Introdução ao
Processamento Digital de
               Imagens

          Prof. Leonardo Vidal Batista
                 DI/PPGI/PPGEM
              leonardo@di.ufpb.br
             leovidal@terra.com.br
        http://www.di.ufpb.br/leonardo
Processamento Digital de
Imagens


   Modelagem matemática, análise, projeto
    e implementação (S&H) de sistemas
    voltados ao tratamento de informação
    pictórica, com fins estéticos, para torná-la
    mais adequada à interpretação ou
    aumentar eficiência de armazenamento e
    transmissão.
PDI e áreas correlatas
                      Dados
    Visão                             Computação
 Computacional                          Gráfica
                     Imagens



                  Processamento
                 Digital de Imagens
                    (sinais 2D)



                   Processamento
                  Digital de Sinais
PDI x Visão Computacional
Imagens digitais
   TV digital
   Câmeras digitais, celulares, scanners
   DVDs
   Sistemas de teleconferência
   Transmissões via fax
   Editoração eletrônica
   Impressoras
   Monitoramento da superfície terrestre e previsão
    climática por imagens de satélites
   Detecção de movimento
Imagens Digitais
   Diagnóstico médico: ultrassonografia,
    angiografia, tomografia, ressonância
    magnética, contagem de células, etc
   Identificação biométrica: reconhecimento de
    face, íris ou impressões digitais
   Ciências forenses
   Realce e restauração de imagens por
    computador
   Instrumentação
   Controle de qualidade
   Granulometria de minérios
Outros Sinais Digitais
   Diagnóstico médico: eletrocardiograma,
    eletroencefalograma, eletromiograma,
    eletroretinograma, polisonograma, etc
   Identificação biométrica por reconhecimento
    de voz
   Síntese de voz
   Áudio Digital
   Telefonia
   Suspensão ativa em automóveis
   Mercado acionário
Sinais Contínuos e Discretos
                                 Sinal analógico

                                 Sinal digital
            ...
Amplitude




            2q
              q
              0
            -q
            -2q
            ...
 Erros
   de
quantização       0   Ta   2Ta   3Ta     ...
                                 Tempo, espaço etc.
Processamento Analógico
de Sinais



                   Processador
 Sinal analógico    analógico    Sinal analógico
 de entrada                      de saída
Processamento Digital de
    Sinais
       Sinal                                  Sinal
       analógico Conversor      Processador   digital
                   A/D            Digital


Sinal                                              Sinal
analógico Conversor     Processador      Conversor analógico
            A/D           Digital          D/A
Processamento Digital de
     Sinais
   Alguns sinais são inerentemente digitais ou
    puramente matemáticos
   Ex: Número de gols por rodada do
    campeonato brasileiro de futebol
   Neste caso, não há necessidade de
    Conversão A/D
   Ainda assim, pode haver necessidade de
    conversão D/A
   Ex: texto -> voz sintetizada
Processamento Digital de
     Sinais
   Hardware, software, ou ambos
   Maior flexibilidade
   Menor custo
   Menor tempo de desenvolvimento
   Maior facilidade de distribuição
   Sinais digitais podem ser armazenados e
    reproduzidos sem perda de qualidade
   Mas alguns sistemas exigem uma etapa
    analógica!
Processamento Digital de
Sinais – Robustez a Ruído
   Sinal analógico original




   Sinal analógico corrompido – em geral, recuperação
   impossível mesmo para pequenas distorções
Processamento Digital de
       Sinais – Robustez a Ruído
                                     Sinal digital corrompido – recuperação possível
      Sinal digital original         mesmo com distorções substanciais, principalmente
                                     com uso de códigos corretores.
„1‟                            „1‟



„0‟                            „0‟




      Sinal digital
      recuperado com erro
„1‟



„0‟
Eliminação de ruído
Detecção de Bordas
Aguçamento
Pseudo-cor
Pseudo-cor
Segmentação/Classificação
Combinação de Imagens
Metamorfose
Warping (Deformação)
Warping (Deformação)
   Interpol faz apelo público para identificar
    pedófilo
    (http://noticias.terra.com.br/mundo/interna
    /0,,OI1971484-EI294,00.html)
   As fotos haviam sido manipuladas
    digitalmente para disfarçar o rosto do
    pedófilo, mas especialistas em computação
    da Agência de Polícia Federal na Alemanha
    conseguiram reproduzir o rosto do suspeito
    de forma que seja identificável
Warping (Deformação)
   A imagem distorcida pôde ser recuperada por
    especialistas para que o homem fosse identificado
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?




