SlideShare uma empresa Scribd logo

INTELIGENCIA ARTIFICIAL RNA

conteúdo sobre redes neurais

1 de 5
Baixar para ler offline
Inteligência Artificial
Lista 1
1. Defina Redes Neurais Artificias?
A rede neural artificial é uma técnica de Inteligência Artificial (IA)
especialmente projetada para processar informações e aquisição de
conhecimento do cérebro humano através de simulação computacional.
2. Descreva os componentes de uma rede neural, explicando a
funcionalidade de cada um dos elementos básicos do elemento de
processamento (neurônio artificial) e as suas possíveis estruturas de
interconexão (possíveis topologias para interconexão dos
processadores).
Os componentes básicos são: os pesos sinápticos, a função de soma, e a
função de transferência também conhecida como função de ativação.
Os pesos sinápticos, são as conexões entre os neurônios, responsáveis pelo
armazenamento das informações.
A função de soma processa todos os estímulos ponderados pelos respectivos
pesos.
A função de transferência, ou função de ativação, tem a finalidade de evitar
o acréscimo progressivo dos valores de saída ao longo das camadas da rede,
visto que tais funções possuem valores máximos e mínimos contidos em
intervalos determinados para cada tipo de função.
3. Explique o funcionamento dos três tipos básicos de aprendizagem:
Supervisionado;Não-supervisionado;e aprendizado por reforço. Indique
as possíveis aplicações para cada tipo de aprendizado.
Aprendizado Supervisionado,quando é utilizado um agente externo que indica
à rede a resposta desejada para o padrão de entrada;
O aprendizado supervisionado é normalmente usado aplicação como
reconhecimento de padrões, visto que a partir de um certo dado de entrada
buscasse o padrão desejado ou equivalente usando a rede neural como
classificador de padrões.
Aprendizado Não Supervisionado (auto-organização), quando não existe um
agente externo indicando a resposta desejada para os padrões de entrada;
O aprendizado não supervisionado é usado em situações onde não sabemos de
antemão a qual classe um padrão pertence nem quais são as classes em q o
nosso problema ade divide. Para tal um mecanismo de reconhecimento de
padrões se encarregará de detectar as semelhanças. Exemplo
Reforço, quando um crítico externo avalia a resposta fornecida pela rede.
Aprendizado por Reforço, Aplicasse em áreas como treinamento de
comportamento de robóticas onde os androids são submetidos a uma serie de
teste até se adaptarem aos comportamentos desejados, para efetuar uma
determinada tarefa.
4. Considerando redes Muli-Layer Perceptrons (MLP) treinadas com o
algoritmo Back Propagation, discuta o problema denominado Bias and
Variance Dilemma (Convergência x Generalização).
Convergência - É a capacidade da rede neural aprender todos os padrões do
conjunto de treinamento. Quando uma rede neural for pequena, não será capaz
de armazenar todos os padrões necessários. Portanto, a rede não deve ser
rígida ao ponto de não modelar fielmente todos os dados.
Generalização – É a capacidade da rede neural responder adequadamente a
padrões jamais vistos. Uma rede muito grande com número de neurônios muito
superior aos necessários para o problema em análise, não responderá
corretamente a padrões nunca vistos, perderá a capacidade de generalizar. Isto
ocorrerá pois os pesos sinápticos da rede aprenderão os vetores de entrada e
também o ruído presente nos dados de treinamento.
A capacidade de generalização de uma rede neural é afetada por três fatores:
1. Tamanho e eficiência dos dados de treinamento.
2. Arquitetura da rede e número de processadores nas camadas ocultas.
3. Complexidade do problema.
5. Quando se justifica utilizar num MLP duas camadas (uma escolhida) ou
três camadas (duas escolhidas) e que tipos de funções podem ser
implementadas em cada caso?
A partir de extensões do Teorema de Kolmogoroff, são necessárias no máximo
