SlideShare uma empresa Scribd logo
1 de 42
Baixar para ler offline
FACULDADE DE TECNOLOGIA DE SOROCABA
DESENHO TÉCNICO MECÂNICO II
RODAS DE TRANSMISSÃO:
ALÍVIO EM RODAS
Prof. M. Sc. Edson Del Mastro
2º. Semestre de 2009
FACULDADE DE TECNOLOGIA DE SOROCABA 2
2Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
ÍNDICE
INTRODUÇÃO.....................................................................................................................5
1. GENERALIDADES.......................................................................................................6
1.1. RODA (conceituação):............................................................................................6
1.2. ALIVIO EM RODAS................................................................................................6
1.3 EXCEÇÕES............................................................................................................7
1.4 REDUÇÃO DE CUSTO ..........................................................................................7
1.5 PROCESSOS DE PRODUÇÃO E MATERIAIS......................................................8
1.6 PROCEDIMENTO, METODOLOGIA e LIMITES....................................................8
2. RODA COM ALMA CHEIA ........................................................................................10
2.1. APLICAÇÃO .........................................................................................................10
2.2. DESENHO TÍPICO (RODAS COM ALMA CHEIA)...............................................10
2.3. ORIGEM DAS COTAS .........................................................................................11
2.4. da .........................................................................................................................11
2.5. a............................................................................................................................12
2.6. de .........................................................................................................................13
2.7. dc (diâmetro do cubo) ..........................................................................................13
2.8. Exercício resolvido (polia com alma cheia)...........................................................14
3. RODA COM ALMA VAZADA – Furos redondos .....................................................16
3.1. Aplicação..............................................................................................................17
3.2. Desenho típico (Rodas com alma vazada – furos redondos) ...............................17
3.3. Determinação do alívio .........................................................................................18
3.3.1. dm .................................................................................................................18
3.3.2. df (diâmetro dos furos de alívio): ...................................................................18
3.3.3. r .....................................................................................................................19
3.3.4. Rf ..................................................................................................................19
3.3.5. y ....................................................................................................................19
3.3.6. nf0 ..................................................................................................................19
3.4. Exercício resolvido – polia alma vazada, furos redondos.....................................21
4. RODAS COM ALÍVIOS ALTERNATIVOS .................................................................23
4.1. Furos oblongos.....................................................................................................23
4.1.1. O que é, quando usar ....................................................................................23
4.1.2. Procedimento.................................................................................................23
4.1.3. Exercício resolvido – alívio com furos oblongos.............................................24
4.2. Rodas com Braços ou Raios ................................................................................26
4.2.1. O que é, vantagens, limites ...........................................................................26
4.2.2. Procedimento .................................................................................................26
FACULDADE DE TECNOLOGIA DE SOROCABA 3
3Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
4.3. Rodas de braços com nervuras (seção em “+”)....................................................29
4.3.1. O que é e quando se aplica...............................................................................29
4.3.2. Procedimento ....................................................................................................29
4.3.3. Exercício resolvido – rodas de braços com nervuras (seção em “+”)................30
5. APÊNDICE .................................................................................................................32
5.1. Exercícios propostos – ALÍVIO em polias “V” e engrenagens .................................32
5.2. Exemplos de desenhos de rodas diversas...............................................................34
5.3. Tensões admissíveis para aços e aços fundidos – conforme BACH.......................37
5.4. Gráfico para a espessura da alma – conforme Del Mastro......................................40
5.5. Rodas muito grandes e/ou largas – conforme NIEMANN e DOBROVOLSKY.........41
FACULDADE DE TECNOLOGIA DE SOROCABA 4
4Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
INDICE DE FIGURAS
FIG 1 Roda de automóvel....................................................................................................6
FIG 2 Engrenagem VOLANTE.............................................................................................6
FIG 3 Roda SEM alívio (polia cheia)....................................................................................6
FIG 4 Roda COM alívio (polia com alma cheia)...................................................................6
Fig. 5 Roda Pequena...........................................................................................................7
Fig. 6 Eixo-Pinhão ...............................................................................................................7
FIG 7 RODA COM ALMA CHEIA. (à esquerda polia “V”; à direita engrenagem). .............10
FIG 8 Torque (Mt) e força tangencial ................................................................................13
FIG 9 Roda com alma vazada com furos redondos...........................................................16
FIG 10 Desenho e cotas do alívio em rodas com alma vazada (furos redondos)..............17
FIG 11 dfMax .......................................................................................................................18
Fig. 12 Determinação de nf0 com dfmáx ..............................................................................20
Fig. 13 Alívio c/ 4 furos oblongos.......................................................................................23
Fig 14 Alívio c/ 3 furos oblongos........................................................................................23
Fig. 15 Roda com braços ou raios.....................................................................................26
Fig. 16 Rodas de braços com nervuras (seção em “+”).....................................................29
FACULDADE DE TECNOLOGIA DE SOROCABA 5
5Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
INTRODUÇÃO
Falando-se de rodas em geral, há um grande número de alívios especiais que
são executados visando atender um ou mais quesitos que se tornem preponderantes
em cada caso, além do econômico e da resistência. Essas exigências podem ser de
natureza ergonômica, estética, aerodinâmica, resistência ao choque, leveza,
facilidade do usuário ou de montagem, etc. Em alguns casos, rodas são desenhadas
com um alívio para que façam também a função de volante1
(FIG 2), e outras para
funcionarem inclusive como ventilador2
. Também devem se adequar aos materiais e
aos processos de produção empregados. Ocorre principalmente em produtos de
consumo como, por exemplo, roda e volante de automóvel (FIG 1), roda de bicicleta,
carrinho de supermercado (v. apêndice ER-56-22) – demandando por vezes,
abordagem multidisciplinar, construção de protótipos, realização de testes e até
pesquisa de opinião pública.
Porém, o objetivo deste capítulo se restringe a rodas (v. 1.1) de máquinas e
equipamentos industriais.
1
Rodas com um razoável momento de inércia em relação ao seu eixo de rotação, com o objetivo de regular
seu movimento (acumuladores de energia cinética de rotação). Um ex..: polia maior de uma prensa
excêntrica em “C” ; outro ex.: polia da ferramenta (caracol), numa geradora de engrenagens tipo RENANIA.
2
ex.: No automóvel, a polia do alternador funciona como ventilador (ventoinha).
FACULDADE DE TECNOLOGIA DE SOROCABA 6
6Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
1. GENERALIDADES
1.1.RODA (conceituação):
Em mecânica dá-se o nome genérico de roda às polias, engrenagens, rodas de atrito
(ou fricção), engrenagens de corrente, polias para cabos, volantes, freios, embreagens e
outras peças redondas girantes.
Neste trabalho iremos nos referir principalmente às rodas que transmitam torque.
1.2.ALIVIO EM RODAS
É a redução de peso de uma roda por meio da retirada de material (no projeto) entre o
cubo3
e a coroa4
, deixando apenas o suficiente para resistir com segurança às tensões de
trabalho. Neste estudo examinaremos diversos tipos de alívio usados em máquinas e
equipamentos, onde o mais simples é a roda com alma cheia. (FIGs 3 e 4)
FIG 1 Roda de automóvel FIG 2 Engrenagem VOLANTE
FIG 3 Roda SEM alívio (polia cheia) FIG 4 Roda COM alívio (polia com alma cheia)
3
Região próxima (ao redor) do furo onde se encaixa o eixo.
4
Conforme o tipo de roda a coroa (periferia da roda) pode ser lisa, dentada, canaletada, etc.
FACULDADE DE TECNOLOGIA DE SOROCABA 7
7Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
1.3 EXCEÇÕES
Rodas com alívio é regra geral. Mas há exceções.
1.3.1 Nas rodas pequenas há pouco espaço entre o cubo e a coroa e fica inviável fazer
alívio. (Fig. 5).
1.3.2 Quando esse espaço é ainda menor podemos fazer o eixo-pinhão (Fig. 6)
1.3.3 Quando a roda é totalmente usinada (a partir de um disco cortado de uma barra
redonda), fazer alívio pode significar um aumento de usinagem (e de custo). Em
geral são rodas pequenas.
1.3.4 Quando a roda faz também a função de volante (rodas não muito grandes).5
Fig. 5 Roda Pequena Fig. 6 Eixo-Pinhão
1.4 REDUÇÃO DE CUSTO
1.4.1 Economia de material: é a primeira redução de custo conseguida com o alívio.
Por exemplo, as rodas com alívio mais comumente usadas são as de ferro fundido
e, na fundição, o preço é por quilo.
1.4.2 Economia na usinagem: há uma redução no custo da usinagem por dois motivos:
a) menor superfície para ser usinada (tempo máquina menor)
b) tempos passivos menores (tempo menor para movimentar e locar uma peça mais
leve)
obs.: uma diferença de peso pode ainda indicar a necessidade da usinagem ser feita
na “usinagem pesada” (custo hora-máquina mais elevado).
1.4.3 Economia no projeto: é muito comum que mesmo uma máquina simples possua
quatro ou mais rodas (por exemplo: um par de polias e um par de engrenagens).
Um peso excessivo das rodas (sem alívio) levaria a necessidade de eixos,
rolamentos e outras peças com dimensões maiores deixando a máquina mais
robusta e até maior para realizar o mesmo trabalho útil, encarecendo-a.
5
Há também rodas médias e grandes que funcionam como volante. Nestes casos faz-se alívio
concentrando maior massa próximo da coroca da roda (da menor).
FACULDADE DE TECNOLOGIA DE SOROCABA 8
8Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
1.4.4 Economia de energia: Menor massa das peças girantes (rodas, eixos, rolamentos,
etc.) proporcionam uma menor energia cinética de rotação, consumindo menos
energia. Se a máquina também possuir embreagem e/ou freio, esta menor energia
cinética de rotação, irá interferir no dimensionamento desses subconjuntos ou no
seu desgaste.
1.5 PROCESSOS DE PRODUÇÃO E MATERIAIS
1.5.1 Escolha: diversos fatores devem ser avaliados conjuntamente na escolha do
processo de produção e do material da roda. Em geral, os mais preponderantes
são:
● custo
● quantidade a ser produzida
● tamanho da roda
● características do trabalho (força, velocidade, atrito, choques mecânicos, etc.)
1.5.2 Processos e materiais: O projeto (e o desenho) da roda deverá se adequar ao
processo e material escolhidos. Em seguida relacionamos os mais comuns:
• Fundição por gravidade em areia (ferro fundido, aço fundido, bronze, etc.)6
(Capa,
Figs. 2, 4, 7 e 9)
• Fundição sob pressão (Zamac 2, 3, 5, 610)
• Fundição por gravidade em coquilha metálica (ligas de alumínio e outras com ponto
de fusão baixo a médio)
• Injeção (plásticos7
)(ER -56 – 22 e ER – 50 – 01)
• Estamparia (chapas finas de aço laminado). (ER-48-02) (APÊNDICE)
• Grupo soldado (chapas grossas de aço laminado e tubos mecânicos) (ER-48-01)
(APÊNDICE)
• Sinterizados (metalurgia do pó)
1.6PROCEDIMENTO, METODOLOGIA e LIMITES
Este trabalho é composto de uma série de desenhos e fórmulas empíricas
