SlideShare uma empresa Scribd logo
1 de 65
Baixar para ler offline
1Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Dimensionamento deDimensionamento de
CondutoresCondutores
2Adélio José de Moraes e Sérgio Ferreira de Paula Silva
DimensionamentoDimensionamento
O dimensionamento técnico de um circuito corresponde à aplicação dos
diversos itens da NBR 5410:2004 relativos à escolha da seção de um condutor
e do seu respectivo dispositivo de proteção. Os seis critérios da norma são:
Capacidade de condução de corrente, conforme 6.2.5;
Queda de Tensão, conforme 6.2.7;
Seção mínima, conforme 6.2.6.1.1;
Sobrecarga, conforme 5.3.4 e 6.3.4.2;
Curto-circuito, conforme 5.3.5 e 6.3.4.3; e
Choques elétricos, conforme 5.1.2.2.4.
Conforme NBR 5410:2004, item 6.2.6.1.2 – pg. 113
3Adélio José de Moraes e Sérgio Ferreira de Paula Silva
DimensionamentoDimensionamento
Para considerarmos um circuito completa e corretamente dimensionado, é
necessário aplicar os seis critérios, cada um resultando em uma seção e
considerar como seção final a maior dentre todas as obtidas.
Especial atenção deve ser dispensada ao dimensionamento de condutores em
circuitos onde haja a presença de harmônicas. Este tópico é abordado no item
6.2.6.2 da NBR 5410:2004.
4Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Dimensionamento de CondutoresDimensionamento de Condutores
Conforme NBR 5410:2004, item 6.2.5 – pg. 90
Tipos de Linhas Elétricas - Condutores
Condutor Isolado:
Possui somente o condutor e a isolação
Cabo Unipolar:
Condutor, isolação e uma camada de revestimento,
chamada cobertura, para proteção mecânica
Cabo Multipolar:
Possui sob a mesma cobertura, dois ou mais
condutores isolados, denominados veias.
Excelentes propriedades elétricas
Boa resistência térmica
Baixa resistência mecânica
Baixa resistência a chamas
EPR (BORRACHA ETILENO
PROPILENO)
Excelentes propriedades elétricas
Boa resistência térmica
Baixa flexibilidade
Baixa resistência à chama
XLPE (POLIETILENO
RETICULADO)
Boas propriedades mecânicas e elétricas
Não propagante de chama
Baixo índice de estabilidade
térmica
PVC (CLORETO DE
POLIVINILA)
PONTOS FORTESPONTOS FRACOSMATERIAL
5Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5 – pg. 98
O critério da capacidade de condução de corrente visa garantir uma vida
satisfatória a condutores e isolações submetidos aos efeitos térmicos
produzidos pela circulação de correntes equivalentes às suas capacidades
de condução durante períodos prolongados em serviço normal.
Para a determinação da seção do condutor por este critério, deve-se seguir
os seguintes passos principais:
1) Calcular a corrente de projeto do circuito;
2) Determinar o método de instalação;
3) Aplicar os fatores de correção apropriados.
6Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004 – pg. 90
CC-
Cabos unipolares ou cabo
multipolar sobre parede ou
espaçado desta menos de 0,3 vez o
diâmetro do cabo
11
B2B1B1
Condutores/cabos em eletroduto de
seção circular embutido em
alvenaria
7,8
B2B1B1
Condutores/cabos em eletroduto
aparente de seção não-circular
sobre parede
5,6
B2B1B1
Condutores/cabos em eletroduto
aparente de seção circular sobre
parede ou espaçado menos de 0,3
vez o diâmetro do eletroduto
3,4
A2
Cabo
Multipolar
A1A1
Condutores/cabos em eletroduto de
seção circular embutido em parede
termicamente isolante
1,2
Cabo
Unipolar
Condutor
Isolado
DescriçãoIlustraçãoNº
Métodos de Instalação
7Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5 – pg. 90
Métodos de Instalação
EF-
Cabos unipolares ou cabo
multipolar sobre suportes
horizontais, eletrocalha aramada ou
tela
15
EF-
Cabos unipolares ou cabo
multipolar afastado(s) da parede
mais de 0,3 vez o diâmetro do cabo
14
EF-
Cabos unipolares ou cabo
multipolar em bandeja não-
perfurada, perfilado ou prateleira
13
CC-
Cabos unipolares ou cabo
multipolar em bandeja perfurada,
horizontal ou vertical
12
C
Cabo
Multipolar
C-
Cabos unipolares ou cabo
multipolar fixado diretamente no
teto, ou afastado mais de 0,3 vez o
diâmetro do cabo
11A,
11B
Cabo
Unipolar
Condutor
Isolado
DescriçãoIlustraçãoNº
8Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5 – pg. 98
Cálculo da corrente de projeto
FPV
P
IB
⋅
=
Onde:
IB : corrente de projeto;
P : potência ativa total do circuito;
V : tensão do circuito;
FP : fator de potência total do circuito.
Monofásicos/Bifásicos
FPV
P
IB
⋅⋅
=
3
Trifásicos
9Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5 – pg. 112
Número de condutores carregados
3 ou 4Trifásico com neutro
3Trifásico sem neutro
3Duas fases com neutro
2Duas fases sem neutro
2Monofásico a três condutores
2Monofásico a dois condutores
Número de condutores
carregados a ser adotado
Esquema de condutores vivos
do circuito
Para 4 condutores carregados aplicar o fator de 0,86 às capacidades de condução válidas para
3 condutores carregados.
Considerar o trifáisco com neutro com 4 condutores carregados quando a taxa de harmônicos
triplos na corrente de fase for superior a 15%.
NBR5410:2004-Tabela46pg.112
10Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5
Fatores de Correção:
1) Fatores de correção para temperatura;
2) Fatores de correção para resistividade térmica do solo;
3) Fatores de correção para agrupamento de circuitos.
11Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5.3 – pg. 106
Fatores de Correção para Temperatura – k1
Utilizado para
temperaturas
ambientes
diferentes de 30ºC
para linhas não
subterrâneas e de
20ºC (temperatura
do solo) para linhas
subterrâneas.
0,890,840,960,9435
0,850,770,910,8740
0,820,710,870,7945
0,760,630,820,7150
0,710,550,760,6155
0,650,450,710,5060
0,930,891130
0,960,951,041,0625
111,081,1220
1,041,051,121,1715
1,071,101,151,2210
Do soloAmbiente
EPR ou XLPEPVCEPR ou XLPEPVC
Isolação
Temperatura
(ºC)
NBR 5410:2004 - Tabela 40 pg. 106
12Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5.4 – pg. 107
Fatores de Correção para Resistividade Térmica do Solo – k2
Utilizado em linhas subterrâneas, onde a resistividade térmica do solo seja diferente de 2,5
K.m/W, caso típico de solos secos, deve ser feita uma correção adequada nos valores da
capacidade de condução de corrente. Solos úmidos possuem valores menores de resistividade
térmica, enquanto solos muito secos apresentam valores maiores
0,961,051,11,18Fator de Correção
321,51Resistividade Térmica K.m/W
NBR 5410:2004 - Tabela 41 pg. 107
13Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5.5 – pg. 107
Fatores de Correção para Agrupamento de Circuitos – k3
Para linhas elétricas contendo um total de condutores superior às quantidades indicadas nas
tabelas de capacidade de condução de corrente, fatores de correção devem ser aplicados.
0,780,780,790,790,800,800,820,871,00
Camada única sobre
leito, suporte, etc.
5
38 e 39
(métodos
E a F)
0,720,720,730,730,750,770,820,881,00
Camada única em
bandeja perfurada
4
0,610,620,630,640,660,680,720,810,95Camada única no teto3
36 a 37
(métodos C)
0,700,710,720,720,730,750,790,851,00
Camada única sobre
parede, piso, ou
bandeja não
perfurada ou
prateleira
2
36 a 39
(métodos
A a F)
0,380,410,450,500,520,540,570,600,650,700,801,00
Em feixe: ao ar livre
ou sobre superfície;
embutidos; em
conduto fechado
1
> 20
15 a
19
12 a
15
9 a
11
87654321
Tabelas dos
métodos de
referência
Número de Circuitos ou de Cabos Multipolares
Disposição dos
cabos justapostos
Item
Se um agrupamento consiste em N condutores isolados ou cabos unipolares, pode-se considerar tanto N/2
circuitos com 2 condutores carregados como N/3 circuitos com 3 condutores carregados.
NBR 5410:2004 - Tabela 42 pg. 108
14Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5.5.5 – pg. 111
Fatores de Correção para Agrupamento de Circuitos – k3
Os fatores das tabelas 42 a 45 são válidos para grupos de condutores semelhantes, igualmente
carregados. São considerados semelhantes aqueles que se baseiam na mesma temperatura
máxima para serviço contínuo e cujas seções nominais estão contidas no intervalo de 3 seções
normalizadas sucessivas. Quando os condutores de um grupo não preencherem essa condição, os
fatores de agrupamento aplicáveis devem ser obtidos recorrendo-se a qualquer das duas
alternativas seguintes:
1) Cálculo caso a caso, utilizando, por exemplo, a ABNT 11301; ou
2) Caso não seja viável um cálculo específico,adoção do fator F da expressão:
n
F
1
= F : fator de correção
n : número de circuitos ou de cabos multipolares
15Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Cálculo da Corrente de Projeto Corrigida
Conforme NBR 5410:2004, Anexo F – pg. 196
321
'
kkk
I
I B
B
⋅⋅
=
O valor da corrente de projeto corrigida é utilizado na determinação da seção do condutor através
das tabelas 36 a 39.
16Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Conforme NBR 5410:2004, item 6.2.5 – pg. 101
297361403461313351370415261291286321240
258312341392268300314353223248245273185
230278299344236265275309196219216240150
203246259299206232239269172192188210120
17921622325817920120723215016716418295
15118318421314916817119212513913615170
1221481441681181331341519911010811950
103125119138991111101258392899935
86104961128090891016875738025
67817685626968765257566116
52635763465250573943424610
3947414634383641293231346
3138323627302832232524264
242924272023212417,518,51819,52,5
182217,519,51516,515,517,5131413,514,51,5
1518141512131214101110111
323232323232
Nº condutores carregadosNº condutores carregadosNº condutores carregados
DCB2B1A2A1
Capacidades de condução de corrente, para os métodos de referência A1, A2, B1, B2, C e D .
Condutores isolados, cabos unipolares e multipolares – cobre, isolação PVC
Seções
Nominais
mm²
NBR5410:2004-Tabela36pg.101
17Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente
Exemplo de Cálculo
Conforme NBR 5410:2004, Anexo F – pg. 196
Um circuito de iluminação de 1200 W, fase-neutro, passa no interior de um eletroduto embutido de
PVC, juntamente com outros quatro condutores isolados de outros circuitos em cobre. A
temperatura ambiente é de 35ºC. Determinar a seção do condutor.
18Adélio José de Moraes e Sérgio Ferreira de Paula Silva
BT
Queda de TensãoQueda de Tensão
A queda de tensão entre a origem da instalação e qualquer ponto de
utilização não deve ser superior aos valores indicados na seqüência.
QG
BT
QT
QT
Circuitos Terminais
Circuitos De
Distribuição
5%
4%Fornecimento em tensãoFornecimento em tensão
secundsecundáária deria de
distribuidistribuiççãoão
Ponto de entrega no postePonto de entrega no poste
Conforme NBR 5410:2004, item 6.2.7 – pg. 115
19Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
A queda de tensão entre a origem da instalação e qualquer ponto de
utilização não deve ser superior aos valores indicados na seqüência.
QG
BT
QT
QT
Circuitos Terminais
Circuitos De