                     http://www.echalk.co.uk/
                     amusements/OpticalIllusi
                     ons/illusions.htm
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
Você confia em seu sistema
visual?
A Faixa Visível do Espectro
Eletromagnético
 Luz: radiação eletromagnética
 Freqüência f, comprimento de onda
  L
 Faixa visível do espectro
  eletromagnético: 380 nm < L < 780
  nm
 Na faixa visível, o sistema visual
  humano (SVH) percebe
  comprimentos de onda diferentes
  como cores diferentes
A Faixa Visível do Espectro
Eletromagnético

 Radiação monocromática: radiação
  em um único comprimento de onda
 Cor espectral pura: radiação
  monocromática na faixa visível
A Faixa Visível do Espectro
Eletromagnético
A Faixa Visível do Espectro
   Eletromagnético

Denominação Usual da Cor   Faixa do Espectro (nm)
        Violeta                  380 – 440
          Azul                   440 – 490
         Verde                   490 – 565
       Amarelo                   565 – 590
        Laranja                  590 – 630
       Vermelho                  630 – 780
A Estrutura do Olho Humano
   Olho humano: aproximadamente esférico,
    diâmetro médio em torno de dois
    centímetros
   A luz penetra no olho passando pela
    pupila e pelo cristalino e atingindo a
    retina
   Imagem invertida do cenário externo
    sobre a retina
   Cones e bastonetes convertem energia
    luminosa em impulsos elétricos que são
    transmitidos ao cérebro.
A Estrutura do Olho Humano
Bastonetes
   75 a 150 milhões/olho, sobre toda a
    retina
   Não são sensíveis às cores
   Baixa resolução (conectados em grupos
    aos terminais nervosos)
   Sensíveis à radiação de baixa intensidade
    na faixa visível
   Visão geral e de baixa luminosidade
   Objetos acinzentados sob baixa
    luminosidade
Cones
   6 a 7 milhões/olho, concentrados na fóvea
   Sensíveis às cores
   Alta resolução (um cone por terminal
    nervoso)
   Pouco sensíveis a radiação de baixa
    intensidade na faixa visível
   Visão específica, de alta luminosidade
   Movimentamos os olhos para que a
    imagem do objeto de interesse recaia
    sobre a fóvea.
Cones
   Há três tipos de cones:
       Cone sensível ao vermelho
       Cone sensível ao verde
       Cone sensível ao azul
   Cores diversas obtidas por combinações
    destas cores primárias
Cones
                                 Cone “Verde”
Resposta




           Cone “Azul”                       Cone “Vermelho”




            400          500        600          700

                          Comprimento de onda (nm)
Sistema de Cores RGB
 A cor de uma fonte de radiação na
  faixa visível é definida pela adição
  das cores espectrais emitidas –
  sistema aditivo
 Combinação de radiações
  monocromáticas vermelho (R), verde
  (G) e azul (B)
 Cores primárias da luz
 Sistema de cores RGB
Sistema RGB

   Padronização da Comissão
    Internacional de Iluminação (CIE):
      Azul: 435,8 nm
      Verde: 546,1 nm
      Vermelho: 700 nm
Sistema RGB - Combinação de
    Cores Primárias

 Cores secundárias da luz: magenta
  (M), cíano (C) e amarelo (Y):
   M = R + B
   C = B + G
   Y = G + R
 Cor branca (W):
   W = R + G + B
Espaço de Cores RGB

   Cor no sistema RGB é um vetor em
    um espaço tridimensional:
                 G




                        R

           B
Espaço de Cores RGB
   Reta (i, i, i): reta acromática
   Pontos na reta acromática:
    tonalidades de cinza ou níveis de
    cinza
   Preto: (0, 0, 0) (ausência de luz)
   Branco: (M, M, M), (M é a intensidade
    máxima de uma componente de cor)
   Monitor de vídeo: Sistema RGB
Sistema de Cores CMY