duas camadas intermediárias, com um número suficiente de unidades por
camada, para se produzir quaisquer mapeamentos. Também foi provado que
apenas uma camada intermediária é suficiente para aproximar qualquer
função contínua.
6. Por que o algoritmo backpropagation é chamado de regra delta
generalizada?
Porque as redes que utilizam backpropagation trabalham com uma
variação da regra delta, apropriada para redes multicamadas, a regra
delta generalizada. A regra delta padrão essencialmente implementa
um gradiente descendente no quadrado da soma do erro para
funções de ativação lineares.
7. Por que se utiliza gradiente descendente para treinar?
Porque no processo de treinamento são utilizados os conjuntos de dados de
treinamento e validação que contém as variáveis selecionadas para a
construção do modelo de entrada e saídas desejadas. Na regra delta
implementasse um gradiente descendente no quadro da soma de erros para a
funções de ativação lineares
8. O que é overfitting?
Overfitting ou Sobre ajuste é um termo usado em aprendizagem de maquinas
e estatística, para quando um modelo estatístico se ajusta em demasiado ao
conjunto de dados ou amostras. É muito comum que a amostra apresente
desvios causados por erros de medição ou fatores aleatórios, porem isso ocorre
quando o modelo se ajusta a estes.
9. O que são as redes neurais?
Redes neurais é o conjunto de neurônios conectados uns aos outros através de
sinapses.
10. Quais são os elementos principais do neurônio biológico?
Os dentritos, que tem por função, receber os estímulos transmitidos
pelos outros neurônios;
O corpo de neurônio, também chamado de somma, que é responsável
por coletar e combinar informações vindas de outros neurônios;
E finalmente o axônio,que é constituído de uma fibra tubular que pode
alcançar até alguns metros, e é responsável por transmitir os estímulos
para outras células.
11. Quais são os elementos principais do neurônio artificial?
Os elementos principais do neurônio artificial são:
Conjunto de sinapses ou elos de conexão, onde cada elo de conexão é
caraterizado por um estimulo de entrada (x) e por um peso (w).
Combinador Linear (∑) efetua o somatório dos sinais ponderados de entrada
do neurônio.
Função de ativação usa o somatório do item anterior como parâmetro para
produzir a saída do neurônio que é calculada usando a formula
Onde:
w são os pesos das conexões do neurônio k;
x é o valor de cada um dos m estímulos que chegam ao neurônio k;
b é o valor do bias que será somado ao valor do combinador linear.
12.
13. Qual é o papel da função de ativação?
Função de ativação, tem a finalidade ou função, evitar o acréscimo
progressivo dos valores de saída ao longo das camadas da rede.
14. Em relação a atividade de um neurônio, quais formam as conclusão
obtidas por McCulloch e Pitts?
McCulloch e Pitts eles sugeriam a construção de uma máquina baseada ou
inspirada no cérebro humano, estabelecendo as bases da neurocomputação,
com modelos matemáticos.
15. Defina um neurônio McCulloch – Pitts capaz de representar as
seguintes funções booleanas.
X Y SAÍDA
0 0 0
0 1 1
1 0 0
1 1 1
Se net > 0 y = 1
Se net ≤ 0 y = 0
Treinamento
b = 0
w1 = 0
w2 = 0
net = b ∗ 1 + w1 ∗ 0 + w2 ∗ 0
net = 0 ∗ 1 + 0 ∗ 0 + 0 ∗ 0 = 0
y = 0 e x = 0
16. Quais são os três componentes do modelo Perceptron?
Aprendizado supervisionado
Representação binária
Apenas uma camada de pesos ajustáveis
17. Qual é o tipo de aprendizado supervisionado utilizado no modelo
perceptron?
O tipo de aprendizado usado é o treinamento.
wij(k+1) = wij (k) + λ*ei wij (k)*xj
onde: ei (k) = ydi – yi e λ – taxa de aprendizado
18. O que é o treinamento de uma rede neural?
O treinamento da rede corresponde ao processo de ajuste de pesos.
19. Como é a superfície de decisão implementada por um perceptron?
20. O que representa a taxa de aprendizagem no algoritmo de
aprendizagem.
Anúncio

