16            Até 6, inclusive                    14
    Acima de 6 até 8                    15            Acima de 6 até 8                    13
    Acima de 8 até 10                   14            Acima de 8 até 10                   12
    Acima de 10 até 16                  13            Acima de 10 até 16                  11
    Acima de 16 até 25                  12            Acima de 16 até 25                  10
    Acima de 25 até 32                  11            Acima de 25 até 32                  9
    Acima de 32 até 40                  10            Acima de 32 até 40                  8
    Acima de 40 até 50                  9             Acima de 40 até 60                  7
    Acima de 50 até 80                  8             Acima de 60 até 80                  6
    Acima de 80 até 150                 7             Acima de 80 até 150                 5
    Acima de 150 até 200                6             Acima de 150 até 170                4
                                                      Acima de 170 até 180                3
                                                      Acima de 180 até 190                2
                                                      Acima de 190 até 200                1




9       Técnicas Radiográficas

9.1     Técnicas de Redução do Espalhamento

Quando um feixe de radiação passa por um determinado objeto, parte dessa radiação é absorvida, parte
sofre um espalhamento e parte continua a sua trajetória sem alteração de direção. A radiação
espalhada, devido aos seus maiores comprimentos de onda, é menos penetrante que a radiação
primária. Ela produz uma redução no contraste das imagens registradas no filme, diminuindo a qualidade
da imagem radiográfica, devendo, portanto, ser reduzida.

Após passar pelo material e pelo cassete onde se encontra armazenado o filme, o feixe de radiação
continua sua trajetória. Qualquer objeto no caminho do feixe, como outros objetos, paredes, piso, pode
promover o espalhamento da radiação, que pode, inclusive, retornar ao filme, atingindo a parte traseira
do cassete. Esta radiação é denominada radiação retro-espalhada e produz uma redução apreciável na
imagem radiográfica original.




                                                                                                    35
Assim, a radiação espalhada pode atingir o filme radiográfico de duas formas. A partir do objeto sendo
radiografado e a partir de objetos próximos ao filme. A redução da radiação espalhada pode ser obtida
de diversas formas, como indicado a seguir.

    a) A utilização de máscaras de chumbo acompanhando os contornos da peça - impede que a
       radiação espalhada atinja a parte superior do cassete.
    b) A utilização de diafragmas ou colimadores para restringir a abertura do feixe de radiação à área
       de interesse na peça.
    c) A utilização de filtros entre a fonte de radiação e o objeto radiografado, que reduz a quantidade
       de radiação com maiores comprimentos de onda (menor energia), mais suscetíveis de sofrerem
       espalhamento.
    d) A utilização de telas de chumbo na parte traseira do cassete, que blindam a radiação retro-
       espalhada, impedindo que a mesma atinja o filme.


9.2 Técnicas de Exposição

O ensaio radiográfico deve ser planejado de forma a permitir a obtenção de uma imagem radiográfica de
qualidade adequada, que possibilite uma rápida associação entre a posição de uma descontinuidade
detectada na radiografia e a posição da mesma no objeto em exame e que assegure o exame total das
áreas de interesse. A seguir são apresentadas algumas técnicas de exposição normalmente utilizadas
para a execução do ensaio radiográfico em soldas de tubulações (Código ASME, Seção V, Artigo 2) e
peças em geral.


9.2.1   Técnica Radiográfica de Parede Simples – Vista Simples

A técnica radiográfica de parede simples vista simples consiste em se posicionar a fonte de tal forma que
o feixe de radiação atravesse apenas uma parede do material sob exame (parede simples) e somente a
imagem da região de interesse junto ao filme seja avaliada (vista simples). Sempre que possível, esta
deve ser a técnica utilizada para a realização do ensaio. Algumas variações na aplicação desta técnica
podem ser observadas nas figuras 22 e 23, para tubos soldados e figura 24, esta última para
componentes planos. Uma situação especial, que possibilita a realização da radiografia de toda a região
de interesse pode ser observada na figura 25, onde a distância fonte-filme é igual ao raio do componente
e na figura 26, onde um conjunto de peças é posicionado eqüidistante da fonte de radiação e a
radiografia de todas as peças é realizada ao mesmo tempo.




 Fig. 22 – Técnica radiográfica de parede simples - vista simples com o filme posicionado no interior do
                      componente cilíndrico e a fonte posicionada externamente .




                                                                                                       36
Fig. 23 – Técnica radiográfica de parede simples - vista simples com a fonte posicionada no interior do
componente cilíndrico e o filme posicionado externamente, sendo a distância fonte-filme maior que o raio
                                            do componente.




       Fig. 24 – Técnica radiográfica de parede simples - vista simples para componentes planos.




  Fig. 25 – Técnica radiográfica de parede simples - vista simples com exposição panorâmica: a fonte
   posicionada no interior do componente cilíndrico e os filmes posicionados externamente, sendo a
                           distância fonte-filme igual ao raio do componente.



                                                                                                       37
Fig. 26 – Técnica radiográfica de parede simples - vista simples com exposição panorâmica: a fonte
   posicionada no interior do componente cilíndrico e os filmes posicionados externamente, sendo a
                           distância fonte-filme igual ao raio do componente.


9.2.2   Técnica Radiográfica de Parede Dupla – Vista Simples

A técnica radiográfica de parede simples vista simples consiste em se posicionar a fonte de tal forma que
o feixe de radiação atravesse duas paredes do material sob exame (parede dupla) e somente a imagem
da região de interesse junto ao filme seja avaliada (vista simples). Esta técnica é utilizada quando não
existe acesso ao interior do componente, conforme pode ser observado nas figuras 27 e 28. Para os dois
arranjos mostrados nas figuras devem ser feitas pelo menos três radiografias defasadas de 120° para
cobertura completa da região de interesse.




    Fig. 27 – Técnica radiográfica de parede dupla - vista simples com a fonte de radiação e o filme
                              posicionados externamente ao componente.




    Fig. 28 – Técnica radiográfica de parede dupla - vista simples com a fonte de radiação e o filme
                              posicionados externamente ao componente.


                                                                                                       38
9.2.3   Técnica Radiográfica de Parede Dupla – Vista Dupla

A técnica radiográfica de parede simples vista simples consiste em se posicionar a fonte de tal forma que
o feixe de radiação atravesse duas paredes do material sob exame (parede dupla) e somente a imagem
da região de interesse junto ao filme seja avaliada (vista simples). Esta técnica é utilizada quando não
existe acesso ao interior do componente, conforme pode ser observado nas figuras 29 e 30. Esta técnica
pode ser aplicada para o exame de soldas em tubos com diâmetro externo iguais ou menores do que 89
mm. Para o arranjo mostrado na figura 29, devem ser feitas pelo menos duas radiografias defasadas de
90° para cobertura completa da região de interesse. Para o arranjo mostrado figura 30, devem ser feitas
pelo menos três radiografias defasadas de 60° ou 120° para cobertura completa da região de interesse.




    Fig. 29 – Técnica radiográfica de parede dupla - vista simples com a fonte de radiação e o filme
 posicionados externamente ao componente. São necessárias pelo menos 2 radiografias defasadas de
                     90° para garantir a cobertura completa da região de interesse.




    Fig. 30 – Técnica radiográfica de parede dupla - vista simples com a fonte de radiação e o filme
 posicionados externamente ao componente. São necessárias pelo menos 3 radiografias defasadas de
                60° ou 120° para garantir a cobertura completa da região de interesse.




                                                                                                      39
10 Avaliação de Radiografias
A avaliação das radiografias deve ser realizada em um local próprio, com um baixo nível de iluminação
ambiente, sendo a iluminação projetada de forma a não ocorrer reflexões na superfície da radiografia
examinada. Níveis abaixo de 2 fc são normalmente recomendados para a iluminação ambiente. O
exame das radiografias é realizado com o auxílio de negatoscópios que possibilitam o exame de
radiografias com valores elevados de densidade ótica. Antes de se iniciar a avaliação propriamente dita,
deve-se, baseado no procedimento de ensaio, verificar se a radiografia foi realizada com a técnica
adequada (filme adequado, se os valores de densidade ótica da região de interesse estão dentro dos
limites especificados, se foi identificada corretamente, se foi utilizado o indicador da qualidade de
imagem adequado e se o nível de sensibilidade necessário foi atingido). Deve ainda ser verificada a
superfície da radiografia para a detecção de possíveis artefatos que possam prejudicar a sua avaliação.
Após estas verificações iniciais, pode-se proceder ao exame da radiografia propriamente dito, de forma a
verificar se o tipo, quantidade e dimensões das descontinuidades presentes comprometem ou não o
objeto avaliado, de acordo com a norma ou código de referência utilizado para a avaliação. Podem ser
utilizadas lentes de aumento ou lupas como instrumentos auxiliares de avaliação.

Para uma avaliação correta das possíveis descontinuidades em um determinado componente é
necessário o conhecimento das suas características geométricas e de seu processo de fabricação. O
conhecimento de sua espessura, acabamento superficial, do processo de soldagem, projeto da junta,
dos tratamentos térmicos a que foi submetido e de sua estrutura são de grande importância durante a
avaliação.

Durante o exame radiográfico de juntas soldadas, as seguintes descontinuidades podem ser detectadas:
porosidade agrupada, isolada ou vermicular, inclusões de tungstênio ou de escória, falta de fusão ou de
penetração, trincas, mordeduras, dentre outras.




                                                                                                     40
Capítulo 4

                                   O Ensaio Ultrasônico

1. INTRODUÇÃO
O método de ensaio por ultra-som consiste na introdução de um feixe sonoro de alta freqüência no
material ou componente de interesse, com o objetivo de se detectar, localizar e dimensionar
descontinuidades internas ou superficiais porventura existentes no mesmo. A informação obtida é
utilizada para a verificação da conformidade do componente com as especificações de fabricação ou, no
caso de componentes em operação, para fornecer subsídios para avaliações utilizando técnicas de
mecânica da fratura. Durante o seu percurso, o feixe sonoro pode sofrer reflexões em interfaces
existentes no material. Descontinuidades como poros, trincas, inclusões diversas, dupla laminação, falta
de fusão, falta de penetração atuam como interfaces, o mesmo ocorrendo com as paredes ou com a
superfície do material.


2. ONDAS

2.1 PROPAGAÇÃO

O som é a propagação de energia mecânica através de sólidos, líquidos ou gases. A facilidade com que
o som se propaga nestes meios depende de algumas características do material, como a sua densidade
e o seu módulo de elasticidade, bem como da freqüência da onda sonora. O ouvido humano consegue
perceber ondas sonoras nas freqüências entre, aproximadamente, 20 Hz e 20.000 Hz, sendo esta a faixa
de freqüências para o som audível. Ondas sonoras com freqüências abaixo de 20 Hz são designadas
como infra-som e, acima de 20.000 Hz, como ultra-som. As ondas sonoras seguem muitas das regras
físicas da ótica, podendo ser refratadas, refletidas e difratadas.

Nos gases, as ondas sonoras se propagam pela compressão e rarefação das moléculas na direção de
propagação. Nos sólidos, a estrutura pode suportar vibrações em outras direções, sendo possível o
aparecimento de diferentes tipos de onda. O som pode propagar-se através de um material através de
dois tipos fundamentais de ondas: as ondas longitudinais e transversais.


2.2 MODOS DE PROPAGAÇÀO

2.2.1   Longitudinais
As ondas longitudinais são também conhecidas como ondas de compressão. Durante a sua propagação
no material são produzidas regiões de compressão e de rarefação, conforme pode ser observado na
figura 1. Sua característica básica é que as partículas do material oscilam na mesma direção de
propagação da onda, fazendo com que as ondas longitudinais apresentem as maiores velocidades de
propagação em um determinado meio.




                    Direção de                                               Direção de
                   oscilação das                                             propagação
                   partículas do                                               da onda
                       meio


                                      Fig.1 – Ondas longitudinais.