 Cor de um objeto que não emite
  radiação própria depende dos
  pigmentos que absorvem radiação
  em determinadas faixas de
  freqüência e refletem outras
 Absorção em proporções variáveis
  das componentes R, G e B da
  radiação incidente: sistema
  subtrativo
CMY - Cores Primárias

   Cores primárias dos pigmentos:
    absorvem uma cor primária da luz e
    refletem as outras duas
     C = W – R = G + B

     M = W – G = R + B

     Y = W – B = G + R
CMY – Combinação de Cores
    Primárias
 Cores secundárias:
   R = M + Y

   G = C + Y

   B = M + C

 Preto (K):
   K = C + M + Y = W – R – G – B

 Impressoras coloridas: CMY ou CMYK
Processos Aditivo e Subtrativo
Sistema de Cores YIQ

 Transmissão de TV em cores:
  compatibilidade com TV P & B
 Y: luminância (intensidade percebida,
  ou brilho)
 I e Q: crominâncias
Conversão YIQ-RGB
 Conversão de RGB para YIQ:
   Y = 0.299R + 0.587G + 0.114B
   I = 0.596R – 0.274G –0.322B
   Q = 0.211R – 0.523G + 0.312B
 Conversão de YIQ para RGB :
   R = 1.000 Y + 0.956 I + 0.621 Q
   G = 1.000 Y – 0.272 I – 0.647 Q
   B = 1.000 Y – 1.106 I + 1.703 Q
Sistema de Cores HSI
 Fisiologicamente, a retina humana
  opera no sistema RGB
 A percepção subjetiva de cor é
  diferente
 Atributos perceptivos das cores:
   Matiz (hue) ou tonalidade
   Saturação
   Intensidade
Sistema de Cores HSI
   Matiz (H): determinada pelo comprimento
    de onda dominante; cor espectral mais
    próxima; denominação usual das cores
   H é um ângulo: 0o = R; 120o = G; 240o =
    B
   Saturação: pureza da cor quanto à adição
    de branco
   S = 0: cor insaturada (nível de cinza)
   S = 1: cor completamente saturada
   Cores espectrais puras tem S = 1
Sistema de Cores HSI
   Também chamado HSB, HSV, HSL
    (B=Brightness; V=Value; L=Lightness), às vezes
    com pequenas diferenças na conversão para
    RGB.
Conversão HSI-RGB
   Algoritmos nas Notas de Aula
Imagem monocromática
            y




x
Imagem monocromática
 Função Ia(x,y)
 (x, y): coordenadas espaciais
 Ia(x,y): intensidade ou brilho da
  imagem em (x,y)
Amostragem e Quantização
   Digitalização: discretização espacial
    (amostragem) e de intensidade
    (quantização)
Amostragem e Quantização
                             Sinal analógico
                             Sinal digital
            ...
Amplitude




            2q
               q
               0
             -q
            -2q
            ...
 Erros
   de
quantização 0      T   2T    3T    ...
                            Tempo ou espaço
Amostragem e Quantização
    - Parâmetros
   T: período de amostragem (unidade de
    espaço ou tempo)
   f = 1/T: freqüência de amostragem
    (amostras/unidade de espaço ou tempo)
   q: passo de quantização
   Sinal analógico: s(t), s(x)
   Sinal digitalizado: s[nT], n inteiro não
    negativo, s[nT] {-Mq, ..., -2q, -q, 0, q,
    2q, ..., (M-1)q}
Amostragem e Quantização
   – Exemplo 1
       Sinal analógico s(t): voltagem de
        saída de um sistema elétrico em
        função do tempo
        40