Distribuição
7%
4%Transformador deTransformador de
propriedade dapropriedade da
concessionconcessionááriaria
Ponto de entrega noPonto de entrega no
secundsecundáário dorio do
transformadortransformador
Conforme NBR 5410:2004, item 6.2.7 – pg. 115
20Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
A queda de tensão entre a origem da instalação e qualquer ponto de
utilização não deve ser superior aos valores indicados na seqüência.
MT
QG
BT
QT
QT
Circuitos Terminais
Circuitos De
Distribuição
7%
4%Transformador deTransformador de
propriedade da unidadepropriedade da unidade
consumidoraconsumidora
Ponto de entrega noPonto de entrega no
primprimáário dorio do
transformadortransformador
Conforme NBR 5410:2004, item 6.2.7 – pg. 115
21Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
Conforme NBR 5410:2004, item 6.2.7 – pg. 115
A queda de tensão entre a origem da instalação e qualquer ponto de
utilização não deve ser superior aos valores indicados na seqüência.
QG
BT
QT
QT
Circuitos Terminais
Circuitos De
Distribuição
7%
4%Grupo Gerador PrGrupo Gerador Próóprioprio
22Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
Método 1
)ou(%
200
fffn
B
C
VVV
Il
S
⋅∆
⋅⋅⋅
=
ρ
Onde:
Sc : seção em mm2;
V% : queda de tensão máxima, em %;
V : tensão do circuito fase-neutro ou fase-fase, em V;
l : comprimento do circuito, em m
IB : corrente de projeto, em A;
ρ : resistividade do material condutor = cobre = 1/56 Ω.mm2/m
MonofMonofáásico/Bifsico/Bifáásicosico
ff
B
C
VV
Il
S
⋅∆
⋅⋅⋅
=
%
2,173 ρ
TrifTrifáásicosico
23Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
Método 2
B
fn
Il
VV
U
⋅
∆⋅⋅
=∆
%10
Onde:
U : queda de tensão, em V/Axkm;
V% : queda de tensão máxima, em %;
V : tensão do circuito, em V;
l : comprimento do circuito, em m
IB : corrente de projeto, em A;
MonofMonofáásicosico
B
ff
Il
VV
U
⋅
∆⋅⋅
=∆
%10
BifBifáásico/Trifsico/Trifáásicosico
Utilizar este método no trabalho
24Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
Método 2
0,360,360,410,400,420,42120
0,440,430,500,480,510,5095
0,590,550,670,620,670,6470
0,820,760,940,850,950,8650
1,090,981,251,121,251,1235
1,491,331,711,511,721,5025
2,332,032,682,322,702,2716
3,673,174,233,634,203,5410
6,145,257,076,037,005,876
9,157,7910,68,9610,59,04
14,712,416,914,316,8142,5
23,920,227,623,327,4231,5
FP=0,95FP=0,8FP=0,95FP=0,8FP=0,95FP=0,8
Circuito trifásicoCircuito Monofásico
Circuito Monofásico e
Trifásico
Eletroduto e eletrocalha
(material não-magnético)
Eletroduto e eletrocalha
(material magnético)
Seção
(mm2)
Queda de tensão em V/A.km
DimensionamentodeCondutoresemBaixaTensão
Tabela19–Pirellipg61
25Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
Método 3
Carga DistribuCarga Distribuíída:da:
=
⋅⋅Φ+Φ⋅⋅=∆
n
i
iB lIxsenrtU i
1
)cos(
3Queda de tensão de linha
1Queda de tensão de fase
Circuito trifásico equilibrado
2Queda de tensão de linha
1
2
Queda de tensão de fase
Monofásico a 3 condutores (2 fases-neutro) equilibrado
Monofásico a dois condutores (fase-fase ou fase-neutro)
tTipo de Circuito
O somatório é calculado considerando a corrente e o comprimento de cada trecho.
26Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
Método 3
)cos( Φ+Φ⋅⋅⋅⋅=∆ xsenrIltU B
Carga Concentrada:Carga Concentrada:
Onde:
U : queda de tensão, em V;
l : comprimento do circuito, em km
IB : corrente de projeto, em A;
r : resistência do condutor, em Ω/km;
x : reatância indutiva do condutor, em Ω/km;
t : coeficiente que depende do tipo de circuito;
cosΦ, sen Φ : fator de potência e fator reativo da carga.
27Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Queda de TensãoQueda de Tensão
Método 3
0,100,190,15120
0,100,230,1995
0,100,320,2770
0,110,470,3950
0,110,630,5235
0,120,870,7325
0,121,381,1516
0,132,191,8310
0,133,693,086
0,145,524,614
0,158,877,412,5
0,1614,4812,11,5
XLRca
Condutos não-magnéticos FN/FF/3FRccSeção
(mm2)
Resistências elétricas e reatâncias indutivas de fios e cabos isolados em PVC, EPR e
XLPE em condutos fechados (valores em ΩΩΩΩ/km)
DimensionamentodeCondutoresemBaixaTensão
Tabela22–Pirellipg64
28Adélio José de Moraes e Sérgio Ferreira de Paula Silva
SeSeçção Mão Míínimanima -- FaseFase
Conforme NBR 5410:2004, item 6.2.6.1.1 – pg. 113
0,75
Circuitos a extrabaixa tensão para
aplicações especiais
0,75Para qualquer outra aplicação
Como especificado na norma do
equipamento
Para um equipamento específico
Ligações
flexíveis
0,5Circuitos de sinalização e controle
2,5Circuitos de Força
1,5Circuitos de Iluminação
Fixas em
geral
Seção Mínima
p/ condutores de cobre (mm2)
UtilizaçãoInstalação
NBR 5410:2004 - Tabela 47 pg. 113
As seções mínimas são ditadas por razões mecânicas
29Adélio José de Moraes e Sérgio Ferreira de Paula Silva
SeSeçção Mão Míínimanima -- NeutroNeutro
Conforme NBR 5410:2004, item 6.2.6.2 – pg. 114
2
Quando em um circuito bifásico ou trifásico com neutro possuir uma taxa de 3ª harmônica e seus múltiplos
superior a 33%, pode ser necessário um condutor neutro com seção superior à dos condutores fase
O condutor neutro deve possuir a mesma seção que os condutores fase no
seguintes casos:
Circuitos monofásicos;
Circuitos bifásicos com neutro (2 fases + neutro), quando a taxa de 3ª
harmônica e seus múltiplos não for superior a 33%.
Circuitos trifásicos com neutro, quando a taxa de 3ª harmônica e seus
múltiplos não for superior a 33%.
30Adélio José de Moraes e Sérgio Ferreira de Paula Silva
SeSeçção Mão Míínimanima -- NeutroNeutro
Conforme NBR 5410:2004, item 6.2.6.2 – pg. 114
2
Conforme 6.2.6.2.6, apenas nos circuitos trifásicos é admitida a redução do
condutor neutro. Tal procedimento deve atender, simultaneamente, as três
condições seguintes:
O circuito for presumivelmente equilibrado, em serviço normal;
A corrente das fases não contiver uma taxa de 3ª harmônica e seus
múltiplos superior a 15%; e
O condutor neutro for protegido contra sobrecorrentes, conforme 5.3.2.2.
31Adélio José de Moraes e Sérgio Ferreira de Paula Silva
SeSeçção Mão Míínimanima -- NeutroNeutro
Conforme NBR 5410:2004, item 6.2.6.2.6 – pg. 115
Nestes casos, os seguintes valores mínimos podem ser adotados para a seção
do condutor neutro.
185400
150300
120240
95185
70150
70120
5095
3570
2550
2535
SS 25
Seção mínima do condutor neutro (mm2)Seção dos condutores fase (mm2)
NBR5410:2004-Tabela48pg.115
32Adélio José de Moraes e Sérgio Ferreira de Paula Silva
HarmônicosHarmônicos
Harmônicas são ondas senoidais, de tensão ou de corrente, cujasHarmônicas são ondas senoidais, de tensão ou de corrente, cujas
frequências são mfrequências são múúltiplas inteiras da frequência fundamental.ltiplas inteiras da frequência fundamental.
As ondas distorcidas podem ser decompostas em uma soma de ondas
senoidais de frequências diversas, múltiplas da fundamental.
Conforme NBR 5410:2004, Anexo F – pg. 196
33Adélio José de Moraes e Sérgio Ferreira de Paula Silva
HarmônicosHarmônicos
Lâmpada Fluorescente Compacta (MonofLâmpada Fluorescente Compacta (Monofáásica)sica)
100
93
81,5
67
51
36
28
166166
11 33 55 77 99 1111 1313 DTIDTI
00
2020
4040
6060
8080
DH (%)DH (%)
34Adélio José de Moraes e Sérgio Ferreira de Paula Silva
HarmônicosHarmônicos
Inversor de frequência PWM (TrifInversor de frequência PWM (Trifáásico)sico)
100
65
73
11 55 DHTDHT
00
2020
4040
6060
8080
100100
120120
DH (%)DH (%)
38
77
7
1111
10
1313
5
1717
35Adélio José de Moraes e Sérgio Ferreira de Paula Silva
HarmônicosHarmônicos
Efeitos provocados por HarmônicosEfeitos provocados por Harmônicos
Operação indevida de equipamentos; Eletrônicos, de controle, proteção e outros.
Erros de leitura em equipamentos de medição;
Sobretensões; Comprometimento da isolação e da vida útil dos equipamentos.
Sobrecorrentes; Efeitos térmicos nocivos aos equipamentos.
Interferências em sistemas de comunicação; Principalmente sinais de rádio.
Redução da vida útil;
Perdas excessivas em cabos e transformadores;
Ruídos audíveis;
Ressonâncias Série e Paralela, entre outros.
36Adélio José de Moraes e Sérgio Ferreira de Paula Silva
HarmônicosHarmônicos
Harmônicos TriplosHarmônicos Triplos
Fase A (50 A)
Neutro (82 A)
Cargas Eletrônicas
Fase B (50 A)
Fase C (50 A)
37Adélio José de Moraes e Sérgio Ferreira de Paula Silva
HarmônicosHarmônicos
Fatores de Correção para Harmônicos
Quando, num circuito trifásico com neutro ou num circuito com duas fases e neutro, a taxa de
terceira harmônica e seus múltiplos for superior a 33%, a corrente que circula pelo neutro é superior
à corrente das fases. A seção do condutor neutro pode ser determinada calculando-se a corrente no
neutro sob a forma:
Conforme NBR 5410:2004, Anexo F – pg. 196
'
BhN IfI = 2
2
2
1
'
n
n
B III Σ+=
Onde:
I’B : corrente de projeto corrigida;
I1 , In : corrente fundamental e harmônicas;
fh : fator de correção em função da taxa de harmônicos triplos.
38Adélio José de Moraes e Sérgio Ferreira de Paula Silva
HarmônicosHarmônicos
Fatores de Correção para Harmônicos
Conforme NBR 5410:2004, Anexo F – pg. 196
1,411,7366%
1,381,6461% a 65%
1,341,5556% a 60%
1,301,4551% a 55%
1,271,3546% a 50%
1,231,2441% a 45%
1,191,1936% a 40%
1,151,1533% a 35%
Circuito com duas
fases e neutro
Circuito trifásico
com neutro
fhTaxa de
Harmônicos
Triplos
NBR 5410:2004 - Tabela F.1 pg. 196
39Adélio José de Moraes e Sérgio Ferreira de Paula Silva
SeSeçção Mão Míínimanima -- ProteProteççãoão
Conforme NBR 5410:2004, item 6.4.3.1.3 – pg. 150
A seção do condutor de proteção pode ser determinada através da seguinte
tabela:
S/2S > 35
1616 < S 35
SS 16
Seção mínima do condutor de proteção
correspondente (mm2)
Seção dos condutores fase (mm2)
NBR 5410:2004 - Tabela 58 pg. 150
40Adélio José de Moraes e Sérgio Ferreira de Paula Silva
SobrecargaSobrecarga
Conforme NBR 5410:2004, item 5.3.4 – pg. 63
A sobrecarga não é exatamente um critério de dimensionamento dos
condutores, entretanto, intervêm na determinação de sua seção.
41Adélio José de Moraes e Sérgio Ferreira de Paula Silva
SobrecargaSobrecarga
Conforme NBR 5410:2004, item 5.3.4 – pg. 63
Para que a proteção dos condutores contra sobrecargas fique assegurada,
as características de atuação do dispositivo a provê-la devem ser tais que:
3212
321
45,1 kkkII
e
kkkIII
Z
ZnB
⋅⋅⋅⋅≤
⋅⋅⋅≤≤
Onde:
IB : corrente de projeto, em A;
IZ : capacidade de condução de corrente dos condutores;
In : corrente nominal do dispositivo de proteção (ou corrente de ajuste
para dispositivos ajustáveis), nas condições previstas para sua
instalação.
I2 : corrente convencional de atuação, para disjuntores, ou corrente
convencional de fusão, para fusíveis.
42Adélio José de Moraes e Sérgio Ferreira de Paula Silva
SobrecargaSobrecarga
Conforme NBR 5410:2004, item 5.3.4 – pg. 63
A condição, , é aplicável quando for possível assumir que a
temperatura limite de sobrecarga dos condutores não venha a ser mantida por