                                                                                                     41
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf
168pdf

Mais conteúdo relacionado

Semelhante a 168pdf

Controle estatistico de processo cep
Controle estatistico de processo   cepControle estatistico de processo   cep
Controle estatistico de processo cep
Engrenatoandrade
 
Aula 04 ensaio de tração - procedimentos normalizados
Aula 04   ensaio de tração - procedimentos normalizadosAula 04   ensaio de tração - procedimentos normalizados
Aula 04 ensaio de tração - procedimentos normalizados
Renaldo Adriano
 
Relatório - Curso Técnico de Eletrônica
Relatório - Curso Técnico de EletrônicaRelatório - Curso Técnico de Eletrônica
Relatório - Curso Técnico de Eletrônica
Frederico José S. Gomes
 
Beneficios da micro_filtragem
Beneficios da micro_filtragemBeneficios da micro_filtragem
Beneficios da micro_filtragem
Natanael Carvalho
 
201310110120 nbr 5426_nb_309_01___planos_de_amostragem_e_procedimentos_na_ins...
201310110120 nbr 5426_nb_309_01___planos_de_amostragem_e_procedimentos_na_ins...201310110120 nbr 5426_nb_309_01___planos_de_amostragem_e_procedimentos_na_ins...
201310110120 nbr 5426_nb_309_01___planos_de_amostragem_e_procedimentos_na_ins...
Lidiane Fenerich
 

Semelhante a 168pdf (20)

Valmicro
ValmicroValmicro
Valmicro
 
5 considerações para evitar problemas na manutenção de bombas industriais
5 considerações para evitar problemas na manutenção de bombas industriais5 considerações para evitar problemas na manutenção de bombas industriais
5 considerações para evitar problemas na manutenção de bombas industriais
 
Controle estatistico de processo cep
Controle estatistico de processo   cepControle estatistico de processo   cep
Controle estatistico de processo cep
 
Aula 04 ensaio de tração - procedimentos normalizados
Aula 04   ensaio de tração - procedimentos normalizadosAula 04   ensaio de tração - procedimentos normalizados
Aula 04 ensaio de tração - procedimentos normalizados
 
Lb 8008 bz
Lb 8008 bzLb 8008 bz
Lb 8008 bz
 
Aula metrologia
Aula metrologiaAula metrologia
Aula metrologia
 
Aula metrologia
Aula metrologiaAula metrologia
Aula metrologia
 
Aula metrologia
Aula metrologiaAula metrologia
Aula metrologia
 
Aula metrologia
Aula metrologiaAula metrologia
Aula metrologia
 
Aula metrologia
Aula metrologiaAula metrologia
Aula metrologia
 
5272
52725272
5272
 
Pradfor robustez em fornecedores
Pradfor robustez em fornecedoresPradfor robustez em fornecedores
Pradfor robustez em fornecedores
 
Impermeabilização
ImpermeabilizaçãoImpermeabilização
Impermeabilização
 
Relatório - Curso Técnico de Eletrônica
Relatório - Curso Técnico de EletrônicaRelatório - Curso Técnico de Eletrônica
Relatório - Curso Técnico de Eletrônica
 
Manualdo especificador porto belo fachada
Manualdo especificador porto belo fachadaManualdo especificador porto belo fachada
Manualdo especificador porto belo fachada
 
Inovação tecnológica como foco do negócio
Inovação tecnológica como foco do negócioInovação tecnológica como foco do negócio
Inovação tecnológica como foco do negócio
 
Catalogo versao a4.pdf
Catalogo versao a4.pdfCatalogo versao a4.pdf
Catalogo versao a4.pdf
 
Aula metrologia .
Aula metrologia .Aula metrologia .
Aula metrologia .
 
Beneficios da micro_filtragem
Beneficios da micro_filtragemBeneficios da micro_filtragem
Beneficios da micro_filtragem
 
201310110120 nbr 5426_nb_309_01___planos_de_amostragem_e_procedimentos_na_ins...
201310110120 nbr 5426_nb_309_01___planos_de_amostragem_e_procedimentos_na_ins...201310110120 nbr 5426_nb_309_01___planos_de_amostragem_e_procedimentos_na_ins...
201310110120 nbr 5426_nb_309_01___planos_de_amostragem_e_procedimentos_na_ins...
 

Último

matematica aula didatica prática e tecni
matematica aula didatica prática e tecnimatematica aula didatica prática e tecni
matematica aula didatica prática e tecni
CleidianeCarvalhoPer
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
LeloIurk1
 
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptxSlide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
edelon1
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
marlene54545
 

Último (20)

Aula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIXAula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIX
 
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteCOMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
 
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptxProjeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfPROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
matematica aula didatica prática e tecni
matematica aula didatica prática e tecnimatematica aula didatica prática e tecni
matematica aula didatica prática e tecni
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
 
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...
 
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptxSlide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 