(decorrentes da prática) e um gráfico. Pretendem capacitar o leitor para resolver os alívios
e desenhos de rodas mais comuns. Também sugere desenhos e fórmulas para rodas e
torques maiores.
Na prática profissional o procedimento é similar - empírico, mas sem fórmulas - para a
grande maioria dos casos. A literatura sobre o assunto é escassa.
O projetista não afeito a este assunto pode recorrer a este trabalho, mas o principal
beneficiado deverá ser o estudante que precisa prover de alívio8
as polias, engrenagens,
etc. nos seus projetos escolares. Não tendo prática e nem dominando ainda as disciplinas
Elementos de Máquinas e Resistência dos Materiais, isto seria uma tarefa ingrata.
6 – doravante usaremos: fofo = ferro fundido; aço fofo = aço fundido
7 - Esta designação genérica é insuficiente para o projeto. Podemos especificar pelo nome científico, pela
sigla, ou pela marca comercial (quando houver). Exs.: policarbonato (PC); poliamida (NYLON); PVC; PET.
8 - Mesmo sendo trabalho escolar, sem alívio o projeto estaria comprometido (ver 1.4)
FACULDADE DE TECNOLOGIA DE SOROCABA 9
9Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
As regras empíricas aqui descritas, para determinação do alívio, se aproximam do
que os profissionais de projeto praticam. Só foram feitos ajustes quanto ao mínimo
material entre furos (um dos fundamentos da nossa pesquisa) e uma atenção especial
reforçando o diâmetro do cubo – que é ponto mais solicitado da roda (ver 2.7 e FIG 8) e
onde vimos um maior número de rupturas. Mas a preocupação maior é o desperdício que
normalmente ocorre quanto à espessura da alma.
As rodas em geral estão sujeitas a um estado múltiplo de tensões. Em alguns casos
onde, além da força tangencial, os outros esforços se tornem preponderantes (forças de
compressão em rodas de cabos tensores ou descentradas; forças axiais importantes ou a
combinação desses esforços) há que se calcular determinando antes uma tensão ideal
(ou tensão combinada, ou tensão equivalente) o que foge dos propósitos deste estudo.
Nestes casos e noutros com potências e, principalmente, com torques muito altos, em
geral, o alívio não é a alma vazada e sim, braços ou raios com nervuras em ambos os
lados, cuja seção é uma cruz (+) e calculados como uma viga. Ou alma dupla e nervura
de reforço (seção H) no caso de rodas grandes e/ou largas. (pág. 41)
As situações acima descritas são excepcionais, um tanto raras.
Na maioria das vezes temos rodas de fofo e aço fofo que podem ser resolvidas com
alma vazada simples, com furos redondos (ou alternativos). São estes casos que nossa
pesquisa se propôs resolver. Nela analisou-se espessuras de alma de 6 a 16mm, dentro
de potências normalizadas de 1 a 50 CV. As larguras de rodas foram até 200mm e os
diâmetros externos até 900mm.
Primeiro procurou-se estabelecer os parâmetros de que a espessura da alma era uma
função contínua. Isso foi feito e confirmado9
através de ~ 50 projetos de transmissões por
correias “V” e engrenagens. Esses parâmetros são N (potência em CV) x φ (
nd
5
10
).
Na pesquisa (~400 projetos de transmissões por correias “V” e por engrenagens)10
levantaram-se os pontos que se constituíram nas isóbaras11
de cada espessura de alma
para cada perfil ou módulo estudado. As curvas referentes a cada espessura variaram
muito pouco (NR 9). Para cada caso tomou-se a curva mínima para a construção do
gráfico.
Foi também determinada a tensão equivalente de cada caso e ela fica (com folga)
abaixo tensão admissível (carga II) se usarmos fofo ABNT FC 30 ou aço fofo ABNT Af 35.
A universalidade dos parâmetros (N e φ) sugere a aplicabilidade deste gráfico para
outros tipos de rodas (de correntes, de atrito, de correia plana, etc) quanto à tensão
tangencial. Mesmo assim não saberíamos como se comportaria a tensão equivalente.
Portanto recomendamos o uso do gráfico somente para polias “V” e engrenagem
cilíndrica reta (ECR até m=8).
9
com uma correlação mínima de 93% (de uma polia “V”, perfil “A”, até uma ECR, m = 8)
10
percorrendo todos os perfis de (exceto o “E”) e os módulos 4,5 e 8, em cada uma das potências
normalizadas de 1 a 50 CV. Respeitou-se as limitações de potências e velocidades dos fabricantes de
correias.
11
Linhas de tensão constante (no caso impôs –se τ = 1 Kgf/mm
2
) na região crítica (mínima distância entre
furos) e na situação mais crítica (só 4 furos e quando nf 0 = 4,000) – que resulta na menor área possivel.
Para que essas condições fossem conseguidas, não foram feitos os arredondamentos convenientes que se
faz num projeto real.
FACULDADE DE TECNOLOGIA DE SOROCABA 10
10Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
2. RODA COM ALMA CHEIA
2.1. APLICAÇÃO
Esse tipo de alívio de peso é normalmente aplicado em rodas pequenas onde o diâmetro
dos furos de alívio fique abaixo de 20 mm(fofo ou aço fofo) ou de 12 mm (zamac e
sinterizados) ou ainda quando o uso de furos (alma vazada) implicasse em aumento de
custos (p. ex.: rodas feitas com grupo soldado ER-48-01, V. APÊNDICE).
2.2. DESENHO TÍPICO (RODAS COM ALMA CHEIA)
Em seguida damos o desenho típico de uma roda de alma cheia (de ferro fundido ou
aço fundido) e os símbolos usados neste módulo. Os exemplos usados são de uma polia
“V” e de uma engrenagem cilíndrica.
POLIA “V” ENGRENAGEM
FIG 7 – RODA COM ALMA CHEIA. (à esquerda polia “V”; à direita engrenagem).
âng. de fundição = 3°
raios de fundição = R2
m, z
FACULDADE DE TECNOLOGIA DE SOROCABA 11
11Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
m)(engrenagecoroadamaterialmínimoKe
)V""(poliacoroadamaterialmínimoK
cubonochavetaderasgododeprofundidat
cubodolarguraLc
)V""(poliarodadacoroadalarguraL
lisa)e(dentadarodadacoroadalargurab
almadaespessuraa
eixooparafurododiâmetrode
cubododiâmetrodc
alíviododiâmetroda
etc.)lisa,polianaext.(ouengrenagemouV""poliadainternodiâmetroDi
engrenagemouV""poliadaexternodiâmetroDe
2
=
=
=
=
=
=
=
=
=
=
∅=
=
2.3. ORIGEM DAS COTAS
As demais dimensões da roda são:
função do:
De, Di, L, b, m (módulo), z (n0. de dentes) – dimensionamento da transmissão
t1, t2 – dimensionamento do eixo (V.norma de “chavetas”)
Lc – dimensionamento da chaveta
K, H, X – perfil “V” (v. norma)
[ ]01F
Determinação do alívio (p/ rodas c/ alma cheia): daremos a seguir regras práticas
para a determinação das cotas da, a, de e dc, justificando-as previamente.
2.4. da
Depende de valores já estabelecidos na norma. É só calcular:
na polia “V”:
[ ]02F
[ ]03F
Ke = a ou 2m (tomar o maior valor)
da = Di – 2K
da = De – 2(H +K)
FACULDADE DE TECNOLOGIA DE SOROCABA 12
12Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
na engrenagem:
[ ]04F
[ ]05F
Obs.: valores quebrados de da, arredondar para baixo.
2.5. a
A determinação da espessura da alma (a) pelo critério de resistência resultaria num
valor muito baixo em rodas com alma cheia. Nos casos mais freqüentes (rodas de fofo) há
de se levar em conta dados da tecnologia dos materiais.
Dentre os tipos de fofos possíveis, sem um tratamento especial, estão os fofos
brancos, fofos cinzentos, fofos mesclados.
- O fofo branco é muito duro e muito frágil, resistente ao desgaste e de baixa
usinabilidade.
- O fofo cinzento tem boa resistência mecânica e ao desgaste, capacidade de
amortecimento e excelente usinabilidade (devido ao carbono livre, em forma de veios).
- O fofo mesclado é um tipo intermediário.
Para as rodas de transmissão as características mais interessantes são as do fofo
cinzento.
Como os fofos são basicamente uma liga Fe – C – Si, e que a % de carbono não
difere necessariamente entre eles, a formação de fofo branco ou cinzento (ou
mesclado) está em função de dois fatores que atuam conjuntamente:
- a % de Si (que facilita a grafitização)
- a velocidade de resfriamento que depende do material do molde (areia) e da
espessura da peça fundida.
Conclusão: mesmo com % de Silício adequada (para fofo cinzento) e molde de areia,
espessuras de parede 5 mm ou menos (dados da experiência12
) possibilitam a formação
de fofo branco ou fofo mesclado – o que é indesejável.
Portanto usaremos a ≥ 6 mm, por segurança. Por outro lado, pelo aspecto da
resistência mecânica, a espessura da alma (para um determinado material) depende
diretamente da potência (N) e inversamente da velocidade (n) (ver 2.6) e do diâmetro (Dn
ou Dp). Para escolher a, determine φ e consulte o gráfico v. apêndice item 5.4.
12
conf. CHIAVERINI, Vicente in TECNOLOGIA MECÂNICA, Vol. III, 2ª. ed., São
Paulo, McGraw-Hill
da = Di – 2 Ke
da = De – 2(2,25m + Ke)
FACULDADE DE TECNOLOGIA DE SOROCABA 13
13Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
para polia “V”: φ =
Dnn.
105
[ ]06F para engrenagem: φ =
Dpn.
105
[ ]07F
2.6. de (diâmetro do eixo e do furo para o eixo na roda) - usaremos uma fórmula
simplificada (válida para eixo de aço ABNT 1050), conforme STIPKOVIC:
de = 90 3
n
N
+ 2 t1 (mm) [ ]08F
onde: N é a potência em CV
n é a velocidade angular em rpm (rotações por minuto)
t1 é a profundidade do rasgo de chaveta no eixo
2.7. dc (diâmetro do cubo)
Observação inicial: excluem-se deste estudo as chamadas engrenagens
intermediárias, as “polias loucas” e outras rodas que não girem solidariamente ao eixo.
Ele se refere à maioria dos casos em que o cubo é solidário ao eixo (transmitindo ou
recebendo o torque). E principalmente onde essa união eixo-cubo é feito por diferença de
forma (chavetas, entalhados, furos e eixos quadrados).
Para determinar o diâmetro do cubo (dc) deve-se atentar para 2 (dois) aspectos:
1) Que a força que atua no cubo (tangente ao eixo) é superior à que se age na coroa da
roda (lisa, canaletada, dentada), por princípio físico. O torque (Mt) é constante em
qualquer parte da roda, portanto quando o braço do momento é menor
2
de
, a força é
maior.
[ ]10FRFMt ×=
Aplicações de [F 10]
FIG 8 – No torque (Mt), a força tangencial é inversamente proporcional ao raio.
RPMemângvelocidaden
cvempotênciaN
mmkgfMt
.
).(
=
=
=
2
2
de
FeMt
DnouDp
fMt
×=
×=
[ ]09716200 F
n
N
Mt =
FACULDADE DE TECNOLOGIA DE SOROCABA 14
14Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
2) Que o rasgo de chaveta, entalhado, estriado, furo quadrado, pinos, parafusos,
promovem uma concentração de tensões nesses pontos do cubo. Esta situação se
agrava se usarmos chavetas com ação de cunha.
dc = 1,6 de + 2 t 2 [ ]11F
Observações:
1 ) Caso a largura do cubo (Lc) seja menor ou igual ao diâmetro do furo para o eixo (de),
fazer dc = 2de
2) Caso o cálculo de dc resultar fracionário, arredondar para mais.
2.8.Exercício resolvido (polia com alma cheia)
Numa transmissão com 3 correias “V”, perfil B, com potência de 10 cv, a polia
motora (1) gira a 900 rpm. Determinar e desenhar a polia movida (2) sabendo-se que esta
deve girar a 720 rpm e tem largura do cubo=82. Fazer alívio.
SOLUÇÃO
Dados acima: N=10cv; n1=900 rpm; n2=720 rpm; 3 canais (B); Lc2=82
( )
( )
( )0348ERpáginapróximanadesenhover
611)19(32x11,51ns2tL
7mma10)(NalmadaespessuradaGráfico0,946
720x146,87
10
Dnn
10
582x3,41,6x322t1,6.dedc
3231,0352x4,7
720
10
90.t
n
N
90.de
112112,372x6,5125,372KDida
125,372x17159,372HDeDi
159,372x6,25146,872xDnDe
146,87
720
900x117,5
n
Dnn
Dn
DnnDnn
117,52x6,251302xDeDn
normaconformeBperfilparamínimo130De
2
5
22
5
2
2(2)22
3
1(2)
3
2
2
22
22
22
2
11
2
2211
11
1
−−
=−+=−+=
=→=→≅==
=+=+=
→=+=+=
→=−=−=
=−=−=
=+=+=
===
=
=−=−=
−=
ϕ
FACULDADE DE TECNOLOGIA DE SOROCABA 15
15Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
Raios canais= R1
Raios de fund.= R2
Ang. Fund.= 3°
FACULDADE DE TECNOLOGIA DE SOROCABA 16
16Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
3. RODA COM ALMA VAZADA – Furos redondos
FIG 9 – Roda com alma vazada com furos redondos
FACULDADE DE TECNOLOGIA DE SOROCABA 17
17Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
3.1. Aplicação
Em princípio este tipo de alívio pode ser usado para rodas em geral, principalmente
quando df≥ 20 e 4≤ nf≤ 6. Não se usa para rodas muito pequenas (não é possível ou não
compensa - ver 1.3 e 2.1). Pode ser inadequado para rodas muito grandes, ou muito
largas, ou para potências muito altas,ou quando os esforços radiais e/ou axiais tornem-se
preponderantes ou a conjunção de 2 ou mais dos fatores acima.
3.2. Desenho típico (Rodas com alma vazada – furos redondos)
FIG 10 – Desenho e cotas do alívio em rodas com alma vazada (furos redondos)
Obs.: demais cotas e significados veja a FIG 7.
alíviodeiguaisfurosdequantidadenf
alíviodefurosdosdiâmetrodf
furosdoscentronciacircunferêdadiâmetromédiodiâmetrodm
=
=
−= )(
FACULDADE DE TECNOLOGIA DE SOROCABA 18
18Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
3.3. Determinação do alívio
Daremos a seguir regras práticas para a determinação das cotas dm, df, e nf,
justificando-as previamente.
3.3.1. dm – Os furos de alívio devem ficar no centro da parte com a alma para
podermos usar furos maiores. Então:
dm =
2
dcda +
[ ]12F
obs.: se dm resultar em valor quebrado, arredondar para cima por duas razões:
1) Caso aconteça de Lc ser maior que b, devido aos ângulos de fundição isto levaria
a um diâmetro central um pouco acima de dm do jeito simplificado que foi
calculado.
2) Reforçaria mais o cubo que a coroa, e sabemos que o cubo é mais solicitado. (V.
FIG 8)
3.3.2. df (diâmetro dos furos de alívio):
Aproximadamente metade dos casos df será igual a dfmáx. O maior furo de alívio
possível deverá estar na parte plana da alma, menos um pequeno valor – por segurança.
FIG 11
FIG 11 - dfMax
FACULDADE DE TECNOLOGIA DE SOROCABA 19
19Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
3.3.3. r – é o raio de fundição e y, y’ é um pequeno valor
]3
2
[ °×





