Sistemas Cognitivos
Principais conceitos e classificação
Disciplina: IA368P – Tópicos em Engenharia de Computação
Seminários sobre Marcos da História da Computação
Faculdade de Eng. Elétrica e de Computação - UNICAMP
Igor José Ferreira de Freitas
igorddf@gmail.com
Sumário
•Introdução - Sistemas cognitivos
•Principais conceitos e classificação
•Exemplos e Aplicações
Introdução – Sistemas Cognitivos
•Origem: Cibernética 1943-1953
oCriar uma ciência da mente, baseado na
lógica
oProver significado aos símbolos:
 Predição
 Evolução
 Objetivos
Introdução – Sistemas Cognitivos
•Principais vertentes:
•Cognitivist (Cognitivismo)
oBaseado em símbolos e processamento de
sistemas representacionais
•Emergent (Evolutivos)
oAgentes autônomos operam de modo eficaz e viável
em um ambiente.
oCapacidade de trabalhar com o futuro (predição)
Principais conceitos e
classificação
•Computabilidade:
oCognitivist:
 regras de manipulação de símbolos
oEmergent:
 Explora
 Auto-organização
 Auto-produção
 Auto-manutenção
 Auto-desenvolvimento
 Interação entre componentes em uma rede distribuida
Principais conceitos e
classificação
•Framework de Representação:
oCognitivist:
 Padrões simbólicos referentes ao mundo externo
 Geralmente definidos pelo criador
oEmergent:
 Sistemas de estados globais
 Dinamismo de agentes na rede distribuída
Principais conceitos e
classificação
•Base Semântica :
oCognitivist:
 Baseado na percepção simbólica através do próprio
agente cognitivo
 Associação de Símbolos
oEmergent:
 Antecipação autônoma preservativa
 Habilidades adaptativas de construção
Principais conceitos e
classificação
•Restrições Temporais:
oCognitivist:
 não necessariamente se relaciona com os eventos do
mundo externo.
oEmergent:
 se relaciona e opera de forma síncrona como mundo
externo e em tempo real
Principais conceitos e
classificação
•Comunicação Epistemológica entre Agentes
oCognitivist:
 Epistemologia totalmente compartilhada
 Cada agente que compoe o ambiente possui sua
estrutura e semântica
oEmergent:
 Avaliação subjetiva oriunda do ambiente
 Análise histórica compartilhada entre agentes
“geneticamente” compatíveis
Principais conceitos e
classificação
•Acoplamento:
oCognitivist:
 Não precisa necessariamente ser acoplado no “corpo” a
que pertence.
 Independe de sua plataforma operacional
oEmergent:
 Intrinsicamente acoplado a sua plataforma operacional
(corpo)
 Suas interações atuam ativamente no processo cognitivo
Principais conceitos e
classificação
•Percepção:
oCognitivist:
 Provê uma interface entre o mundo externo para
representação de símbolos.
 Abstrai fielmente representações espaços-temporais entre
o mundo externo e dados oriundos de sensores.
oEmergent:
 É a mudança do estado do sistema em resposta a
perturbações causadas pelo ambiente com o objetivo de
manter uma estabilidade
Principais conceitos e
classificação
•Ação
oCognitivist:
 Consequências causais do processamento simbólico de
representações internas.
oEmergent:
 Pertubações no ambiente produzidas pelo sistema
cognitivo
Principais conceitos e
classificação
•Predição:
oCognitivist:
 Planejamento utilizando alguma forma procedural ou
probabilística com algum algoritmo a priori.
oEmergent:
 Requer do sistema uma experiência de certo número de
estados para formar uma base de ações através de auto-
construção da percepção.
Principais conceitos e
classificação
•Adaptação:
oCognitivist:
 Implica na aquisição de novo conhecimento
oEmergent:
 Implica em alteração ou reorganização estrutural para
criar um novo conjunto de estados.
Principais conceitos e
classificação
•Motivação:
oA motivação se confronta com a percepção (através
da atenção), ação (através de seleção de ações), e
adaptação (através de fatos que causam
mudanças):
 Cognitivist: resolver um impasse
 Emergent: aumentar o espaço de interação
Principais conceitos e
classificação
•Autônomo:
oCognitivist:
 Não implica neste paradigma
oEmergent:
 Crucial neste paradigma
 Uma vez que cognição é o processo onde um
determinado sistema autônomo se torna viável e eficaz
em um dado ambiente.