        20
                   Sinal analógico
Volts




         0

        -20

        -40
           0   1       2     3       4   5   6   7
                            segundos
Amostragem e Quantização
    – Exemplo 1
   T = 0.5s, q = 0.5V, M = 64: s[0.5.n], n =
    0, 1, 2, ...
   s[0.5n]  {-32, -31.5..., -0.5, 0, 0.5
    1,...,31, 31.5}
   s[0]=9.5V,s[0.5]=8V,s[1]=-2V, s[1.5]=
    -10.5V, ...
   Notação Simplificada:
   s[n]  {-M,..., -2, -1, 0, 1, 2,..., M-1}
   s[0]=19, s[1]=16, s[2]=-4, s[3]=-21,...
   s[n] = {19, 16, -4, -21, ...}
Amostragem e Quantização
    – Exemplo 2
 Em um processo de digitalização foram colhidas
  N=10 amostras de um sinal de temperatura
  (graus Celsius) igualmente espaçadas ao longo de
  um segmento de reta unindo duas cidades A e B.
  A primeira amostra foi colhida na cidade A e a
  última na cidade B. O sinal digital resultante é
  s[n] = {12 12 13 13 14 13 14 14 15 14}
 Perguntas:
(a) Distância entre as cidades?
(b) Valores de temperatura registrados?
(c) Limites de temperatura registrável?
(d) Qual o valor de s[5km]?
Amostragem e Quantização
– Solução do Exemplo 2

   Precisamos conhecer f, q e M!
   Dados:
           f = 0.1 amostra/km
              q = 2o Celsius
                 M = 16;
Amostragem e Quantização
    – Solução do Exemplo 2

    T = 10 km/amostra
    (a) Distância entre as cidades =
                (10-1)x10 = 90km
    (b) Temperaturas em graus Celsius:
    {24 24 26 26 28 26 28 28 28 30}
    (c) Limites de temperatura em graus
    Celsius: [-32, 30]
    (d) s[5km]: no sinal digital s[nT] não há
    nT = 5km!
Conversores Analógico-
    Digitais (ADC)
   Conversor Analógico/Digital (Analog to
    Digital Converter - ADC): amostra,
    quantiza em L níveis e codifica em binário.
   Um transdutor deve converter o sinal de
    entrada para tensão elétrica (V)
   Códigos de b bits: L = 2b níveis de
    quantização
   Exemplo: b = 8, L = 256
   ADC de b bits
Conversores Analógico-
    Digitais (ADC)
   ADC unipolar: voltagem de entrada de 0 a Vref
   ADC bipolar: voltagem de entrada de -Vref a
    Vref
   Exemplo: ADC unipolar de 3 bits, Vref = 10 V
       L = 23 = 8, Resolução de voltagem: 10/8 = 1,25V
   Exemplo: ADC bipolar de 3 bits, Vref = 5 V
       L = 23 = 8, Resolução de voltagem: 10/8 = 1,25V
ADC

       Unipolar                 Bipolar

 Voltagem      Código    Voltagem       Código

[0,00, 1,25)      000   [-5,0, -3,75)     000
[1,25, 2,50)      001   [-3,75, -2,5)     001
[2,50, 3,75)      010   [-2,5, -1,25)     010
[3,75, 5,00)      011   [-1,25, 0,0)      011
[5,00, 6,25)      100   [0,00, 1,25)      100
[6,25, 7,50)      101   [1,25, 2,50)      101
[7,50, 8,75)      110   [2,50, 3,75)      110
[8,75, 10,0)      111   [3,75, 5,00)      111
Conversores Analógico-
Digitais (ADC)

 O bit menos significativo (LSB) do código
  se altera em incrementos de 1,25V.
 Resolução de voltagem: “valor” do LSB
 Alguns parâmetros: fa, Vref, b, ...
Amostragem e Quantização
        – Qualidade do Sinal
                             40

                             20
                                            Sinal analógico
                     Volts



                              0

                             -20

                             -40
                                0       1       2        3       4      5         6       7
                                                        segundos

40                                                               40
       f = 2 amostras/s                                                         Sinal analógico
20     (T = 0,5s), q = 1                                         20              reconstruído

 0                                                                0

-20                                                              -20

-40                                                              -40
   0   1      2      3              4       5       6        7      0       1         2       3   4   5   6   7
Amostragem e Quantização
       – Qualidade do Sinal
                             40

                             20
                                            Sinal analógico
                     Volts



                              0

                             -20

                             -40
                                0       1       2        3       4       5         6       7
                                                        segundos