−
−
= tgRf
alc
ycasono
Nessas condições,
dfmáx=
2
dcda −
- 2 (rf +y) [ ]13F ver valores rf e y nas tabelas 1 e 2
Obs.: quando dfmáx. der uma valor quebrado, arredondar para menos.
3.3.4. Rf – raios de fundição para rodas de fofo e aço fundido
Tabela 1
espessura da alma
a (mm)
6 e 7 8 e 9 10 11 a 14 15 a 18
Rf (mm) 2 2,5 3 4 5
3.3.5. y (para ângulos de fundição = 3º)
Tabela 2
Largura da roda
Lc, L ou b (mm)
(o de maior valor)
Até 70 >70 até 100 > 100 até 150 > 150 até 200 >200 até 25013
y (mm) 2 3 4,5 6
8
3.3.6. nf0
Calcularemos o número de furos de alívio hipotético nf0 (que muito
provavelmente vai resultar fracionário) e arredondaremos para o valor inteiro mais
próximo (por falta ou por excesso).
.
13
em princípio, não se recomendam larguras acima de 200 mm para alívio com alma simples
[ ]142. Fadfc máx +=
( )
( )
[ ] ouF
dm
c
sen
dm
c
sen 15
2/
2/
=→= αα ( )
dm
adf
sen máx 2. +
=α
α
°
=
180
0nf ]17[F
[ ]16F
FACULDADE DE TECNOLOGIA DE SOROCABA 20
20Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
Fig. 12 – Determinação de nf0 com dfmáx
Para isso precisamos calcular α no triângulo da Figura 12.
Se precisar calcular a resistência veja 2.7
[ ]18
2
cosα×
=
dm
R
FACULDADE DE TECNOLOGIA DE SOROCABA 21
21Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
3.4. Exercício resolvido – polia alma vazada, furos redondos
Numa transmissão por 3 correias “v”, perfil “A” e potência de 3 cv, a polia motora (1)
gira a 1160 rpm. Determine e desenhe a polia motora sabendo-se que esta deverá girar a
330 rpm e tem largura do cubo=58. Fazer alívio.
SOLUÇÃO:
Dados acima: N=3; n1=1160; n2=330; Lc2=58; 3 correias “V” (A)
( )
04)48(ERseguintepáginanadesenhover
491)15(32x9,51)s(n2tL
622x6x126sen362a.dmsenαdf
36
5
180
α
5furos4,5669
39,41
180
α
180
nf
39,41α0,6349
126
2x668
dm
2adfmáx
senα
682)2(2
2
50202
)y2(Rf
2
dcda
dfmáx
126
2
50202
2
dcda
dm
5049,22x31,6x272t1,6.dedc
2726,982x4,1
330
3
90.2t
n
N
90.de
6a)a""degráfico3Ne1,326
1,326
330x228,48
10
Dnn
10
202202,482x5212,482KDida
212,482x13238,482HDeDi
238,482x5228,482xDnDe
228,48
330
1160x65
n
Dnn
DnDnnDnn
652x5752xDeDn
noma)conf.(mínimo75De
2222
2
0(2)
0(2)
0
2
22
0(2)
22
22
2
22
2
2(2)22
3
1(2)
3
2
2
22
5
22
5
2
22
22
22
2
11
22211
11
1
−−
=−+=−+=
≅−°=−=
°=
°
=
→=
°
=
°
=
=→=
+
=
+
=
=+−
−
=−−
−
=
=
+
=
+
=
→=+=+=
→=+=+=
=→==
≅==
→=−=−=
=−=−=
=+=+=
≅==∴=
=−=−=
=
ϕ
ϕ
FACULDADE DE TECNOLOGIA DE SOROCABA 22
22Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
Raios canais= R1
Raios de fund.= R2
Ang. Fund.= 3°
FACULDADE DE TECNOLOGIA DE SOROCABA 23
23Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
4. RODAS COM ALÍVIOS ALTERNATIVOS
4.1.Furos oblongos
4.1.1. O que é, quando usar
Quando a relação 342,0≥
da
dc
resultam seis ou mais furos redondos que podem ser
substituídos vantajosamente por quatro (ou três) furos oblongos, resultando em maior
alívio de peso. Figs. 13 e 14.
4.1.2. Procedimento
Determine φ, a, da, de, dc, dm e df como se fossem furos redondos (2. e 3.)
Verifique se está satisfeita a relação 342,0≥
da
dc
Use os valores calculados e cote a distância entre furos (Lf):
Lf = 2a (para 4 furos oblongos) Fig. 13
Lf = 2,7a (para 3 furos oblongos) Fig 14
Fig. 13 Alívio c/ 4 furos oblongos Fig 14 Alívio c/ 3 furos oblongos
FACULDADE DE TECNOLOGIA DE SOROCABA 24
24Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
4.1.3. Exercício resolvido – alívio com furos oblongos
Numa transmissão por engrenagens a potência é de 7,5 cv, o módulo=4 e a
relação de velocidades é ~ 3,412. O pinhão gira a 450 rpm, tem 17 dentes e tem no
dentado largura=76. Determinar e desenhar a coroa sabendo-se que esta tem lagura do
cubo=92.
SOLUÇÃO
Dados acima: N= 7,5; n1= 450; z1= 17; m=4; i ≅ 3,412; Lc2=92
05)48(ERseguintepáginanadesenhover
45dfmáxe141dmtambémUsar
222x112aLf
4)(v.oblongosfuros4entãofazerPodemos
redondos.furosou6teremosquedizerqueristo0,3420,405
200
81
da
dc
relaçãoaverificar
4545,53)2(4
2
81200
)y2(Rf
2
dcda
dfmáx
742762bb
141140,5
2
81200
2
dcda
dm
8180,82x3,61,6x462t1,6.dedc
4645,612x5,5
131,9
7,5
90.2t
n
N
90.de
20011)2(9240)Ke2(hDeda
11valor)maioro(adotar2m
22
22
22
22
2
12
22
2
2(2)22
3
1(2)
3
2
2
222
22
5
22
5
2
2
11
22211
22
22
12
1
2
ake
(gráfico)11a3,268
131,9x232
10
Dpn
10
131,9rpm
58
450x17
z
zn
nznzn
2324x58m.zDp
92,25x42,25mh
2402)4(582)m(zDe
5858,0043,412x17ziz
z
z
i
−−
==
===
+∴>==
→=+−
−
=+−
−
=
=−=−=
→=
+
=
+
=
→=+=+=
→≅+=+=
=+−=+−=
==
=→≅==
≅==∴=
===
===
=+=+=
→===∴=
ou
ϕ
FACULDADE DE TECNOLOGIA DE SOROCABA 25
25Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
Raiosdefund.=R4
Ang.Fund.=3°
FACULDADE DE TECNOLOGIA DE SOROCABA 26
26Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
4.2.Rodas com Braços ou Raios
4.2.1. O que é e vantagens, limites
É um alívio com furos especiais (fig 15) que pode substituir com vantagem o alívio
com furos redondos por dois motivos:
• Resulta em maior alívio de peso
• Conforme nossa análise comparativa, reforça mais o ponto crítico da alma, o cubo e
a coroa da roda
4.2.2. Procedimento
Determine φ, a, da, de, dc, dm, α e nf como se fossem furos redondos.
Use um número de braços = nf (até 6 braços). Se a relação 4,0≥
da
dc
pode-se usar
só 4 (ou 3) braços (mesmo assim o alívio estará superdimensionado).
Use a Fig 15 para as outras dimensões.
4
)20(
3
2
de
R
míndeL
≅
≅
Fig. 15 – Roda com braços ou raios
FACULDADE DE TECNOLOGIA DE SOROCABA 27
27Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
4.2.3. Exercício resolvido – rodas de braços ou raios
Numa transmissão por engrenagens para potência 7,5 cv, o módulo é=3 e a
relação de transmissão é ~3,42. O pinhão gira a 1100 rpm,tem 19 dentes e largura no
dentado de 63 mm.
Determinar e desenhar a coroa sabendo-se que esta tem a largura do cubo=102.
SOLUÇÃO:
Dados acima: N=7,5; m=3; n1=1100 rpm; z1=19; i~3,425; b1=63; Lc2=102
( )
06)48(ERseguintepáginanadesenhoVer
24x36
3
2
de
3
2
L
9
4
36
4
de
R
raios)(oubraços6comRodaFaremos
6furos!6,48
27,78
180
α
180
nf
27,78α0,466
118
2x839
dm
2adfmáx
senα
394,5)2(2,5
2
65171
)y2(Rf
2
dcda
dfmáx
612632bb
0,38
171
65
da
dc
118
2
17165
2
dadc
dm
6564,42x3,41,6x362t1,6.dedc
3635,112x4,7
321,54
7,5
90.2t
n
N
90.de
171171,58)2(6,75201)Ke2(hDeda
8valormaioroadotar2mouaKe
(gráfico)8a1,595
321,54x195
10
Dpn
10
321,54rpm
65
1100x19
z
zn
nznzn
1953x65m.zDp
6,752,25x32,25mh
2012)3(652)m(zDe
6565,0753,425x19i.zz
z
z
i
2
2
2
0(2)
0(2)
0(2)
2
22
0(2)
22
22
2
12
22
2
2(2)22
3
1(2)
3
2
2
222
22
2
5
22
5
2
2
11
22211
22
22
12
1
2
−−
===
==
→≅
°
°
=
°
=
°=→≅
+
=
+
=
=+−
−
=+−
−
=
=−=−=
==
=
+
=
+
=
→=+=+=
→=+=+=
→=+−=+−=
==
=→≅==
≅==∴=
===
===
=+=+=
→===∴=
ϕ
FACULDADE DE TECNOLOGIA DE SOROCABA 28
28Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
FACULDADE DE TECNOLOGIA DE SOROCABA 29
29Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
4.3.Rodas de braços com nervuras (seção em “+”)
4.3.1. O que é e quando se aplica
É um tipo de alívio que se aplica quando uma alma simples (todos os casos que já
examinamos) estaria sujeita à flexão e/ou flambagem. Pode ser usado quando uma ou
mais das seguintes condições se encontram presentes:
• Rodas muito grandes
• Rodas muito largas
• Esforços radiais e/ou axiais importantes
• Esforços radiais descentrados
4.3.2. Procedimento
Detemine o alívio como no caso anterior (4.2 – rodas com braços ou raios) e
adicione as nervuras conforme Fig. 16
Fig. 16 Rodas de braços com nervuras (seção em “+”)
R fund.=R2
FACULDADE DE TECNOLOGIA DE SOROCABA 30
30Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
4.3.3. Exercício resolvido – rodas de braços com nervuras (seção em “+”)
Numa transmissão por engrenagens com potência 15 cv, o módulo é 8 e a relação
de transmissão é ~2,39.
O pinhão gira a 450 rpm, tem 23 dentes e largura do dentado de 200.
Determinar e desenhar a coroa (com alívio) sabendo-se que esta tem largura de
cubo= 182
SOLUÇÃO:
Dados acima: N=15; m=8; n1=450rpm; z1=23; i~2,39; b1=200; Lc2=182
seguintepáginana0748ERdesenhoVer
35x52
3
2
de
3
2
L
13
4
53
4
de
R
nervurascombraços5c/alívioumsAplicaremo
200)(~largamas456)(DegrandeparamédiaderodaumaÉ
5furos4,65
38,68
180
α
180
nf
38,68α0,625
240
2x10130
dm
2adfmáx
senα
130130,56)2(3
2
91388
)y2(Rf
2
dcda
dfmáx
19822002bb
240239,5
2
91388
2
dcda
dm
912x3,91,6x522t1,6.dedc
5251,622x6,2
181,2
15
902t
n
N
90.de
38816)2(18456)Ke2(hDeda
16valor)maioro(adotar2mouaKe
(gráfico)10a1,208
188,2x440
10
Dnn
10
188,18rpm
55
450x23
z
zn
nznzn
4408x55m.zDp
182,25x82,25mh
4562)8x(552)m(zDe
5554,972,39x23izz
z
z
i
22
2
2
0(2)
0(2)
0(2)
2
22
0(2)
22
22
2
12
22
2
2(2)22
1(2)3
2
2
222
2
2
5
22
5
2
2
11
22211
22
22
12
1
2
−−
≅==
===
=
→≅
°
°
=
°
=
°≅→=
+
=
+
=
→=+−
−
=+−
−
=
=−=−=
→=
+
=
+
=
=+=+=
→=+=+=
=+−=+−=
==
=→≅==
≅==∴=
===
===
=+=+=
→===∴=
ϕ
FACULDADE DE TECNOLOGIA DE SOROCABA 31
31Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
FACULDADE DE TECNOLOGIA DE SOROCABA 32
32Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
5. APÊNDICE
5.1.Exercícios propostos – ALÍVIO em polias “V” e engrenagens
EP – 48 – 01
Numa transmissão com 2 correias “V”, perfil “A”, a potência é de 2 CV. A polia motora (1)
tem diâmetro externo igual a 80mm e gira a 1160 rpm. Determinar e desenhar (com alìvio)
a polia movida (2) sabendo-se que esta tem velocidade de 330 rpm e 47 mm na largura
do cubo.
EP – 48 – 02
Num par engrenado a potência é 3 CV, o módulo 4,5 e a relação de velocidades ~ 4,76. O
pinhão tem 17 dentes, gira 600 rpm e tem 86 mm de largura (no dentado). Determinar e
desenhar a coroa (com alívio) cuja largura do cubo é 102 mm.
EP – 48 – 03
Numa transmissão com 3 correias “V”, perfil “A”, a potência é de 3 CV. A polia motora (1)
gira a 1160 rpm. Determinar e desenhar (com alìvio) a polia movida (2) sabendo-se que
esta tem velocidade de 330 rpm e a largura do cubo é 58 mm.
EP – 48 – 04
Numa transmissão por engrenagens a potência é 6 CV, o módulo 4 e a relação de
transmissão ~ 3,06. O pinhão tem 17 dentes, gira a 850 rpm e tem largura do dentado
igual a 76 mm. Determinar e desenhar a coroa (com alívio) a qual tem a largura do cubo
igual a 92 mm.
EP – 48 – 05
Num sistema com 3 correias “V”, perfil “B”, a potência é de 5 CV e a relação de
transmissão é ~ 1,286. A polia motora (1) tem diâmetro externo igual a 140 mm e gira a
450 rpm. Determinar e desenhar (com alìvio) a polia movida (2) sabendo-se que esta tem
largura do cubo igual 72.
EP – 48 – 06
Num par engrenado a potência é 10 CV, o módulo 6 e a relação de velocidades ~ 2,76. O
pinhão tem 17 dentes, gira 900 rpm e tem 114 mm de largura (no dentado). Determinar e
desenhar a coroa (com alívio) cuja largura do cubo é 127 mm.
EP – 48 – 07
Numa transmissão com 3 correias “V”, perfil “B”, a potência é de 7,5 CV. A polia motora
(1) tem diâmetro externo igual a 135 mm e gira a 800 rpm. Determinar e desenhar (com
alìvio) a polia movida (2) sabendo-se que esta tem velocidade de 390 rpm e 82 mm na
largura do cubo.
FACULDADE DE TECNOLOGIA DE SOROCABA 33
33Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
EP – 48 – 08
Num par engrenado a potência é 15 CV, o módulo 7 e a relação de transmissão ~ 2,63. O
pinhão tem 19 dentes, gira 1040 rpm e tem 130 mm de largura (no dentado). Determinar
e desenhar a coroa (com alívio) cuja largura do cubo é 142 mm.
EP – 48 – 09
Numa transmissão com 4 correias “V”, perfil “C”, a potência é de 30 CV. Sabendo-se que
a polia motora (1) gira a 1160 rpm, determinar e desenhar (com alìvio) a polia movida (2)
a qual tem velocidade de 620 rpm e 142 mm na largura do cubo.
EP – 48 – 10
Num par de rodas dentadas à evolvente a potência é 20 CV, o módulo 8 e a relação de
velocidades ~ 2,23. O pinhão tem 17 dentes, gira 580 rpm e tem 152 mm de largura (no
dentado). Determinar e desenhar a coroa (com alívio) cuja largura do cubo é 182 mm.
EP – 48 – 11
Numa transmissão com 3 correias “V”, perfil “B”, a potência é de 4 CV. Sabendo-se que a
polia motora (1) gira a 400 rpm, determinar e desenhar (com alìvio) a polia movida (2) a
qual tem velocidade de 100 rpm e 82 mm na largura do cubo (com 2 rasgos de chaveta à
1800
).
EP – 48 – 12
Num par engrenado a potência é 7,5 CV, o módulo 5 e a relação de transmissão ~ 3,8. O
pinhão tem 17 dentes, gira 900 rpm e tem 95 mm de largura (no dentado). Determinar e
desenhar a coroa (com alívio) cuja largura do cubo é 112 mm.
EP – 48 – 13
Numa transmissão com 4 correias “V”, perfil “C”, a potência é de 40 CV. Sabendo-se que
a polia motora (1) tem diâmetro externo de 240 mm e gira a 870 rpm, determinar e
desenhar (com alìvio) a polia movida (2) a qual tem velocidade de 360 rpm e 127 mm na
largura do cubo(com 2 rasgos de chaveta à 1800
).
.
EP – 48 – 14
Numa transmissão por engrenagens a potência é 12,5 CV, o módulo 6,5 e a relação de
velocidades ~ 2,65. O pinhão tem 23 dentes, gira 900 rpm e tem 130 mm de largura (no
dentado). Determinar e desenhar a coroa (com alívio) cuja largura do cubo é 142 mm.
EP – 48 – 15
Numa transmissão com 8 correias “V”, perfil “B”, a potência é de 50 CV. Sabendo-se que
a polia motora (1) gira a 1750 rpm, determinar e desenhar (com alìvio) a polia movida (2)
a qual tem velocidade de 400 rpm e 142 mm na largura do cubo (com 2 rasgos de
chaveta à 1800
).
FACULDADE DE TECNOLOGIA DE SOROCABA 34
34Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
5.2.Exemplos de desenhos de rodas diversas
FACULDADE DE TECNOLOGIA DE SOROCABA 35
35Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
FACULDADE DE TECNOLOGIA DE SOROCABA 36
36Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
FACULDADE DE TECNOLOGIA DE SOROCABA 37
37Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
FACULDADE DE TECNOLOGIA DE SOROCABA 38
38Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
FACULDADE DE TECNOLOGIA DE SOROCABA 39
39Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
5.3 Tensões admissíveis para aços e aços fundidos – conforme BACH
AÇOSFUNDIDOS(kgf/mm
2
)
ABNT
5020Af
60
20
180
TENSÕESADMISSÍVEISEMkgf/mm
2
–segundoBACH
12,5a
9,0
8,0a
12,0
5,5a
8,5
14,0a
20,5
8,5
13,0
5,5a
8,5
14,0a
20,5
8,5a
13,0
6,0a
9,0
8,0a
12,0
4,5a
7,5
3,0a
5,5
ABNT
7010Af
70
10
200
14,0a
21,0
9,6a
13,0
6,0a
9,5
15,0a
23,0
9,5a
14,5
6,0a
9,5
15,5a
23,0
7,5a
14,5
7,0a
10,5
9,0a
13,0
5,5a
8,4
4,0a
6,0
ABNT
6015Af
60
42
15
170
12,5a
19,0
8,0a
12,0
5,5a
8,5
14,0a
20,5
8,5a
13,0
5,5a
8,5
14,0a
20,5
8,5a
13,5
6,0a
9,0
8,0a
12,0
4,5a
7,5
3,5a
5,5
ABNT
4524Af
45
22
24
130
10,0a
15,0
6,5a
9,5
4,5a
7,0
11,0a
16,5
7,0a
10,5
4,5a
7,0
11,0a
16,5
7,0a
10,5
5,0a
7,5
6,5a
9,5
4,0a
6,0
3,0a
4,5
ABNT
3525Af
35
25
6,5a
10
4,5a
6,5
3,0a
4,5
7,5a
11
4,5a
7,0
3,0a
4,5
7,5a
11,0
4,5a
7,0
3,5a
5,0
4,5a
6,5
2,5a
4,0
2,0a
3,0
AÇOS(tensõesemkgf/mm
2
)
ABNT1050
Estir.
àfrio
70
59
10
197
22,0
14,5
10,0
22,0
14,5
10,0
24,0
16,0
11,5
13,5
9,0
7,0
Lamin.
quente
63
35
15
179
20,0
12,5
8,0
20,0
12,5
8,0
22,0
14,0
9,5
11,5
7,0
5,0
ABNT1040
Estir.
àfrio
60
50
12
170
21,0
13,5
9,0
21,0
13,5
9,0
23,0
15,0
10,5
12,5
8,0
6,0
.
quent
53
29
18
149
15,0
9,5
7,0
15,0
9,5
7,0
16,5
10,5
7,5
9,5
6,0
4,5
ABNT1030
Estir.
àfrio
53
45
12
149
15,5
10,0
7,5
15,5
10,0
7,5
17,0
11,0
8,0
10,0
6,5
5,0
Lamin.
quente
48
26
20
137
13,5
8,5
6,0
13,5
8,5
6,0
14,0
9,5
6,5
8,0
5,0
3,5
ABNT1020
Estir.
àfrio
43
36
15
121
14,0
9,0
6,5
14,0
9,0
6,5
15,0
10,0
7,0
8,5
5,5
4,0
.
quent
39
21
25
111
10,0
6,5
4,5
10,0
6,5
4,5
11,0
7,0
5,0
6,5
4,0
3,0
ABNT1010
Estir
àfrio
37
31
20
105
10,0
6,5
4,5
10,0
6,5
4,5
11,0
7,0
5,0
6,5
4,0
3,0
Lamin.
à
quente
33
18
28
95
8,0
5,0
3,5
8,0
5,0
3,5
8,5
5,5
4,0
5,0
3,0
2,0
CARACTER.
MECÂNICAS
σr
σe
alongamento
%(100mm)
H
SOLICITAÇÃO
I
II
III
I
II
III
I
II
III
I
II
III
TRAÇÃO
σt
COMPRE
S.
σc
FLEXÃO
σf
TORÇÃO
δ
FACULDADE DE TECNOLOGIA DE SOROCABA 40
40Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
5.3.Gráfico para a espessura da alma – conforme Del Mastro
FACULDADE DE TECNOLOGIA DE SOROCABA 41
41Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
5.4.Rodas muito grandes e/ou largas – conforme NIEMANN e DOBROVOLSKY
Conforme NIEMANN
FACULDADE DE TECNOLOGIA DE SOROCABA 42
42Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
Fórmulas empíricas para determinar as dimensões dos elementos das rodasForjadase
soldadas
2
5,0
3,0
10
6,1
10
1
0
1
dD
D
mn
Bc
mmDeD
dd
+
=
=
≈
−≈
=
cs
dl
Ad
dD
d
8,0
1,1
3,0
5
10
2
≈
≈
≈
−
≈
De fundição
mmmashc
hhdhAd
mDeDdd
10(2,0
8,08,03,0
1016
1
01
∠=
===
−≈=
hRmmrek
decsmn
5,0108,0
2,08,05,0
≥==
===
Segundo Dobrovolsky in Elementos de Maquinas; Editora MIR - 1970