168pdf

  • 1. ENSAIOS NÃO DESTRUTIVOS Silvério Ferreira da Silva Junior Paulo Villani Marques Belo Horizonte, Novembro de 2006
  • 2. Capítulo 1 Introdução aos Ensaios Não Destrutivos 1. Conceitos Fundamentais A arte de inspecionar sem destruir evoluiu, principalmente a partir da década de 50, de simples curiosidade de laboratório até se tornar uma ferramenta indispensável de produção. Hoje os ensaios não destrutivos são largamente utilizados na indústria moderna em todo o mundo para avaliação da qualidade e detecção de variações na estrutura, pequenas falhas superficiais, presença de trincas e outras interrupções físicas, medida de espessura de materiais e revestimentos e determinação de outras características de materiais e produtos industriais. Classicamente, são considerados ensaios não destrutivos aqueles que quando realizados em peças acabadas ou semi-acabadas não interferem nem prejudicam seu uso futuro ou processamento posterior. Eles são usados para determinação de algumas propriedades dos materiais e para a detecção de possíveis descontinuidades em peças e produtos industriais. Descontinuidades são interrupções na estrutura normal de um material, em nível macro ou microscópico, passíveis de serem percebidas durante a realização de um END. Uma característica marcante dos END é que eles raramente medem diretamente a propriedade de interesse. O valor dessa propriedade geralmente é obtido a partir de sua correlação com uma outra grandeza que é medida durante a realização do teste. As diversas técnicas e métodos de inspeção não destrutiva serão vistos em detalhes nos capítulos a seguir, mas antes é conveniente saber por que se usam estes ensaios. 2. Razões para uso dos ensaios não destrutivos (END) As principais razões para uso dos END são: • garantir a qualidade dos produtos e a reputação dos fabricantes; • prevenir acidentes e a perda de vidas humanas e a paralisação de serviços básicos; • aumentar os lucros dos fabricantes. O comprador de um produto tem sempre a expectativa de que poderá usufruir deste por um longo período, sem a ocorrência de defeitos ou necessidade de manutenção. O comprador de um automóvel ou o usuário de um meio de transporte público espera poder usar os veículos sem atrasos ou falhas devidas a defeitos mecânicos. Um industrial deseja que seus equipamentos funcionem melhor, mais rápido, e, se possível, automaticamente, independentemente da sua complexidade. Em outras palavras, a confiabilidade é indispensável. Se a probabilidade de falha de um componente é de uma em mil, isto pode ser aceitável. Contudo, a confiabilidade de um equipamento ou conjunto é dada pelo produto da confiabilidade de seus componentes críticos. Assim, a confiabilidade (R) de um produto montado a partir de, por exemplo, 100 componentes críticos, será dada por: 100 R = 0,999 x 0,999 x 0,999 x ...... x 0,999 = 0,999 = 0,9048 A possibilidade de falha será dada então pela diferença (1 – 0,9048) = 0,0952, ou seja, aproximadamente 0,1 ou uma em dez. Claro que o comprador de um produto ficará extremamente insatisfeito se ele falhar uma a cada dez tentativas de uso. Portanto, a confiabilidade de um componente precisa ser imensamente maior que a do produto montado final. Por exemplo, o motor de um automóvel de 4 cilindros possui um virabrequim, conectado a quatro bielas, quatro cabeças de pistão, oito válvulas, oito molas, anéis de segmento e centenas de outras partes, que 2
  • 3. são críticas para seu funcionamento e qualquer falha em uma dessas partes causará a parada do motor. A incidência incrivelmente baixa de falhas em motores é devida à capacidade de projetistas e engenheiros de fabricação e de qualidade de conceber, fabricar e montar conjuntos corretamente, de acordo com normas de fabricação bem estabelecidas. Em geral, a ocorrência de acidentes ou falhas causa incômodo e inconveniência, mas em certos casos, são totalmente impensáveis ou inadmissíveis. A falha no sistema de direção de um ônibus ou trem de ferro a 100 km por hora ou do trem de aterrisagem de um avião durante um pouso poderá resultar na perda de dezenas ou centenas de vidas humanas. O vazamento de pequenas quantidades de material radiativo de uma usina nuclear pode matar e/ou afetar a vida de milhares ou milhões de pessoas. Nestes casos, não se pode contar apenas com a sorte para evitar tais ocorrências. Mas se por um lado a garantia de qualidade e confiabilidade de produtos é uma importante razão para uso dos END, igualmente importante é que isto gere lucro para os seus usuários. Isto pode ocorrer implícita ou explícitamente. A garantia de satisfação do comprador é uma fonte implícita de lucro, conseqüência direta da reputação do fabricante, que aumenta sua vantagem competitiva. Os END também podem contribuir para o aumento dos lucros na medida em que, quando aplicados na produção experimental de um lote de novos produtos, indicam aos projetistas necessidades de mudanças no projeto, através, por exemplo, da análise experimental de tensões, resultando em produtos mais leves, resistentes, confiáveis e de menor custo. Durante a fabricação, o controle dos processos produtivos é fundamental para a manutenção da qualidade e evitar que se produza sucata. Por exemplo, numa operação de tratamento térmico, todo o procedimento deve ser estabelecido de modo a se obter determinadas características para o produto. Assim, um END aplicado a algumas ou todas as peças pode determinar se a variabilidade da análise química do material pode resultar em dureza inadequada ou geração de trincas. Um outro teste aplicado às peças antes de entrarem para tratamento pode evitar que peças inadequadas sejam tratadas e produzam sucata. Um terceiro teste aplicado depois da operação poderá indicar se a dureza desejada está sendo atingida e indicar necessidade de mudanças na operação, economizando recursos para o produtor. A inspeção de lingotes antes do forjamento, por exemplo, pode detectar a presença de trincas ou inclusões que resultariam em peças defeituosas, evitando a utilização de recursos produtivos em material impróprio, reduzindo os custos de fabricação. Finalmente, um produto não precisa ser necessariamente “perfeito”, mas deve apresentar um nível de qualidade adequado para uma determinada finalidade. A manutenção do nível adequado de qualidade e uniformidade da produção pode ser mais facilmente atingida com o uso dos END, aumentando os lucros da empresa. A Figura 1 mostra a relação entre o custo de produção e o valor de venda de um produto em função de sua “perfeição”. Custo de Tolerância de produção Tolerância Valor de venda Custo (valor Tolerância do monetário) Máximo valor agregado Nível de perfeição Figura 1 – Relação entre os custos de produção e venda de produtos e seu nível de qualidade. 3
  • 4. O custo de produção tende a se tornar mais alto à medida que as tolerâncias de fabricação diminuem, aproximando-se da perfeição, tendendo ao infinito. O valor de venda vai desde zero, para um produto imprestável, aumentando até um valor máximo, aceito pelo mercado, quando se aproxima da perfeição. O nível de qualidade ótimo para o fabricante é o que permite o maior lucro, isto é, a máxima diferença entre o valor de produção e o de venda. 3. Elementos Básicos dos Ensaios Não Destrutivos Qualquer END envolve cinco elementos básicos: • uma fonte que fornece e distribui de forma adequada um meio de inspeção ao objeto em teste; • uma modificação do meio de inspeção ou sua distribuição no objeto ensaiado como resultado da presença de descontinuidades ou de variações da propriedade de interesse; • um detector sensível a essas modificações ou variação de distribuição do meio de inspeção; • uma indicação ou registro das indicações do detector de forma útil para interpretação e, finalmente • um observador ou dispositivo capaz de interpretar as indicações ou registros em termos da propriedade de interesse ou da presença e localização de descontinuidades. O meio de inspeção geralmente é suprido por uma fonte externa, como uma fonte de raios-X ou uma bobina de magnetização. Ele pode ser distribuído sobre inteiramente sobre o volume do objeto em teste ou concentrado em uma região deste. Alguns meios podem penetrar no material a grandes profundidades enquanto outros são escolhidos de forma a não penetrar profundamente, ficando limitados a uma distância mínima abaixo da superfície. Como não é possível introduzir de forma não destrutiva um detector no objeto sob teste, a modificação ou variação de distribuição do meio de inspeção causada pela variação da propriedade medida ou pela presença de descontinuidades deve ser externa a esse e conseqüentemente deve ser diferente em peças homogêneas e não homogêneas. O detector deve ser sensível às modificações do meio de teste, sem contudo ser muito influenciado por outras fontes de modificações que não aquela de interesse ou, em outras palavras, deve apresentar baixo ruído. Se o sinal de saída do detector é muito baixo, algumas dificuldades quanto à calibração e estabilidade do sistema podem ser encontradas quando é necessária grande amplificação. Por isso, algumas condições de teste possíveis em laboratório não são adequadas para aplicação prática em campo. Uma maneira de contornar estas dificuldades é usar valores comparativos ao invés de valores absolutos ou medidas fundamentais. Assim, peças ou materiais padrão, cujas características ou propriedades são bem conhecidas podem ser usadas para comparação com objetos ou materiais com propriedades ou características desconhecidas. Contudo, esses padrões têm de ser escolhidos com bastante critério, de forma a não introduzir novas variáveis no ensaio. Se o objeto em teste e o padrão são sujeitos simultaneamente a idênticas condições de medição, efeitos causados pela instrumentação usada e pelas condições ambientais são cancelados. Por fim, as indicações ou registros produzidos num END devem ser tais que possam ser interpretados em termos das propriedades de interesse ou da adequação ao uso do objeto ensaiado. Em alguns casos isso pode ser feito automaticamente em função da amplitude ou valor do sinal de saída. Em outros, nos quais este sinal pode sofrer variações por múltiplas causas, é necessário um inspetor experiente para essa função. 4
  • 5. 4. Tipos de END’s Várias formas de energia e matéria podem ser usadas como meio de inspeção. Qualquer lei da natureza pode ser usada como base para um END se meios práticos forem desenvolvidos para propiciar cada um dos cinco elementos básicos dos END vistos anteriormente. De modo geral, os meios de inspeção envolvem: • movimento de matéria, • transmissão de energia ou • combinação de movimento de matéria e transmissão de energia. Matéria nos estados sólido, líquido ou gasoso é usada em muitos testes, respectivamente como revestimento frágil para indicação de deformações, indicação da presença de trincas superficiais ou detecção de vazamentos em testes de estanqueidade. Energia eletromagnética ou vibração mecânica, por exemplo, são usadas em testes para determinação de propriedades dos materiais como condutividade elétrica ou permeabilidade magnética ou para a detecção da presença de descontinuidades como trincas ou vazios. As propriedades ou características típicas medidas em ensaios não destrutivos são: • propriedades geométricas, tais como tamanho, forma, espessura e descontinuidades dos materiais como trincas, porosidades e delaminação; • propriedades mecânicas, como dureza, constantes elásticas e estados de tensão e deformação; • propriedades estruturais e composição, como tamanho de grão, inclusões, segregação e teor de elementos de liga; • propriedades de absorção, reflexão e espalhamento, como reflexão e refração de raios-x e raios- γ, elétrons, e vibrações mecânicas sonoras ou ultrasônicas, freqüentemente relacionadas com densidade, espessura, espaçamento atômico, tensões, tamanho de grão e temperatura; • propriedades elétricas e magnéticas, como condutividade elétrica, permeabilidade magnética, distribuição de correntes parasitas, energia armazenada, muitas vezes relacionadas com composição química e teor de liga, estrutura cristalina, resultado de tratamentos térmicos, dureza, tensões; • propriedades térmicas, como condutividade e expansão térmicas. Estas propriedades podem ser medidas de forma absoluta, diferencial ou relativa, tanto em regiões localizadas ou de forma generalizada, usando diferentes meios de inspeção ou combinações destes. 5. Comparação com Ensaios Destrutivos Ensaios destrutivos e não destrutivos não são concorrentes, mas complementares. Há duas maneiras práticas de se provar a correlação entre propriedade de interesse e propriedade medida nos testes: a primeira é acumular experiência em serviço, de forma adequada, com aquele material ou peça; a segunda é usar ambos os tipos de ensaios, destrutivos e não destrutivos, cada um sendo usado para verificar as suposições implícitas no outro método. Por exemplo, ensaio não destrutivo como a radiografia industrial pode ser usado para comparar todas as peças de um lote de produção, estabelecendo a similaridade entre todas as peças e algumas delas podem ser ensaiadas destrutivamente e as outras colocadas em serviço. Alternativamente, ensaios destrutivos podem ser usados para estabelecer a correlação entre a propriedade de interesse e a propriedade medida nos END. 5