Exemplos de Cognitivist Systems
Sistema de Visão Cognitiva
•H.-H. Nagel, “Steps toward a cognitive vision system,” AI Mag., vol.
25, no. 2, pp. 31–50, 2004.
oDesenvolvimento de um interpretador de videos de tráfego de
objetos
oGeração de descrição do comportamento do tráfego em uma
linguagem natural
oParte de representação de sinais para presentação simbólica
oVárias camadas de processamento
Exemplos de Cognitivist Systems
Framework probabilístico
•HBuxton et al. Desenvolveu um sistema de visão cognitivo para
interpretar atividades de operadores humanos.
•Utilizou-se DDNs (dynamic decision networks),
•Extensão de redes 'Bayesian'
•Reconhecimento de gestos e descrição de atividades
•Mesmo empregando aprendizado no reconhecimento de gestos, este
sistema probabilistico requer que o desenvolvedor dê significado aos
símbolos processados
Exemplos de Emergent Systems
Sistemas associativos de aprendizado
•Exemplos na robótica onde aplica-se redes neurais para
coordenação de olho artificial
•M. Jones and D. Vernon, “Using neural networks to learn hand-eyeco-
ordination,” Neural Computing and Applications, vol. 2, no. 1, pp. 2–
12, 1994.
•B. W. Mel, “MURPHY: A robot that learns by doing,” in Neural Infor-
mation Processing Systems. New York: Amer. Inst. Physics, 1988, pp.
544–553.
Exemplos de Emergent Systems
Enactive Systems (Sistemas auto-reguláveis)
•Considerado aplicação avançada de Emergent Systems
•Contradiz com Cognitivist Systems
oNão querer representação prévia de um dado objeto
oConstrói a cognição somente do que é importante
oCognição determinada pelo ambiente e pela interação do agente
oSem necessidade de representação simbólica
oNenhum símbolo é pré-determinado
Bibliografia
[1] Vernon, D.; Metta, G.; Sandini, G.; Etisalat Univ. Coll., Sharjah, A Survey of Artificial Cognitive Systems: Implications for the
Autonomous Development of Mental Capabilities in Computational Agents. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,
VOL. 11, NO. 2, APRIL 2007

Sistemas Cognitivos

  • 1.
    Sistemas Cognitivos Principais conceitose classificação Disciplina: IA368P – Tópicos em Engenharia de Computação Seminários sobre Marcos da História da Computação Faculdade de Eng. Elétrica e de Computação - UNICAMP Igor José Ferreira de Freitas igorddf@gmail.com
  • 2.
    Sumário •Introdução - Sistemascognitivos •Principais conceitos e classificação •Exemplos e Aplicações
  • 3.
    Introdução – SistemasCognitivos •Origem: Cibernética 1943-1953 oCriar uma ciência da mente, baseado na lógica oProver significado aos símbolos:  Predição  Evolução  Objetivos
  • 4.
    Introdução – SistemasCognitivos •Principais vertentes: •Cognitivist (Cognitivismo) oBaseado em símbolos e processamento de sistemas representacionais •Emergent (Evolutivos) oAgentes autônomos operam de modo eficaz e viável em um ambiente. oCapacidade de trabalhar com o futuro (predição)
  • 5.
    Principais conceitos e classificação •Computabilidade: oCognitivist: regras de manipulação de símbolos oEmergent:  Explora  Auto-organização  Auto-produção  Auto-manutenção  Auto-desenvolvimento  Interação entre componentes em uma rede distribuida
  • 6.
    Principais conceitos e classificação •Frameworkde Representação: oCognitivist:  Padrões simbólicos referentes ao mundo externo  Geralmente definidos pelo criador oEmergent:  Sistemas de estados globais  Dinamismo de agentes na rede distribuída
  • 7.
    Principais conceitos e classificação •BaseSemântica : oCognitivist:  Baseado na percepção simbólica através do próprio agente cognitivo  Associação de Símbolos oEmergent:  Antecipação autônoma preservativa  Habilidades adaptativas de construção
  • 8.
    Principais conceitos e classificação •RestriçõesTemporais: oCognitivist:  não necessariamente se relaciona com os eventos do mundo externo. oEmergent:  se relaciona e opera de forma síncrona como mundo externo e em tempo real
  • 9.