Mais conteúdo relacionado

Mais procurados

Tcc leandro oliveiraalvarenga
Tcc leandro oliveiraalvarengaTcc leandro oliveiraalvarenga
Tcc leandro oliveiraalvarengaISPJAE
 
Apostila conformacao dos_metais_fund_e_aplicacao
Apostila conformacao dos_metais_fund_e_aplicacaoApostila conformacao dos_metais_fund_e_aplicacao
Apostila conformacao dos_metais_fund_e_aplicacaoTadeu Granato
 
Tqs epp-home-03-edificações de pequeno porte
Tqs epp-home-03-edificações de pequeno porteTqs epp-home-03-edificações de pequeno porte
Tqs epp-home-03-edificações de pequeno porteAnderson Ricardo Cunha
 
Apostila zw cad 2009
Apostila zw cad 2009Apostila zw cad 2009
Apostila zw cad 2009cesinhacolaco
 
hidrostática_e_estabilidade_pnv2341
hidrostática_e_estabilidade_pnv2341hidrostática_e_estabilidade_pnv2341
hidrostática_e_estabilidade_pnv2341OsvaldoAfonso
 
Tqs 02-eag editor de aplicações gráficas
Tqs 02-eag editor de aplicações gráficasTqs 02-eag editor de aplicações gráficas
Tqs 02-eag editor de aplicações gráficasAnderson Ricardo Cunha
 
Estruturas de Aço e Madeira
Estruturas de Aço e MadeiraEstruturas de Aço e Madeira
Estruturas de Aço e Madeiramarcopesoa
 
Apostila ecv5255-estruturas-metalicas-i
Apostila ecv5255-estruturas-metalicas-iApostila ecv5255-estruturas-metalicas-i
Apostila ecv5255-estruturas-metalicas-iMarco Puccinelli
 
Estágio César Mohr 24/07/13
Estágio César Mohr 24/07/13Estágio César Mohr 24/07/13
Estágio César Mohr 24/07/13César Mohr
 
Apostila projeto geometrico_2010
Apostila projeto geometrico_2010Apostila projeto geometrico_2010
Apostila projeto geometrico_2010Ariovaldo Torres
 

Mais procurados (18)

Tcc leandro oliveiraalvarenga
Tcc leandro oliveiraalvarengaTcc leandro oliveiraalvarenga
Tcc leandro oliveiraalvarenga
 
Apostila maq
Apostila maqApostila maq
Apostila maq
 
Formas 03-critérios de projeto
Formas 03-critérios de projetoFormas 03-critérios de projeto
Formas 03-critérios de projeto
 
Trabalho sobre rebites
Trabalho sobre rebitesTrabalho sobre rebites
Trabalho sobre rebites
 
Apostila conformacao dos_metais_fund_e_aplicacao
Apostila conformacao dos_metais_fund_e_aplicacaoApostila conformacao dos_metais_fund_e_aplicacao
Apostila conformacao dos_metais_fund_e_aplicacao
 
Lajes 05-manual de lajes treliçadas
Lajes 05-manual de lajes treliçadasLajes 05-manual de lajes treliçadas
Lajes 05-manual de lajes treliçadas
 
Resistencia de materiais
Resistencia de materiaisResistencia de materiais
Resistencia de materiais
 
Tqs epp-home-03-edificações de pequeno porte
Tqs epp-home-03-edificações de pequeno porteTqs epp-home-03-edificações de pequeno porte
Tqs epp-home-03-edificações de pequeno porte
 
Fundações 04-teórico
Fundações 04-teóricoFundações 04-teórico
Fundações 04-teórico
 
Apostila zw cad 2009
Apostila zw cad 2009Apostila zw cad 2009
Apostila zw cad 2009
 
hidrostática_e_estabilidade_pnv2341
hidrostática_e_estabilidade_pnv2341hidrostática_e_estabilidade_pnv2341
hidrostática_e_estabilidade_pnv2341
 
Tqs 02-eag editor de aplicações gráficas
Tqs 02-eag editor de aplicações gráficasTqs 02-eag editor de aplicações gráficas
Tqs 02-eag editor de aplicações gráficas
 
Estruturas de Aço e Madeira
Estruturas de Aço e MadeiraEstruturas de Aço e Madeira
Estruturas de Aço e Madeira
 
Apostila AutoCAD
Apostila AutoCADApostila AutoCAD
Apostila AutoCAD
 
Apostila ecv5255-estruturas-metalicas-i
Apostila ecv5255-estruturas-metalicas-iApostila ecv5255-estruturas-metalicas-i
Apostila ecv5255-estruturas-metalicas-i
 
Estágio César Mohr 24/07/13
Estágio César Mohr 24/07/13Estágio César Mohr 24/07/13
Estágio César Mohr 24/07/13
 
Apostila projeto geometrico_2010
Apostila projeto geometrico_2010Apostila projeto geometrico_2010
Apostila projeto geometrico_2010
 
(00) aeromodelismo teórico e prático
(00) aeromodelismo   teórico e prático(00) aeromodelismo   teórico e prático
(00) aeromodelismo teórico e prático
 