um tempo superior a 100 h durante 12 meses consecutivos, ou por 500 h ao
longo da vida útil do condutor. Quando isso ocorrer, a condição deve ser
substituída por:
ZII ⋅≤ 45,12
ZII ≤2
43Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Disjuntores (IEC 60898)Disjuntores (IEC 60898)
Corrente convencional de atuação é o valor
especificado de corrente que provoca a atuação do
dispositivo dentro do tempo convencional.
O tempo convencional:
1) Corrente convencional de não atuação – 1,13;
2) Corrente convencional de atuação – 1,45.
A63horas2A63hora1 >≤
Na prática a corrente I2 é considerada igual à
corrente convencional de atuação dos
disjuntores.
t < 1h (In 63 A)
t < 2h (In > 63 A)
1,45 In
t 1h (In 63 A)
t 2h (In > 63 A)
1,13 In
Tempo de AtuaçãoIntensidade
Os disjuntores NBR IEC 60898, 60947-2 e NBR 5361
atendem a condição de I2
44Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Curvas de Disjuntores (IEC 60898)Curvas de Disjuntores (IEC 60898)
CURVA B: Tem como característica principal o disparo
instantâneo para corrente entre 3 a 5 vezes a corrente
nominal. sendo assim, são aplicados principalmente na
proteção de circuitos com características resistivas ou
com grandes distâncias de cabos envolvidas. Exemplos:
Lâmpadas incandescentes, chuveiros, aquecedores
elétricos, etc.
CURVA C: Tem como característica o disparo
instantâneo para correntes entre 5 e 10 vezes a corrente
nominal. sendo assim, são aplicados para proteção de
circuitos com cargas indutivas. Exemplos: Lâmpadas
Fluorescentes, geladeiras, máquinas de lavar, etc.
CURVA D: disparo instantâneo para correntes entre 10
a 20 vezes a corrente nominal
45Adélio José de Moraes e Sérgio Ferreira de Paula Silva
CurtoCurto--CircuitoCircuito
A suportabilidade a correntes de curto-circuito dos condutores, determina
o tipo de dispositivo de proteção dos mesmos, podendo modificar sua seção.
Conforme NBR 5410:2004, item 5.3.5 – pg. 65
Os condutores devem ser protegidos por dispositivos de proteção com as
seguintes características:
rk II ≤
Onde:
Ik : corrente de curto-circuito presumida;
Ir : corrente máxima de interrupção (ruptura) do dispositivo de proteção.
46Adélio José de Moraes e Sérgio Ferreira de Paula Silva
CurtoCurto--CircuitoCircuito
GUIAEMdaNBR5410–Cap.5–pg.165
Para transformador de
112,5kVA, circuito de 25
metros utilizando condutor de
16 mm2, Ik =
47Adélio José de Moraes e Sérgio Ferreira de Paula Silva
CurtoCurto--CircuitoCircuito
GUIAEMdaNBR5410–Cap.5–pg.167
48Adélio José de Moraes e Sérgio Ferreira de Paula Silva
CurtoCurto--CircuitoCircuito
Conforme NBR 5410:2004, item 5.3.5 – pg. 65
A integral de Joule (energia) que o dispositivo de proteção deixa passar, deve
ser inferior ou igual à energia necessária para aquecer o condutor desde a
temperatura máxima para serviço contínuo até a temperatura limite de curto-
circuito:
222
SKtI ⋅≤⋅
Onde:
I : corrente de curto-circuito presumida simétrica, valor eficaz;
t : é a duração do curto-circuito, em segundos;
K : constante definida pelo tipo de isolação do condutor;
S : seção do condutor em mm2.
Calculado para o disjuntor
(curvas do fabricante)
Calculado para o condutor
49Adélio José de Moraes e Sérgio Ferreira de Paula Silva
CurtoCurto--CircuitoCircuito
Conforme NBR 5410:2004, item 5.3.5 – pg. 68
946876Alumínio
143103115Cobre
250ºC90ºC140ºC70ºC160’ºC70ºC
FinalInicialFinalInicialFinalInicial
Temperatura
> 300 mm2300 mm2
EPR/XLPE
PVC
Isolação
Material
NBR 5410:2004 - Tabela 30 pg. 68
Valores de K para condutores de isolação de PVC, EPR ou XLPE
50Adélio José de Moraes e Sérgio Ferreira de Paula Silva
CurtoCurto--CircuitoCircuito
Exemplo:
Corrente de cc = 2 kA;
Qual a seção mínima de um
condutor protegido por um
disjuntor de 25 A, Curva C?
51Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos
Conforme NBR 5410:2004, item 5.1.2.2.4 – pg. 38
52Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos
Conforme NBR 5410:2004, item 5.1.2.2.4 – pg. 38
Requisitos Básicos para a proteção contra choques elétricos:
Equipotencialização da proteção;
Seccionamento automático.
-Dispositivos de proteção a sobrecorrente;
- Dispositivos de proteção a corrente diferencial-residual (DR).
53Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos
Conforme NBR 5410:2004, item 5.1.2.2.4 – pg. 38
Equipotencialização da proteção
54Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos
Seccionamento Automático por Sobrecorrente
O dispositivo de proteção contra sobrecorrente assegura proteção contra
contatos indiretos quando o comprimento máximo do circuito não ultrapassar
os limites da tabela abaixo.
31239148862078297750
219273342434547684855109535
15619524431039148861178297725
10012515619825031239150062578296216
62789712415619524431239148860178210
37465874931171461872342963614697826
253139496278971251561952403125214
1519243139486178971221501953252,5
09111418232936465873901171951,5
125100806350403225201613106
Corrente nominal do disjuntor (A)S
(mm2)
GUIAEMdaNBR5410–Cap.3–pg.55
Valores válidos para condutor de cobre; tensão fase-neutro = 220 V; relação entre a seção do
condutor de fase e a seção do condutor de proteção = 1; esquema de aterramento TN; disjuntor
tipo B.
55Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos
Seccionamento Automático por Sobrecorrente
Fatores de correção da Tabela anterior:
62,01 =f
Para condutores de alumínio
1'
1
2
+
=
m
f
m’ = relação entre a seção do
condutor de fase e o condutor
de proteção
m’ = 2
220
3
fnV
f =
Para tensão fase-neutro <> 220 V
14 =f
Para esquema de aterramento TN
25,0
5,0
5
5
=
=
f
f
67,02 =f
Para disjuntor tipo C e tipo D
54321 fffffValorValorNovo ⋅⋅⋅⋅⋅=
56Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos
Conforme NBR 5410:2004, item 5.1.3.2 – pg. 49
Seccionamento Automático por Dispositivo DR
Não há razões para preocupação, quanto ao atendimento da regra de seccionamento
automático, quando se utiliza dispositivos DR, a não ser que a proteção diferencial-
residual seja de baixíssima sensibilidade.
57Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos
58Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Exigência de DRExigência de DR
Os seguintes circuitos devem ser objeto de proteção adicional por dispositivos
DR de alta sensibilidade (corrente diferencial-residual 30 mA):
Circuitos que sirvam pontos de utilização situados em locais contendo banheira ou
chuveiro;
Circuitos que alimentam tomadas de corrente situadas em áreas internas que possam vir
a alimentar equipamentos no exterior;
Circuitos residenciais que sirvam pontos de utilização situados em cozinhas, copas-
cozinhas, lavanderias, áreas de serviço, garagens e demais dependências internas
molhadas em uso normal ou sujeitas a lavagens;
Circuitos em edificações não-residencias que sirvam pontos de tomada situados em
cozinhas, copas-cozinhas, lavanderias, áreas de serviço, garagens e, no geral, em áreas
internas molhadas em uso normal ou sujeitas a lavagens;
Conforme NBR 5410:2004, item 5.1.3.2 – pg. 49
59Adélio José de Moraes e Sérgio Ferreira de Paula Silva
Dimensionamento deDimensionamento de
EletrodutosEletrodutos
60Adélio José de Moraes e Sérgio Ferreira de Paula Silva
DimensionamentoDimensionamento
A utilização de condutos fechados (eletrodutos) devem observar as seguintes exigências:
Os circuitos devem pertencer à mesma instalação (mesmo Quadro);
Os condutores devem ser semelhantes (intervalo de 3 seções normalizadas);
Todos os condutores devem possuir a mesma temperatura máxima;
Todos os condutores devem ser isolados para a maior tensão nominal;
É vedado a utilização de eletrodutos que não sejam expressamente apresentados e
comercializados como tal;
A NBR 5410 somente permite a utilização de eletrodutos não-propagantes de chama e,
quando embutidos, suportem os esforços de deformação característicos da técnica
construtiva utilizada.
Nos eletrodutos só devem ser instalados condutores isolados, cabos unipolares e
multipolares.
Conforme NBR 5410:2004, item 6.2.11.1 – pg. 120
61Adélio José de Moraes e Sérgio Ferreira de Paula Silva
DimensionamentoDimensionamento
Conforme NBR 5410:2004, item 6.2.11.1 – pg. 120
Taxa máxima de ocupação dos eletrodutos
40%3 ou mais
31%2
53%1
Máxima ocupação em relação
à área útil do eletroduto
Quantidade de
condutores ou cabos
62Adélio José de Moraes e Sérgio Ferreira de Paula Silva
DimensionamentoDimensionamento
Tradicionalmente, no Brasil, os eletrodutos eram designados por seu diâmetro
interno em polegadas. Com o advento das novas normas, a designação passou
a ser feita pelo tamanho nominal, um simples número sem dimensão.
3½85
375
2½60
250
1½40
1¼32
125
¾20
½16
Diâmetro Interno
(polegadas)
(designação da rosca)
Tamanho
nominal
Eletroduto Rígido de PVC
InstalaçõesElétricas,Cotrim,A–pg.265
63Adélio José de Moraes e Sérgio Ferreira de Paula Silva
DimensionamentoDimensionamento
Eletroduto Rígido de PVC Tipo Roscável (NBR 6150)
4.976,404.441,454,06,288,0 ± 0,485
3.536,173.186,93,85,575,1 ± 0,475
2.189,571.947,823,14,659,4 ± 0,460
1.346,151.219,223,04,047,8 ± 0,450
1.023,55945,702,73,642,2 ± 0,340
593,95551,552,73,233,2 ± 0,332
356,32336,522,32,626,2 ± 0,325
232,35196,071,82,521,1 ± 0,320
128,67120,771,82,016,7 ± 0,316
Classe BClasse AClasse BClasse A
Área interna disponível
(mm2)*
Espessura da parede
Diâmetro
Externo
(mm)
Tamanho
Nominal
* Valores calculados por A= /4*(diâmetro externo – tolerância – 2*espessura parede)2
64Adélio José de Moraes e Sérgio Ferreira de Paula Silva
DimensionamentoDimensionamento
Eletroduto Rígido de PVC Tipo Soldável (NBR 6150)
5.153,004.441,451,84,785,0 ± 0,485
4.026,43441,951,54,275,0 ± 0,475
2.551,752.206,171,33,360,0 ± 0,460
1.764,601.493,001,13,050,0 ± 0,450
110,37951,151,02,440,0 ± 0,440
692,80593,951,02,132,0 ± 0,332
404,70356,321,01,725,0 ± 0,325
246,05219,051,01,520,0 ± 0,320
147,40126,671,01,516,0 ± 0,316
Classe BClasse AClasse BClasse A
Área interna disponível
(mm2)*
Espessura da parede
Diâmetro
Externo
(mm)
Tamanho
Nominal
* Valores calculados por A= /4*(diâmetro externo – tolerância – 2*espessura parede)2
65Adélio José de Moraes e Sérgio Ferreira de Paula Silva
DimensionamentoDimensionamento
Condutores Prysmian 750 V BWF Antiflam*
* Área Total calculada por A= /4*(diâmetro externo nominal)2
343,0720,9254,4718,0--150
274,6518,7213,8216,5--120
221,6716,8176,7115,0--90
167,4114,6132,7313,0--70
128,6812,895,0311,0--50
91,6010,870,889,5--35
69,409,456,748,5--25
45,367,637,396,9--16
28,276,027,345,924,635,610
4,7--15,204,46
4,2--11,943,94
10,173,6--9,083,42,5
7,073,0--6,152,81,5
Área
Total
(mm2)
Diâmetro
externo nominal
(mm)
Área
Total
(mm2)
Diâmetro
externo nominal
(mm)
Área Total
(mm2)
Diâmetro
externo nominal
(mm)
Cabo Superastic FlexCabo SuperasticFio Superastic
Seção
Nominal
(mm2)