  • 6. Em relação aos ensaios destrutivos, os END apresentam vantagens e desvantagens: Ensaios Destrutivos END Vantagens Limitações Os testes geralmente simulam uma ou mais Os testes envolvem medidas indiretas das condições de serviço, medindo assim propriedades, sem significação direta com as diretamente a propriedade de interesse de condições de serviço. forma confiável. Os testes usualmente medem quantitativamente Os testes são geralmente qualitativos e cargas de falha, quantidade de distorção ou raramente quantitativos. Eles não medem dano ou tempo de vida sob determinadas diretamente cargas de falha ou vida útil, mesmo condições de operação; fornecendo valores indiretamente. Eles podem contudo revelar numéricos que podem ser usados diretamente danos ou mecanismos de falha. no projeto ou em especificações. A correlação entre as medidas feitas no ensaio Julgamento por pessoas capacitadas ou e a propriedade de interesse é direta, de forma experiência em serviço são geralmente que diferentes observadores, em geral, necessárias na interpretação dos resultados. concordam entre si quanto aos valores medidos Quando a correlação essencial entre a e sua significação em termos de condições de propriedade medida e a de interesse não está uso. claramente provada ou a experiência é limitada, pode haver discrepâncias quanto à interpretação dos resultados. Ensaios Destrutivos END Limitações Vantagens Os ensaios não são realizados nas peças que Os testes são feitos diretamente nas peças que realmente vão ser usadas e a similaridade ou serão colocadas em serviço, não deixando correlação com as que serão usadas deve ser dúvidas quanto à sua representatividade provada por outros meios. Os testes só podem ser feitos em parte do lote Os ensaios podem ser realizados em cada peça de produção e podem ser pouco úteis quando a produzida, se justificável economicamente e propriedade medida pode variar de forma assim elas podem ser usadas mesmo que imprevisível de uma peça para outra. apresentem diferenças entre unidades ou lotes. Os testes não podem, em geral, ser feitos em Os testes podem ser feitos em toda a produção peças finais mas apenas pedaços do material ou em todas as regiões críticas, de forma que a processado de forma similar às peças que serão avaliação é feita nas peças como um todo. colocadas em serviço. Muitas seções podem ser examinadas simultaneamente ou seqüencialmente. Um único ensaio pode medir apenas uma ou Muitos END são sensíveis a diferentes poucas propriedades críticas do material em propriedades ou regiões do material ou peça, condições de serviço. podendo ser aplicados seqüencialmente ou simultaneamente, sendo possível medir diferentes propriedades correlacionadas com o desempenho em serviço. Geralmente ensaios destrutivos não são Freqüentemente os END podem ser aplicados a aplicáveis a peças durante serviço. Este precisa peças durante o serviço, sem necessidade de ser interrompido e as peças precisam ser parada e desmontagem. Não há perda da peça definitivamente removidas. ou de suas condições de serviço. 6
  • 7. Ensaios Destrutivos END Limitações Vantagens Efeitos cumulativos em um certo período de Os END permitem inspeções repetidas numa tempo não podem ser medidos em uma única mesma peça ao longo do tempo, permitindo peça. Se várias peças de um mesmo lote são acompanhar a evolução do desgaste ou dano, testadas com essa finalidade, é necessário facilitando estabelecer a correlação destes com verificar se essas são similares inicialmente. Se as condições de serviço. peças usadas são testadas após vários períodos de tempo de uso é necessário provar que cada uma delas foi submetida a condições de serviço equivalentes antes de validar os dados. O custo de reposição pode ser muito alto se as Peças aceitáveis de alto custo não são perdidas peças testadas tiverem alto custo de material ou devido ao ensaio. A repetição de testes, quando de fabricação, o que pode ser proibitivo. economicamente justificável, pode ser feita durante a produção ou serviço. Em geral a preparação de corpos de prova Pouca ou nenhuma preparação é necessária envolve intensa usinagem ou outros meios, às para muitos ensaios. Alguns equipamentos de vezes de precisão, o que aumenta os custos ou ensaio são portáteis. Muitos são capazes de limita o número de corpos de prova a serem testar e qualificar as peças rapidamente e, em ensaiados. Além disso, pode requerer muitas algumas situações, de forma automática. Em horas de trabalho de pessoal altamente muitos casos, os custos dos END são baixos, qualificado. tanto por objeto testado quanto para toda a produção, em comparação com os ensaios destrutivos. Os requisitos de tempo e mão de obra para Muitos END são rápidos e requerem menos estes ensaios são altos, o que aumenta os mão de obra que os testes destrutivos, sendo os custos de produção se os ensaios são usados custos de inspeção de toda a produção, em como método primário de controle de qualidade muitos casos, equivalente ao da inspeção da produção. destrutiva de apenas uma parte dos lotes produzidos. 6. Confiabilidade dos END Como já dito anteriormente, um END raramente mede diretamente a propriedade de interesse, mas sim propriedades a elas relacionadas. A confiabilidade dos END depende fortemente da correlação entre a propriedade de interesse e a propriedade realmente medida. A validade desta correlação não pode ser assumida sem uma prova convincente para cada situação específica. Esta correlação deve ser bem conhecida para • cada material específico, • cada método de produção ou fabricação, • cada método específico de teste e • cada aplicação ou condição de serviço do objeto inspecionado. Se qualquer um destes fatores é modificado, novas evidências da correlação entre propriedade medida e de interesse devem ser buscadas. Numa análise probabilística, existem quatro possíveis situações ao término de uma avaliação não destrutiva: 1. a peça pode ser utilizada e o ensaio demonstrou que pode, 2. a peça não pode ser utilizada e o ensaio demonstrou que não pode, 3. a peça pode ser utilizada e o ensaio demonstrou que não pode e 4. a peça não pode ser utilizada e o ensaio demonstrou que pode.
  • 8. As situações 1 e 2 são desejáveis e sua ocorrência resulta em sucesso da inspeção. A situação 3 implica em prejuízo desnecessário e a situação 4 implica em alto risco de falha. Assim, o sucesso da inspeção deve ser procurado e maximizado. Em geral, as normas de inspeção impõem regras e critérios que devem ser rigorosamente seguidos para se obter sucesso na inspeção, tendo como base o conhecimento acumulado ao longo do tempo e os novos conhecimentos adquiridos sobre as correlações entre propriedade medida e propriedade de interesse, considerando os diferentes fatores citados anteriormente. 7. Descontinuidades e Defeitos Como se viu anteriormente, descontinuidades são interrupções na estrutura normal de um material, em nível macro ou microscópico, passíveis de serem percebidas durante a realização de um END. Defeitos são descontinuidades inaceitáveis em uma peça para uma determinada aplicação. Assim, todo defeito é uma descontinuidade, mas nem toda descontinuidade é um defeito. Descontinuidades idênticas em peças para aplicações diferentes podem ser consideradas defeitos num caso e em outros não. Em geral, as normas técnicas definem que tipo e tamanho de descontinuidade é aceitável em uma peça para uma determinada aplicação, ou em outras palavras, definem o que é um defeito neste caso. A seguir, serão apresentados alguns tipos de descontinuidades comuns em diferentes tipos de processamento de materiais. 7.1 Descontinuidades em laminados Durante a laminação de produtos planos, os grãos dos materiais metálicos são quebrados e deformados na direção de laminação. As inclusões e porosidades existentes também se deformam, sendo achatadas e aumentando sua área em todas as direções, mas principalmente na direção de laminação, gerando o que se chama de delaminação. No caso de barras e tubos, as inclusões se deformam e geram costuras (“seams”) e estrias (“stringers”) e porosidades geram porosidade tubular (“pipes”). Estas descontinuidades estão ilustradas na figura 2. (a) (b) (c) (d) Figura 2 – Descontinuidades em laminados. (a) delaminação, (b) costuras, (c) estrias e (d) porosidade tubular. 8
  • 9. 7.2 Descontinuidades em forjados Durante o forjamento, o material metálico é deformado por martelamento ou prensagem em matrizes que têm o formato desejado para a peça. Se as matrizes de forjamento estão desalinhadas, dobras são geradas, como mostrado na figura 3. Figura 3 – Geração de dobras durante o forjamento. As dobras também podem ser causadas por fluxo incorreto de metal durante o forjamento, como mostra a figura 4. Fig.4 – Dobra causada por fluxo incorreto de metal durante o forjamento. Se o material é forjado a uma temperatura incorreta, “burst” podem ser formados, tanto interna quanto externamente,como mostra a figura 5. Fig. 5 – “Burst” gerado durante o forjamento. 9
  • 10. 7.3 Descontinuidades em fundidos Vários tipos de descontinuidades são formados tipicamente em peças fundidas. As gotas frias ocorrem durante o vazamento do metal líquido no molde e as trincas (“hot tears”) e cavidades de contração como mostra a figura 6. Fig. 6 – Formação de gotas frias e problemas de contração. Bolhas de gás podem ocorrer na superfície do fundido ou internamente (“blow holes”), e porosidades, como mostra a figura 7. Fig. 7 – Vazios e porosidades em fundidos. 7.4 Descontinuidades em soldas As principais descontinuidades em soldas são as trincas na cratera final do cordão, trincas de restrição, porosidades, inclusões de escória ou de tungstênio, falta de penetração, falta de fusão lateral e mordeduras, mostradas na figura 8. As trincas geradas na cratera do final de cordão podem ser longitudinais, transversas ou em múltiplas direções, ditas em estrela. As trincas de restrição são conseqüência das tensões de origem térmica geradas durante a soldagem e da incapacidade do material se deformar para absorver estas tensões. Quanto maiores as restrições externas à solda que impedem a peça soldada de se mover durante o processo, maior a probabilidade de formação de trincas. Porosidades são causadas por gases que não conseguiram escapar durante a solidificação da solda. As inclusões de escória são, em geral, devidas à limpeza insuficiente entre passes ou à manipulação incorreta do eletrodo durante a operação. 10
  • 11. Fig. 8 – Principais descontinuidades de soldas. Inclusões de tungstênio podem ocorrer em soldas feitas pelo processo TIG quando o eletrodo toca a peça ou correntes muito elevadas para o tipo e diâmetro do eletrodo empregado são usadas. Falta de penetração e falta de fusão lateral são causadas por falta de energia suficiente para promover a fusão adequada da junta. Isto pode ser conseqüência de velocidade de soldagem muito alta, corrente muito baixa, manipulação incorreta do eletrodo, entre outras causas. As mordeduras são causadas por velocidade de soldagem ou comprimento de arco excessivos. 11
  • 12. Capítulo 2 A Inspeção Visual 1. INTRODUÇÃO O ensaio visual é o primeiro método de ensaio que deve ser utilizado para avaliar peças ou componentes que deverão ser submetidos a outros métodos de ensaios não destrutivos. Isso se deve ao fato de que a maior parte dos métodos de ensaios não destrutivos requer, em maior ou menor grau, uma boa condição da superfície, Com a realização do ensaio visual como primeiro método de ensaio, qualquer condição da superfície da peça ou componente que possa vir a inviabilizar a realização de um determinado ensaio posteriormente será detectada e corrigida, evitando perdas de tempo e recursos. O ensaio visual também é utilizado em uma série de outras situações, como a inspeção de tubos em condensadores de vapor e geradores de vapor na região próxima aos espelhos, em regiões de difícil acesso em componentes em geral, como motores turbinas; para localização de partes perdidas em centrais termoelétricas e nucleares, bem com em tubulações de diversos diâmetros, inacessíveis para o ensaio visual direto, neste caso o exame sendo realizado com o auxílio de dispositivos automatizados para transportar a instrumentação de captura de imagem até o local. Um dispositivo desse tipo pode ser observado na figura 1. Fig. 1 - Inspeção visual de tubulação com auxílio de dispositivo automatizado. O ensaio visual deve ser realizado de acordo com um procedimento escrito. Este procedimento deverá descrever qual o processo utilizado para demonstrar a sua adequação. De uma maneira geral, uma linha com 0,8 mm de diâmetro ou uma imperfeição artificial localizada na superfície a ser examinada ou em uma superfície similar à mesma pode ser considerados como um método adequado para a demonstração do procedimento. O dispositivo utilizado para a simulação deve ser posicionado no local de mais difícil avaliação dentro da região a ser examinada para validar o procedimento. 2. Equipamentos O equipamento utilizado nas técnicas de ensaio visual direto, remoto ou translúcido deve ser capaz de atender às condições especificadas no procedimento para a execução do ensaio, como condições de visualização, aumento, identificação, realização de medições e/ou gravação de informações de acordo com os requerimentos da seção específica da norma ou código de fabricação. 12