Recomendados

Redes Neurais Artificiais: Regras de Aprendizado
Redes Neurais Artificiais: Regras de AprendizadoRedes Neurais Artificiais: Regras de Aprendizado
Redes Neurais Artificiais: Regras de AprendizadoJackson Daner
 
Capitulo 3 redes neurais artificiais
Capitulo 3   redes neurais artificiaisCapitulo 3   redes neurais artificiais
Capitulo 3 redes neurais artificiaisVânia Moura
 
RNA - Redes neurais artificiais
RNA - Redes neurais artificiaisRNA - Redes neurais artificiais
RNA - Redes neurais artificiaisiaudesc
 
Introdução a redes neurais artificiais com a biblioteca encog
Introdução a redes neurais artificiais com a biblioteca encogIntrodução a redes neurais artificiais com a biblioteca encog
Introdução a redes neurais artificiais com a biblioteca encogRaquel Machado
 
Apostila redes neurais
Apostila redes neuraisApostila redes neurais
Apostila redes neuraisBruno Souza
 
Redes Neurais Aplicacoes
Redes Neurais AplicacoesRedes Neurais Aplicacoes
Redes Neurais Aplicacoessemanact2007
 
Redes Neurais Artificiais
Redes Neurais ArtificiaisRedes Neurais Artificiais
Redes Neurais ArtificiaisMarcos Castro
 

Mais conteúdo relacionado

Mais procurados

Aplicação das Redes Neuronais Artificiais do software STATISTICA 7.0: O caso ...
Aplicação das Redes Neuronais Artificiais do software STATISTICA 7.0: O caso ...Aplicação das Redes Neuronais Artificiais do software STATISTICA 7.0: O caso ...
Aplicação das Redes Neuronais Artificiais do software STATISTICA 7.0: O caso ...Ricardo Brasil
 
IA Redes Neurais Artificiais
IA Redes Neurais ArtificiaisIA Redes Neurais Artificiais
IA Redes Neurais Artificiaisrafael.joi
 
[José Ahirton Lopes] Apresentação MLP
[José Ahirton Lopes] Apresentação MLP[José Ahirton Lopes] Apresentação MLP
[José Ahirton Lopes] Apresentação MLPAhirton Lopes
 
Redes Neurais Artificiais
Redes Neurais ArtificiaisRedes Neurais Artificiais
Redes Neurais ArtificiaisRicardo Zalla
 
Banner sic 02
Banner sic 02Banner sic 02
Banner sic 02siridakis
 
Introdução às Redes Neurais - Parte 2/2
Introdução às Redes Neurais - Parte 2/2Introdução às Redes Neurais - Parte 2/2
Introdução às Redes Neurais - Parte 2/2Bruno Catão
 
Introdução às Redes Neurais - Parte 1/2
Introdução às Redes Neurais - Parte 1/2Introdução às Redes Neurais - Parte 1/2
Introdução às Redes Neurais - Parte 1/2Bruno Catão
 
Redes neurais e lógica fuzzy
Redes neurais e lógica fuzzyRedes neurais e lógica fuzzy
Redes neurais e lógica fuzzyRenato Ximenes
 
Aula introducao-redes-neurais
Aula introducao-redes-neuraisAula introducao-redes-neurais
Aula introducao-redes-neuraisLeo Laurett
 
Classificação não supervisionada - Kohonen
Classificação não supervisionada - KohonenClassificação não supervisionada - Kohonen
Classificação não supervisionada - KohonenAndré Andrade
 
Meta-aprendizado para otimização de parâmetros de redes neurais
Meta-aprendizado para otimização de parâmetros de redes neuraisMeta-aprendizado para otimização de parâmetros de redes neurais
Meta-aprendizado para otimização de parâmetros de redes neuraisOrlando Junior
 