Mais conteúdo relacionado

Mais procurados

Nbr 5422 nb 182 projeto de linhas aereas de transmissao de energia eletrica
Nbr 5422 nb 182   projeto de linhas aereas de transmissao de energia eletricaNbr 5422 nb 182   projeto de linhas aereas de transmissao de energia eletrica
Nbr 5422 nb 182 projeto de linhas aereas de transmissao de energia eletricaFrederico_Koch
 
Best transformer-test-procedures-en
Best transformer-test-procedures-enBest transformer-test-procedures-en
Best transformer-test-procedures-enSuresh Patil
 
Porque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicosPorque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicosAlex Davoglio
 
Redes e Subestação de Energia Iª PARTE
Redes e Subestação de Energia Iª PARTERedes e Subestação de Energia Iª PARTE
Redes e Subestação de Energia Iª PARTEAdão manuel Gonga
 
Metodos de chaves de partida para motores.ppt
Metodos de chaves de partida para motores.pptMetodos de chaves de partida para motores.ppt
Metodos de chaves de partida para motores.pptMauroArthuzo1
 
Nbr 5356 transformador de potencia
Nbr 5356   transformador de potenciaNbr 5356   transformador de potencia
Nbr 5356 transformador de potenciagustavomoc
 
Resistance,bundled conductor,skin effect,proximity effect
Resistance,bundled conductor,skin effect,proximity effectResistance,bundled conductor,skin effect,proximity effect
Resistance,bundled conductor,skin effect,proximity effectvishalgohel12195
 
Generator and Transformer Protection (PART 1)
Generator and Transformer Protection (PART 1)Generator and Transformer Protection (PART 1)
Generator and Transformer Protection (PART 1)Dr. Rohit Babu
 
E cap 8- dimensionamento de eletrodutos
E cap 8- dimensionamento de eletrodutosE cap 8- dimensionamento de eletrodutos
E cap 8- dimensionamento de eletrodutosAndré Felipe
 
Acionamentos Elétricos
Acionamentos ElétricosAcionamentos Elétricos
Acionamentos Elétricoselliando dias
 
Calculo de demanda residencial
Calculo de demanda residencialCalculo de demanda residencial
Calculo de demanda residencialValdineilao Lao
 
Manual Prysmian ( Instalações Elétricas )
Manual Prysmian ( Instalações Elétricas )Manual Prysmian ( Instalações Elétricas )
Manual Prysmian ( Instalações Elétricas )Ricardo Akerman
 
Insulation-Coordination-Fundamentals.pptx
Insulation-Coordination-Fundamentals.pptxInsulation-Coordination-Fundamentals.pptx
Insulation-Coordination-Fundamentals.pptxSatriaThechildofgree
 
Qualidade de Energia Elétrica
Qualidade de Energia ElétricaQualidade de Energia Elétrica
Qualidade de Energia ElétricaJim Naturesa
 
меривкомбацкорс
меривкомбацкорсмеривкомбацкорс
меривкомбацкорсopl-rez
 
Circuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
Circuitos eletricos 1 - Circuitos Elétricos em Corrente ContínuaCircuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
Circuitos eletricos 1 - Circuitos Elétricos em Corrente ContínuaJosé Albuquerque
 
PADRONIZAÇÃO DE ENTRADA DE ENERGIA ELÉTRICA DE UNIDADES CONSUMIDORAS DE BAIXA...
PADRONIZAÇÃO DE ENTRADA DE ENERGIA ELÉTRICA DE UNIDADES CONSUMIDORAS DE BAIXA...PADRONIZAÇÃO DE ENTRADA DE ENERGIA ELÉTRICA DE UNIDADES CONSUMIDORAS DE BAIXA...
PADRONIZAÇÃO DE ENTRADA DE ENERGIA ELÉTRICA DE UNIDADES CONSUMIDORAS DE BAIXA...Ricardo Akerman
 
Projetos elétricos residenciais - Completo
Projetos elétricos residenciais  - CompletoProjetos elétricos residenciais  - Completo
Projetos elétricos residenciais - CompletoSala da Elétrica
 

Mais procurados (20)

Manual de Instalação Elétrica
Manual de Instalação ElétricaManual de Instalação Elétrica
Manual de Instalação Elétrica
 
Nbr 5422 nb 182 projeto de linhas aereas de transmissao de energia eletrica
Nbr 5422 nb 182   projeto de linhas aereas de transmissao de energia eletricaNbr 5422 nb 182   projeto de linhas aereas de transmissao de energia eletrica
Nbr 5422 nb 182 projeto de linhas aereas de transmissao de energia eletrica
 
Best transformer-test-procedures-en
Best transformer-test-procedures-enBest transformer-test-procedures-en
Best transformer-test-procedures-en
 
Porque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicosPorque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicos
 
Redes e Subestação de Energia Iª PARTE
Redes e Subestação de Energia Iª PARTERedes e Subestação de Energia Iª PARTE
Redes e Subestação de Energia Iª PARTE
 
Metodos de chaves de partida para motores.ppt
Metodos de chaves de partida para motores.pptMetodos de chaves de partida para motores.ppt
Metodos de chaves de partida para motores.ppt
 
Nbr 5356 transformador de potencia
Nbr 5356   transformador de potenciaNbr 5356   transformador de potencia
Nbr 5356 transformador de potencia
 
Resistance,bundled conductor,skin effect,proximity effect
Resistance,bundled conductor,skin effect,proximity effectResistance,bundled conductor,skin effect,proximity effect
Resistance,bundled conductor,skin effect,proximity effect
 
Generator and Transformer Protection (PART 1)
Generator and Transformer Protection (PART 1)Generator and Transformer Protection (PART 1)
Generator and Transformer Protection (PART 1)
 
E cap 8- dimensionamento de eletrodutos
E cap 8- dimensionamento de eletrodutosE cap 8- dimensionamento de eletrodutos
E cap 8- dimensionamento de eletrodutos
 
Acionamentos Elétricos
Acionamentos ElétricosAcionamentos Elétricos
Acionamentos Elétricos
 
Calculo de demanda residencial
Calculo de demanda residencialCalculo de demanda residencial
Calculo de demanda residencial
 
Asep1 2016.1
Asep1 2016.1Asep1 2016.1
Asep1 2016.1
 
Manual Prysmian ( Instalações Elétricas )
Manual Prysmian ( Instalações Elétricas )Manual Prysmian ( Instalações Elétricas )
Manual Prysmian ( Instalações Elétricas )
 
Insulation-Coordination-Fundamentals.pptx
Insulation-Coordination-Fundamentals.pptxInsulation-Coordination-Fundamentals.pptx
Insulation-Coordination-Fundamentals.pptx
 
Qualidade de Energia Elétrica
Qualidade de Energia ElétricaQualidade de Energia Elétrica
Qualidade de Energia Elétrica
 
меривкомбацкорс
меривкомбацкорсмеривкомбацкорс
меривкомбацкорс
 
Circuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
Circuitos eletricos 1 - Circuitos Elétricos em Corrente ContínuaCircuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
Circuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
 
PADRONIZAÇÃO DE ENTRADA DE ENERGIA ELÉTRICA DE UNIDADES CONSUMIDORAS DE BAIXA...
PADRONIZAÇÃO DE ENTRADA DE ENERGIA ELÉTRICA DE UNIDADES CONSUMIDORAS DE BAIXA...PADRONIZAÇÃO DE ENTRADA DE ENERGIA ELÉTRICA DE UNIDADES CONSUMIDORAS DE BAIXA...
PADRONIZAÇÃO DE ENTRADA DE ENERGIA ELÉTRICA DE UNIDADES CONSUMIDORAS DE BAIXA...
 