  • 13. 3. Aplicações O ensaio visual é utilizado geralmente para determinar a condição da superfície de um componente, o alinhamento de superfícies deste componente que se encontram, a forma ou evidências de vazamento. Adicionalmente, o ensaio visual é utilizado para determinar a condição da região sub-superficial em materiais compostos translúcidos. 3.1 Exame Visual Direto O ensaio visual direto pode ser realizado quando o acesso é suficiente para que o examinador posicione os olhos a até 600 mm da superfície a ser examinada e a um ângulo não menor do que 30º. Podem ser utilizados espelhos para aumentar o ângulo de visão e instrumentos auxiliares como lentes de aumento ou outros dispositivos, para melhorar a condição da inspeção. Um instrumento para esta aplicação pode ser observado na figura 2. A intensidade mínima de luz na superfície examinada deve ser de 1000 lux e as condições de realização do exame, como a fonte de luz utilizada, técnica utilizada e intensidade de luz medida, devem ser registrados e guardados. Para juntas soldadas existem ainda alguns gabaritos que são utilizados para facilitar a avaliação das características geométricas dos cordões de solda, conforme pode ser observado na figura 3. Fig. 2 - Microscópio portátil. Fig. 3 - Gabaritos para avaliação das características geométricas de cordões de solda.. 13
  • 14. 3.2 Exame Visual Remoto Nos casos em que não for possível a realização do exame visual direto, o ensaio visual é realizado de maneira remota. Para a sua execução podem ser utilizados dispositivos como espelhos, telescópios, boroscópios, fibras óticas, câmeras ou outros instrumentos adequados. Os sistemas utilizados devem apresentar uma resolução pelo menos equivalente à obtida através do ensaio visual direto. Alguns destes instrumentos podem ser observados na figura 4. Fig. 4 - Boroscópio e fibroscópio para a realização do ensaio visual. Estão disponíveis no mercado, também, aparelhos de videoscopia, em que a transmissão de imagem é feita através de um CCD. Um esquema destes equipamentos pode ser observado na figura 5. Fig. 5 - Endoscópio para a realização do ensaio visual. 3.3 Avaliação As avaliações devem ser realizadas de acordo com os padrões de aceitação especificados no código de fabricação ou norma de referência. Deve-se elaborar uma lista de verificação para o planejamento do ensaio visual e para verificar que as observações requeridas foram realizadas. Esta lista de verificação deverá conter os requisitos mínimos de exame, não indicando ou limitando a quantidade máxima de requisitos que devem ser avaliados. 14
  • 15. Capítulo 3 O Ensaio Radiográfico 1 INTRODUÇÃO O ensaio radiográfico baseia-se na absorção diferenciada da radiação pela matéria. Consiste, basicamente, em fazer passar um feixe de radiação X, radiação γ ou nêutrons através do objeto em estudo e registrar as características da radiação emergente do objeto utilizando um meio adequado, como um filme radiográfico, uma tela fluorescente ou dispositivos eletrônicos de detecção da imagem radiográfica. Dependendo das características do objeto em exame, como a sua geometria e o tipo de descontinuidades apresentadas pelo mesmo, o feixe de radiação sofrerá uma maior ou menor absorção, sensibilizando em maior ou menor grau o meio utilizado para o registro da imagem radiográfica. O arranjo básico utilizado para a realização do ensaio radiográfico pode ser observado na figura 1, referente à radiografia de uma peça com diferentes espessuras e com dois tipos de descontinuidades comuns de serem encontradas em uma inspeção radiográfica. Na figura também é apresentada a radiografia obtida, com a aparência radiográfica das diversas regiões da peça. Fonte de Radiação Inclusão de Poro material pouco absorvedor Cassete Peça contendo o filme radiográfico Fig. 1 – Arranjo básico utilizado para a realização do ensaio radiográfico. A porção do feixe de radiação que atravessa as regiões da peça com maior espessura sofre uma maior absorção, o contrário ocorrendo com as regiões com menor espessura. Na imagem radiográfica, portanto, as regiões mais espessas da peça apresentarão uma tonalidade mais clara do que as regiões menos espessas. A porção do feixe de radiação que atravessa a região onde se localiza o poro também sofrerá uma menor absorção. Consequentemente a imagem radiográfica resultante apresentará uma tonalidade escura. O mesmo ocorre com a inclusão de um material pouco absorvedor, como por 15
  • 16. exemplo, uma escória. Caso a inclusão seja de um material mais absorvedor do que o material base, a imagem radiográfica correspondente apresentará uma tonalidade tanto mais clara quanto maior for a absorção da radiação. Um exemplo é o de uma inclusão de tungstênio em uma junta soldada de aço inoxidável. Na figura 2 é apresentada a imagem radiográfica obtida para a peça da figura1, indicando o aspecto das regiões de maior e menor espessura, bem como o aspecto radiográfico do poro e da inclusão. Aparência de Aparência de uma Região menos Região mais Radiografia um poro na inclusão na espessa da peça espessa da peça radiografia radiografia Fig. 2 – Imagem radiográfica da peça apresentada na Figura 1.1.1. Apesar de ser baseado em princípios simples, o ensaio radiográfico deve ser realizado de acordo com metodologias que assegurem uma sensibilidade adequada para a detecção das descontinuidades de interesse, bem como o estabelecimento de uma fácil correlação entre a localização de uma determinada descontinuidade na radiografia e a sua respectiva localização na peça examinada, de forma a facilitar a realização dos reparos, quando necessários ou possíveis. O ensaio radiográfico pode ser aplicado, a princípio, a qualquer tipo de material. A única limitação é a capacidade de absorção apresentada por alguns materiais, como o chumbo e o urânio, utilizados como blindagens, que pode inviabilizar a realização deste tipo de ensaio. 2 PRINCÍPIOS FÍSICOS DO ENSAIO RADIOGRÁFICO 2.1 Natureza da Radiação Penetrante 2.1.1 O espectro eletromagnético Os raios-X e a radiação gama são radiações eletromagnéticas, como a luz visível, as microondas, as ondas de rádio. Elas não possuem carga ou massa, não são influenciadas por campos elétricos e magnéticos e se propagam em linha reta. Sua posição no espectro eletromagnético pode ser observada na figura 3. Comprimento de Onda da Radiação (nm) 106 105 104 103 102 101 10-1 10-2 10-3 10-4 10-5 10-6 Raios-X Visível Radio Infravermelho Ultravioleta Raios Cósmicos Gama 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 Energia dos Fótons (MeV) Fig. 3 – Espectro eletromagnético. 16
  • 17. 2.1.2 Características das radiações X e gama Os raios-X e a radiação gama podem ser caracterizados por sua freqüência, comprimento de onda e velocidade. Devido ao seu pequeno comprimento de onda, eles possuem energia suficiente para penetrar a matéria, sendo o grau de penetração dependente do tipo de matéria e da energia da radiação X ou gama. Os raios-X e a radiação gama apresentam as seguintes características: Deslocam-se em linha reta, à velocidade da luz; Não são detectados pelos sentidos humanos; Suas trajetórias não são afetadas pela presença de campos elétricos e magnéticos; Eles podem ser difratados de forma semelhante à luz; A sua capacidade de penetrar a matéria depende de sua energia e das características de absorção do material através do qual se deslocam; Tem a capacidade de ionizar a matéria e podem danificar ou destruir células vivas. 2.2 Raios-X Raios-X são gerados quando elétrons acelerados interagem com o campo elétrico de núcleos de um material de número atômico elevado ou com a eletrosfera, com a conseqüente alteração de sua direção e redução em sua energia cinética, sendo a diferença de energia entre o início e o término da interação emitida sob a forma de ondas eletromagnéticas denominadas de raios-X de frenamento e raios-X característicos. A energia dos raios-X de frenamento depende da energia dos elétrons incidentes no material. Sendo o processo de interação dependente da energia, intensidade e trajetória do elétron incidente, a energia da radiação X produzida pode variar de zero até um valor máximo, definido pela energia cinética do elétron antes da interação, dando origem a um espectro contínuo de energia. Os raios-X característicos gerados se sobrepõem ao espectro dos raios-X contínuos. A forma final do espectro da radiação gerada pode ser observada na figura 4. Fig. 4 – Espectro típico de emissão de raios-X contínuos e característicos. 3 Equipamentos de Raios-X Os raios-X são produzidos a partir da interação de elétrons acelerados com a matéria. Portanto, para que haja a produção de raios-X é necessário: 17
  • 18. a) Uma fonte de elétrons b) Um meio para acelerar os elétrons c) Um alvo de um material adequado para receber o feixe de elétrons Os raios-X são normalmente produzidos em um dispositivo denominado ampola de raios-X. Uma ampola de raios-X consiste, basicamente, de um recipiente normalmente de vidro, contendo dois eletrodos em seu interior, um positivo e outro negativo, denominados anodo e catodo, respectivamente. O interior deste recipiente é mantido sob vácuo. O catodo consiste de um filamento de tungstênio, circundado por uma cúpula de focalização, que atua como uma lente eletrostática e controla a forma do feixe de elétrons emitido pelo filamento, fazendo com que ele atinja o anodo em uma pequena região denominada região focal. O anodo é construído de um metal com uma alta condutividade térmica, normalmente o cobre, no qual está inserido o alvo metálico, que receberá o impacto do feixe de elétrons. A face do alvo metálico não é paralela ao filamento, apresentando um ângulo com relação ao mesmo. O conjunto anodo/catodo pode ser observado na figura 5. Fig. 5 – Conjunto anodo/catodo de um equipamento de raios-X típico. O filamento atua como uma fonte de elétrons, o primeiro requisito para a geração de raios-X. Uma corrente elétrica circulando pelo mesmo provoca o seu aquecimento e, quanto maior o seu aquecimento maior a sua capacidade de emitir elétrons (emissão termiônica). A aceleração dos elétrons em direção ao anodo do tubo, onde se encontra o alvo metálico, é obtida pela aplicação de uma diferença de potencial entre o anodo e o catodo. Quanto maior a diferença de potencial aplicada, maior a energia cinética adquirida pelos elétrons, maior a energia dos raios-X gerados e, consequentemente, maior o seu poder de penetração. Assim o segundo requisito para a geração de raios-X é atendido. A corrente que se estabelece entre o anodo e o catodo é denominada corrente do tubo. Ela é controlada, principalmente, pelo aquecimento do filamento. Quanto maior o aquecimento do filamento maior a quantidade de elétrons disponíveis para serem acelerados em direção ao anodo. A maior parte da energia dos elétrons é transformada em calor na região focal, no alvo, razão da alta condutividade térmica necessária aos materiais do anodo. O material do alvo, por sua vez, deve apresentar características especiais, como um alto ponto de fusão e um elevado número atômico. O material mais utilizado como alvo é o tungstênio. Ele apresenta um elevado número atômico, o que aumenta a quantidade de raios-X gerados durante a interação feixe de elétrons/material e um elevado ponto de fusão, o que possibilita suportar o aquecimento gerado durante as interações na região focal sem que ocorra a fusão. Desta forma, o terceiro requisito para a geração de raios-X é atendido. Os tubos de raios-X podem ser direcionais ou panorâmicos. Anodos com formatos especiais são projetados para a obtenção de feixes panorâmicos. Um anodo típico para gerar este tipo de feixe possui 18
  • 19. a forma de um cone, de maneira que, quando o feixe de elétrons o atinge, são gerados raios-X em um ângulo de 360° redor do alvo. Este tipo de equipamento pode ser utilizado para a radiografia ao panorâmica de soldas circunferenciais em tubos e componentes cilíndricos. Um equipamento de raios-X típico pode ser observado na figura 6. Fig. 6 – Equipamento de raios-X típico, constituído de ampola, unidade de controle e dois transformadores de alta tensão. Outros dispositivos utilizados como fontes de raios-X são os aceleradores lineares, os Betatrons e geradores Van de Graff. Equipamentos de raios-X com potencial constante, com tensão máxima de 450 kV, possibilitam a inspeção de peças de aço de até 110 mm de espessura. 4 Fontes de Radiação Gama Fontes radioativas utilizadas em radiografia industrial são produzidas em reatores nucleares. Os materiais utilizados como matéria prima para a obtenção destas fontes são introduzidos em reatores nucleares, onde são submetidos a um alto fluxo de nêutrons, Quando os núcleos dos átomos destes materiais capturam um nêutron, estes átomos se tornam instáveis, tendendo a recuperar a sua instabilidade pela emissão de partículas e de energia sob a forma de radiação gama. A radiação gama emitida por estes átomos é utilizada para a obtenção de radiografias. Na Tabela 1.2.1 podem ser observados alguns os principais materiais utilizados como fontes radioativas em radiografia industrial e suas características principais. Tabela 1 – Principais radioisótopos utilizados em radiografia industrial. Elemento Meia-Vida Energia da Radiação γ Faixa de Espessuras para Aço (mm) Césio 137 30,1 anos 0,66 MeV 25 a 87 Cobalto 60 5,27 anos 1,33 e 1,17 MeV 65 a 225 Irídio 192 74,3 dias 0,310 – 0,470 – 0,600 keV 19 a 65 Itérbio 169 32 dias 49 a 308 keV 2,5 a 15 Selênio 75 120 dias 279,5 keV 5 a 40 Túlio 160 129 dias 84 e 52 keV Até 13 19