40     f = 5 amostras/s                                          40
                                                                                 Sinal analógico
       (T = 0,2s), q = 1
20                                                               20               reconstruído

 0                                                                   0

-20                                                              -20

-40                                                              -40
   0   1      2        3            4       5       6        7      0        1         2       3   4   5   6   7
Amostragem e Quantização
       – Qualidade do Sinal
                            40

                            20
                                           Sinal analógico
                    Volts



                             0

                            -20

                            -40
                               0       1       2        3       4       5         6       7
                                                       segundos

40                                                              40
       f = 10 amostras/s                                                        Sinal analógico
20     (T = 0,1s), q = 1                                        20               reconstruído

 0                                                                  0

-20                                                             -20

-40                                                             -40
   0   1      2       3            4       5       6        7      0        1         2       3   4   5   6   7
Amostragem e Quantização
       – Qualidade do Sinal
                            40

                            20
                                           Sinal analógico
                    Volts



                             0

                            -20

                            -40
                               0       1       2        3       4       5         6       7
                                                       segundos

40                                                              40
       f = 10 amostras/s                                                        Sinal analógico
20     (T = 0,1s), q = 16                                       20               reconstruído

 0                                                                  0

-20                                                             -20

-40                                                             -40
   0   1      2       3            4       5       6        7      0        1         2       3   4   5   6   7
Notação simplificada para
Imagens
   f[i, j]  {0, 1, 2,..., M-1}
   Tipicamente, M = 256
Imagem digital
  monocromática
                      250

                      200

                      150

                      100

                       50

                        0
                            0            100         200         300      400       500

                                                     i=0
                            250

                            200


161 161 ... 142           150

161 161 ... 142           100

                              50
 ... ... ... ... 
                 
                                 0
                                     0   50    100   150   200    250   300   350

163 163 ... 95 
                                                     j = 266
Resolução Espacial e de
       Contraste




256x256 / 256 níveis   256x256 / 64 níveis       256x256 / 2 níveis




                                             32x32 / 256 níveis
Imagens RGB




Banda R   Banda G      Banda B




          Imagem RGB
Imagens Digitais
 Uma imagem é uma matriz bidimensional
  observada de forma pictórica.
 Imagens de densidade demográfica, de
  raios x, de infravermelho, de
  temperaturas de uma área, etc.
Scanners

   Monocromáticos: fila de diodos
    fotossensíveis em um suporte que se
    desloca
   Coloridos: fila de diodos fotossensíveis,
    recobertos por filtros R, G e B, em um
    suporte que se desloca

   Lâmpada fluorescente branca
    ilumina o objeto
   Diodos produzem carga elétrica
    proporcional à intensidade da
    luz refletida pelo objeto
Scanners
Scanners

   Th: distância entre diodos no suporte
   Tv: tamanho do passo do suporte
   Th e Tv definem a resolução espacial
   M: profundidade de cor ou resolução de
    contraste
   Resolução espacial: pontos por polegada
    (dot per inch, dpi) (1 ponto = 1 sensor em
    scanner monocromático, 3 sensores em
    scanners RGB)
   1 pol = 2,54 cm.
Scanners

   Ex: 300 x 300 dpi, digitalização de formato
    carta(8,5 x 11’’), no máximo
      8,5x300=2550 diodos (mono) ou
      3x2550=7650 diodos (cor)
   Aumentar resolução vertical sem aumentar
    o número de sensores
Scanners


    N pontos/polegada

                              Movimento do braço:
                        ...   M passos/polegada
Câmeras Digitais
Câmeras Digitais
 Sensor de imagem:
  matriz de diodos
  fotosensíveis cobertos
  por filtros R, G e B
 Diodos produzem carga
  elétrica proporcional à
  intensidade da luz
  refletida pelo objeto
 Resolução espacial de câmeras: número de
   pontos (ou pixels), RxC (1 ponto = 3 sensores)
Câmeras Digitais


               ...