    Principais conceitos e classificação •ComunicaçãoEpistemológica entre Agentes oCognitivist:  Epistemologia totalmente compartilhada  Cada agente que compoe o ambiente possui sua estrutura e semântica oEmergent:  Avaliação subjetiva oriunda do ambiente  Análise histórica compartilhada entre agentes “geneticamente” compatíveis
  • 10.
    Principais conceitos e classificação •Acoplamento: oCognitivist: Não precisa necessariamente ser acoplado no “corpo” a que pertence.  Independe de sua plataforma operacional oEmergent:  Intrinsicamente acoplado a sua plataforma operacional (corpo)  Suas interações atuam ativamente no processo cognitivo
  • 11.
    Principais conceitos e classificação •Percepção: oCognitivist: Provê uma interface entre o mundo externo para representação de símbolos.  Abstrai fielmente representações espaços-temporais entre o mundo externo e dados oriundos de sensores. oEmergent:  É a mudança do estado do sistema em resposta a perturbações causadas pelo ambiente com o objetivo de manter uma estabilidade
  • 12.
    Principais conceitos e classificação •Ação oCognitivist: Consequências causais do processamento simbólico de representações internas. oEmergent:  Pertubações no ambiente produzidas pelo sistema cognitivo
  • 13.
    Principais conceitos e classificação •Predição: oCognitivist: Planejamento utilizando alguma forma procedural ou probabilística com algum algoritmo a priori. oEmergent:  Requer do sistema uma experiência de certo número de estados para formar uma base de ações através de auto- construção da percepção.
  • 14.
    Principais conceitos e classificação •Adaptação: oCognitivist: Implica na aquisição de novo conhecimento oEmergent:  Implica em alteração ou reorganização estrutural para criar um novo conjunto de estados.
  • 15.
    Principais conceitos e classificação •Motivação: oAmotivação se confronta com a percepção (através da atenção), ação (através de seleção de ações), e adaptação (através de fatos que causam mudanças):  Cognitivist: resolver um impasse  Emergent: aumentar o espaço de interação
  • 16.
    Principais conceitos e classificação •Autônomo: oCognitivist: Não implica neste paradigma oEmergent:  Crucial neste paradigma  Uma vez que cognição é o processo onde um determinado sistema autônomo se torna viável e eficaz em um dado ambiente.
  • 17.
    Exemplos de CognitivistSystems Sistema de Visão Cognitiva •H.-H. Nagel, “Steps toward a cognitive vision system,” AI Mag., vol. 25, no. 2, pp. 31–50, 2004. oDesenvolvimento de um interpretador de videos de tráfego de objetos oGeração de descrição do comportamento do tráfego em uma linguagem natural oParte de representação de sinais para presentação simbólica oVárias camadas de processamento
  • 18.
    Exemplos de CognitivistSystems Framework probabilístico •HBuxton et al. Desenvolveu um sistema de visão cognitivo para interpretar atividades de operadores humanos. •Utilizou-se DDNs (dynamic decision networks), •Extensão de redes 'Bayesian' •Reconhecimento de gestos e descrição de atividades •Mesmo empregando aprendizado no reconhecimento de gestos, este sistema probabilistico requer que o desenvolvedor dê significado aos símbolos processados
  • 19.
    Exemplos de EmergentSystems Sistemas associativos de aprendizado •Exemplos na robótica onde aplica-se redes neurais para coordenação de olho artificial •M. Jones and D. Vernon, “Using neural networks to learn hand-eyeco- ordination,” Neural Computing and Applications, vol. 2, no. 1, pp. 2– 12, 1994. •B. W. Mel, “MURPHY: A robot that learns by doing,” in Neural Infor- mation Processing Systems. New York: Amer. Inst. Physics, 1988, pp. 544–553.
  • 20.
    Exemplos de EmergentSystems Enactive Systems (Sistemas auto-reguláveis) •Considerado aplicação avançada de Emergent Systems •Contradiz com Cognitivist Systems oNão querer representação prévia de um dado objeto oConstrói a cognição somente do que é importante oCognição determinada pelo ambiente e pela interação do agente oSem necessidade de representação simbólica oNenhum símbolo é pré-determinado
  • 21.
    Bibliografia [1] Vernon, D.;Metta, G.; Sandini, G.; Etisalat Univ. Coll., Sharjah, A Survey of Artificial Cognitive Systems: Implications for the Autonomous Development of Mental Capabilities in Computational Agents. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 2, APRIL 2007