  • 20. 4.1 Atividade de uma Fonte Radioativa A atividade A de uma fonte radioativa é a taxa de mudança dos átomos instáveis da fonte em um determinado instante, seja: dN A= , onde: dt A é a atividade da fonte, N é o número de átomos que ainda não decaiu, ou seja, de átomos radiativos, e t é o tempo. A atividade de uma fonte, no Sistema Internacional, é medida em unidades de transformação por segundo, denominada Becquerel (Bq), sendo 1 Bq = 1/s, ou seja, uma desintegração por segundo. A unidade anterior utilizada para representar a atividade é o Curie (Ci). Esta unidade ainda é encontrada em equipamentos antigos e é definida por; 10 10 1 Ci = 3,7 . 10 desintegrações por segundo = 3,7 . 10 Bq 4.2 Constante de Decaimento Em uma amostra de material radioativo, a constante de decaimento (λ) expressa a probabilidade de decaimento por átomo por segundo, sendo uma característica de cada material. 4.3 Cálculo da Atividade A atividade A de um determinado material radioativo, em um determinado instante, pode ser determinada através da equação: A = A0e − λt , onde A0 – é a atividade inicial do material A – é a atividade em um determinado instante t λ – é a constante de decaimento t – tempo de decaimento O cálculo da atividade no instante de uso da fonte é importante para se determinar o tempo de exposição que deverá ser utilizado para se radiografar uma determinada peça. Para uma mesma fonte radioativa e um determinado objeto, quanto menor a atividade da fonte maior o tempo de exposição necessário para a obtenção da radiografia. Uma curva de decaimento típica pode ser observada na figura 7. 20
  • 21. 100 90 Irídio 192 80 -λ t A = A0.e Atividade remanescente (%) 70 60 50 40 30 20 10 0 0 25 50 75 100 125 150 175 200 225 250 275 Tempo decorrido (dias) Fig. 7 – Curva de decaimento para o Irídio 192. 4.4 Meia-vida de um material radioativo Corresponde ao intervalo de tempo contado a partir de um certo instante, necessário para que metade dos átomos radioativos decaiam. A relação entre a meia-vida e a constante de decaimento é dada por: T1/2 = 0,693/λ, onde T1/2 – é a meia-vida do elemento e λ - é a constante de desintegração. 4.5 Irradiadores Para serem utilizadas com segurança nos trabalhos de radiografia industrial, as fontes radioativas são armazenadas em equipamentos chamados irradiadores. Os irradiadores possuem uma blindagem, normalmente de chumbo ou de urânio exaurido, envolta por uma carcaça de um material resistente a impactos. Quando não estão sendo utilizadas, as fontes permanecem armazenadas nos irradiadores. Como cada tipo de fonte, dependendo do material (como cobalto 60 ou irídio 192, por exemplo), emite radiação gama com diferentes energias, eles são projetados para armazenar com segurança um determinado tipo de fonte, com uma determinada atividade. Assim, existem irradiadores apropriados para armazenar fontes de cobalto 60, outros para armazenar fontes de Irídio 192 e assim por diante, não devendo o irradiador destinado a um certo tipo de fonte (radioisótopo e atividade) ser utilizado para armazenar outros tipos de fonte. Para que a exposição seja feita de forma segura, as fontes radioativas são encapsuladas em recipientes cilíndricos de aço inoxidável. Na figura 8 pode ser observada uma fonte selada de Irídio 192 antes de ser encapsulada. São mostrados dois discos de Irídio 192, o recipiente cilíndrico no interior do qual os discos de material radioativo serão encapsulados e a mola que mantém estes discos fixos no interior do mesmo. Fig. 8 – Fonte selada de Irídio 192 antes de ser encapsulada. 21
  • 22. Este recipiente é então acoplado à extremidade de um cabo de aço que tem, em sua outra extremidade, um engate para possibilitar a retirada e introdução da fonte no irradiador para a execução de radiografias. O conjunto montado pode ser observado isoladamente na figura 9 e montado no irradiador na figura 10. Para a realização da radiografia, a fonte é retirada do irradiador, como pode ser observado na figura 11. Fig. 9 – Fonte selada montada. Fig. 10 – Corte de um irradiador mostrando o tubo em S e a fonte encapsulada montada. Suporte Fonte Selada Cabo de Irradiador Controle Cabo de Cabo de Dispositivo Blindagem Saída da Tubos Guia Controle Controle de Trava Fonte Fig. 11 – Irradiador em posição para a realização de uma radiografia. 22
  • 23. 5 Formação da Imagem Radiográfica A geometria utilizada para a realização do ensaio radiográfico é de extrema importância para a obtenção de bons resultados no ensaio radiográfico. Dependendo da posição e das dimensões da fonte de radiação utilizada, da distância entre a fonte de radiação e objeto radiografado e entre o objeto e o filme, podem ser obtidas imagens radiográficas com grandes diferenças, com conseqüência direta na sensibilidade radiográfica. Os princípios geométricos que regem a formação da imagem radiográfica são semelhantes aos da formação de sombras com a luz comum, podendo ocorrer efeitos como a ampliação e distorção da imagem e formação de penumbra geométrica. Considerando-se uma fonte de radiação puntiforme, alguns dos fatores que afetam a imagem radiográfica formada é a distância entre a fonte de radiação e o objeto radiografado e entre o objeto radiografado e o filme, como pode ser observado na figura 12 e figura 13, respectivamente. Fonte Fonte Fonte Objeto Objeto Objeto Fig. 12 – Efeito da variação da distância entre a fonte e o objeto. Fonte Fonte Fonte Objeto Objeto Objeto Fig. 13 – Efeito da variação da distância entre o objeto e o filme. 23
  • 24. Caso o plano do filme não seja perpendicular ao feixe de radiação incidente, pode ocorrer ainda o efeito de distorção da imagem formada. 5.1 Penumbra Geométrica A penumbra geométrica consiste na perda de definição da imagem radiográfica devido aos fatores geométricos presentes no ensaio, tanto relativos ao equipamento quanto à geometria de exposição. Ela é provocada, basicamente, pelo fato da fonte de radiação não ser puntiforme, ou seja, a radiação se origina de uma área e não de um ponto. O efeito da penumbra geométrica na imagem radiográfica pode ser observado na figura 14. Fig. 14 – Penumbra geométrica. Como pode ser observado pela análise da figura 14, o valor da penumbra geométrica é função das dimensões da fonte (F), da distância fonte-objeto (DFO) e da espessura do objeto (e), relacionados da seguinte forma: F .e F .e Pg = ou DFO = DFO Pg Ou ainda F .e F (e + 1) DFF = DFO + e = +e = , onde Pg Pg DFF = distância fonte-filme DFO = distância fonte-objeto e = espessura do objeto F = tamanho efetivo do foco emissor de radiação Pg = penumbra geométrica 24
  • 25. A distância fonte-filme (DFF) mínima utilizada para o ensaio radiográfico deve ser tal que limite a penumbra geométrica a valores que não prejudiquem a avaliação da radiografia. O Código ASME (Seção V, Artigo 2) define os valores máximos permissíveis para a penumbra geométrica, em função da espessura do objeto radiografado, conforme indicado na Tabela 2. Tabela 2 – Valores máximos para a penumbra geométrica em função da espessura do objeto radiografado. Espessura do Objeto (mm) Valor Máximo da Penumbra Geométrica (mm) Abaixo de 50 0,51 De 50 até 75 0,76 De 75 até 100 1,02 Maior que 100 1,78 5.2 Lei do Inverso do Quadrado da Distância A intensidade da radiação emitida por uma fonte de pontual diminui, à medida que aumenta a distância da fonte emissora, de acordo com a lei do inverso do quadrado da distância. Como pode ser observado na figura 15, a uma distância (d) da fonte emissora, a radiação emitida pela mesma, colimada através de um diafragma, atinge uma determinada área no plano1. A uma distância duas vezes maior (2d), a mesma quantidade de radiação atinge uma área quatro vezes maior, no plano 2, ou seja, com a duplicação da distância a intensidade se tornou quatro vezes menor. Fig. 15 – Representação da Lei do Inverso do Quadrado da Distância. 25
  • 26. Chamando-se a distância d na figura 15 de d1 e a distância 2d de d2, a Lei do Inverso do Quadrado da Distância pode ser escrita como: 2 I1 d 2 = 2 , onde I 2 d1 I1 – é intensidade da radiação no plano 1, a uma distância d1 da fonte emissora I2 – é intensidade da radiação no plano 2, a uma distância d2 da fonte emissora d1 – é distância da fonte emissora ao plano 1 d2 – é distância da fonte emissora ao plano 2. Em radiografia industrial, a exposição radiográfica é definida como o produto da corrente do tubo pelo tempo de exposição (quando se utilizam equipamentos de raios-X) ou como o produto da atividade da fonte pelo tempo de exposição (quando se utilizam fontes de radiação gama), ou seja: E r = i .t , onde Er = exposição radiográfica i = corrente no tubo em mA - miliamperes t = tempo de exposição em minutos ou segundos ou E r = A.t , onde Er = exposição radiográfica A = atividade da fonte radioativa em GBq t = tempo de exposição em horas A intensidade de radiação que atinge o objeto durante a realização de uma radiografia é proporcional ao valor da exposição radiográfica utilizada. Uma radiografia executada com uma determinada distância fonte filme apresentará uma determinada densidade ótica. Caso a distância fonte-filme seja duplicada, a intensidade de radiação que atinge o filme será quatro vezes menor do que na condição anterior. Para que a radiografia obtida apresente o mesmo valor de densidade ótica da radiografia original, o valor da exposição radiográfica deverá ser quatro vezes maior, ou seja, a corrente do tubo ou o tempo de exposição deverão ser quatro vezes maior (quando se utilizam equipamentos de raios-X ) ou o tempo de exposição deverá ser quatro vezes maior (quando se utilizam fontes de radiação gama). Este fato deve ser considerado quando se aumentar ou diminuir, por um motivo qualquer, a distância fonte-filme para a realização de uma determinada radiografia, de forma a não resultar em tempos excessivos de exposição. 6 Diagramas de Exposição Os diagramas de exposição possibilitam a determinação dos parâmetros de teste mais adequados para a execução da radiografia de uma determinada peça, de um determinado material. Eles são construídos para um determinado material, para um determinado tipo de filme, para um determinado conjunto de telas intensificadoras, para condições de processamento padronizadas, para uma distância fonte-filme fixa e para uma determinada densidade ótica. Embora sejam fornecidos quando se adquire um equipamento de raios-X, normalmente o laboratório radiográfico deve elaborar os diagramas para cada 26
  • 27. um dos equipamentos de raios-X com os quais trabalha. Um diagrama de exposição típico para equipamentos de raios-X pode ser observado na figura 16. Para que o diagrama contendo as curvas de exposição possa ser utilizado com eficiência, as condições de exposição para a realização de uma radiografia devem ser as mesmas utilizadas para a elaboração das curvas, sendo possível, entretanto, corrigir o valor das exposições para diferentes tipos de filmes ou diferentes distâncias fonte-filme. 100 kV 120 kV 140 kV 160 kV 180 kV 200 kV 100 220 kV Exposição (mA.min) 240 kV 10 260 kV 1 5 10 15 20 25 30 35 40 Espessura da Peça (mm) Fig. 16 – Diagrama típico contendo curvas de exposição para um equipamento de raios-X para tensões entre 100 kV e 260 kV e as seguintes condições: aço, filme Classe 2, tela dianteira de chumbo com 0,125 mm de espessura, tela traseira de chumbo com 0,250 mm de espessura, revelação 5 minutos a 20° distância fonte-filme de 700 mm, densidade ótica igual a 2,0. C, De posse do diagrama, a radiografia de uma peça de aço com 25 mm de espessura, utilizando-se um filme classe 2, telas dianteiras e traseiras com espessuras de 0,125 e 0, 250 mm respectivamente, uma distância fonte-filme de 700 mm, utilizando-se uma tensão de 180 kV, deverá ser feita com uma exposição radiográfica de 50 mA.min, para que a radiografia obtida tenha uma densidade ótica igual a 2,0. Isto significa que, se utilizarmos uma corrente do tubo igual a 5 mA, o tempo de exposição necessário será de 10 minutos. Caso a corrente seja de 10 mA, o tempo de exposição necessário será de 5 minutos. 7 O Filme Radiográfico Os filmes de raios-X consistem de uma base de poliéster, revestida em ambos os lados por um substrato sobre o qual é depositada uma camada de emulsão, composta principalmente de cristais de haletos de prata, como o brometo de prata ou o cloreto de prata. O substrato tem como finalidade assegurar a 27