A rede neural supervisionada chamada perceptron multicamadas
A rede neural supervisionada chamada perceptron multicamadasA rede neural supervisionada chamada perceptron multicamadas
A rede neural supervisionada chamada perceptron multicamadascesar do amaral
 
Inteligência Computacional Unidade 02 – Redes Neuronais Artificiais
Inteligência Computacional Unidade 02 – Redes Neuronais ArtificiaisInteligência Computacional Unidade 02 – Redes Neuronais Artificiais
Inteligência Computacional Unidade 02 – Redes Neuronais ArtificiaisLeonardo Goliatt
 
Aprendizado de Máquina para Classificação de Dados
Aprendizado de Máquina para Classificação de DadosAprendizado de Máquina para Classificação de Dados
Aprendizado de Máquina para Classificação de DadosDiego Negretto
 
Inteligência Computacional Unidade 01 – Introdução
Inteligência Computacional Unidade 01 – IntroduçãoInteligência Computacional Unidade 01 – Introdução
Inteligência Computacional Unidade 01 – IntroduçãoLeonardo Goliatt
 

Mais procurados (20)

Aplicação das Redes Neuronais Artificiais do software STATISTICA 7.0: O caso ...
Aplicação das Redes Neuronais Artificiais do software STATISTICA 7.0: O caso ...Aplicação das Redes Neuronais Artificiais do software STATISTICA 7.0: O caso ...
Aplicação das Redes Neuronais Artificiais do software STATISTICA 7.0: O caso ...
 
IA Redes Neurais Artificiais
IA Redes Neurais ArtificiaisIA Redes Neurais Artificiais
IA Redes Neurais Artificiais
 
[José Ahirton Lopes] Apresentação MLP
[José Ahirton Lopes] Apresentação MLP[José Ahirton Lopes] Apresentação MLP
[José Ahirton Lopes] Apresentação MLP
 
Redes Neurais Artificiais
Redes Neurais ArtificiaisRedes Neurais Artificiais
Redes Neurais Artificiais
 
Banner sic 02
Banner sic 02Banner sic 02
Banner sic 02
 
Introdução às Redes Neurais - Parte 2/2
Introdução às Redes Neurais - Parte 2/2Introdução às Redes Neurais - Parte 2/2
Introdução às Redes Neurais - Parte 2/2
 
Redes neurais
Redes neuraisRedes neurais
Redes neurais
 
Introdução às Redes Neurais - Parte 1/2
Introdução às Redes Neurais - Parte 1/2Introdução às Redes Neurais - Parte 1/2
Introdução às Redes Neurais - Parte 1/2
 
Redes neurais e lógica fuzzy
Redes neurais e lógica fuzzyRedes neurais e lógica fuzzy
Redes neurais e lógica fuzzy
 
ArtigoFinal_v02
ArtigoFinal_v02ArtigoFinal_v02
ArtigoFinal_v02
 
Aula introducao-redes-neurais
Aula introducao-redes-neuraisAula introducao-redes-neurais
Aula introducao-redes-neurais
 
160277 redes neurais artificiais
160277 redes neurais artificiais160277 redes neurais artificiais
160277 redes neurais artificiais
 
Classificação não supervisionada - Kohonen
Classificação não supervisionada - KohonenClassificação não supervisionada - Kohonen
Classificação não supervisionada - Kohonen
 
Meta-aprendizado para otimização de parâmetros de redes neurais
Meta-aprendizado para otimização de parâmetros de redes neuraisMeta-aprendizado para otimização de parâmetros de redes neurais
Meta-aprendizado para otimização de parâmetros de redes neurais
 
Redes Neuronais
Redes NeuronaisRedes Neuronais
Redes Neuronais
 
Apresentacao
ApresentacaoApresentacao
Apresentacao
 
A rede neural supervisionada chamada perceptron multicamadas
A rede neural supervisionada chamada perceptron multicamadasA rede neural supervisionada chamada perceptron multicamadas
A rede neural supervisionada chamada perceptron multicamadas
 