Projetos elétricos residenciais - Completo
Projetos elétricos residenciais  - CompletoProjetos elétricos residenciais  - Completo
Projetos elétricos residenciais - Completo
 

Semelhante a 6.05 _dimensionamento

Manual instal eletricas_prova
Manual instal eletricas_provaManual instal eletricas_prova
Manual instal eletricas_provaPedro Cruz
 
NBR5380 - Transformador de potencia.pdf
NBR5380 - Transformador de potencia.pdfNBR5380 - Transformador de potencia.pdf
NBR5380 - Transformador de potencia.pdfAdrianSampaioRodrigu
 
dimensionamento_de_cabos_isolados.pdf
dimensionamento_de_cabos_isolados.pdfdimensionamento_de_cabos_isolados.pdf
dimensionamento_de_cabos_isolados.pdfcarlaindira
 
Aula 09 dimensionamentos elétricos
Aula 09   dimensionamentos elétricosAula 09   dimensionamentos elétricos
Aula 09 dimensionamentos elétricosEdivaldo Blanco
 
Condutores da prysmiam guia dimensionamento baixa_tensao
Condutores da prysmiam guia dimensionamento baixa_tensaoCondutores da prysmiam guia dimensionamento baixa_tensao
Condutores da prysmiam guia dimensionamento baixa_tensaoLeonardo Ferreira
 
Condutores da prysmiam guia dimensionamento baixa_tensao
Condutores da prysmiam guia dimensionamento baixa_tensaoCondutores da prysmiam guia dimensionamento baixa_tensao
Condutores da prysmiam guia dimensionamento baixa_tensaoLeonardo Ferreira
 
Nbr 05410 2005 - guia dimensionamento de circuitos (não é uma norma)
Nbr 05410   2005 - guia dimensionamento de circuitos (não é uma norma)Nbr 05410   2005 - guia dimensionamento de circuitos (não é uma norma)
Nbr 05410 2005 - guia dimensionamento de circuitos (não é uma norma)Sebastian Nunes
 
48294078 i3130003-calculo-tracao-dos-cabos
48294078 i3130003-calculo-tracao-dos-cabos48294078 i3130003-calculo-tracao-dos-cabos
48294078 i3130003-calculo-tracao-dos-cabosMarcelo Moraes
 
Dimensionamento de condutores
Dimensionamento de condutoresDimensionamento de condutores
Dimensionamento de condutoresAlei Souza
 
Dimensionamento de condutores elétricos em bt
Dimensionamento de condutores elétricos em btDimensionamento de condutores elétricos em bt
Dimensionamento de condutores elétricos em btGerson Roberto da Silva
 
Pirelli
PirelliPirelli
Pirelliedgjp
 
Instalação de Motores Elétricos.pptx
Instalação de Motores Elétricos.pptxInstalação de Motores Elétricos.pptx
Instalação de Motores Elétricos.pptxVicenteOsmil
 
Aspectos Técnicos da Instalação de Motores Elétricos.pptx
Aspectos Técnicos da Instalação de Motores Elétricos.pptxAspectos Técnicos da Instalação de Motores Elétricos.pptx
Aspectos Técnicos da Instalação de Motores Elétricos.pptxVladimirSilva37
 
Guia_de_Dimensionamento-Baixa_Tensao_Rev9 (1).pdf
Guia_de_Dimensionamento-Baixa_Tensao_Rev9 (1).pdfGuia_de_Dimensionamento-Baixa_Tensao_Rev9 (1).pdf
Guia_de_Dimensionamento-Baixa_Tensao_Rev9 (1).pdffern97
 
9537 chassis sk4.0_l-ca_manual_de_servicio
9537 chassis sk4.0_l-ca_manual_de_servicio9537 chassis sk4.0_l-ca_manual_de_servicio
9537 chassis sk4.0_l-ca_manual_de_serviciohumberto salazar
 
Simulado 744415 2014-07-28 21-52_47
Simulado 744415 2014-07-28 21-52_47Simulado 744415 2014-07-28 21-52_47
Simulado 744415 2014-07-28 21-52_47Thales Hatem
 

Semelhante a 6.05 _dimensionamento (20)

Manual instal eletricas_prova
Manual instal eletricas_provaManual instal eletricas_prova
Manual instal eletricas_prova
 
NBR5380 - Transformador de potencia.pdf
NBR5380 - Transformador de potencia.pdfNBR5380 - Transformador de potencia.pdf
NBR5380 - Transformador de potencia.pdf
 
dimensionamento_de_cabos_isolados.pdf
dimensionamento_de_cabos_isolados.pdfdimensionamento_de_cabos_isolados.pdf
dimensionamento_de_cabos_isolados.pdf
 
Aula 09 dimensionamentos elétricos
Aula 09   dimensionamentos elétricosAula 09   dimensionamentos elétricos
Aula 09 dimensionamentos elétricos
 
Condutores da prysmiam guia dimensionamento baixa_tensao
Condutores da prysmiam guia dimensionamento baixa_tensaoCondutores da prysmiam guia dimensionamento baixa_tensao
Condutores da prysmiam guia dimensionamento baixa_tensao
 
Condutores da prysmiam guia dimensionamento baixa_tensao
Condutores da prysmiam guia dimensionamento baixa_tensaoCondutores da prysmiam guia dimensionamento baixa_tensao
Condutores da prysmiam guia dimensionamento baixa_tensao
 
06 dimensionamento
06 dimensionamento06 dimensionamento
06 dimensionamento
 
Nbr 05410 2005 - guia dimensionamento de circuitos (não é uma norma)
Nbr 05410   2005 - guia dimensionamento de circuitos (não é uma norma)Nbr 05410   2005 - guia dimensionamento de circuitos (não é uma norma)
Nbr 05410 2005 - guia dimensionamento de circuitos (não é uma norma)
 
48294078 i3130003-calculo-tracao-dos-cabos
48294078 i3130003-calculo-tracao-dos-cabos48294078 i3130003-calculo-tracao-dos-cabos
48294078 i3130003-calculo-tracao-dos-cabos
 
Dimensionamento de condutores
Dimensionamento de condutoresDimensionamento de condutores
Dimensionamento de condutores
 
Dimensionamento de condutores elétricos em bt
Dimensionamento de condutores elétricos em btDimensionamento de condutores elétricos em bt
Dimensionamento de condutores elétricos em bt
 
06 dimensionamento
06 dimensionamento06 dimensionamento
06 dimensionamento
 
Dimensionamento bt
Dimensionamento btDimensionamento bt
Dimensionamento bt
 
Pirelli
PirelliPirelli
Pirelli
 
Instalação de Motores Elétricos.pptx
Instalação de Motores Elétricos.pptxInstalação de Motores Elétricos.pptx
Instalação de Motores Elétricos.pptx
 
Aspectos Técnicos da Instalação de Motores Elétricos.pptx
Aspectos Técnicos da Instalação de Motores Elétricos.pptxAspectos Técnicos da Instalação de Motores Elétricos.pptx
Aspectos Técnicos da Instalação de Motores Elétricos.pptx
 
Guia_de_Dimensionamento-Baixa_Tensao_Rev9 (1).pdf
Guia_de_Dimensionamento-Baixa_Tensao_Rev9 (1).pdfGuia_de_Dimensionamento-Baixa_Tensao_Rev9 (1).pdf
Guia_de_Dimensionamento-Baixa_Tensao_Rev9 (1).pdf
 
9537 chassis sk4.0_l-ca_manual_de_servicio
9537 chassis sk4.0_l-ca_manual_de_servicio9537 chassis sk4.0_l-ca_manual_de_servicio
9537 chassis sk4.0_l-ca_manual_de_servicio
 
Simulado 744415 2014-07-28 21-52_47
Simulado 744415 2014-07-28 21-52_47Simulado 744415 2014-07-28 21-52_47
Simulado 744415 2014-07-28 21-52_47
 
Laudo técnico
Laudo técnicoLaudo técnico
Laudo técnico
 

Mais de Mauricio Machado Concalves

Mais de Mauricio Machado Concalves (6)

Dimensionamento de componentes_i_v02_13
Dimensionamento de componentes_i_v02_13Dimensionamento de componentes_i_v02_13
Dimensionamento de componentes_i_v02_13
 
Weg guia-de-selecao-de-partidas-50037327-manual-portugues-br
Weg guia-de-selecao-de-partidas-50037327-manual-portugues-brWeg guia-de-selecao-de-partidas-50037327-manual-portugues-br
Weg guia-de-selecao-de-partidas-50037327-manual-portugues-br
 
Placa identificadora do motor elétrico
Placa identificadora do motor elétricoPlaca identificadora do motor elétrico
Placa identificadora do motor elétrico
 
Animais peçonhentos
Animais peçonhentosAnimais peçonhentos
Animais peçonhentos
 
Análise de acidente cipa
Análise de acidente cipaAnálise de acidente cipa
Análise de acidente cipa
 
Exemplosdemapasderiscos 091229181656-phpapp02
Exemplosdemapasderiscos 091229181656-phpapp02Exemplosdemapasderiscos 091229181656-phpapp02
Exemplosdemapasderiscos 091229181656-phpapp02
 