         ...
Qualidade dos Sensores
   S9500 – ISO 1600      EOS350D – ISO 1600
Qualidade dos Sensores
   EOS350D – ISO 1600




   S9500 – ISO 1600
Câmeras Digitais

   Exemplo: Sony DSC V1: 1944 x 2592 pixels =
    5Mpixels. Digitalizar papel em formato carta com
    imagem da folha ocupando todo o sensor.
    Resolução (em dpi)? Comparar com scanner de
    300 x 300 dpi, em qualidade, número de
    sensores e preço. Comparar com scanner de
    2400 x 2400 dpi.
Câmeras Digitais
   Solução:
   1944 / 8,5 pol x 2592/11 pol = 228,7 dpi x =
    235,6 dpi
   Resolução espacial inferior à do scanner de
    300 x 300 dpi, com 1944 x 2592 x 3 / 7650 =
    1976 vezes mais sensores, 10 a 20 vezes mais
    caro, aberrações geométricas e de cor, etc.
   Câmeras digitais têm escopo de aplicação
    maior e são mais rápidas
   Scanner de 2400 x 2400 dpi = câmera de 500
    Mpixels!
Dispositivos Gráficos
   Exemplo: câmera digital, 3000 x 2000
    pontos (6 Mpixels), impressa em formato
    15x10 cm, com o mesmo no. de pontos.
    Qual a resolução (dpi) no papel?
Dispositivos Gráficos

   Exemplo: câmera digital, 3000 x 2000
    pontos (6 Mpixels). Imprimir em formato
    15x10 cm, com o mesmo no. de pontos.
    Qual a resolução (dpi) no papel?
   15x10 cm = 3,94 x 5,91 pol.
   Resolução (dpi): 3000/5,91 = 2000/3,94 =
    507x507 dpi
Dispositivos Gráficos
   Ex: foto 10x15cm, scanneada a 1200x1200
    dpi, 24 bits/pixel. Tamanho em bytes?
   Dimensões impressa em 1440x1440 dpi?
   Dimensões impressa em 720 x 720 dpi?
   Dimensões em tela de 14 pol., resolução
    1024x768? Resolução em dpi da tela?
   Dimensões em tela de 17 pol., resolução
    1024x768? Resolução em dpi da tela?
Dispositivos Gráficos
   Solução:
   Foto 10x15cm = 3,94 x 5,91 pol.
   Tamanho      em      bytes:  3,94x1200   x
    5,91x1200 pixels x 3 bytes/pixel = 4728 x
    7092 x 3 = 100 milhões de bytes (96 MB)
   Dimensões      (pol)   em   impressora  de
    1440x1440 dpi: 4728/1440 x 7092/1440 =
    3,3 x 4,9 pol.
   Dimensões (pol.) em impressora de 720 x
    720 dpi = 6,6 x 9,9 pol
Dispositivos Gráficos
   Solução:
   Dimensões em tela de 14 pol., em resolução de
    1024x768 pontos? Resolução em dpi da tela?
                     x2 + y2 = 142
                       x/y = 3/4
               x = 8,4 pol; y = 11,2 pol.
   Res. = 1024/11,2 x 768/8,4 = 91,4 x 91,4 dpi.
   Dimensões = 4728 / 91,4 x 7092 / 91,4 =51,73 x
    77,59 pol = 131,39 x 197,09cm (apenas parte da
    imagem será visível)
Dispositivos Gráficos

   Solução:
   Dimensões em tela de 17 pol., em resolução de
    1024x768 pontos? Resolução em dpi da tela?
               y = 13,6 pol; x = 10,2 pol
   Res. = 1024/13,6 x 768/10,2 = 75,3 x 75, 3 dpi
    (pior que no monitor de 14 pol)
   Dimensões = 4728 / 75,3,4 x 7092 / 75,3 =62,79
    x 94,18 pol = 159,49 x 239,22cm (apenas parte da
    imagem será visível)
Monitor CRT




   A e C: Placas aceleradoras e defletoras
   D: tela com pontos de fósforos RGB
   F: Máscara de sombra ou grade de abertura
Monitor CRT
Monitor RGB
Monitor RGB

 Linha 0

 Linha 1




Linha R-1
Operações com Imagens
 Espaço / freqüência
 Locais / pontuais
 Unárias / binárias / ... / n-árias
Operações n-árias
   Operação T sobre n imagens, f1, f2, ..., fn,
    produzindo imagem de saída g
              g = T[f1, f2, ..., fn]