Inteligência Computacional Unidade 02 – Redes Neuronais Artificiais
Inteligência Computacional Unidade 02 – Redes Neuronais ArtificiaisInteligência Computacional Unidade 02 – Redes Neuronais Artificiais
Inteligência Computacional Unidade 02 – Redes Neuronais Artificiais
 
Aprendizado de Máquina para Classificação de Dados
Aprendizado de Máquina para Classificação de DadosAprendizado de Máquina para Classificação de Dados
Aprendizado de Máquina para Classificação de Dados
 
Inteligência Computacional Unidade 01 – Introdução
Inteligência Computacional Unidade 01 – IntroduçãoInteligência Computacional Unidade 01 – Introdução
Inteligência Computacional Unidade 01 – Introdução
 

Semelhante a INTELIGENCIA ARTIFICIAL RNA

Aplicação de redes neurais artificiais à engenharia de estruturas
Aplicação de redes neurais artificiais à engenharia de estruturasAplicação de redes neurais artificiais à engenharia de estruturas
Aplicação de redes neurais artificiais à engenharia de estruturasFamília Schmidt
 
Redes Neurais Perceptron e Hopfield
Redes Neurais Perceptron e HopfieldRedes Neurais Perceptron e Hopfield
Redes Neurais Perceptron e HopfieldLucas Sabadini
 
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...AzulAssessoriaAcadmi7
 
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...AzulAssessoriaAcadmi7
 
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...AzulAssessoriaAcadmi7
 
Rede Neural MLP para reconhecimento de Faces
Rede Neural MLP para reconhecimento de FacesRede Neural MLP para reconhecimento de Faces
Rede Neural MLP para reconhecimento de FacesAdilmar Dantas
 
Aula1 mba fiap_2018_redes_neurais
Aula1 mba fiap_2018_redes_neuraisAula1 mba fiap_2018_redes_neurais
Aula1 mba fiap_2018_redes_neuraisAhirton Lopes
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxmatheuskonicz
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxOtavioGuimares1
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxFabioGuimaraes25
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMarceloKonish
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxKaikyKonicz
 

Semelhante a INTELIGENCIA ARTIFICIAL RNA (13)

Aplicação de redes neurais artificiais à engenharia de estruturas
Aplicação de redes neurais artificiais à engenharia de estruturasAplicação de redes neurais artificiais à engenharia de estruturas
Aplicação de redes neurais artificiais à engenharia de estruturas
 
Redes Neurais Perceptron e Hopfield
Redes Neurais Perceptron e HopfieldRedes Neurais Perceptron e Hopfield
Redes Neurais Perceptron e Hopfield
 
rn_1_int.pdf
rn_1_int.pdfrn_1_int.pdf
rn_1_int.pdf
 
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
 
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
 
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...3. Como você interpretaria esse valor em termos da condição do sistema de pro...
3. Como você interpretaria esse valor em termos da condição do sistema de pro...
 
Rede Neural MLP para reconhecimento de Faces
Rede Neural MLP para reconhecimento de FacesRede Neural MLP para reconhecimento de Faces
Rede Neural MLP para reconhecimento de Faces
 
Aula1 mba fiap_2018_redes_neurais
Aula1 mba fiap_2018_redes_neuraisAula1 mba fiap_2018_redes_neurais
Aula1 mba fiap_2018_redes_neurais
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
 
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docxMAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
MAPA - INTELIGÊNCIA ARTIFICIAL PARA AUTOMAÇÃO - 53 2023.docx
 

Último

c) A fosforilação oxidativa é a etapa da respiração celular que mais produz A...
c) A fosforilação oxidativa é a etapa da respiração celular que mais produz A...c) A fosforilação oxidativa é a etapa da respiração celular que mais produz A...
c) A fosforilação oxidativa é a etapa da respiração celular que mais produz A...azulassessoriaacadem3
 
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...azulassessoriaacadem3
 
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.azulassessoriaacadem3
 
CRUZADINA E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
CRUZADINA  E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docxCRUZADINA  E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
CRUZADINA E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docxJean Carlos Nunes Paixão
 