6.05 _dimensionamento

  • 1. 1Adélio José de Moraes e Sérgio Ferreira de Paula Silva Dimensionamento deDimensionamento de CondutoresCondutores
  • 2. 2Adélio José de Moraes e Sérgio Ferreira de Paula Silva DimensionamentoDimensionamento O dimensionamento técnico de um circuito corresponde à aplicação dos diversos itens da NBR 5410:2004 relativos à escolha da seção de um condutor e do seu respectivo dispositivo de proteção. Os seis critérios da norma são: Capacidade de condução de corrente, conforme 6.2.5; Queda de Tensão, conforme 6.2.7; Seção mínima, conforme 6.2.6.1.1; Sobrecarga, conforme 5.3.4 e 6.3.4.2; Curto-circuito, conforme 5.3.5 e 6.3.4.3; e Choques elétricos, conforme 5.1.2.2.4. Conforme NBR 5410:2004, item 6.2.6.1.2 – pg. 113
  • 3. 3Adélio José de Moraes e Sérgio Ferreira de Paula Silva DimensionamentoDimensionamento Para considerarmos um circuito completa e corretamente dimensionado, é necessário aplicar os seis critérios, cada um resultando em uma seção e considerar como seção final a maior dentre todas as obtidas. Especial atenção deve ser dispensada ao dimensionamento de condutores em circuitos onde haja a presença de harmônicas. Este tópico é abordado no item 6.2.6.2 da NBR 5410:2004.
  • 4. 4Adélio José de Moraes e Sérgio Ferreira de Paula Silva Dimensionamento de CondutoresDimensionamento de Condutores Conforme NBR 5410:2004, item 6.2.5 – pg. 90 Tipos de Linhas Elétricas - Condutores Condutor Isolado: Possui somente o condutor e a isolação Cabo Unipolar: Condutor, isolação e uma camada de revestimento, chamada cobertura, para proteção mecânica Cabo Multipolar: Possui sob a mesma cobertura, dois ou mais condutores isolados, denominados veias. Excelentes propriedades elétricas Boa resistência térmica Baixa resistência mecânica Baixa resistência a chamas EPR (BORRACHA ETILENO PROPILENO) Excelentes propriedades elétricas Boa resistência térmica Baixa flexibilidade Baixa resistência à chama XLPE (POLIETILENO RETICULADO) Boas propriedades mecânicas e elétricas Não propagante de chama Baixo índice de estabilidade térmica PVC (CLORETO DE POLIVINILA) PONTOS FORTESPONTOS FRACOSMATERIAL
  • 5. 5Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5 – pg. 98 O critério da capacidade de condução de corrente visa garantir uma vida satisfatória a condutores e isolações submetidos aos efeitos térmicos produzidos pela circulação de correntes equivalentes às suas capacidades de condução durante períodos prolongados em serviço normal. Para a determinação da seção do condutor por este critério, deve-se seguir os seguintes passos principais: 1) Calcular a corrente de projeto do circuito; 2) Determinar o método de instalação; 3) Aplicar os fatores de correção apropriados.
  • 6. 6Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004 – pg. 90 CC- Cabos unipolares ou cabo multipolar sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do cabo 11 B2B1B1 Condutores/cabos em eletroduto de seção circular embutido em alvenaria 7,8 B2B1B1 Condutores/cabos em eletroduto aparente de seção não-circular sobre parede 5,6 B2B1B1 Condutores/cabos em eletroduto aparente de seção circular sobre parede ou espaçado menos de 0,3 vez o diâmetro do eletroduto 3,4 A2 Cabo Multipolar A1A1 Condutores/cabos em eletroduto de seção circular embutido em parede termicamente isolante 1,2 Cabo Unipolar Condutor Isolado DescriçãoIlustraçãoNº Métodos de Instalação
  • 7. 7Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5 – pg. 90 Métodos de Instalação EF- Cabos unipolares ou cabo multipolar sobre suportes horizontais, eletrocalha aramada ou tela 15 EF- Cabos unipolares ou cabo multipolar afastado(s) da parede mais de 0,3 vez o diâmetro do cabo 14 EF- Cabos unipolares ou cabo multipolar em bandeja não- perfurada, perfilado ou prateleira 13 CC- Cabos unipolares ou cabo multipolar em bandeja perfurada, horizontal ou vertical 12 C Cabo Multipolar C- Cabos unipolares ou cabo multipolar fixado diretamente no teto, ou afastado mais de 0,3 vez o diâmetro do cabo 11A, 11B Cabo Unipolar Condutor Isolado DescriçãoIlustraçãoNº
  • 8. 8Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5 – pg. 98 Cálculo da corrente de projeto FPV P IB ⋅ = Onde: IB : corrente de projeto; P : potência ativa total do circuito; V : tensão do circuito; FP : fator de potência total do circuito. Monofásicos/Bifásicos FPV P IB ⋅⋅ = 3 Trifásicos
  • 9. 9Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5 – pg. 112 Número de condutores carregados 3 ou 4Trifásico com neutro 3Trifásico sem neutro 3Duas fases com neutro 2Duas fases sem neutro 2Monofásico a três condutores 2Monofásico a dois condutores Número de condutores carregados a ser adotado Esquema de condutores vivos do circuito Para 4 condutores carregados aplicar o fator de 0,86 às capacidades de condução válidas para 3 condutores carregados. Considerar o trifáisco com neutro com 4 condutores carregados quando a taxa de harmônicos triplos na corrente de fase for superior a 15%. NBR5410:2004-Tabela46pg.112
  • 10. 10Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5 Fatores de Correção: 1) Fatores de correção para temperatura; 2) Fatores de correção para resistividade térmica do solo; 3) Fatores de correção para agrupamento de circuitos.
  • 11. 11Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5.3 – pg. 106 Fatores de Correção para Temperatura – k1 Utilizado para temperaturas ambientes diferentes de 30ºC para linhas não subterrâneas e de 20ºC (temperatura do solo) para linhas subterrâneas. 0,890,840,960,9435 0,850,770,910,8740 0,820,710,870,7945 0,760,630,820,7150 0,710,550,760,6155 0,650,450,710,5060 0,930,891130 0,960,951,041,0625 111,081,1220 1,041,051,121,1715 1,071,101,151,2210 Do soloAmbiente EPR ou XLPEPVCEPR ou XLPEPVC Isolação Temperatura (ºC) NBR 5410:2004 - Tabela 40 pg. 106
  • 12. 12Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5.4 – pg. 107 Fatores de Correção para Resistividade Térmica do Solo – k2 Utilizado em linhas subterrâneas, onde a resistividade térmica do solo seja diferente de 2,5 K.m/W, caso típico de solos secos, deve ser feita uma correção adequada nos valores da capacidade de condução de corrente. Solos úmidos possuem valores menores de resistividade térmica, enquanto solos muito secos apresentam valores maiores 0,961,051,11,18Fator de Correção 321,51Resistividade Térmica K.m/W NBR 5410:2004 - Tabela 41 pg. 107
  • 13. 13Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5.5 – pg. 107 Fatores de Correção para Agrupamento de Circuitos – k3 Para linhas elétricas contendo um total de condutores superior às quantidades indicadas nas tabelas de capacidade de condução de corrente, fatores de correção devem ser aplicados. 0,780,780,790,790,800,800,820,871,00 Camada única sobre leito, suporte, etc. 5 38 e 39 (métodos E a F) 0,720,720,730,730,750,770,820,881,00 Camada única em bandeja perfurada 4 0,610,620,630,640,660,680,720,810,95Camada única no teto3 36 a 37 (métodos C) 0,700,710,720,720,730,750,790,851,00 Camada única sobre parede, piso, ou bandeja não perfurada ou prateleira 2 36 a 39 (métodos A a F) 0,380,410,450,500,520,540,570,600,650,700,801,00 Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado 1 > 20 15 a 19 12 a 15 9 a 11 87654321 Tabelas dos métodos de referência Número de Circuitos ou de Cabos Multipolares Disposição dos cabos justapostos Item Se um agrupamento consiste em N condutores isolados ou cabos unipolares, pode-se considerar tanto N/2 circuitos com 2 condutores carregados como N/3 circuitos com 3 condutores carregados. NBR 5410:2004 - Tabela 42 pg. 108
  • 14. 14Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5.5.5 – pg. 111 Fatores de Correção para Agrupamento de Circuitos – k3 Os fatores das tabelas 42 a 45 são válidos para grupos de condutores semelhantes, igualmente carregados. São considerados semelhantes aqueles que se baseiam na mesma temperatura máxima para serviço contínuo e cujas seções nominais estão contidas no intervalo de 3 seções normalizadas sucessivas. Quando os condutores de um grupo não preencherem essa condição, os fatores de agrupamento aplicáveis devem ser obtidos recorrendo-se a qualquer das duas alternativas seguintes: 1) Cálculo caso a caso, utilizando, por exemplo, a ABNT 11301; ou 2) Caso não seja viável um cálculo específico,adoção do fator F da expressão: n F 1 = F : fator de correção n : número de circuitos ou de cabos multipolares
  • 15. 15Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Cálculo da Corrente de Projeto Corrigida Conforme NBR 5410:2004, Anexo F – pg. 196 321 ' kkk I I B B ⋅⋅ = O valor da corrente de projeto corrigida é utilizado na determinação da seção do condutor através das tabelas 36 a 39.
  • 16. 16Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Conforme NBR 5410:2004, item 6.2.5 – pg. 101 297361403461313351370415261291286321240 258312341392268300314353223248245273185 230278299344236265275309196219216240150 203246259299206232239269172192188210120 17921622325817920120723215016716418295 15118318421314916817119212513913615170 1221481441681181331341519911010811950 103125119138991111101258392899935 86104961128090891016875738025 67817685626968765257566116 52635763465250573943424610 3947414634383641293231346 3138323627302832232524264 242924272023212417,518,51819,52,5 182217,519,51516,515,517,5131413,514,51,5 1518141512131214101110111 323232323232 Nº condutores carregadosNº condutores carregadosNº condutores carregados DCB2B1A2A1 Capacidades de condução de corrente, para os métodos de referência A1, A2, B1, B2, C e D . Condutores isolados, cabos unipolares e multipolares – cobre, isolação PVC Seções Nominais mm² NBR5410:2004-Tabela36pg.101
  • 17. 17Adélio José de Moraes e Sérgio Ferreira de Paula Silva Capacidade de ConduCapacidade de Conduçção de Correnteão de Corrente Exemplo de Cálculo Conforme NBR 5410:2004, Anexo F – pg. 196 Um circuito de iluminação de 1200 W, fase-neutro, passa no interior de um eletroduto embutido de PVC, juntamente com outros quatro condutores isolados de outros circuitos em cobre. A temperatura ambiente é de 35ºC. Determinar a seção do condutor.
  • 18. 18Adélio José de Moraes e Sérgio Ferreira de Paula Silva BT Queda de TensãoQueda de Tensão A queda de tensão entre a origem da instalação e qualquer ponto de utilização não deve ser superior aos valores indicados na seqüência. QG BT QT QT Circuitos Terminais Circuitos De Distribuição 5% 4%Fornecimento em tensãoFornecimento em tensão secundsecundáária deria de distribuidistribuiççãoão Ponto de entrega no postePonto de entrega no poste Conforme NBR 5410:2004, item 6.2.7 – pg. 115
  • 19. 19Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão A queda de tensão entre a origem da instalação e qualquer ponto de utilização não deve ser superior aos valores indicados na seqüência. QG BT QT QT Circuitos Terminais Circuitos De Distribuição 7% 4%Transformador deTransformador de propriedade dapropriedade da concessionconcessionááriaria Ponto de entrega noPonto de entrega no secundsecundáário dorio do transformadortransformador Conforme NBR 5410:2004, item 6.2.7 – pg. 115
