SlideShare uma empresa Scribd logo
1 de 11
NÚMEROS COMPLEXOS
Quantas vezes, ao calcularmos o valor de Delta( b² - 4ac) na resolução de equação de 2º grau, nos deparamos com um valor negativo (Delta <0). Neste caso, sempre dizemos que não existe solução no campo dos números reais. Uma equação que tirou o sono de muitos matemáticos do século XV, foi a equação x² +1 = 0, uma vez que não existe no campo dos reais raiz quadrada de número negativo (x = √-1). Para que as equações sempre fosse possíveis, houve a necessidade de ampliar o universo dos números. Criou-se, então, um número cujo quadrado é -1.
Esse número, representado pela letra i, denominado  unidade imaginária , é definido por:  i² = -1 A partir dessa definição, surge um novo conjunto de números, denominado  conjunto dos números complexos , que indicamos por C. Mas não se assustem o complexo só está no nome. Vocês verão que esse conjunto é muito fácil de aprender.
Definição de números complexos Dados dois números reais  a  e  b  , define-se o número complexo z como sendo:  z =  a  +  b i , onde i = √-1 é a unidade imaginária .  Ex: z =  2  +  3 i ( a = 2 e b = 3) w =  -3   -5 i (a = -3 e b = -5) u =  100 i ( a = 0 e b = 100)
NOTAS: a)  diz-se que z =  a  +  b i é a forma binômia ou algébrica do complexo z . b)  dado o número complexo z =  a  +  b i ,  a  é denominada parte real e  b  parte imaginária.  Escreve-se :  a  = Re(z) ;  b  = Im(z) . c)  se em z =  a  +  b i tivermos  a  = 0 e  b  diferente de zero, dizemos que z é um imaginário puro . Ex: z =  3 i . d) se em z =  a  +  b i tivermos  b  = 0 , dizemos que z é um número real .  Ex: z =  5  =  5  +  0 i .  e) Seja z =  a  +  b i , chama-se conjugado de z e representa-se por  , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z.   Ex: z= 4 + 5 i  ->  = 4  –  5 i
f) do item (c) acima concluímos que todo número real é complexo, ou seja,  o conjunto dos números reais é um subconjunto do conjunto dos números complexos . g)  um número complexo z =  a  +  b i pode também ser representado como um par ordenado z = ( a , b ) .
Forma Algébrica Os números complexos são formados por um par ordenado ( a ,  b ) onde os valores de  a  estão situados no eixo x (abscissa) e os valores de  b  no eixo y (ordenadas). Sobre o eixo x marcamos os pontos relacionados à parte real do número complexo e sobre o eixo y os pontos relacionados à parte imaginária.   Sendo P o ponto de coordenadas ( a ,  b ), a forma algébrica pela qual representaremos um número complexo será  a  +  b i, como  a  e b Є R.  A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
Operações com números complexos ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 Multiplicação: A multiplicação de dois números complexos se dá de acordo com a regra de multiplicação de binômios e lembrando que i²=1,temos: ( a + b i)( c + d i)= ac + a d i+ b c i+ bd i² ( a + b i)( c + d i)= ac + a d i+ b c i –  bd ( a + b i)( c + d i)=( ac  –  bd )+( a d + b c )i Ex: ( 2 + 4 i)( 1 + 3 i)=2+6i+4i+12i² ( 2 + 4 i)( 1 + 3 i)=2+6i+4i - 12 ( 2 + 4 i)( 1 + 3 i)=(2-12)+(6+4)i ( 2 + 4 i)( 1 + 3 i)= - 10 + 10 i
 Divisão: A divisão   de dois números complexos pode ser obtida escrevendo-se o quociente sob a forma de fração; a seguir, procedendo-se de modo análogo ao utilizado na racionalização do denominador de uma fração, multiplicam-se ambos os termos da fração pelo número complexo conjugado do denominador. Ex:   =  =
  Por: Andréia Caetano da Silva   Bibliografia: Matemática Fundamental, 2ºgrau: volume único/José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. – São Paulo:FTD,1994