Atividades sobre as Fontes Históricas e Patrimônio.
Atividades sobre as Fontes Históricas e Patrimônio.Atividades sobre as Fontes Históricas e Patrimônio.
Atividades sobre as Fontes Históricas e Patrimônio.Jean Carlos Nunes Paixão
 
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...AaAssessoriadll
 
Domínio da Linguagem Oral Classificação Sílaba Inicial
Domínio da Linguagem  Oral Classificação Sílaba InicialDomínio da Linguagem  Oral Classificação Sílaba Inicial
Domínio da Linguagem Oral Classificação Sílaba InicialTeresaCosta92
 
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...apoioacademicoead
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...excellenceeducaciona
 
Atividade O homem mais rico da Babilônia.pdf
Atividade O homem mais rico da Babilônia.pdfAtividade O homem mais rico da Babilônia.pdf
Atividade O homem mais rico da Babilônia.pdfRuannSolza
 
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...azulassessoriaacadem3
 
A hermenêutica jurídica envolve diversos métodos e técnicas interpretativas, ...
A hermenêutica jurídica envolve diversos métodos e técnicas interpretativas, ...A hermenêutica jurídica envolve diversos métodos e técnicas interpretativas, ...
A hermenêutica jurídica envolve diversos métodos e técnicas interpretativas, ...excellenceeducaciona
 
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...azulassessoriaacadem3
 
Ainda nessa perspectiva, mencione ao menos três desafios associados à aplicaç...
Ainda nessa perspectiva, mencione ao menos três desafios associados à aplicaç...Ainda nessa perspectiva, mencione ao menos três desafios associados à aplicaç...
Ainda nessa perspectiva, mencione ao menos três desafios associados à aplicaç...apoioacademicoead
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...azulassessoriaacadem3
 
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...azulassessoriaacadem3
 
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...azulassessoriaacadem3
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...azulassessoriaacadem3
 
1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...azulassessoriaacadem3
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...azulassessoriaacadem3
 

Último (20)

c) A fosforilação oxidativa é a etapa da respiração celular que mais produz A...
c) A fosforilação oxidativa é a etapa da respiração celular que mais produz A...c) A fosforilação oxidativa é a etapa da respiração celular que mais produz A...
c) A fosforilação oxidativa é a etapa da respiração celular que mais produz A...
 
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
 
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
1) Cite os componentes que devem fazer parte de uma sessão de treinamento.
 
CRUZADINA E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
CRUZADINA  E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docxCRUZADINA  E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
CRUZADINA E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
 
Atividades sobre as Fontes Históricas e Patrimônio.
Atividades sobre as Fontes Históricas e Patrimônio.Atividades sobre as Fontes Históricas e Patrimônio.
Atividades sobre as Fontes Históricas e Patrimônio.
 
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
Quando iniciamos os estudos sobre a história da Educação de Jovens e Adultos,...
 
Domínio da Linguagem Oral Classificação Sílaba Inicial
Domínio da Linguagem  Oral Classificação Sílaba InicialDomínio da Linguagem  Oral Classificação Sílaba Inicial
Domínio da Linguagem Oral Classificação Sílaba Inicial
 
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
 
Atividade O homem mais rico da Babilônia.pdf
Atividade O homem mais rico da Babilônia.pdfAtividade O homem mais rico da Babilônia.pdf
Atividade O homem mais rico da Babilônia.pdf
 
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
 
A hermenêutica jurídica envolve diversos métodos e técnicas interpretativas, ...
A hermenêutica jurídica envolve diversos métodos e técnicas interpretativas, ...A hermenêutica jurídica envolve diversos métodos e técnicas interpretativas, ...
A hermenêutica jurídica envolve diversos métodos e técnicas interpretativas, ...
 