  • 28. aderência da emulsão à base de poliéster. Sobre a emulsão é depositada uma camada de gelatina endurecida, que tem como finalidade proteger a mesma. Ao todo, portanto, o filme radiográfico é formado por sete camadas, como pode ser observado na figura 17. Fig. 17 – Constituição de um filme radiográfico. Na maior parte dos filmes radiográficos, a emulsão é depositada em ambos os lados da base, dobrando, portanto, a quantidade de haletos de prata que pode ser sensibilizada, tendo como conseqüência um aumento da velocidade do filme. Estas camadas são finas o bastante para serem processadas em um tempo razoável. Em alguns filmes especiais, a emulsão é depositada em apenas um lado da base, o que torna o filme mais lento, aumentando, entretanto, a definição da imagem radiográfica. Quando a radiação X, gama ou a luz atingem a emulsão, as regiões do filme que recebem uma - quantidade suficiente de radiação sofrem uma mudança. Alguns íons de Br são liberados e capturados + por íons de Ag , Esta mudança é tão pequena que não é perceptível sem um processamento posterior do filme e é chamada de imagem latente. Os grãos expostos tornam-se mais sensíveis ao processo de redução quando em contato com uma solução química chamada revelador e a reação que ocorre durante o processo de revelação resulta na formação de prata metálica, de coloração preta. Esta prata, em suspensão na gelatina em ambos os lados da base, dá origem à imagem radiográfica. A quantidade de partículas de prata metálica produzida é maior nas regiões da emulsão que receberam maiores quantidades de radiação e menor naquelas que receberam uma quantidade menor. A distribuição da prata metálica no filme, em maior ou menor quantidade, dá origem à imagem radiográfica. 7.1 Processamento O processamento do filme radiográfico compreende um conjunto de operações em que o filme é colocado em contato com uma série de substâncias químicas. O processamento envolve as seguintes etapas: Revelação - é o tratamento pelo qual a imagem latente é convertida em uma imagem visível, pela redução seletiva dos cristais de haleto de prata da emulsão em prata metálica. O tempo de revelação deve ser cuidadosamente controlado, de forma permitir a conversão dos cristais expostos em prata metálica enquanto mantém os cristais não expostos como haletos de prata. O tempo de revelação é função da temperatura do revelador e, normalmente, são fornecidos pelos fabricantes de filmes e soluções de processamento tabelas que indicam o tempo de exposição adequado para uma determinada faixa de temperaturas. Banho de parada - o banho de parada tem como objetivo interromper a ação do revelador, retirando o mesmo da superfície do filme. Pode ser utilizada a água comum, corrente, devendo todo o excesso de revelador ser retirado antes de o filme ser colocado no banho fixador. Fixação - é o tratamento pelo qual os cristais de haleto de prata não expostos são removidos do filme. O fixador remove os cristais de haleto de prata, não reagindo com a prata metálica formada. 28
  • 29. Lavagem final - a lavagem final tem como objetivo eliminar resíduos das soluções de processamento da superfície do filme, de forma a evitar a sua degradação e possibilitar o seu posterior arquivamento pelo tempo necessário. Secagem - realizada em secadoras apropriadas e executada de forma a não produzir manchas que possam prejudicar a análise posterior. Após estas operações, a radiografia é guardada em um envelope apropriado e está pronta para ser analisada. O processamento pode ser realizado manualmente ou em processadora automática. Em qualquer uma das situações, o processo deve ser realizado sob condições controladas e padronizadas. 7.2 Densidade ótica Durante a avaliação de uma radiografia em um negatoscópio, pode-se observar que as imagens presentes na mesma são formadas por regiões com diferentes graus de escurecimento, resultantes da moior ou menor sensibilização do filme durante a exposição. O grau de escurecimento apresentado pela radiografia é denominado densidade ótica ou densidade fotográfica, definida por: Ii D = log , sendo It D = densidade ótica da radiografia em uma determinada região Ii = intensidade de luz incidente na radiografia It = intensidade de luz transmitida pela radiografia. A densidade ótica de uma radiografia ou de um filme fotográfico exposto e processado é determinada utilizando-se um equipamento denominado densitômetro. Ele possui uma fonte emissora de luz e um sensor fotoelétrico. Quando a radiografia é posicionada entre a fonte emissora de luz e o sensor, a densidade ótica da mesma pode ser determinada pelo equipamento. Como exemplo, um valor de densidade ótica em uma determinada região de uma radiografia, igual a 1, significa que naquela região, somente 10% da luz incidente foi transmitida. Para uma densidade ótica igual a 2 este valor cai para 1%. Em geral, os negatoscópios disponíveis para a avaliação de radiografias industriais possibilitam a avaliação de radiografias com densidades óticas até 4. 7.3 Curvas Características Os diferentes tipos de filmes radiográficos comportam-se de forma diferente quando expostos e processados nas mesmas condições. Para caracterizar o comportamento de um determinado filme, são elaboradas curvas que associam a exposição à qual um determinado filme foi submetido e a densidade ótica correspondente. Estas curvas são chamadas curvas características. A forma típica de uma curva característica pode ser observada na figura 18. Em geral, no eixo horizontal são apresentados os valores das exposições relativas e no eixo vertical os valores das densidades óticas correspondentes, para um filme em particular ou para um conjunto de diferentes filmes. As curvas apresentadas na figura18 se referem a dois filmes hipotéticos A e B. No eixo horizontal estão representados os valores referentes ao logaritmo das exposições relativas e no eixo vertical os valores das densidades óticas correspondentes. As curvas características possibilitam o cálculo da exposição necessária para produzir uma radiografia com uma determinada densidade ótica para um filme específico. Podem também ser utilizadas para o cálculo da exposição necessária para produzir radiografias com a mesma densidade ótica em filmes diferentes. 29
  • 30. Filme A Filme B 4,0 3,5 3,0 Densidade Ótica 2,5 2,0 1,5 1,0 0,5 0,0 1,0 1,5 2,0 2,5 3,0 log exposição relativa Fig. 18 – Curvas características de dois filmes hipotéticos A e B. As curvas características são fornecidas preparadas pelos fabricantes de filmes. Dois exemplos de sua utilização são apresentados a seguir. a) Uma radiografia de uma peça de aço, realizada, com 150 Kv, 5 mA e 1 minuto utilizando-se o Filme A, apresentou uma densidade ótica, na região de interesse, igual a 1,5. Deve-se elevar este valor para 2,0. Qual deve ser o novo valor da exposição para se obter o novo valor de densidade? Utilizando-se como referência a FIG. 3.6, curva referente ao filme A, verifica-se que para um valor de densidade ótica igual a 1,5 o logaritmo da exposição relativa é igual a 2. Para uma densidade ótica igual a 2,0 o logaritmo da exposição relativa é igual a 2,12, ou seja: Filme A Para D = 1,5 → log da exposição relativa = 2 Para D = 2,0 → log da exposição relativa = 2,12 A diferença entre os logaritmos das exposições relativas, é igual a: 0,12 ∆ log Er = (2,12 - 2) = 0,12 ou seja Er = 10 ∴ Er = 1,3 30
  • 31. Isto significa que a relação entre as duas exposições, para as densidades óticas iguais a 2 e 1,5, é igual a 1,3. Dessa forma, para que a densidade ótica da radiografia possa ser elevada de 1,5 para 2 é necessário que o valor da exposição inicial seja 1,3 vezes maior, ou seja, igual a 6,5 mA.min. b) Uma radiografia de uma peça de aço, realizada, com 150 Kv, 1 mA e 6,5 minutos utilizando-se o Filme A, apresentou uma densidade ótica, na região de interesse, igual a 2,0. Deve-se realizar a radiografia da mesma peça utilizando-se o filme B, devendo-se obter o mesmo valor de densidade ótica. Qual deve ser o novo valor da exposição? Utilizando-se como referência a FIG. 3.6, curva referente ao filme A, verifica-se que para um valor de densidade ótica igual a 2, o logaritmo da exposição relativa é igual a 2,12. Para o filme B e um valor de densidade ótica igual a 2, o logaritmo da exposição relativa é igual a 2,67, ou seja: Filme A - para D = 2,0 → log da exposição relativa = 2,12 Filme B - para D = 2,0 → log da exposição relativa = 2,67 A diferença entre os logaritmos das exposições relativas, é igual a: 0,55 ∆ log Er = (2,67 - 2,12) = 0,55 ou seja Er = 10 ∴ Er = 3,5 Isto significa que a relação entre as duas exposições, para as densidades óticas iguais a 2 em ambos os filmes, é igual a 3,5, Dessa forma, para que a densidade ótica da radiografia possa ser mantida ao se mudar do filme A para o filme B, é necessário que o valor da exposição inicial seja 3,5 vezes maior, ou seja, aproximadamente 23 mA.min. 8 Indicadores da Qualidade da Imagem Os Indicadores da Qualidade da Imagem (IQI) ou penetrâmetros são dispositivos utilizados para a avaliação da qualidade da imagem radiográfica. Eles são fabricados a partir de materiais idênticos ou radiograficamente similares aos materiais a serem radiografados e são posicionados, em geral, sobre a peça em exame, voltados para a fonte de radiação, sendo sua imagem formada na radiografia, junto com a imagem da peça. Existem indicadores com diferentes configurações geométricas, dependendo de sua origem. Entretanto, o objetivo da sua utilização é o mesmo: possibilitar a avaliação da qualidade da imagem radiográfica obtida e, consequentemente, da sensibilidade do ensaio para a detecção de descontinuidades. Dentre os indicadores mais utilizados podem-se citar os indicadores ASTM (tipo placa ou tipo fio) e os indicadores DIN (tipo fio), apresentados a seguir. 8.1 Indicadores da Qualidade da Imagem ASTM 8.1.1 Indicador ASTM Tipo Placa Estes indicadores consistem de uma lâmina de um material radiograficamente similar ao material a ser radiografado, com uma espessura definida T, contendo três furos. Os furos possuem diâmetros iguais a 1T, 2T e 4T e são identificados como furos 1T, 2T e 4T, respectivamente. Em cada um destes indicadores existe uma identificação, feita com letras de chumbo, que indica a sua espessura em milésimos de polegada. O grupo de materiais ao qual pertence o IQI, ou seja, para o qual ele pode ser utilizado, é indicado através de entalhes existentes no corpo do IQI, sendo previstos indicadores para oito grupos de materiais. Um IQI tipo placa, para aço carbono e aço inoxidável, com uma espessura T de vinte milésimos de polegada, pode ser observado na figura 19. 31
  • 32. Furo 4T Furo 1T Furo 2T Número do IQI – espessura T em milésimos de polegada Fig. 19 – Indicador da Qualidade da Imagem ASTM tipo placa. Para a avaliação da qualidade da imagem são estabelecidos diferentes níveis de qualidade da imagem. Estes níveis são designados por dois números. O primeiro indica a espessura percentual do IQI com relação à espessura do material radiografado e o segundo o diâmetro do fio que deverá ser observado na radiografia. Os níveis típicos da qualidade da imagem podem ser observados na Tabela 3. Tabela 3 – Níveis típicos da qualidade da imagem ASTM. Níveis de Qualidade da Imagem Espessura do IQI Furo perceptível na radiografia Níveis de Qualidade de Imagem Padrões 2 – 1T 1T 2 – 2T 2% da espessura do objeto 2T 2 – 4T 4T Níveis de Qualidade de Imagem Especiais 1 – 1T 1T 1% da espessura do objeto 1 – 2T 2T 4 – 2T 4% da espessura do objeto 2T Como exemplo, quando um nível de qualidade 2 – 2T é especificado para o ensaio, isto significa que o furo com diâmetro 2T, em um IQI com espessura equivalente a 2% da espessura do objeto examinado, deve ser perceptível na radiografia. Para a realização da radiografia de juntas soldadas, este tipo de IQI deve ser posicionado sobre a peça, ao lado do cordão de solda, não devendo ser posicionado sobre o cordão. Neste caso, a espessura total do material radiografado corresponde à espessura nominal da peça mais a sobre espessura do cordão de solda de ambos os lados. Para que o IQI possa ser utilizado para a avaliação da sensibilidade radiográfica, ele deverá ser posicionado sobre um calço de material radiograficamente similar ao metal base, com espessura igual à sobre espessura do cordão de solda de ambos os lados. 8.1.2 Indicador ASTM Tipo Fio Consiste de um conjunto de fios com diferentes diâmetros, de um material radiograficamente similar ao material a ser radiografado, inseridos em um invólucro de plástico transparente. Os fios deste tipo de IQI são numerados de 1 a 21, em ordem crescente de seus diâmetros. Eles são montados em grupos de 6, formando 4 conjuntos distintos, denominados A, B, C e D, respectivamente. Os conjuntos A, B, C e D compreendem os fios de número 1 a 6; 6 a 11; 11 a 16 e 16 a 21, respectivamente. Como no caso do IQI 32
  • 33. tipo placa, existem indicadores para oito grupos de materiais, indicados pelos números 1 a 3 e 01 a 05. Um IQI tipo fio, para aço carbono e aço inoxidável, pode ser observado na figura 20. Nele pode-se observar o número de identificação da classe de materiais a que o IQI se aplica (1), a norma (ASTM), o conjunto de fios (A). O número 6 representa o último fio do conjunto. Fig. 20 – Indicador da Qualidade da Imagem ASTM tipo fio. 8.1.3 Seleção A seleção dos Indicadores da Qualidade da Imagem ASTM deve ser feita em função da posição do IQI em relação a fonte de radiação e da espessura de material radiografada. Deve-se utilizar como referência a Tabela 4. Tabela 4 – Seleção de indicadores da Qualidade da Imagem tipo placa e tipo fio. Indicador da Qualidade da Imagem ASTM Lado da Fonte Lado do Filme Espessura Nominal de uma Parede do Material Tipo Tipo Polegadas Milímetros Placa Fio Placa Fio Até 0,25 inclusive Até 6,4 inclusive 12 5 10 4 Acima de 0,25 até 0,375 Acima de 6,4 até 9,5 15 6 12 5 Acima de 0,375 até 0,50 Acima de 9,5 até 12,7 17 7 15 6 Acima de 0,50 até 0,75 Acima de 12,7 até 19,0 20 8 17 7 Acima de 0,75 até 1,00 Acima de 19,0 até 25,4 25 9 20 8 Acima de 1,00 até 1,50 Acima de 25,4 até 38,1 30 10 25 9 Acima de 1,50 até 2,00 Acima de 38,1 até 50,8 35 11 30 10 Acima de 2,00até 2,50 Acima de 50,8 até 63,5 40 12 35 11 Acima de 2,50 até 4,00 Acima de 63,5 até 101,6 50 13 40 12 Acima de 4,00 até 6,00 Acima de 101,6 até 152,4 60 14 50 13 33