Mais conteúdo relacionado

Mais procurados

Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Anderson V N Soares
 
Conjunto dos números complexos
Conjunto dos números complexosConjunto dos números complexos
Conjunto dos números complexosrosania39
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números ComplexosAulas De Matemática Apoio
 
Números complexos
Números complexosNúmeros complexos
Números complexosWinny18
 
Números complexos
Números complexos Números complexos
Números complexos Jorge Barros
 
Números complexos
Números complexosNúmeros complexos
Números complexosDaniel Muniz
 

Mais procurados (11)

Números complexos 2008
Números complexos 2008Números complexos 2008
Números complexos 2008
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
 
NUMEROS COMPLEXOS
NUMEROS COMPLEXOSNUMEROS COMPLEXOS
NUMEROS COMPLEXOS
 
Conjunto dos números complexos
Conjunto dos números complexosConjunto dos números complexos
Conjunto dos números complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos
Números complexos Números complexos
Números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 

Destaque (20)

Revista nacimientos
Revista nacimientosRevista nacimientos
Revista nacimientos
 
Arte na Cozinha
Arte na CozinhaArte na Cozinha
Arte na Cozinha
 
Pdf infografia percepcion = proyeccion
Pdf infografia percepcion = proyeccionPdf infografia percepcion = proyeccion
Pdf infografia percepcion = proyeccion
 
Vanden Broele Academy
Vanden Broele AcademyVanden Broele Academy
Vanden Broele Academy
 
Faiz e alam february 2015
Faiz e alam february 2015Faiz e alam february 2015
Faiz e alam february 2015
 
Question 2
Question 2Question 2
Question 2
 
Ficha de avaliação Sistema urinário
Ficha de avaliação Sistema urinárioFicha de avaliação Sistema urinário
Ficha de avaliação Sistema urinário
 
Inaudita guerra
Inaudita guerraInaudita guerra
Inaudita guerra
 
WINDOWS EXPLORER
WINDOWS EXPLORERWINDOWS EXPLORER
WINDOWS EXPLORER
 
Media Technologies
Media TechnologiesMedia Technologies
Media Technologies
 
Joaquín turina junio 2012
Joaquín turina junio 2012Joaquín turina junio 2012
Joaquín turina junio 2012
 
Resources and Equipment
Resources and EquipmentResources and Equipment
Resources and Equipment
 
PRESENTACION
PRESENTACIONPRESENTACION
PRESENTACION
 
Ma ville
Ma villeMa ville
Ma ville
 
Print scr harry
Print scr harryPrint scr harry
Print scr harry
 
Conservar las tradiciones
Conservar las tradicionesConservar las tradiciones
Conservar las tradiciones
 
Venta y clases de muñecas de goma eva
Venta y clases de muñecas de goma evaVenta y clases de muñecas de goma eva
Venta y clases de muñecas de goma eva
 
Top agent profile
Top agent profileTop agent profile
Top agent profile
 
El parentesco CCV
El parentesco CCVEl parentesco CCV
El parentesco CCV
 
Sistema Solar 1
Sistema Solar 1Sistema Solar 1
Sistema Solar 1
 

Semelhante a Números complexos: definição e operações

Números Complexos
Números ComplexosNúmeros Complexos
Números ComplexosFacegirl
 
Números Complexos_IME ITA
Números Complexos_IME ITANúmeros Complexos_IME ITA
Números Complexos_IME ITAJARDEL LEITE
 
Definição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxDefinição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxbrandy57279
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08GuiVogt
 
Definição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxDefinição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxbrandy57279
 
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com.br - Matemática - Números ComplexosBeatriz Góes
 
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
www.videoaulagratisapoio.com.br - Matemática -  Números Complexoswww.videoaulagratisapoio.com.br - Matemática -  Números Complexos
www.videoaulagratisapoio.com.br - Matemática - Números ComplexosVideo Aulas Apoio
 

Semelhante a Números complexos: definição e operações (15)

Números complexos bom
Números complexos bomNúmeros complexos bom
Números complexos bom
 
Matemática apostila 1 suely
Matemática   apostila 1 suelyMatemática   apostila 1 suely
Matemática apostila 1 suely
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Números Complexos_IME ITA
Números Complexos_IME ITANúmeros Complexos_IME ITA
Números Complexos_IME ITA
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Definição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxDefinição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptx
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
 