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
 
Ainda nessa perspectiva, mencione ao menos três desafios associados à aplicaç...
Ainda nessa perspectiva, mencione ao menos três desafios associados à aplicaç...Ainda nessa perspectiva, mencione ao menos três desafios associados à aplicaç...
Ainda nessa perspectiva, mencione ao menos três desafios associados à aplicaç...
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
 
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
 
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
 
1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
 

INTELIGENCIA ARTIFICIAL RNA

  • 1. Inteligência Artificial Lista 1 1. Defina Redes Neurais Artificias? A rede neural artificial é uma técnica de Inteligência Artificial (IA) especialmente projetada para processar informações e aquisição de conhecimento do cérebro humano através de simulação computacional. 2. Descreva os componentes de uma rede neural, explicando a funcionalidade de cada um dos elementos básicos do elemento de processamento (neurônio artificial) e as suas possíveis estruturas de interconexão (possíveis topologias para interconexão dos processadores). Os componentes básicos são: os pesos sinápticos, a função de soma, e a função de transferência também conhecida como função de ativação. Os pesos sinápticos, são as conexões entre os neurônios, responsáveis pelo armazenamento das informações. A função de soma processa todos os estímulos ponderados pelos respectivos pesos. A função de transferência, ou função de ativação, tem a finalidade de evitar o acréscimo progressivo dos valores de saída ao longo das camadas da rede, visto que tais funções possuem valores máximos e mínimos contidos em intervalos determinados para cada tipo de função. 3. Explique o funcionamento dos três tipos básicos de aprendizagem: Supervisionado;Não-supervisionado;e aprendizado por reforço. Indique as possíveis aplicações para cada tipo de aprendizado. Aprendizado Supervisionado,quando é utilizado um agente externo que indica à rede a resposta desejada para o padrão de entrada; O aprendizado supervisionado é normalmente usado aplicação como reconhecimento de padrões, visto que a partir de um certo dado de entrada buscasse o padrão desejado ou equivalente usando a rede neural como classificador de padrões. Aprendizado Não Supervisionado (auto-organização), quando não existe um agente externo indicando a resposta desejada para os padrões de entrada; O aprendizado não supervisionado é usado em situações onde não sabemos de antemão a qual classe um padrão pertence nem quais são as classes em q o nosso problema ade divide. Para tal um mecanismo de reconhecimento de padrões se encarregará de detectar as semelhanças. Exemplo Reforço, quando um crítico externo avalia a resposta fornecida pela rede.
  • 2. Aprendizado por Reforço, Aplicasse em áreas como treinamento de comportamento de robóticas onde os androids são submetidos a uma serie de teste até se adaptarem aos comportamentos desejados, para efetuar uma determinada tarefa. 4. Considerando redes Muli-Layer Perceptrons (MLP) treinadas com o algoritmo Back Propagation, discuta o problema denominado Bias and Variance Dilemma (Convergência x Generalização). Convergência - É a capacidade da rede neural aprender todos os padrões do conjunto de treinamento. Quando uma rede neural for pequena, não será capaz de armazenar todos os padrões necessários. Portanto, a rede não deve ser rígida ao ponto de não modelar fielmente todos os dados. Generalização – É a capacidade da rede neural responder adequadamente a padrões jamais vistos. Uma rede muito grande com número de neurônios muito superior aos necessários para o problema em análise, não responderá corretamente a padrões nunca vistos, perderá a capacidade de generalizar. Isto ocorrerá pois os pesos sinápticos da rede aprenderão os vetores de entrada e também o ruído presente nos dados de treinamento. A capacidade de generalização de uma rede neural é afetada por três fatores: 1. Tamanho e eficiência dos dados de treinamento. 2. Arquitetura da rede e número de processadores nas camadas ocultas. 