Semelhante a Alívio em rodas: tipos e dimensionamento

Apostila projeto-geométrico-2019
Apostila projeto-geométrico-2019Apostila projeto-geométrico-2019
Apostila projeto-geométrico-2019Isabella Macêdo
 
Apostila projeto geometrico_2010
Apostila projeto geometrico_2010Apostila projeto geometrico_2010
Apostila projeto geometrico_2010Juliana Carneiro
 
Tqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porteTqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porteAnderson Ricardo Cunha
 
Regras e projetos de instalação de quadros elétricos
Regras e projetos de instalação de quadros elétricosRegras e projetos de instalação de quadros elétricos
Regras e projetos de instalação de quadros elétricosClaudio Arkan
 
Projeto mecânico de vasos de pressão e trocadores de calor
Projeto mecânico de vasos de  pressão e trocadores de calorProjeto mecânico de vasos de  pressão e trocadores de calor
Projeto mecânico de vasos de pressão e trocadores de calorFcoAfonso
 
305 01 00-04-28-edicao3.0_spb
305 01 00-04-28-edicao3.0_spb305 01 00-04-28-edicao3.0_spb
305 01 00-04-28-edicao3.0_spbJorge Maganinho
 
Anexo b itens ii.6.1 b
Anexo b itens ii.6.1 bAnexo b itens ii.6.1 b
Anexo b itens ii.6.1 bSecom Ilhéus
 
Apostila de-logistica canal de distribuição
Apostila de-logistica canal de distribuiçãoApostila de-logistica canal de distribuição
Apostila de-logistica canal de distribuiçãoIandra Gasparini
 
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)Agassis Rodrigues
 
Apostila comandos eletricos
Apostila comandos eletricosApostila comandos eletricos
Apostila comandos eletricosCarlos A. Silva
 
Apostila comandos eletricos
Apostila comandos eletricosApostila comandos eletricos
Apostila comandos eletricosEdson Lopes
 
CONCEPÇÃO DE ESTRUTURA DE QUADRICICLO A PEDAL DESENVOLVIDO E ANALISADO NO CAT...
CONCEPÇÃO DE ESTRUTURA DE QUADRICICLO A PEDAL DESENVOLVIDO E ANALISADO NO CAT...CONCEPÇÃO DE ESTRUTURA DE QUADRICICLO A PEDAL DESENVOLVIDO E ANALISADO NO CAT...
CONCEPÇÃO DE ESTRUTURA DE QUADRICICLO A PEDAL DESENVOLVIDO E ANALISADO NO CAT...Carlos Pedro
 
Ar condicionado ii
Ar condicionado iiAr condicionado ii
Ar condicionado iiandydurdem
 

Semelhante a Alívio em rodas: tipos e dimensionamento (20)

Dner 698-96
Dner 698-96Dner 698-96
Dner 698-96
 
96847460 apostila-desenho-tecnico
96847460 apostila-desenho-tecnico96847460 apostila-desenho-tecnico
96847460 apostila-desenho-tecnico
 
Trabalho de soldadura
Trabalho de soldaduraTrabalho de soldadura
Trabalho de soldadura
 
Apostila projeto-geométrico-2019
Apostila projeto-geométrico-2019Apostila projeto-geométrico-2019
Apostila projeto-geométrico-2019
 
Apostila projeto geometrico_2010
Apostila projeto geometrico_2010Apostila projeto geometrico_2010
Apostila projeto geometrico_2010
 
Tqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porteTqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porte
 
Regras e projetos de instalação de quadros elétricos
Regras e projetos de instalação de quadros elétricosRegras e projetos de instalação de quadros elétricos
Regras e projetos de instalação de quadros elétricos
 
Projeto mecânico de vasos de pressão e trocadores de calor
Projeto mecânico de vasos de  pressão e trocadores de calorProjeto mecânico de vasos de  pressão e trocadores de calor
Projeto mecânico de vasos de pressão e trocadores de calor
 
305 01 00-04-28-edicao3.0_spb
305 01 00-04-28-edicao3.0_spb305 01 00-04-28-edicao3.0_spb
305 01 00-04-28-edicao3.0_spb
 
Anexo b itens ii.6.1 b
Anexo b itens ii.6.1 bAnexo b itens ii.6.1 b
Anexo b itens ii.6.1 b
 
Exemplos 01-manual do usuário
Exemplos 01-manual do usuárioExemplos 01-manual do usuário
Exemplos 01-manual do usuário
 
Apostila de-logistica canal de distribuição
Apostila de-logistica canal de distribuiçãoApostila de-logistica canal de distribuição
Apostila de-logistica canal de distribuição
 
Curso de simulink 2 0
Curso de simulink 2 0Curso de simulink 2 0
Curso de simulink 2 0
 
Fiat doblo
Fiat dobloFiat doblo
Fiat doblo
 
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
Ihcat rvtar004 rev04-out2010_splitão_splitop_(fixo_inverter)
 
Apostila comandos eletricos
Apostila comandos eletricosApostila comandos eletricos
Apostila comandos eletricos
 
Apostila comandos eletricos
Apostila comandos eletricosApostila comandos eletricos
Apostila comandos eletricos
 
Icfeliperoccon
IcfeliperocconIcfeliperoccon
Icfeliperoccon
 
CONCEPÇÃO DE ESTRUTURA DE QUADRICICLO A PEDAL DESENVOLVIDO E ANALISADO NO CAT...
CONCEPÇÃO DE ESTRUTURA DE QUADRICICLO A PEDAL DESENVOLVIDO E ANALISADO NO CAT...CONCEPÇÃO DE ESTRUTURA DE QUADRICICLO A PEDAL DESENVOLVIDO E ANALISADO NO CAT...
CONCEPÇÃO DE ESTRUTURA DE QUADRICICLO A PEDAL DESENVOLVIDO E ANALISADO NO CAT...
 