Definição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxDefinição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptx
 
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
www.videoaulagratisapoio.com.br - Matemática -  Números Complexoswww.videoaulagratisapoio.com.br - Matemática -  Números Complexos
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
 

Números complexos: definição e operações

  • 2. Quantas vezes, ao calcularmos o valor de Delta( b² - 4ac) na resolução de equação de 2º grau, nos deparamos com um valor negativo (Delta <0). Neste caso, sempre dizemos que não existe solução no campo dos números reais. Uma equação que tirou o sono de muitos matemáticos do século XV, foi a equação x² +1 = 0, uma vez que não existe no campo dos reais raiz quadrada de número negativo (x = √-1). Para que as equações sempre fosse possíveis, houve a necessidade de ampliar o universo dos números. Criou-se, então, um número cujo quadrado é -1.
  • 3. Esse número, representado pela letra i, denominado unidade imaginária , é definido por: i² = -1 A partir dessa definição, surge um novo conjunto de números, denominado conjunto dos números complexos , que indicamos por C. Mas não se assustem o complexo só está no nome. Vocês verão que esse conjunto é muito fácil de aprender.
  • 4. Definição de números complexos Dados dois números reais a e b , define-se o número complexo z como sendo: z = a + b i , onde i = √-1 é a unidade imaginária . Ex: z = 2 + 3 i ( a = 2 e b = 3) w = -3 -5 i (a = -3 e b = -5) u = 100 i ( a = 0 e b = 100)
  • 5. NOTAS: a) diz-se que z = a + b i é a forma binômia ou algébrica do complexo z . b) dado o número complexo z = a + b i , a é denominada parte real e b parte imaginária. Escreve-se : a = Re(z) ; b = Im(z) . c) se em z = a + b i tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3 i . d) se em z = a + b i tivermos b = 0 , dizemos que z é um número real . Ex: z = 5 = 5 + 0 i . e) Seja z = a + b i , chama-se conjugado de z e representa-se por , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z. Ex: z= 4 + 5 i -> = 4 – 5 i
  • 6. f) do item (c) acima concluímos que todo número real é complexo, ou seja, o conjunto dos números reais é um subconjunto do conjunto dos números complexos . g) um número complexo z = a + b i pode também ser representado como um par ordenado z = ( a , b ) .
  • 7. Forma Algébrica Os números complexos são formados por um par ordenado ( a , b ) onde os valores de a estão situados no eixo x (abscissa) e os valores de b no eixo y (ordenadas). Sobre o eixo x marcamos os pontos relacionados à parte real do número complexo e sobre o eixo y os pontos relacionados à parte imaginária. Sendo P o ponto de coordenadas ( a , b ), a forma algébrica pela qual representaremos um número complexo será a + b i, como a e b Є R. A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
  • 8.
  • 9.  Multiplicação: A multiplicação de dois números complexos se dá de acordo com a regra de multiplicação de binômios e lembrando que i²=1,temos: ( a + b i)( c + d i)= ac + a d i+ b c i+ bd i² ( a + b i)( c + d i)= ac + a d i+ b c i – bd ( a + b i)( c + d i)=( ac – bd )+( a d + b c )i Ex: ( 2 + 4 i)( 1 + 3 i)=2+6i+4i+12i² ( 2 + 4 i)( 1 + 3 i)=2+6i+4i - 12 ( 2 + 4 i)( 1 + 3 i)=(2-12)+(6+4)i ( 2 + 4 i)( 1 + 3 i)= - 10 + 10 i
  • 10.  Divisão: A divisão de dois números complexos pode ser obtida escrevendo-se o quociente sob a forma de fração; a seguir, procedendo-se de modo análogo ao utilizado na racionalização do denominador de uma fração, multiplicam-se ambos os termos da fração pelo número complexo conjugado do denominador. Ex: = =
  • 11. Por: Andréia Caetano da Silva Bibliografia: Matemática Fundamental, 2ºgrau: volume único/José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. – São Paulo:FTD,1994