  • 20. 20Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão A queda de tensão entre a origem da instalação e qualquer ponto de utilização não deve ser superior aos valores indicados na seqüência. MT QG BT QT QT Circuitos Terminais Circuitos De Distribuição 7% 4%Transformador deTransformador de propriedade da unidadepropriedade da unidade consumidoraconsumidora Ponto de entrega noPonto de entrega no primprimáário dorio do transformadortransformador Conforme NBR 5410:2004, item 6.2.7 – pg. 115
  • 21. 21Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão Conforme NBR 5410:2004, item 6.2.7 – pg. 115 A queda de tensão entre a origem da instalação e qualquer ponto de utilização não deve ser superior aos valores indicados na seqüência. QG BT QT QT Circuitos Terminais Circuitos De Distribuição 7% 4%Grupo Gerador PrGrupo Gerador Próóprioprio
  • 22. 22Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão Método 1 )ou(% 200 fffn B C VVV Il S ⋅∆ ⋅⋅⋅ = ρ Onde: Sc : seção em mm2; V% : queda de tensão máxima, em %; V : tensão do circuito fase-neutro ou fase-fase, em V; l : comprimento do circuito, em m IB : corrente de projeto, em A; ρ : resistividade do material condutor = cobre = 1/56 Ω.mm2/m MonofMonofáásico/Bifsico/Bifáásicosico ff B C VV Il S ⋅∆ ⋅⋅⋅ = % 2,173 ρ TrifTrifáásicosico
  • 23. 23Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão Método 2 B fn Il VV U ⋅ ∆⋅⋅ =∆ %10 Onde: U : queda de tensão, em V/Axkm; V% : queda de tensão máxima, em %; V : tensão do circuito, em V; l : comprimento do circuito, em m IB : corrente de projeto, em A; MonofMonofáásicosico B ff Il VV U ⋅ ∆⋅⋅ =∆ %10 BifBifáásico/Trifsico/Trifáásicosico Utilizar este método no trabalho
  • 24. 24Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão Método 2 0,360,360,410,400,420,42120 0,440,430,500,480,510,5095 0,590,550,670,620,670,6470 0,820,760,940,850,950,8650 1,090,981,251,121,251,1235 1,491,331,711,511,721,5025 2,332,032,682,322,702,2716 3,673,174,233,634,203,5410 6,145,257,076,037,005,876 9,157,7910,68,9610,59,04 14,712,416,914,316,8142,5 23,920,227,623,327,4231,5 FP=0,95FP=0,8FP=0,95FP=0,8FP=0,95FP=0,8 Circuito trifásicoCircuito Monofásico Circuito Monofásico e Trifásico Eletroduto e eletrocalha (material não-magnético) Eletroduto e eletrocalha (material magnético) Seção (mm2) Queda de tensão em V/A.km DimensionamentodeCondutoresemBaixaTensão Tabela19–Pirellipg61
  • 25. 25Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão Método 3 Carga DistribuCarga Distribuíída:da: = ⋅⋅Φ+Φ⋅⋅=∆ n i iB lIxsenrtU i 1 )cos( 3Queda de tensão de linha 1Queda de tensão de fase Circuito trifásico equilibrado 2Queda de tensão de linha 1 2 Queda de tensão de fase Monofásico a 3 condutores (2 fases-neutro) equilibrado Monofásico a dois condutores (fase-fase ou fase-neutro) tTipo de Circuito O somatório é calculado considerando a corrente e o comprimento de cada trecho.
  • 26. 26Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão Método 3 )cos( Φ+Φ⋅⋅⋅⋅=∆ xsenrIltU B Carga Concentrada:Carga Concentrada: Onde: U : queda de tensão, em V; l : comprimento do circuito, em km IB : corrente de projeto, em A; r : resistência do condutor, em Ω/km; x : reatância indutiva do condutor, em Ω/km; t : coeficiente que depende do tipo de circuito; cosΦ, sen Φ : fator de potência e fator reativo da carga.
  • 27. 27Adélio José de Moraes e Sérgio Ferreira de Paula Silva Queda de TensãoQueda de Tensão Método 3 0,100,190,15120 0,100,230,1995 0,100,320,2770 0,110,470,3950 0,110,630,5235 0,120,870,7325 0,121,381,1516 0,132,191,8310 0,133,693,086 0,145,524,614 0,158,877,412,5 0,1614,4812,11,5 XLRca Condutos não-magnéticos FN/FF/3FRccSeção (mm2) Resistências elétricas e reatâncias indutivas de fios e cabos isolados em PVC, EPR e XLPE em condutos fechados (valores em ΩΩΩΩ/km) DimensionamentodeCondutoresemBaixaTensão Tabela22–Pirellipg64
  • 28. 28Adélio José de Moraes e Sérgio Ferreira de Paula Silva SeSeçção Mão Míínimanima -- FaseFase Conforme NBR 5410:2004, item 6.2.6.1.1 – pg. 113 0,75 Circuitos a extrabaixa tensão para aplicações especiais 0,75Para qualquer outra aplicação Como especificado na norma do equipamento Para um equipamento específico Ligações flexíveis 0,5Circuitos de sinalização e controle 2,5Circuitos de Força 1,5Circuitos de Iluminação Fixas em geral Seção Mínima p/ condutores de cobre (mm2) UtilizaçãoInstalação NBR 5410:2004 - Tabela 47 pg. 113 As seções mínimas são ditadas por razões mecânicas
  • 29. 29Adélio José de Moraes e Sérgio Ferreira de Paula Silva SeSeçção Mão Míínimanima -- NeutroNeutro Conforme NBR 5410:2004, item 6.2.6.2 – pg. 114 2 Quando em um circuito bifásico ou trifásico com neutro possuir uma taxa de 3ª harmônica e seus múltiplos superior a 33%, pode ser necessário um condutor neutro com seção superior à dos condutores fase O condutor neutro deve possuir a mesma seção que os condutores fase no seguintes casos: Circuitos monofásicos; Circuitos bifásicos com neutro (2 fases + neutro), quando a taxa de 3ª harmônica e seus múltiplos não for superior a 33%. Circuitos trifásicos com neutro, quando a taxa de 3ª harmônica e seus múltiplos não for superior a 33%.
  • 30. 30Adélio José de Moraes e Sérgio Ferreira de Paula Silva SeSeçção Mão Míínimanima -- NeutroNeutro Conforme NBR 5410:2004, item 6.2.6.2 – pg. 114 2 Conforme 6.2.6.2.6, apenas nos circuitos trifásicos é admitida a redução do condutor neutro. Tal procedimento deve atender, simultaneamente, as três condições seguintes: O circuito for presumivelmente equilibrado, em serviço normal; A corrente das fases não contiver uma taxa de 3ª harmônica e seus múltiplos superior a 15%; e O condutor neutro for protegido contra sobrecorrentes, conforme 5.3.2.2.
  • 31. 31Adélio José de Moraes e Sérgio Ferreira de Paula Silva SeSeçção Mão Míínimanima -- NeutroNeutro Conforme NBR 5410:2004, item 6.2.6.2.6 – pg. 115 Nestes casos, os seguintes valores mínimos podem ser adotados para a seção do condutor neutro. 185400 150300 120240 95185 70150 70120 5095 3570 2550 2535 SS 25 Seção mínima do condutor neutro (mm2)Seção dos condutores fase (mm2) NBR5410:2004-Tabela48pg.115
  • 32. 32Adélio José de Moraes e Sérgio Ferreira de Paula Silva HarmônicosHarmônicos Harmônicas são ondas senoidais, de tensão ou de corrente, cujasHarmônicas são ondas senoidais, de tensão ou de corrente, cujas frequências são mfrequências são múúltiplas inteiras da frequência fundamental.ltiplas inteiras da frequência fundamental. As ondas distorcidas podem ser decompostas em uma soma de ondas senoidais de frequências diversas, múltiplas da fundamental. Conforme NBR 5410:2004, Anexo F – pg. 196
  • 33. 33Adélio José de Moraes e Sérgio Ferreira de Paula Silva HarmônicosHarmônicos Lâmpada Fluorescente Compacta (MonofLâmpada Fluorescente Compacta (Monofáásica)sica) 100 93 81,5 67 51 36 28 166166 11 33 55 77 99 1111 1313 DTIDTI 00 2020 4040 6060 8080 DH (%)DH (%)
  • 34. 34Adélio José de Moraes e Sérgio Ferreira de Paula Silva HarmônicosHarmônicos Inversor de frequência PWM (TrifInversor de frequência PWM (Trifáásico)sico) 100 65 73 11 55 DHTDHT 00 2020 4040 6060 8080 100100 120120 DH (%)DH (%) 38 77 7 1111 10 1313 5 1717
  • 35. 35Adélio José de Moraes e Sérgio Ferreira de Paula Silva HarmônicosHarmônicos Efeitos provocados por HarmônicosEfeitos provocados por Harmônicos Operação indevida de equipamentos; Eletrônicos, de controle, proteção e outros. Erros de leitura em equipamentos de medição; Sobretensões; Comprometimento da isolação e da vida útil dos equipamentos. Sobrecorrentes; Efeitos térmicos nocivos aos equipamentos. Interferências em sistemas de comunicação; Principalmente sinais de rádio. Redução da vida útil; Perdas excessivas em cabos e transformadores; Ruídos audíveis; Ressonâncias Série e Paralela, entre outros.
  • 36. 36Adélio José de Moraes e Sérgio Ferreira de Paula Silva HarmônicosHarmônicos Harmônicos TriplosHarmônicos Triplos Fase A (50 A) Neutro (82 A) Cargas Eletrônicas Fase B (50 A) Fase C (50 A)
  • 37. 37Adélio José de Moraes e Sérgio Ferreira de Paula Silva HarmônicosHarmônicos Fatores de Correção para Harmônicos Quando, num circuito trifásico com neutro ou num circuito com duas fases e neutro, a taxa de terceira harmônica e seus múltiplos for superior a 33%, a corrente que circula pelo neutro é superior à corrente das fases. A seção do condutor neutro pode ser determinada calculando-se a corrente no neutro sob a forma: Conforme NBR 5410:2004, Anexo F – pg. 196 ' BhN IfI = 2 2 2 1 ' n n B III Σ+= Onde: I’B : corrente de projeto corrigida; I1 , In : corrente fundamental e harmônicas; fh : fator de correção em função da taxa de harmônicos triplos.
  • 38. 38Adélio José de Moraes e Sérgio Ferreira de Paula Silva HarmônicosHarmônicos Fatores de Correção para Harmônicos Conforme NBR 5410:2004, Anexo F – pg. 196 1,411,7366% 1,381,6461% a 65% 1,341,5556% a 60% 1,301,4551% a 55% 1,271,3546% a 50% 1,231,2441% a 45% 1,191,1936% a 40% 1,151,1533% a 35% Circuito com duas fases e neutro Circuito trifásico com neutro fhTaxa de Harmônicos Triplos NBR 5410:2004 - Tabela F.1 pg. 196
  • 39. 39Adélio José de Moraes e Sérgio Ferreira de Paula Silva SeSeçção Mão Míínimanima -- ProteProteççãoão Conforme NBR 5410:2004, item 6.4.3.1.3 – pg. 150 A seção do condutor de proteção pode ser determinada através da seguinte tabela: S/2S > 35 1616 < S 35 SS 16 Seção mínima do condutor de proteção correspondente (mm2) Seção dos condutores fase (mm2) NBR 5410:2004 - Tabela 58 pg. 150
  • 40. 40Adélio José de Moraes e Sérgio Ferreira de Paula Silva SobrecargaSobrecarga Conforme NBR 5410:2004, item 5.3.4 – pg. 63 A sobrecarga não é exatamente um critério de dimensionamento dos condutores, entretanto, intervêm na determinação de sua seção.
  • 41. 41Adélio José de Moraes e Sérgio Ferreira de Paula Silva SobrecargaSobrecarga Conforme NBR 5410:2004, item 5.3.4 – pg. 63 Para que a proteção dos condutores contra sobrecargas fique assegurada, as características de atuação do dispositivo a provê-la devem ser tais que: 3212 321 45,1 kkkII e kkkIII Z ZnB ⋅⋅⋅⋅≤ ⋅⋅⋅≤≤ Onde: IB : corrente de projeto, em A; IZ : capacidade de condução de corrente dos condutores; In : corrente nominal do dispositivo de proteção (ou corrente de ajuste para dispositivos ajustáveis), nas condições previstas para sua instalação. I2 : corrente convencional de atuação, para disjuntores, ou corrente convencional de fusão, para fusíveis.
  • 42. 42Adélio José de Moraes e Sérgio Ferreira de Paula Silva SobrecargaSobrecarga Conforme NBR 5410:2004, item 5.3.4 – pg. 63 A condição, , é aplicável quando for possível assumir que a temperatura limite de sobrecarga dos condutores não venha a ser mantida por um tempo superior a 100 h durante 12 meses consecutivos, ou por 500 h ao longo da vida útil do condutor. Quando isso ocorrer, a condição deve ser substituída por: ZII ⋅≤ 45,12 ZII ≤2