Ar condicionado ii
Ar condicionado iiAr condicionado ii
Ar condicionado ii
 

Alívio em rodas: tipos e dimensionamento

  • 1. FACULDADE DE TECNOLOGIA DE SOROCABA DESENHO TÉCNICO MECÂNICO II RODAS DE TRANSMISSÃO: ALÍVIO EM RODAS Prof. M. Sc. Edson Del Mastro 2º. Semestre de 2009
  • 2. FACULDADE DE TECNOLOGIA DE SOROCABA 2 2Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro ÍNDICE INTRODUÇÃO.....................................................................................................................5 1. GENERALIDADES.......................................................................................................6 1.1. RODA (conceituação):............................................................................................6 1.2. ALIVIO EM RODAS................................................................................................6 1.3 EXCEÇÕES............................................................................................................7 1.4 REDUÇÃO DE CUSTO ..........................................................................................7 1.5 PROCESSOS DE PRODUÇÃO E MATERIAIS......................................................8 1.6 PROCEDIMENTO, METODOLOGIA e LIMITES....................................................8 2. RODA COM ALMA CHEIA ........................................................................................10 2.1. APLICAÇÃO .........................................................................................................10 2.2. DESENHO TÍPICO (RODAS COM ALMA CHEIA)...............................................10 2.3. ORIGEM DAS COTAS .........................................................................................11 2.4. da .........................................................................................................................11 2.5. a............................................................................................................................12 2.6. de .........................................................................................................................13 2.7. dc (diâmetro do cubo) ..........................................................................................13 2.8. Exercício resolvido (polia com alma cheia)...........................................................14 3. RODA COM ALMA VAZADA – Furos redondos .....................................................16 3.1. Aplicação..............................................................................................................17 3.2. Desenho típico (Rodas com alma vazada – furos redondos) ...............................17 3.3. Determinação do alívio .........................................................................................18 3.3.1. dm .................................................................................................................18 3.3.2. df (diâmetro dos furos de alívio): ...................................................................18 3.3.3. r .....................................................................................................................19 3.3.4. Rf ..................................................................................................................19 3.3.5. y ....................................................................................................................19 3.3.6. nf0 ..................................................................................................................19 3.4. Exercício resolvido – polia alma vazada, furos redondos.....................................21 4. RODAS COM ALÍVIOS ALTERNATIVOS .................................................................23 4.1. Furos oblongos.....................................................................................................23 4.1.1. O que é, quando usar ....................................................................................23 4.1.2. Procedimento.................................................................................................23 4.1.3. Exercício resolvido – alívio com furos oblongos.............................................24 4.2. Rodas com Braços ou Raios ................................................................................26 4.2.1. O que é, vantagens, limites ...........................................................................26 4.2.2. Procedimento .................................................................................................26
  • 3. FACULDADE DE TECNOLOGIA DE SOROCABA 3 3Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 4.3. Rodas de braços com nervuras (seção em “+”)....................................................29 4.3.1. O que é e quando se aplica...............................................................................29 4.3.2. Procedimento ....................................................................................................29 4.3.3. Exercício resolvido – rodas de braços com nervuras (seção em “+”)................30 5. APÊNDICE .................................................................................................................32 5.1. Exercícios propostos – ALÍVIO em polias “V” e engrenagens .................................32 5.2. Exemplos de desenhos de rodas diversas...............................................................34 5.3. Tensões admissíveis para aços e aços fundidos – conforme BACH.......................37 5.4. Gráfico para a espessura da alma – conforme Del Mastro......................................40 5.5. Rodas muito grandes e/ou largas – conforme NIEMANN e DOBROVOLSKY.........41
  • 4. FACULDADE DE TECNOLOGIA DE SOROCABA 4 4Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro INDICE DE FIGURAS FIG 1 Roda de automóvel....................................................................................................6 FIG 2 Engrenagem VOLANTE.............................................................................................6 FIG 3 Roda SEM alívio (polia cheia)....................................................................................6 FIG 4 Roda COM alívio (polia com alma cheia)...................................................................6 Fig. 5 Roda Pequena...........................................................................................................7 Fig. 6 Eixo-Pinhão ...............................................................................................................7 FIG 7 RODA COM ALMA CHEIA. (à esquerda polia “V”; à direita engrenagem). .............10 FIG 8 Torque (Mt) e força tangencial ................................................................................13 FIG 9 Roda com alma vazada com furos redondos...........................................................16 FIG 10 Desenho e cotas do alívio em rodas com alma vazada (furos redondos)..............17 FIG 11 dfMax .......................................................................................................................18 Fig. 12 Determinação de nf0 com dfmáx ..............................................................................20 Fig. 13 Alívio c/ 4 furos oblongos.......................................................................................23 Fig 14 Alívio c/ 3 furos oblongos........................................................................................23 Fig. 15 Roda com braços ou raios.....................................................................................26 Fig. 16 Rodas de braços com nervuras (seção em “+”).....................................................29
  • 5. FACULDADE DE TECNOLOGIA DE SOROCABA 5 5Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro INTRODUÇÃO Falando-se de rodas em geral, há um grande número de alívios especiais que são executados visando atender um ou mais quesitos que se tornem preponderantes em cada caso, além do econômico e da resistência. Essas exigências podem ser de natureza ergonômica, estética, aerodinâmica, resistência ao choque, leveza, facilidade do usuário ou de montagem, etc. Em alguns casos, rodas são desenhadas com um alívio para que façam também a função de volante1 (FIG 2), e outras para funcionarem inclusive como ventilador2 . Também devem se adequar aos materiais e aos processos de produção empregados. Ocorre principalmente em produtos de consumo como, por exemplo, roda e volante de automóvel (FIG 1), roda de bicicleta, carrinho de supermercado (v. apêndice ER-56-22) – demandando por vezes, abordagem multidisciplinar, construção de protótipos, realização de testes e até pesquisa de opinião pública. Porém, o objetivo deste capítulo se restringe a rodas (v. 1.1) de máquinas e equipamentos industriais. 1 Rodas com um razoável momento de inércia em relação ao seu eixo de rotação, com o objetivo de regular seu movimento (acumuladores de energia cinética de rotação). Um ex..: polia maior de uma prensa excêntrica em “C” ; outro ex.: polia da ferramenta (caracol), numa geradora de engrenagens tipo RENANIA. 2 ex.: No automóvel, a polia do alternador funciona como ventilador (ventoinha).
  • 6. FACULDADE DE TECNOLOGIA DE SOROCABA 6 6Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 1. GENERALIDADES 1.1.RODA (conceituação): Em mecânica dá-se o nome genérico de roda às polias, engrenagens, rodas de atrito (ou fricção), engrenagens de corrente, polias para cabos, volantes, freios, embreagens e outras peças redondas girantes. Neste trabalho iremos nos referir principalmente às rodas que transmitam torque. 1.2.ALIVIO EM RODAS É a redução de peso de uma roda por meio da retirada de material (no projeto) entre o cubo3 e a coroa4 , deixando apenas o suficiente para resistir com segurança às tensões de trabalho. Neste estudo examinaremos diversos tipos de alívio usados em máquinas e equipamentos, onde o mais simples é a roda com alma cheia. (FIGs 3 e 4) FIG 1 Roda de automóvel FIG 2 Engrenagem VOLANTE FIG 3 Roda SEM alívio (polia cheia) FIG 4 Roda COM alívio (polia com alma cheia) 3 Região próxima (ao redor) do furo onde se encaixa o eixo. 4 Conforme o tipo de roda a coroa (periferia da roda) pode ser lisa, dentada, canaletada, etc.
  • 7. FACULDADE DE TECNOLOGIA DE SOROCABA 7 7Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 1.3 EXCEÇÕES Rodas com alívio é regra geral. Mas há exceções. 1.3.1 Nas rodas pequenas há pouco espaço entre o cubo e a coroa e fica inviável fazer alívio. (Fig. 5). 1.3.2 Quando esse espaço é ainda menor podemos fazer o eixo-pinhão (Fig. 6) 1.3.3 Quando a roda é totalmente usinada (a partir de um disco cortado de uma barra redonda), fazer alívio pode significar um aumento de usinagem (e de custo). Em geral são rodas pequenas. 1.3.4 Quando a roda faz também a função de volante (rodas não muito grandes).5 Fig. 5 Roda Pequena Fig. 6 Eixo-Pinhão 1.4 REDUÇÃO DE CUSTO 1.4.1 Economia de material: é a primeira redução de custo conseguida com o alívio. Por exemplo, as rodas com alívio mais comumente usadas são as de ferro fundido e, na fundição, o preço é por quilo. 1.4.2 Economia na usinagem: há uma redução no custo da usinagem por dois motivos: a) menor superfície para ser usinada (tempo máquina menor) b) tempos passivos menores (tempo menor para movimentar e locar uma peça mais leve) obs.: uma diferença de peso pode ainda indicar a necessidade da usinagem ser feita na “usinagem pesada” (custo hora-máquina mais elevado). 1.4.3 Economia no projeto: é muito comum que mesmo uma máquina simples possua quatro ou mais rodas (por exemplo: um par de polias e um par de engrenagens). Um peso excessivo das rodas (sem alívio) levaria a necessidade de eixos, rolamentos e outras peças com dimensões maiores deixando a máquina mais robusta e até maior para realizar o mesmo trabalho útil, encarecendo-a. 5 Há também rodas médias e grandes que funcionam como volante. Nestes casos faz-se alívio concentrando maior massa próximo da coroca da roda (da menor).
  • 8. FACULDADE DE TECNOLOGIA DE SOROCABA 8 8Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 1.4.4 Economia de energia: Menor massa das peças girantes (rodas, eixos, rolamentos, etc.) proporcionam uma menor energia cinética de rotação, consumindo menos energia. Se a máquina também possuir embreagem e/ou freio, esta menor energia cinética de rotação, irá interferir no dimensionamento desses subconjuntos ou no seu desgaste. 1.5 PROCESSOS DE PRODUÇÃO E MATERIAIS 1.5.1 Escolha: diversos fatores devem ser avaliados conjuntamente na escolha do processo de produção e do material da roda. Em geral, os mais preponderantes são: ● custo ● quantidade a ser produzida ● tamanho da roda ● características do trabalho (força, velocidade, atrito, choques mecânicos, etc.) 1.5.2 Processos e materiais: O projeto (e o desenho) da roda deverá se adequar ao processo e material escolhidos. Em seguida relacionamos os mais comuns: • Fundição por gravidade em areia (ferro fundido, aço fundido, bronze, etc.)6 (Capa, Figs. 2, 4, 7 e 9) • Fundição sob pressão (Zamac 2, 3, 5, 610) • Fundição por gravidade em coquilha metálica (ligas de alumínio e outras com ponto de fusão baixo a médio) • Injeção (plásticos7 )(ER -56 – 22 e ER – 50 – 01) • Estamparia (chapas finas de aço laminado). (ER-48-02) (APÊNDICE) • Grupo soldado (chapas grossas de aço laminado e tubos mecânicos) (ER-48-01) (APÊNDICE) • Sinterizados (metalurgia do pó) 1.6PROCEDIMENTO, METODOLOGIA e LIMITES Este trabalho é composto de uma série de desenhos e fórmulas empíricas (decorrentes da prática) e um gráfico. Pretendem capacitar o leitor para resolver os alívios e desenhos de rodas mais comuns. Também sugere desenhos e fórmulas para rodas e torques maiores. Na prática profissional o procedimento é similar - empírico, mas sem fórmulas - para a grande maioria dos casos. A literatura sobre o assunto é escassa. O projetista não afeito a este assunto pode recorrer a este trabalho, mas o principal beneficiado deverá ser o estudante que precisa prover de alívio8 as polias, engrenagens, etc. nos seus projetos escolares. Não tendo prática e nem dominando ainda as disciplinas Elementos de Máquinas e Resistência dos Materiais, isto seria uma tarefa ingrata. 6 – doravante usaremos: fofo = ferro fundido; aço fofo = aço fundido 7 - Esta designação genérica é insuficiente para o projeto. Podemos especificar pelo nome científico, pela sigla, ou pela marca comercial (quando houver). Exs.: policarbonato (PC); poliamida (NYLON); PVC; PET. 8 - Mesmo sendo trabalho escolar, sem alívio o projeto estaria comprometido (ver 1.4)