3. Complexidade do problema. 5. Quando se justifica utilizar num MLP duas camadas (uma escolhida) ou três camadas (duas escolhidas) e que tipos de funções podem ser implementadas em cada caso? A partir de extensões do Teorema de Kolmogoroff, são necessárias no máximo duas camadas intermediárias, com um número suficiente de unidades por camada, para se produzir quaisquer mapeamentos. Também foi provado que apenas uma camada intermediária é suficiente para aproximar qualquer função contínua. 6. Por que o algoritmo backpropagation é chamado de regra delta generalizada? Porque as redes que utilizam backpropagation trabalham com uma variação da regra delta, apropriada para redes multicamadas, a regra delta generalizada. A regra delta padrão essencialmente implementa um gradiente descendente no quadrado da soma do erro para funções de ativação lineares. 7. Por que se utiliza gradiente descendente para treinar?
  • 3. Porque no processo de treinamento são utilizados os conjuntos de dados de treinamento e validação que contém as variáveis selecionadas para a construção do modelo de entrada e saídas desejadas. Na regra delta implementasse um gradiente descendente no quadro da soma de erros para a funções de ativação lineares 8. O que é overfitting? Overfitting ou Sobre ajuste é um termo usado em aprendizagem de maquinas e estatística, para quando um modelo estatístico se ajusta em demasiado ao conjunto de dados ou amostras. É muito comum que a amostra apresente desvios causados por erros de medição ou fatores aleatórios, porem isso ocorre quando o modelo se ajusta a estes. 9. O que são as redes neurais? Redes neurais é o conjunto de neurônios conectados uns aos outros através de sinapses. 10. Quais são os elementos principais do neurônio biológico? Os dentritos, que tem por função, receber os estímulos transmitidos pelos outros neurônios; O corpo de neurônio, também chamado de somma, que é responsável por coletar e combinar informações vindas de outros neurônios; E finalmente o axônio,que é constituído de uma fibra tubular que pode alcançar até alguns metros, e é responsável por transmitir os estímulos para outras células. 11. Quais são os elementos principais do neurônio artificial? Os elementos principais do neurônio artificial são: Conjunto de sinapses ou elos de conexão, onde cada elo de conexão é caraterizado por um estimulo de entrada (x) e por um peso (w). Combinador Linear (∑) efetua o somatório dos sinais ponderados de entrada do neurônio. Função de ativação usa o somatório do item anterior como parâmetro para produzir a saída do neurônio que é calculada usando a formula Onde: w são os pesos das conexões do neurônio k; x é o valor de cada um dos m estímulos que chegam ao neurônio k; b é o valor do bias que será somado ao valor do combinador linear. 12. 13. Qual é o papel da função de ativação? Função de ativação, tem a finalidade ou função, evitar o acréscimo progressivo dos valores de saída ao longo das camadas da rede.
  • 4. 14. Em relação a atividade de um neurônio, quais formam as conclusão obtidas por McCulloch e Pitts? McCulloch e Pitts eles sugeriam a construção de uma máquina baseada ou inspirada no cérebro humano, estabelecendo as bases da neurocomputação, com modelos matemáticos. 15. Defina um neurônio McCulloch – Pitts capaz de representar as seguintes funções booleanas. X Y SAÍDA 0 0 0 0 1 1 1 0 0 1 1 1 Se net > 0 y = 1 Se net ≤ 0 y = 0 Treinamento b = 0 w1 = 0 w2 = 0 net = b ∗ 1 + w1 ∗ 0 + w2 ∗ 0 net = 0 ∗ 1 + 0 ∗ 0 + 0 ∗ 0 = 0 y = 0 e x = 0 16. Quais são os três componentes do modelo Perceptron? Aprendizado supervisionado Representação binária Apenas uma camada de pesos ajustáveis 17. Qual é o tipo de aprendizado supervisionado utilizado no modelo perceptron? O tipo de aprendizado usado é o treinamento. wij(k+1) = wij (k) + λ*ei wij (k)*xj onde: ei (k) = ydi – yi e λ – taxa de aprendizado 18. O que é o treinamento de uma rede neural? O treinamento da rede corresponde ao processo de ajuste de pesos.
  • 5. 19. Como é a superfície de decisão implementada por um perceptron? 20. O que representa a taxa de aprendizagem no algoritmo de aprendizagem.