  • 43. 43Adélio José de Moraes e Sérgio Ferreira de Paula Silva Disjuntores (IEC 60898)Disjuntores (IEC 60898) Corrente convencional de atuação é o valor especificado de corrente que provoca a atuação do dispositivo dentro do tempo convencional. O tempo convencional: 1) Corrente convencional de não atuação – 1,13; 2) Corrente convencional de atuação – 1,45. A63horas2A63hora1 >≤ Na prática a corrente I2 é considerada igual à corrente convencional de atuação dos disjuntores. t < 1h (In 63 A) t < 2h (In > 63 A) 1,45 In t 1h (In 63 A) t 2h (In > 63 A) 1,13 In Tempo de AtuaçãoIntensidade Os disjuntores NBR IEC 60898, 60947-2 e NBR 5361 atendem a condição de I2
  • 44. 44Adélio José de Moraes e Sérgio Ferreira de Paula Silva Curvas de Disjuntores (IEC 60898)Curvas de Disjuntores (IEC 60898) CURVA B: Tem como característica principal o disparo instantâneo para corrente entre 3 a 5 vezes a corrente nominal. sendo assim, são aplicados principalmente na proteção de circuitos com características resistivas ou com grandes distâncias de cabos envolvidas. Exemplos: Lâmpadas incandescentes, chuveiros, aquecedores elétricos, etc. CURVA C: Tem como característica o disparo instantâneo para correntes entre 5 e 10 vezes a corrente nominal. sendo assim, são aplicados para proteção de circuitos com cargas indutivas. Exemplos: Lâmpadas Fluorescentes, geladeiras, máquinas de lavar, etc. CURVA D: disparo instantâneo para correntes entre 10 a 20 vezes a corrente nominal
  • 45. 45Adélio José de Moraes e Sérgio Ferreira de Paula Silva CurtoCurto--CircuitoCircuito A suportabilidade a correntes de curto-circuito dos condutores, determina o tipo de dispositivo de proteção dos mesmos, podendo modificar sua seção. Conforme NBR 5410:2004, item 5.3.5 – pg. 65 Os condutores devem ser protegidos por dispositivos de proteção com as seguintes características: rk II ≤ Onde: Ik : corrente de curto-circuito presumida; Ir : corrente máxima de interrupção (ruptura) do dispositivo de proteção.
  • 46. 46Adélio José de Moraes e Sérgio Ferreira de Paula Silva CurtoCurto--CircuitoCircuito GUIAEMdaNBR5410–Cap.5–pg.165 Para transformador de 112,5kVA, circuito de 25 metros utilizando condutor de 16 mm2, Ik =
  • 47. 47Adélio José de Moraes e Sérgio Ferreira de Paula Silva CurtoCurto--CircuitoCircuito GUIAEMdaNBR5410–Cap.5–pg.167
  • 48. 48Adélio José de Moraes e Sérgio Ferreira de Paula Silva CurtoCurto--CircuitoCircuito Conforme NBR 5410:2004, item 5.3.5 – pg. 65 A integral de Joule (energia) que o dispositivo de proteção deixa passar, deve ser inferior ou igual à energia necessária para aquecer o condutor desde a temperatura máxima para serviço contínuo até a temperatura limite de curto- circuito: 222 SKtI ⋅≤⋅ Onde: I : corrente de curto-circuito presumida simétrica, valor eficaz; t : é a duração do curto-circuito, em segundos; K : constante definida pelo tipo de isolação do condutor; S : seção do condutor em mm2. Calculado para o disjuntor (curvas do fabricante) Calculado para o condutor
  • 49. 49Adélio José de Moraes e Sérgio Ferreira de Paula Silva CurtoCurto--CircuitoCircuito Conforme NBR 5410:2004, item 5.3.5 – pg. 68 946876Alumínio 143103115Cobre 250ºC90ºC140ºC70ºC160’ºC70ºC FinalInicialFinalInicialFinalInicial Temperatura > 300 mm2300 mm2 EPR/XLPE PVC Isolação Material NBR 5410:2004 - Tabela 30 pg. 68 Valores de K para condutores de isolação de PVC, EPR ou XLPE
  • 50. 50Adélio José de Moraes e Sérgio Ferreira de Paula Silva CurtoCurto--CircuitoCircuito Exemplo: Corrente de cc = 2 kA; Qual a seção mínima de um condutor protegido por um disjuntor de 25 A, Curva C?
  • 51. 51Adélio José de Moraes e Sérgio Ferreira de Paula Silva Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos Conforme NBR 5410:2004, item 5.1.2.2.4 – pg. 38
  • 52. 52Adélio José de Moraes e Sérgio Ferreira de Paula Silva Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos Conforme NBR 5410:2004, item 5.1.2.2.4 – pg. 38 Requisitos Básicos para a proteção contra choques elétricos: Equipotencialização da proteção; Seccionamento automático. -Dispositivos de proteção a sobrecorrente; - Dispositivos de proteção a corrente diferencial-residual (DR).
  • 53. 53Adélio José de Moraes e Sérgio Ferreira de Paula Silva Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos Conforme NBR 5410:2004, item 5.1.2.2.4 – pg. 38 Equipotencialização da proteção
  • 54. 54Adélio José de Moraes e Sérgio Ferreira de Paula Silva Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos Seccionamento Automático por Sobrecorrente O dispositivo de proteção contra sobrecorrente assegura proteção contra contatos indiretos quando o comprimento máximo do circuito não ultrapassar os limites da tabela abaixo. 31239148862078297750 219273342434547684855109535 15619524431039148861178297725 10012515619825031239150062578296216 62789712415619524431239148860178210 37465874931171461872342963614697826 253139496278971251561952403125214 1519243139486178971221501953252,5 09111418232936465873901171951,5 125100806350403225201613106 Corrente nominal do disjuntor (A)S (mm2) GUIAEMdaNBR5410–Cap.3–pg.55 Valores válidos para condutor de cobre; tensão fase-neutro = 220 V; relação entre a seção do condutor de fase e a seção do condutor de proteção = 1; esquema de aterramento TN; disjuntor tipo B.
  • 55. 55Adélio José de Moraes e Sérgio Ferreira de Paula Silva Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos Seccionamento Automático por Sobrecorrente Fatores de correção da Tabela anterior: 62,01 =f Para condutores de alumínio 1' 1 2 + = m f m’ = relação entre a seção do condutor de fase e o condutor de proteção m’ = 2 220 3 fnV f = Para tensão fase-neutro <> 220 V 14 =f Para esquema de aterramento TN 25,0 5,0 5 5 = = f f 67,02 =f Para disjuntor tipo C e tipo D 54321 fffffValorValorNovo ⋅⋅⋅⋅⋅=
  • 56. 56Adélio José de Moraes e Sérgio Ferreira de Paula Silva Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos Conforme NBR 5410:2004, item 5.1.3.2 – pg. 49 Seccionamento Automático por Dispositivo DR Não há razões para preocupação, quanto ao atendimento da regra de seccionamento automático, quando se utiliza dispositivos DR, a não ser que a proteção diferencial- residual seja de baixíssima sensibilidade.
  • 57. 57Adélio José de Moraes e Sérgio Ferreira de Paula Silva Choques ElChoques Eléétricostricos –– Contatos IndiretosContatos Indiretos
  • 58. 58Adélio José de Moraes e Sérgio Ferreira de Paula Silva Exigência de DRExigência de DR Os seguintes circuitos devem ser objeto de proteção adicional por dispositivos DR de alta sensibilidade (corrente diferencial-residual 30 mA): Circuitos que sirvam pontos de utilização situados em locais contendo banheira ou chuveiro; Circuitos que alimentam tomadas de corrente situadas em áreas internas que possam vir a alimentar equipamentos no exterior; Circuitos residenciais que sirvam pontos de utilização situados em cozinhas, copas- cozinhas, lavanderias, áreas de serviço, garagens e demais dependências internas molhadas em uso normal ou sujeitas a lavagens; Circuitos em edificações não-residencias que sirvam pontos de tomada situados em cozinhas, copas-cozinhas, lavanderias, áreas de serviço, garagens e, no geral, em áreas internas molhadas em uso normal ou sujeitas a lavagens; Conforme NBR 5410:2004, item 5.1.3.2 – pg. 49
  • 59. 59Adélio José de Moraes e Sérgio Ferreira de Paula Silva Dimensionamento deDimensionamento de EletrodutosEletrodutos
  • 60. 60Adélio José de Moraes e Sérgio Ferreira de Paula Silva DimensionamentoDimensionamento A utilização de condutos fechados (eletrodutos) devem observar as seguintes exigências: Os circuitos devem pertencer à mesma instalação (mesmo Quadro); Os condutores devem ser semelhantes (intervalo de 3 seções normalizadas); Todos os condutores devem possuir a mesma temperatura máxima; Todos os condutores devem ser isolados para a maior tensão nominal; É vedado a utilização de eletrodutos que não sejam expressamente apresentados e comercializados como tal; A NBR 5410 somente permite a utilização de eletrodutos não-propagantes de chama e, quando embutidos, suportem os esforços de deformação característicos da técnica construtiva utilizada. Nos eletrodutos só devem ser instalados condutores isolados, cabos unipolares e multipolares. Conforme NBR 5410:2004, item 6.2.11.1 – pg. 120
  • 61. 61Adélio José de Moraes e Sérgio Ferreira de Paula Silva DimensionamentoDimensionamento Conforme NBR 5410:2004, item 6.2.11.1 – pg. 120 Taxa máxima de ocupação dos eletrodutos 40%3 ou mais 31%2 53%1 Máxima ocupação em relação à área útil do eletroduto Quantidade de condutores ou cabos
  • 62. 62Adélio José de Moraes e Sérgio Ferreira de Paula Silva DimensionamentoDimensionamento Tradicionalmente, no Brasil, os eletrodutos eram designados por seu diâmetro interno em polegadas. Com o advento das novas normas, a designação passou a ser feita pelo tamanho nominal, um simples número sem dimensão. 3½85 375 2½60 250 1½40 1¼32 125 ¾20 ½16 Diâmetro Interno (polegadas) (designação da rosca) Tamanho nominal Eletroduto Rígido de PVC InstalaçõesElétricas,Cotrim,A–pg.265
  • 63. 63Adélio José de Moraes e Sérgio Ferreira de Paula Silva DimensionamentoDimensionamento Eletroduto Rígido de PVC Tipo Roscável (NBR 6150) 4.976,404.441,454,06,288,0 ± 0,485 3.536,173.186,93,85,575,1 ± 0,475 2.189,571.947,823,14,659,4 ± 0,460 1.346,151.219,223,04,047,8 ± 0,450 1.023,55945,702,73,642,2 ± 0,340 593,95551,552,73,233,2 ± 0,332 356,32336,522,32,626,2 ± 0,325 232,35196,071,82,521,1 ± 0,320 128,67120,771,82,016,7 ± 0,316 Classe BClasse AClasse BClasse A Área interna disponível (mm2)* Espessura da parede Diâmetro Externo (mm) Tamanho Nominal * Valores calculados por A= /4*(diâmetro externo – tolerância – 2*espessura parede)2
  • 64. 64Adélio José de Moraes e Sérgio Ferreira de Paula Silva DimensionamentoDimensionamento Eletroduto Rígido de PVC Tipo Soldável (NBR 6150) 5.153,004.441,451,84,785,0 ± 0,485 4.026,43441,951,54,275,0 ± 0,475 2.551,752.206,171,33,360,0 ± 0,460 1.764,601.493,001,13,050,0 ± 0,450 110,37951,151,02,440,0 ± 0,440 692,80593,951,02,132,0 ± 0,332 404,70356,321,01,725,0 ± 0,325 246,05219,051,01,520,0 ± 0,320 147,40126,671,01,516,0 ± 0,316 Classe BClasse AClasse BClasse A Área interna disponível (mm2)* Espessura da parede Diâmetro Externo (mm) Tamanho Nominal * Valores calculados por A= /4*(diâmetro externo – tolerância – 2*espessura parede)2
  • 65. 65Adélio José de Moraes e Sérgio Ferreira de Paula Silva DimensionamentoDimensionamento Condutores Prysmian 750 V BWF Antiflam* * Área Total calculada por A= /4*(diâmetro externo nominal)2 343,0720,9254,4718,0--150 274,6518,7213,8216,5--120 221,6716,8176,7115,0--90 167,4114,6132,7313,0--70 128,6812,895,0311,0--50 91,6010,870,889,5--35 69,409,456,748,5--25 45,367,637,396,9--16 28,276,027,345,924,635,610 4,7--15,204,46 4,2--11,943,94 10,173,6--9,083,42,5 7,073,0--6,152,81,5 Área Total (mm2) Diâmetro externo nominal (mm) Área Total (mm2) Diâmetro externo nominal (mm) Área Total (mm2) Diâmetro externo nominal (mm) Cabo Superastic FlexCabo SuperasticFio Superastic Seção Nominal (mm2)