  • 9. FACULDADE DE TECNOLOGIA DE SOROCABA 9 9Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro As regras empíricas aqui descritas, para determinação do alívio, se aproximam do que os profissionais de projeto praticam. Só foram feitos ajustes quanto ao mínimo material entre furos (um dos fundamentos da nossa pesquisa) e uma atenção especial reforçando o diâmetro do cubo – que é ponto mais solicitado da roda (ver 2.7 e FIG 8) e onde vimos um maior número de rupturas. Mas a preocupação maior é o desperdício que normalmente ocorre quanto à espessura da alma. As rodas em geral estão sujeitas a um estado múltiplo de tensões. Em alguns casos onde, além da força tangencial, os outros esforços se tornem preponderantes (forças de compressão em rodas de cabos tensores ou descentradas; forças axiais importantes ou a combinação desses esforços) há que se calcular determinando antes uma tensão ideal (ou tensão combinada, ou tensão equivalente) o que foge dos propósitos deste estudo. Nestes casos e noutros com potências e, principalmente, com torques muito altos, em geral, o alívio não é a alma vazada e sim, braços ou raios com nervuras em ambos os lados, cuja seção é uma cruz (+) e calculados como uma viga. Ou alma dupla e nervura de reforço (seção H) no caso de rodas grandes e/ou largas. (pág. 41) As situações acima descritas são excepcionais, um tanto raras. Na maioria das vezes temos rodas de fofo e aço fofo que podem ser resolvidas com alma vazada simples, com furos redondos (ou alternativos). São estes casos que nossa pesquisa se propôs resolver. Nela analisou-se espessuras de alma de 6 a 16mm, dentro de potências normalizadas de 1 a 50 CV. As larguras de rodas foram até 200mm e os diâmetros externos até 900mm. Primeiro procurou-se estabelecer os parâmetros de que a espessura da alma era uma função contínua. Isso foi feito e confirmado9 através de ~ 50 projetos de transmissões por correias “V” e engrenagens. Esses parâmetros são N (potência em CV) x φ ( nd 5 10 ). Na pesquisa (~400 projetos de transmissões por correias “V” e por engrenagens)10 levantaram-se os pontos que se constituíram nas isóbaras11 de cada espessura de alma para cada perfil ou módulo estudado. As curvas referentes a cada espessura variaram muito pouco (NR 9). Para cada caso tomou-se a curva mínima para a construção do gráfico. Foi também determinada a tensão equivalente de cada caso e ela fica (com folga) abaixo tensão admissível (carga II) se usarmos fofo ABNT FC 30 ou aço fofo ABNT Af 35. A universalidade dos parâmetros (N e φ) sugere a aplicabilidade deste gráfico para outros tipos de rodas (de correntes, de atrito, de correia plana, etc) quanto à tensão tangencial. Mesmo assim não saberíamos como se comportaria a tensão equivalente. Portanto recomendamos o uso do gráfico somente para polias “V” e engrenagem cilíndrica reta (ECR até m=8). 9 com uma correlação mínima de 93% (de uma polia “V”, perfil “A”, até uma ECR, m = 8) 10 percorrendo todos os perfis de (exceto o “E”) e os módulos 4,5 e 8, em cada uma das potências normalizadas de 1 a 50 CV. Respeitou-se as limitações de potências e velocidades dos fabricantes de correias. 11 Linhas de tensão constante (no caso impôs –se τ = 1 Kgf/mm 2 ) na região crítica (mínima distância entre furos) e na situação mais crítica (só 4 furos e quando nf 0 = 4,000) – que resulta na menor área possivel. Para que essas condições fossem conseguidas, não foram feitos os arredondamentos convenientes que se faz num projeto real.
  • 10. FACULDADE DE TECNOLOGIA DE SOROCABA 10 10Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 2. RODA COM ALMA CHEIA 2.1. APLICAÇÃO Esse tipo de alívio de peso é normalmente aplicado em rodas pequenas onde o diâmetro dos furos de alívio fique abaixo de 20 mm(fofo ou aço fofo) ou de 12 mm (zamac e sinterizados) ou ainda quando o uso de furos (alma vazada) implicasse em aumento de custos (p. ex.: rodas feitas com grupo soldado ER-48-01, V. APÊNDICE). 2.2. DESENHO TÍPICO (RODAS COM ALMA CHEIA) Em seguida damos o desenho típico de uma roda de alma cheia (de ferro fundido ou aço fundido) e os símbolos usados neste módulo. Os exemplos usados são de uma polia “V” e de uma engrenagem cilíndrica. POLIA “V” ENGRENAGEM FIG 7 – RODA COM ALMA CHEIA. (à esquerda polia “V”; à direita engrenagem). âng. de fundição = 3° raios de fundição = R2 m, z
  • 11. FACULDADE DE TECNOLOGIA DE SOROCABA 11 11Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro m)(engrenagecoroadamaterialmínimoKe )V""(poliacoroadamaterialmínimoK cubonochavetaderasgododeprofundidat cubodolarguraLc )V""(poliarodadacoroadalarguraL lisa)e(dentadarodadacoroadalargurab almadaespessuraa eixooparafurododiâmetrode cubododiâmetrodc alíviododiâmetroda etc.)lisa,polianaext.(ouengrenagemouV""poliadainternodiâmetroDi engrenagemouV""poliadaexternodiâmetroDe 2 = = = = = = = = = = ∅= = 2.3. ORIGEM DAS COTAS As demais dimensões da roda são: função do: De, Di, L, b, m (módulo), z (n0. de dentes) – dimensionamento da transmissão t1, t2 – dimensionamento do eixo (V.norma de “chavetas”) Lc – dimensionamento da chaveta K, H, X – perfil “V” (v. norma) [ ]01F Determinação do alívio (p/ rodas c/ alma cheia): daremos a seguir regras práticas para a determinação das cotas da, a, de e dc, justificando-as previamente. 2.4. da Depende de valores já estabelecidos na norma. É só calcular: na polia “V”: [ ]02F [ ]03F Ke = a ou 2m (tomar o maior valor) da = Di – 2K da = De – 2(H +K)
  • 12. FACULDADE DE TECNOLOGIA DE SOROCABA 12 12Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro na engrenagem: [ ]04F [ ]05F Obs.: valores quebrados de da, arredondar para baixo. 2.5. a A determinação da espessura da alma (a) pelo critério de resistência resultaria num valor muito baixo em rodas com alma cheia. Nos casos mais freqüentes (rodas de fofo) há de se levar em conta dados da tecnologia dos materiais. Dentre os tipos de fofos possíveis, sem um tratamento especial, estão os fofos brancos, fofos cinzentos, fofos mesclados. - O fofo branco é muito duro e muito frágil, resistente ao desgaste e de baixa usinabilidade. - O fofo cinzento tem boa resistência mecânica e ao desgaste, capacidade de amortecimento e excelente usinabilidade (devido ao carbono livre, em forma de veios). - O fofo mesclado é um tipo intermediário. Para as rodas de transmissão as características mais interessantes são as do fofo cinzento. Como os fofos são basicamente uma liga Fe – C – Si, e que a % de carbono não difere necessariamente entre eles, a formação de fofo branco ou cinzento (ou mesclado) está em função de dois fatores que atuam conjuntamente: - a % de Si (que facilita a grafitização) - a velocidade de resfriamento que depende do material do molde (areia) e da espessura da peça fundida. Conclusão: mesmo com % de Silício adequada (para fofo cinzento) e molde de areia, espessuras de parede 5 mm ou menos (dados da experiência12 ) possibilitam a formação de fofo branco ou fofo mesclado – o que é indesejável. Portanto usaremos a ≥ 6 mm, por segurança. Por outro lado, pelo aspecto da resistência mecânica, a espessura da alma (para um determinado material) depende diretamente da potência (N) e inversamente da velocidade (n) (ver 2.6) e do diâmetro (Dn ou Dp). Para escolher a, determine φ e consulte o gráfico v. apêndice item 5.4. 12 conf. CHIAVERINI, Vicente in TECNOLOGIA MECÂNICA, Vol. III, 2ª. ed., São Paulo, McGraw-Hill da = Di – 2 Ke da = De – 2(2,25m + Ke)
  • 13. FACULDADE DE TECNOLOGIA DE SOROCABA 13 13Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro para polia “V”: φ = Dnn. 105 [ ]06F para engrenagem: φ = Dpn. 105 [ ]07F 2.6. de (diâmetro do eixo e do furo para o eixo na roda) - usaremos uma fórmula simplificada (válida para eixo de aço ABNT 1050), conforme STIPKOVIC: de = 90 3 n N + 2 t1 (mm) [ ]08F onde: N é a potência em CV n é a velocidade angular em rpm (rotações por minuto) t1 é a profundidade do rasgo de chaveta no eixo 2.7. dc (diâmetro do cubo) Observação inicial: excluem-se deste estudo as chamadas engrenagens intermediárias, as “polias loucas” e outras rodas que não girem solidariamente ao eixo. Ele se refere à maioria dos casos em que o cubo é solidário ao eixo (transmitindo ou recebendo o torque). E principalmente onde essa união eixo-cubo é feito por diferença de forma (chavetas, entalhados, furos e eixos quadrados). Para determinar o diâmetro do cubo (dc) deve-se atentar para 2 (dois) aspectos: 1) Que a força que atua no cubo (tangente ao eixo) é superior à que se age na coroa da roda (lisa, canaletada, dentada), por princípio físico. O torque (Mt) é constante em qualquer parte da roda, portanto quando o braço do momento é menor 2 de , a força é maior. [ ]10FRFMt ×= Aplicações de [F 10] FIG 8 – No torque (Mt), a força tangencial é inversamente proporcional ao raio. RPMemângvelocidaden cvempotênciaN mmkgfMt . ).( = = = 2 2 de FeMt DnouDp fMt ×= ×= [ ]09716200 F n N Mt =
  • 14. FACULDADE DE TECNOLOGIA DE SOROCABA 14 14Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 2) Que o rasgo de chaveta, entalhado, estriado, furo quadrado, pinos, parafusos, promovem uma concentração de tensões nesses pontos do cubo. Esta situação se agrava se usarmos chavetas com ação de cunha. dc = 1,6 de + 2 t 2 [ ]11F Observações: 1 ) Caso a largura do cubo (Lc) seja menor ou igual ao diâmetro do furo para o eixo (de), fazer dc = 2de 2) Caso o cálculo de dc resultar fracionário, arredondar para mais. 2.8.Exercício resolvido (polia com alma cheia) Numa transmissão com 3 correias “V”, perfil B, com potência de 10 cv, a polia motora (1) gira a 900 rpm. Determinar e desenhar a polia movida (2) sabendo-se que esta deve girar a 720 rpm e tem largura do cubo=82. Fazer alívio. SOLUÇÃO Dados acima: N=10cv; n1=900 rpm; n2=720 rpm; 3 canais (B); Lc2=82 ( ) ( ) ( )0348ERpáginapróximanadesenhover 611)19(32x11,51ns2tL 7mma10)(NalmadaespessuradaGráfico0,946 720x146,87 10 Dnn 10 582x3,41,6x322t1,6.dedc 3231,0352x4,7 720 10 90.t n N 90.de 112112,372x6,5125,372KDida 125,372x17159,372HDeDi 159,372x6,25146,872xDnDe 146,87 720 900x117,5 n Dnn Dn DnnDnn 117,52x6,251302xDeDn normaconformeBperfilparamínimo130De 2 5 22 5 2 2(2)22 3 1(2) 3 2 2 22 22 22 2 11 2 2211 11 1 −− =−+=−+= =→=→≅== =+=+= →=+=+= →=−=−= =−=−= =+=+= === = =−=−= −= ϕ
  • 15. FACULDADE DE TECNOLOGIA DE SOROCABA 15 15Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro Raios canais= R1 Raios de fund.= R2 Ang. Fund.= 3°
  • 16. FACULDADE DE TECNOLOGIA DE SOROCABA 16 16Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 3. RODA COM ALMA VAZADA – Furos redondos FIG 9 – Roda com alma vazada com furos redondos
  • 17. FACULDADE DE TECNOLOGIA DE SOROCABA 17 17Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 3.1. Aplicação Em princípio este tipo de alívio pode ser usado para rodas em geral, principalmente quando df≥ 20 e 4≤ nf≤ 6. Não se usa para rodas muito pequenas (não é possível ou não compensa - ver 1.3 e 2.1). Pode ser inadequado para rodas muito grandes, ou muito largas, ou para potências muito altas,ou quando os esforços radiais e/ou axiais tornem-se preponderantes ou a conjunção de 2 ou mais dos fatores acima. 3.2. Desenho típico (Rodas com alma vazada – furos redondos) FIG 10 – Desenho e cotas do alívio em rodas com alma vazada (furos redondos) Obs.: demais cotas e significados veja a FIG 7. alíviodeiguaisfurosdequantidadenf alíviodefurosdosdiâmetrodf furosdoscentronciacircunferêdadiâmetromédiodiâmetrodm = = −= )(
  • 18. FACULDADE DE TECNOLOGIA DE SOROCABA 18 18Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 3.3. Determinação do alívio Daremos a seguir regras práticas para a determinação das cotas dm, df, e nf, justificando-as previamente. 3.3.1. dm – Os furos de alívio devem ficar no centro da parte com a alma para podermos usar furos maiores. Então: dm = 2 dcda + [ ]12F obs.: se dm resultar em valor quebrado, arredondar para cima por duas razões: 1) Caso aconteça de Lc ser maior que b, devido aos ângulos de fundição isto levaria a um diâmetro central um pouco acima de dm do jeito simplificado que foi calculado. 2) Reforçaria mais o cubo que a coroa, e sabemos que o cubo é mais solicitado. (V. FIG 8) 3.3.2. df (diâmetro dos furos de alívio): Aproximadamente metade dos casos df será igual a dfmáx. O maior furo de alívio possível deverá estar na parte plana da alma, menos um pequeno valor – por segurança. FIG 11 FIG 11 - dfMax
  • 19. FACULDADE DE TECNOLOGIA DE SOROCABA 19 19Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 3.3.3. r – é o raio de fundição e y, y’ é um pequeno valor ]3 2 [ °×      − − = tgRf alc ycasono Nessas condições, dfmáx= 2 dcda − - 2 (rf +y) [ ]13F ver valores rf e y nas tabelas 1 e 2 Obs.: quando dfmáx. der uma valor quebrado, arredondar para menos. 3.3.4. Rf – raios de fundição para rodas de fofo e aço fundido Tabela 1 espessura da alma a (mm) 6 e 7 8 e 9 10 11 a 14 15 a 18 Rf (mm) 2 2,5 3 4 5 3.3.5. y (para ângulos de fundição = 3º) Tabela 2 Largura da roda Lc, L ou b (mm) (o de maior valor) Até 70 >70 até 100 > 100 até 150 > 150 até 200 >200 até 25013 y (mm) 2 3 4,5 6 8 3.3.6. nf0 Calcularemos o número de furos de alívio hipotético nf0 (que muito provavelmente vai resultar fracionário) e arredondaremos para o valor inteiro mais próximo (por falta ou por excesso). . 13 em princípio, não se recomendam larguras acima de 200 mm para alívio com alma simples [ ]142. Fadfc máx += ( ) ( ) [ ] ouF dm c sen dm c sen 15 2/ 2/ =→= αα ( ) dm adf sen máx 2. + =α α ° = 180 0nf ]17[F [ ]16F
  • 20. FACULDADE DE TECNOLOGIA DE SOROCABA 20 20Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro Fig. 12 – Determinação de nf0 com dfmáx Para isso precisamos calcular α no triângulo da Figura 12. Se precisar calcular a resistência veja 2.7 [ ]18 2 cosα× = dm R
  • 21. FACULDADE DE TECNOLOGIA DE SOROCABA 21 21Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 3.4. Exercício resolvido – polia alma vazada, furos redondos Numa transmissão por 3 correias “v”, perfil “A” e potência de 3 cv, a polia motora (1) gira a 1160 rpm. Determine e desenhe a polia motora sabendo-se que esta deverá girar a 330 rpm e tem largura do cubo=58. Fazer alívio. SOLUÇÃO: Dados acima: N=3; n1=1160; n2=330; Lc2=58; 3 correias “V” (A) ( ) 04)48(ERseguintepáginanadesenhover 491)15(32x9,51)s(n2tL 622x6x126sen362a.dmsenαdf 36 5 180 α 5furos4,5669 39,41 180 α 180 nf 39,41α0,6349 126 2x668 dm 2adfmáx senα 682)2(2 2 50202 )y2(Rf 2 dcda dfmáx 126 2 50202 2 dcda dm 5049,22x31,6x272t1,6.dedc 2726,982x4,1 330 3 90.2t n N 90.de 6a)a""degráfico3Ne1,326 1,326 330x228,48 10 Dnn 10 202202,482x5212,482KDida 212,482x13238,482HDeDi 238,482x5228,482xDnDe 228,48 330 1160x65 n Dnn DnDnnDnn 652x5752xDeDn noma)conf.(mínimo75De 2222 2 0(2) 0(2) 0 2 22 0(2) 22 22 2 22 2 2(2)22 3 1(2) 3 2 2 22 5 22 5 2 22 22 22 2 11 22211 11 1 −− =−+=−+= ≅−°=−= °= ° = →= ° = ° = =→= + = + = =+− − =−− − = = + = + = →=+=+= →=+=+= =→== ≅== →=−=−= =−=−= =+=+= ≅==∴= =−=−= = ϕ ϕ