  • 34. Tabela 4 – Seleção de indicadores da Qualidade da Imagem tipo placa e tipo fio (continuação). Indicador da Qualidade da Imagem ASTM Lado da Fonte Lado do Filme Espessura Nominal de uma Parede do Material Tipo Tipo Polegadas Milímetros Placa Fio Placa Fio Acima de 6,00 até 8,00 Acima de 152,4 até 203,2 80 16 60 14 Acima de 8,00 até 10,00 Acima de 203,2 até 254,0 100 17 80 16 Acima de 10,00 até 12,00 Acima de 254,0 até 304,8 120 18 100 17 Acima de 12,00 até 16,00 Acima de 304,8 até 406,4 160 20 120 18 Acima de 16,00 até 20,00 Acima de 406,4 até 508,0 200 21 160 20 8.2 Indicadores da Qualidade da Imagem DIN Os indicadores da qualidade da imagem DIN consistem de um conjunto de fios com diferentes diâmetros, de um material radiograficamente similar ao material a ser radiografado, inseridos em um invólucro de plástico transparente. Os fios deste tipo de IQI são numerados de 1 a 16, em ordem decrescente de seus diâmetros. Eles são montados em grupos de 7, formando 3 conjuntos distintos. O primeiro conjunto compreende os fios de 1 a 7, o segundo os fios de 6 a 12 e o terceiro os fios de 10 a 16, identificados pela designação 1 ISO 7, 6 ISO 12 e 10 ISO 16, respectivamente. Como no caso dos indicadores ASTM, existem indicadores para diferentes tipos de materiais. Um IQI DIN, para aço carbono e aço inoxidável, pode ser observado na figura 21. Nele pode-se observar a identificação da norma de referência (DIN), o número 62 (indicativo do ano em que este tipo de IQI passou a ser utilizado) e o símbolo FE, indicando o grupo de materiais para o qual o IQI pode ser utilizado. Na parte inferior, a designação 10 ISO 16 indica que o conjunto compreende os fios de números 10 a 16. Fig. 21 – Indicador da Qualidade da Imagem DIN. 34
  • 35. 8.2.1 Seleção A seleção dos Indicadores da Qualidade da Imagem DIN deve ser feita de acordo com a Tabela 5, em função da espessura do material a ser radiografada e da sensibilidade do ensaio. Tabela 5 – Seleção de indicadores da Qualidade da Imagem DIN. Índice da Qualidade da Imagem (BZ) Categoria de Qualidade da Imagem I II Espessura do Material Índice da Qualidade Espessura do Material Índice da Qualidade em Exame (mm) da Imagem (BZ) em Exame (mm) da Imagem (BZ) Até 6, inclusive 16 Até 6, inclusive 14 Acima de 6 até 8 15 Acima de 6 até 8 13 Acima de 8 até 10 14 Acima de 8 até 10 12 Acima de 10 até 16 13 Acima de 10 até 16 11 Acima de 16 até 25 12 Acima de 16 até 25 10 Acima de 25 até 32 11 Acima de 25 até 32 9 Acima de 32 até 40 10 Acima de 32 até 40 8 Acima de 40 até 50 9 Acima de 40 até 60 7 Acima de 50 até 80 8 Acima de 60 até 80 6 Acima de 80 até 150 7 Acima de 80 até 150 5 Acima de 150 até 200 6 Acima de 150 até 170 4 Acima de 170 até 180 3 Acima de 180 até 190 2 Acima de 190 até 200 1 9 Técnicas Radiográficas 9.1 Técnicas de Redução do Espalhamento Quando um feixe de radiação passa por um determinado objeto, parte dessa radiação é absorvida, parte sofre um espalhamento e parte continua a sua trajetória sem alteração de direção. A radiação espalhada, devido aos seus maiores comprimentos de onda, é menos penetrante que a radiação primária. Ela produz uma redução no contraste das imagens registradas no filme, diminuindo a qualidade da imagem radiográfica, devendo, portanto, ser reduzida. Após passar pelo material e pelo cassete onde se encontra armazenado o filme, o feixe de radiação continua sua trajetória. Qualquer objeto no caminho do feixe, como outros objetos, paredes, piso, pode promover o espalhamento da radiação, que pode, inclusive, retornar ao filme, atingindo a parte traseira do cassete. Esta radiação é denominada radiação retro-espalhada e produz uma redução apreciável na imagem radiográfica original. 35
  • 36. Assim, a radiação espalhada pode atingir o filme radiográfico de duas formas. A partir do objeto sendo radiografado e a partir de objetos próximos ao filme. A redução da radiação espalhada pode ser obtida de diversas formas, como indicado a seguir. a) A utilização de máscaras de chumbo acompanhando os contornos da peça - impede que a radiação espalhada atinja a parte superior do cassete. b) A utilização de diafragmas ou colimadores para restringir a abertura do feixe de radiação à área de interesse na peça. c) A utilização de filtros entre a fonte de radiação e o objeto radiografado, que reduz a quantidade de radiação com maiores comprimentos de onda (menor energia), mais suscetíveis de sofrerem espalhamento. d) A utilização de telas de chumbo na parte traseira do cassete, que blindam a radiação retro- espalhada, impedindo que a mesma atinja o filme. 9.2 Técnicas de Exposição O ensaio radiográfico deve ser planejado de forma a permitir a obtenção de uma imagem radiográfica de qualidade adequada, que possibilite uma rápida associação entre a posição de uma descontinuidade detectada na radiografia e a posição da mesma no objeto em exame e que assegure o exame total das áreas de interesse. A seguir são apresentadas algumas técnicas de exposição normalmente utilizadas para a execução do ensaio radiográfico em soldas de tubulações (Código ASME, Seção V, Artigo 2) e peças em geral. 9.2.1 Técnica Radiográfica de Parede Simples – Vista Simples A técnica radiográfica de parede simples vista simples consiste em se posicionar a fonte de tal forma que o feixe de radiação atravesse apenas uma parede do material sob exame (parede simples) e somente a imagem da região de interesse junto ao filme seja avaliada (vista simples). Sempre que possível, esta deve ser a técnica utilizada para a realização do ensaio. Algumas variações na aplicação desta técnica podem ser observadas nas figuras 22 e 23, para tubos soldados e figura 24, esta última para componentes planos. Uma situação especial, que possibilita a realização da radiografia de toda a região de interesse pode ser observada na figura 25, onde a distância fonte-filme é igual ao raio do componente e na figura 26, onde um conjunto de peças é posicionado eqüidistante da fonte de radiação e a radiografia de todas as peças é realizada ao mesmo tempo. Fig. 22 – Técnica radiográfica de parede simples - vista simples com o filme posicionado no interior do componente cilíndrico e a fonte posicionada externamente . 36
  • 37. Fig. 23 – Técnica radiográfica de parede simples - vista simples com a fonte posicionada no interior do componente cilíndrico e o filme posicionado externamente, sendo a distância fonte-filme maior que o raio do componente. Fig. 24 – Técnica radiográfica de parede simples - vista simples para componentes planos. Fig. 25 – Técnica radiográfica de parede simples - vista simples com exposição panorâmica: a fonte posicionada no interior do componente cilíndrico e os filmes posicionados externamente, sendo a distância fonte-filme igual ao raio do componente. 37
  • 38. Fig. 26 – Técnica radiográfica de parede simples - vista simples com exposição panorâmica: a fonte posicionada no interior do componente cilíndrico e os filmes posicionados externamente, sendo a distância fonte-filme igual ao raio do componente. 9.2.2 Técnica Radiográfica de Parede Dupla – Vista Simples A técnica radiográfica de parede simples vista simples consiste em se posicionar a fonte de tal forma que o feixe de radiação atravesse duas paredes do material sob exame (parede dupla) e somente a imagem da região de interesse junto ao filme seja avaliada (vista simples). Esta técnica é utilizada quando não existe acesso ao interior do componente, conforme pode ser observado nas figuras 27 e 28. Para os dois arranjos mostrados nas figuras devem ser feitas pelo menos três radiografias defasadas de 120° para cobertura completa da região de interesse. Fig. 27 – Técnica radiográfica de parede dupla - vista simples com a fonte de radiação e o filme posicionados externamente ao componente. Fig. 28 – Técnica radiográfica de parede dupla - vista simples com a fonte de radiação e o filme posicionados externamente ao componente. 38
  • 39. 9.2.3 Técnica Radiográfica de Parede Dupla – Vista Dupla A técnica radiográfica de parede simples vista simples consiste em se posicionar a fonte de tal forma que o feixe de radiação atravesse duas paredes do material sob exame (parede dupla) e somente a imagem da região de interesse junto ao filme seja avaliada (vista simples). Esta técnica é utilizada quando não existe acesso ao interior do componente, conforme pode ser observado nas figuras 29 e 30. Esta técnica pode ser aplicada para o exame de soldas em tubos com diâmetro externo iguais ou menores do que 89 mm. Para o arranjo mostrado na figura 29, devem ser feitas pelo menos duas radiografias defasadas de 90° para cobertura completa da região de interesse. Para o arranjo mostrado figura 30, devem ser feitas pelo menos três radiografias defasadas de 60° ou 120° para cobertura completa da região de interesse. Fig. 29 – Técnica radiográfica de parede dupla - vista simples com a fonte de radiação e o filme posicionados externamente ao componente. São necessárias pelo menos 2 radiografias defasadas de 90° para garantir a cobertura completa da região de interesse. Fig. 30 – Técnica radiográfica de parede dupla - vista simples com a fonte de radiação e o filme posicionados externamente ao componente. São necessárias pelo menos 3 radiografias defasadas de 60° ou 120° para garantir a cobertura completa da região de interesse. 39
  • 40. 10 Avaliação de Radiografias A avaliação das radiografias deve ser realizada em um local próprio, com um baixo nível de iluminação ambiente, sendo a iluminação projetada de forma a não ocorrer reflexões na superfície da radiografia examinada. Níveis abaixo de 2 fc são normalmente recomendados para a iluminação ambiente. O exame das radiografias é realizado com o auxílio de negatoscópios que possibilitam o exame de radiografias com valores elevados de densidade ótica. Antes de se iniciar a avaliação propriamente dita, deve-se, baseado no procedimento de ensaio, verificar se a radiografia foi realizada com a técnica adequada (filme adequado, se os valores de densidade ótica da região de interesse estão dentro dos limites especificados, se foi identificada corretamente, se foi utilizado o indicador da qualidade de imagem adequado e se o nível de sensibilidade necessário foi atingido). Deve ainda ser verificada a superfície da radiografia para a detecção de possíveis artefatos que possam prejudicar a sua avaliação. Após estas verificações iniciais, pode-se proceder ao exame da radiografia propriamente dito, de forma a verificar se o tipo, quantidade e dimensões das descontinuidades presentes comprometem ou não o objeto avaliado, de acordo com a norma ou código de referência utilizado para a avaliação. Podem ser utilizadas lentes de aumento ou lupas como instrumentos auxiliares de avaliação. Para uma avaliação correta das possíveis descontinuidades em um determinado componente é necessário o conhecimento das suas características geométricas e de seu processo de fabricação. O conhecimento de sua espessura, acabamento superficial, do processo de soldagem, projeto da junta, dos tratamentos térmicos a que foi submetido e de sua estrutura são de grande importância durante a avaliação. Durante o exame radiográfico de juntas soldadas, as seguintes descontinuidades podem ser detectadas: porosidade agrupada, isolada ou vermicular, inclusões de tungstênio ou de escória, falta de fusão ou de penetração, trincas, mordeduras, dentre outras. 40
  • 41. Capítulo 4 O Ensaio Ultrasônico 1. INTRODUÇÃO O método de ensaio por ultra-som consiste na introdução de um feixe sonoro de alta freqüência no material ou componente de interesse, com o objetivo de se detectar, localizar e dimensionar descontinuidades internas ou superficiais porventura existentes no mesmo. A informação obtida é utilizada para a verificação da conformidade do componente com as especificações de fabricação ou, no caso de componentes em operação, para fornecer subsídios para avaliações utilizando técnicas de mecânica da fratura. Durante o seu percurso, o feixe sonoro pode sofrer reflexões em interfaces existentes no material. Descontinuidades como poros, trincas, inclusões diversas, dupla laminação, falta de fusão, falta de penetração atuam como interfaces, o mesmo ocorrendo com as paredes ou com a superfície do material. 2. ONDAS 2.1 PROPAGAÇÃO O som é a propagação de energia mecânica através de sólidos, líquidos ou gases. A facilidade com que o som se propaga nestes meios depende de algumas características do material, como a sua densidade e o seu módulo de elasticidade, bem como da freqüência da onda sonora. O ouvido humano consegue perceber ondas sonoras nas freqüências entre, aproximadamente, 20 Hz e 20.000 Hz, sendo esta a faixa de freqüências para o som audível. Ondas sonoras com freqüências abaixo de 20 Hz são designadas como infra-som e, acima de 20.000 Hz, como ultra-som. As ondas sonoras seguem muitas das regras físicas da ótica, podendo ser refratadas, refletidas e difratadas. Nos gases, as ondas sonoras se propagam pela compressão e rarefação das moléculas na direção de propagação. Nos sólidos, a estrutura pode suportar vibrações em outras direções, sendo possível o aparecimento de diferentes tipos de onda. O som pode propagar-se através de um material através de dois tipos fundamentais de ondas: as ondas longitudinais e transversais. 2.2 MODOS DE PROPAGAÇÀO 2.2.1 Longitudinais As ondas longitudinais são também conhecidas como ondas de compressão. Durante a sua propagação no material são produzidas regiões de compressão e de rarefação, conforme pode ser observado na figura 1. Sua característica básica é que as partículas do material oscilam na mesma direção de propagação da onda, fazendo com que as ondas longitudinais apresentem as maiores velocidades de propagação em um determinado meio. Direção de Direção de oscilação das propagação partículas do da onda meio Fig.1 – Ondas longitudinais. 41