  • 22. FACULDADE DE TECNOLOGIA DE SOROCABA 22 22Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro Raios canais= R1 Raios de fund.= R2 Ang. Fund.= 3°
  • 23. FACULDADE DE TECNOLOGIA DE SOROCABA 23 23Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 4. RODAS COM ALÍVIOS ALTERNATIVOS 4.1.Furos oblongos 4.1.1. O que é, quando usar Quando a relação 342,0≥ da dc resultam seis ou mais furos redondos que podem ser substituídos vantajosamente por quatro (ou três) furos oblongos, resultando em maior alívio de peso. Figs. 13 e 14. 4.1.2. Procedimento Determine φ, a, da, de, dc, dm e df como se fossem furos redondos (2. e 3.) Verifique se está satisfeita a relação 342,0≥ da dc Use os valores calculados e cote a distância entre furos (Lf): Lf = 2a (para 4 furos oblongos) Fig. 13 Lf = 2,7a (para 3 furos oblongos) Fig 14 Fig. 13 Alívio c/ 4 furos oblongos Fig 14 Alívio c/ 3 furos oblongos
  • 24. FACULDADE DE TECNOLOGIA DE SOROCABA 24 24Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 4.1.3. Exercício resolvido – alívio com furos oblongos Numa transmissão por engrenagens a potência é de 7,5 cv, o módulo=4 e a relação de velocidades é ~ 3,412. O pinhão gira a 450 rpm, tem 17 dentes e tem no dentado largura=76. Determinar e desenhar a coroa sabendo-se que esta tem lagura do cubo=92. SOLUÇÃO Dados acima: N= 7,5; n1= 450; z1= 17; m=4; i ≅ 3,412; Lc2=92 05)48(ERseguintepáginanadesenhover 45dfmáxe141dmtambémUsar 222x112aLf 4)(v.oblongosfuros4entãofazerPodemos redondos.furosou6teremosquedizerqueristo0,3420,405 200 81 da dc relaçãoaverificar 4545,53)2(4 2 81200 )y2(Rf 2 dcda dfmáx 742762bb 141140,5 2 81200 2 dcda dm 8180,82x3,61,6x462t1,6.dedc 4645,612x5,5 131,9 7,5 90.2t n N 90.de 20011)2(9240)Ke2(hDeda 11valor)maioro(adotar2m 22 22 22 22 2 12 22 2 2(2)22 3 1(2) 3 2 2 222 22 5 22 5 2 2 11 22211 22 22 12 1 2 ake (gráfico)11a3,268 131,9x232 10 Dpn 10 131,9rpm 58 450x17 z zn nznzn 2324x58m.zDp 92,25x42,25mh 2402)4(582)m(zDe 5858,0043,412x17ziz z z i −− == === +∴>== →=+− − =+− − = =−=−= →= + = + = →=+=+= →≅+=+= =+−=+−= == =→≅== ≅==∴= === === =+=+= →===∴= ou ϕ
  • 25. FACULDADE DE TECNOLOGIA DE SOROCABA 25 25Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro Raiosdefund.=R4 Ang.Fund.=3°
  • 26. FACULDADE DE TECNOLOGIA DE SOROCABA 26 26Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 4.2.Rodas com Braços ou Raios 4.2.1. O que é e vantagens, limites É um alívio com furos especiais (fig 15) que pode substituir com vantagem o alívio com furos redondos por dois motivos: • Resulta em maior alívio de peso • Conforme nossa análise comparativa, reforça mais o ponto crítico da alma, o cubo e a coroa da roda 4.2.2. Procedimento Determine φ, a, da, de, dc, dm, α e nf como se fossem furos redondos. Use um número de braços = nf (até 6 braços). Se a relação 4,0≥ da dc pode-se usar só 4 (ou 3) braços (mesmo assim o alívio estará superdimensionado). Use a Fig 15 para as outras dimensões. 4 )20( 3 2 de R míndeL ≅ ≅ Fig. 15 – Roda com braços ou raios
  • 27. FACULDADE DE TECNOLOGIA DE SOROCABA 27 27Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 4.2.3. Exercício resolvido – rodas de braços ou raios Numa transmissão por engrenagens para potência 7,5 cv, o módulo é=3 e a relação de transmissão é ~3,42. O pinhão gira a 1100 rpm,tem 19 dentes e largura no dentado de 63 mm. Determinar e desenhar a coroa sabendo-se que esta tem a largura do cubo=102. SOLUÇÃO: Dados acima: N=7,5; m=3; n1=1100 rpm; z1=19; i~3,425; b1=63; Lc2=102 ( ) 06)48(ERseguintepáginanadesenhoVer 24x36 3 2 de 3 2 L 9 4 36 4 de R raios)(oubraços6comRodaFaremos 6furos!6,48 27,78 180 α 180 nf 27,78α0,466 118 2x839 dm 2adfmáx senα 394,5)2(2,5 2 65171 )y2(Rf 2 dcda dfmáx 612632bb 0,38 171 65 da dc 118 2 17165 2 dadc dm 6564,42x3,41,6x362t1,6.dedc 3635,112x4,7 321,54 7,5 90.2t n N 90.de 171171,58)2(6,75201)Ke2(hDeda 8valormaioroadotar2mouaKe (gráfico)8a1,595 321,54x195 10 Dpn 10 321,54rpm 65 1100x19 z zn nznzn 1953x65m.zDp 6,752,25x32,25mh 2012)3(652)m(zDe 6565,0753,425x19i.zz z z i 2 2 2 0(2) 0(2) 0(2) 2 22 0(2) 22 22 2 12 22 2 2(2)22 3 1(2) 3 2 2 222 22 2 5 22 5 2 2 11 22211 22 22 12 1 2 −− === == →≅ ° ° = ° = °=→≅ + = + = =+− − =+− − = =−=−= == = + = + = →=+=+= →=+=+= →=+−=+−= == =→≅== ≅==∴= === === =+=+= →===∴= ϕ
  • 28. FACULDADE DE TECNOLOGIA DE SOROCABA 28 28Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
  • 29. FACULDADE DE TECNOLOGIA DE SOROCABA 29 29Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 4.3.Rodas de braços com nervuras (seção em “+”) 4.3.1. O que é e quando se aplica É um tipo de alívio que se aplica quando uma alma simples (todos os casos que já examinamos) estaria sujeita à flexão e/ou flambagem. Pode ser usado quando uma ou mais das seguintes condições se encontram presentes: • Rodas muito grandes • Rodas muito largas • Esforços radiais e/ou axiais importantes • Esforços radiais descentrados 4.3.2. Procedimento Detemine o alívio como no caso anterior (4.2 – rodas com braços ou raios) e adicione as nervuras conforme Fig. 16 Fig. 16 Rodas de braços com nervuras (seção em “+”) R fund.=R2
  • 30. FACULDADE DE TECNOLOGIA DE SOROCABA 30 30Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 4.3.3. Exercício resolvido – rodas de braços com nervuras (seção em “+”) Numa transmissão por engrenagens com potência 15 cv, o módulo é 8 e a relação de transmissão é ~2,39. O pinhão gira a 450 rpm, tem 23 dentes e largura do dentado de 200. Determinar e desenhar a coroa (com alívio) sabendo-se que esta tem largura de cubo= 182 SOLUÇÃO: Dados acima: N=15; m=8; n1=450rpm; z1=23; i~2,39; b1=200; Lc2=182 seguintepáginana0748ERdesenhoVer 35x52 3 2 de 3 2 L 13 4 53 4 de R nervurascombraços5c/alívioumsAplicaremo 200)(~largamas456)(DegrandeparamédiaderodaumaÉ 5furos4,65 38,68 180 α 180 nf 38,68α0,625 240 2x10130 dm 2adfmáx senα 130130,56)2(3 2 91388 )y2(Rf 2 dcda dfmáx 19822002bb 240239,5 2 91388 2 dcda dm 912x3,91,6x522t1,6.dedc 5251,622x6,2 181,2 15 902t n N 90.de 38816)2(18456)Ke2(hDeda 16valor)maioro(adotar2mouaKe (gráfico)10a1,208 188,2x440 10 Dnn 10 188,18rpm 55 450x23 z zn nznzn 4408x55m.zDp 182,25x82,25mh 4562)8x(552)m(zDe 5554,972,39x23izz z z i 22 2 2 0(2) 0(2) 0(2) 2 22 0(2) 22 22 2 12 22 2 2(2)22 1(2)3 2 2 222 2 2 5 22 5 2 2 11 22211 22 22 12 1 2 −− ≅== === = →≅ ° ° = ° = °≅→= + = + = →=+− − =+− − = =−=−= →= + = + = =+=+= →=+=+= =+−=+−= == =→≅== ≅==∴= === === =+=+= →===∴= ϕ
  • 31. FACULDADE DE TECNOLOGIA DE SOROCABA 31 31Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
  • 32. FACULDADE DE TECNOLOGIA DE SOROCABA 32 32Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 5. APÊNDICE 5.1.Exercícios propostos – ALÍVIO em polias “V” e engrenagens EP – 48 – 01 Numa transmissão com 2 correias “V”, perfil “A”, a potência é de 2 CV. A polia motora (1) tem diâmetro externo igual a 80mm e gira a 1160 rpm. Determinar e desenhar (com alìvio) a polia movida (2) sabendo-se que esta tem velocidade de 330 rpm e 47 mm na largura do cubo. EP – 48 – 02 Num par engrenado a potência é 3 CV, o módulo 4,5 e a relação de velocidades ~ 4,76. O pinhão tem 17 dentes, gira 600 rpm e tem 86 mm de largura (no dentado). Determinar e desenhar a coroa (com alívio) cuja largura do cubo é 102 mm. EP – 48 – 03 Numa transmissão com 3 correias “V”, perfil “A”, a potência é de 3 CV. A polia motora (1) gira a 1160 rpm. Determinar e desenhar (com alìvio) a polia movida (2) sabendo-se que esta tem velocidade de 330 rpm e a largura do cubo é 58 mm. EP – 48 – 04 Numa transmissão por engrenagens a potência é 6 CV, o módulo 4 e a relação de transmissão ~ 3,06. O pinhão tem 17 dentes, gira a 850 rpm e tem largura do dentado igual a 76 mm. Determinar e desenhar a coroa (com alívio) a qual tem a largura do cubo igual a 92 mm. EP – 48 – 05 Num sistema com 3 correias “V”, perfil “B”, a potência é de 5 CV e a relação de transmissão é ~ 1,286. A polia motora (1) tem diâmetro externo igual a 140 mm e gira a 450 rpm. Determinar e desenhar (com alìvio) a polia movida (2) sabendo-se que esta tem largura do cubo igual 72. EP – 48 – 06 Num par engrenado a potência é 10 CV, o módulo 6 e a relação de velocidades ~ 2,76. O pinhão tem 17 dentes, gira 900 rpm e tem 114 mm de largura (no dentado). Determinar e desenhar a coroa (com alívio) cuja largura do cubo é 127 mm. EP – 48 – 07 Numa transmissão com 3 correias “V”, perfil “B”, a potência é de 7,5 CV. A polia motora (1) tem diâmetro externo igual a 135 mm e gira a 800 rpm. Determinar e desenhar (com alìvio) a polia movida (2) sabendo-se que esta tem velocidade de 390 rpm e 82 mm na largura do cubo.
  • 33. FACULDADE DE TECNOLOGIA DE SOROCABA 33 33Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro EP – 48 – 08 Num par engrenado a potência é 15 CV, o módulo 7 e a relação de transmissão ~ 2,63. O pinhão tem 19 dentes, gira 1040 rpm e tem 130 mm de largura (no dentado). Determinar e desenhar a coroa (com alívio) cuja largura do cubo é 142 mm. EP – 48 – 09 Numa transmissão com 4 correias “V”, perfil “C”, a potência é de 30 CV. Sabendo-se que a polia motora (1) gira a 1160 rpm, determinar e desenhar (com alìvio) a polia movida (2) a qual tem velocidade de 620 rpm e 142 mm na largura do cubo. EP – 48 – 10 Num par de rodas dentadas à evolvente a potência é 20 CV, o módulo 8 e a relação de velocidades ~ 2,23. O pinhão tem 17 dentes, gira 580 rpm e tem 152 mm de largura (no dentado). Determinar e desenhar a coroa (com alívio) cuja largura do cubo é 182 mm. EP – 48 – 11 Numa transmissão com 3 correias “V”, perfil “B”, a potência é de 4 CV. Sabendo-se que a polia motora (1) gira a 400 rpm, determinar e desenhar (com alìvio) a polia movida (2) a qual tem velocidade de 100 rpm e 82 mm na largura do cubo (com 2 rasgos de chaveta à 1800 ). EP – 48 – 12 Num par engrenado a potência é 7,5 CV, o módulo 5 e a relação de transmissão ~ 3,8. O pinhão tem 17 dentes, gira 900 rpm e tem 95 mm de largura (no dentado). Determinar e desenhar a coroa (com alívio) cuja largura do cubo é 112 mm. EP – 48 – 13 Numa transmissão com 4 correias “V”, perfil “C”, a potência é de 40 CV. Sabendo-se que a polia motora (1) tem diâmetro externo de 240 mm e gira a 870 rpm, determinar e desenhar (com alìvio) a polia movida (2) a qual tem velocidade de 360 rpm e 127 mm na largura do cubo(com 2 rasgos de chaveta à 1800 ). . EP – 48 – 14 Numa transmissão por engrenagens a potência é 12,5 CV, o módulo 6,5 e a relação de velocidades ~ 2,65. O pinhão tem 23 dentes, gira 900 rpm e tem 130 mm de largura (no dentado). Determinar e desenhar a coroa (com alívio) cuja largura do cubo é 142 mm. EP – 48 – 15 Numa transmissão com 8 correias “V”, perfil “B”, a potência é de 50 CV. Sabendo-se que a polia motora (1) gira a 1750 rpm, determinar e desenhar (com alìvio) a polia movida (2) a qual tem velocidade de 400 rpm e 142 mm na largura do cubo (com 2 rasgos de chaveta à 1800 ).
  • 34. FACULDADE DE TECNOLOGIA DE SOROCABA 34 34Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 5.2.Exemplos de desenhos de rodas diversas
  • 35. FACULDADE DE TECNOLOGIA DE SOROCABA 35 35Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
  • 36. FACULDADE DE TECNOLOGIA DE SOROCABA 36 36Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
  • 37. FACULDADE DE TECNOLOGIA DE SOROCABA 37 37Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
  • 38. FACULDADE DE TECNOLOGIA DE SOROCABA 38 38Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro
  • 39. FACULDADE DE TECNOLOGIA DE SOROCABA 39 39Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 5.3 Tensões admissíveis para aços e aços fundidos – conforme BACH AÇOSFUNDIDOS(kgf/mm 2 ) ABNT 5020Af 60 20 180 TENSÕESADMISSÍVEISEMkgf/mm 2 –segundoBACH 12,5a 9,0 8,0a 12,0 5,5a 8,5 14,0a 20,5 8,5 13,0 5,5a 8,5 14,0a 20,5 8,5a 13,0 6,0a 9,0 8,0a 12,0 4,5a 7,5 3,0a 5,5 ABNT 7010Af 70 10 200 14,0a 21,0 9,6a 13,0 6,0a 9,5 15,0a 23,0 9,5a 14,5 6,0a 9,5 15,5a 23,0 7,5a 14,5 7,0a 10,5 9,0a 13,0 5,5a 8,4 4,0a 6,0 ABNT 6015Af 60 42 15 170 12,5a 19,0 8,0a 12,0 5,5a 8,5 14,0a 20,5 8,5a 13,0 5,5a 8,5 14,0a 20,5 8,5a 13,5 6,0a 9,0 8,0a 12,0 4,5a 7,5 3,5a 5,5 ABNT 4524Af 45 22 24 130 10,0a 15,0 6,5a 9,5 4,5a 7,0 11,0a 16,5 7,0a 10,5 4,5a 7,0 11,0a 16,5 7,0a 10,5 5,0a 7,5 6,5a 9,5 4,0a 6,0 3,0a 4,5 ABNT 3525Af 35 25 6,5a 10 4,5a 6,5 3,0a 4,5 7,5a 11 4,5a 7,0 3,0a 4,5 7,5a 11,0 4,5a 7,0 3,5a 5,0 4,5a 6,5 2,5a 4,0 2,0a 3,0 AÇOS(tensõesemkgf/mm 2 ) ABNT1050 Estir. àfrio 70 59 10 197 22,0 14,5 10,0 22,0 14,5 10,0 24,0 16,0 11,5 13,5 9,0 7,0 Lamin. quente 63 35 15 179 20,0 12,5 8,0 20,0 12,5 8,0 22,0 14,0 9,5 11,5 7,0 5,0 ABNT1040 Estir. àfrio 60 50 12 170 21,0 13,5 9,0 21,0 13,5 9,0 23,0 15,0 10,5 12,5 8,0 6,0 . quent 53 29 18 149 15,0 9,5 7,0 15,0 9,5 7,0 16,5 10,5 7,5 9,5 6,0 4,5 ABNT1030 Estir. àfrio 53 45 12 149 15,5 10,0 7,5 15,5 10,0 7,5 17,0 11,0 8,0 10,0 6,5 5,0 Lamin. quente 48 26 20 137 13,5 8,5 6,0 13,5 8,5 6,0 14,0 9,5 6,5 8,0 5,0 3,5 ABNT1020 Estir. àfrio 43 36 15 121 14,0 9,0 6,5 14,0 9,0 6,5 15,0 10,0 7,0 8,5 5,5 4,0 . quent 39 21 25 111 10,0 6,5 4,5 10,0 6,5 4,5 11,0 7,0 5,0 6,5 4,0 3,0 ABNT1010 Estir àfrio 37 31 20 105 10,0 6,5 4,5 10,0 6,5 4,5 11,0 7,0 5,0 6,5 4,0 3,0 Lamin. à quente 33 18 28 95 8,0 5,0 3,5 8,0 5,0 3,5 8,5 5,5 4,0 5,0 3,0 2,0 CARACTER. MECÂNICAS σr σe alongamento %(100mm) H SOLICITAÇÃO I II III I II III I II III I II III TRAÇÃO σt COMPRE S. σc FLEXÃO σf TORÇÃO δ
  • 40. FACULDADE DE TECNOLOGIA DE SOROCABA 40 40Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 5.3.Gráfico para a espessura da alma – conforme Del Mastro
  • 41. FACULDADE DE TECNOLOGIA DE SOROCABA 41 41Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro 5.4.Rodas muito grandes e/ou largas – conforme NIEMANN e DOBROVOLSKY Conforme NIEMANN
  • 42. FACULDADE DE TECNOLOGIA DE SOROCABA 42 42Desenho Técnico Mecânico II – Alívio em Rodas - Prof. M. Sc. Edson Del Mastro Fórmulas empíricas para determinar as dimensões dos elementos das rodasForjadase soldadas 2 5,0 3,0 10 6,1 10 1 0 1 dD D mn Bc mmDeD dd + = = ≈ −≈ = cs dl Ad dD d 8,0 1,1 3,0 5 10 2 ≈ ≈ ≈ − ≈ De fundição mmmashc hhdhAd mDeDdd 10(2,0 8,08,03,0 1016 1 01 ∠= === −≈= hRmmrek decsmn 5,0108,0 2,08,05,0 ≥== === Segundo Dobrovolsky in Elementos de Maquinas; Editora MIR - 1970