   Operações binárias: n = 2
   Operações unárias ou filtros: n = 1
                   g = T[f]
Operações Pontuais
   g(i, j) depende do valor do pixel em (i’, j’)
    das imagens de entrada
   Se (i, j) = (i’, j’) e operação unária:s = T(r)
        r, s: nível de cinza de f e g em (i, j)
    s                        s




    (0,0)    m       r       (0,0)    m        r
Operações Pontuais
 s                                   s
L-1
                                    L-1
         (r2, s2)



               (r1, s1)

 (0,0)                               (0,0)         r
                          L-1   r            L-1
Operações Locais
   g(i, j) depende dos valores dos pixels das
    imagens de entrada em uma vizinhança
    de (i’, j’)
                 f               g

                         j           j




i                            i



      Vizinhança de (i, j)
Operações Locais
   Exemplo: Filtro “Média”
           1
g (i, j )  [ f (i  1, j  1)  f (i  1, j )  f (i  1, j  1) 
           9
             f (i, j  1)  f (i, j )  f (i, j  1) 
             f (i  1, j  1)  f (i  1, j )  f (i  1, j  1)]
   Operação sobre pixels da imagem
    original: resultado do filtro em um dado
    pixel não altera o resultado em outros
    pixels.
   Primeira e última coluna/linha?
Filtros de suavização

 Média, Moda, Mediana, Gaussiano...
 Vizinhança m x n
Photoshop!
Photoshop!
Photoshop!
Photoshop!
Filtros de aguçamento e
     detecção de bordas
   Efeito contrário ao de suavização: acentuam
    variações de intensidade entre pixels
    adjacentes.
   Baseados no gradiente de funções
    bidimensionais.
   Gradiente de f(x, y):
                    f 
                    x                      f
                                                2         2 1 / 2
                                                  f 
    G[f(x, y)] =            G[ f ( x, y )]       
                                                      y 
                                            x    
                    f                                   
                    
                    y 
Filtros de detecção de bordas
   g(i, j): aproximação discreta do módulo do
    vetor gradiente em f(i, j).
   Aproximações usuais:

g(i, j) = {[f(i,j)-f(i+1,j)]2 + [f(i,j)-f(i,j+1)]2}1/2
g(i, j) = |f(i,j)-f(i+1,j)| + |f(i,j)-f(i,j+1)|

              Gradiente de Roberts:
g(i,j) = {[f(i,j)-f(i+1,j+1)]2+[f(i+1,j)-f(i,j+1)]2}1/2
g(i, j) = |f(i,j)-f(i+1,j+1)| + |f(i+1,j)-f(i,j+1)|
Filtros de detecção de bordas
               Gradiente de Prewitt:
 g(i, j) = |f(i+1,j-1) + f(i+1, j) + f(i+1, j+1)
             - f(i-1, j-1) - f(i-1, j) - f(i-1, j+1)|
          +|f(i-1, j+1) + f(i, j+1) + f(i+1, j+1)
             - f(i-1, j-1) - f(i, j-1) - f(i+1, j-1)|
                Gradiente de Sobel:
g(i, j) = |f(i+1, j-1) + 2f(i+1, j) + f(i+1, j+1)
            - f(i-1, j-1) - 2f(i-1, j) - f(i-1, j+1)|
          + |f(i-1, j+1) + f(i, j+1) + f(i+1, j+1)
            - f(i-1, j-1) - 2f(i, j-1) - f(i+1, j-1)|
Gradiente de Roberts




      Limiares 15, 30 e 60
Processamento de
    Histograma
   Se o nível de cinza l ocorre nl vezes em
    imagem com n pixels, então
                            nl
                    P(l ) 
                            n

   Histograma    da     imagem       é   uma
    representação gráfica de nl ou P(l)
Histograma
                                           Histograma
                              nl

        Imagem            7
                          6
1   0   0   3    3        5
                          4
0   0   3   3    3
                          3
1   1   1   3    3        2
                          1
                          0
                                   0   1     2     3    l
    Imagem 3 x 5 (L = 4) e seu histograma
Histograma
        O histograma representa a distribuição
         estatística de níveis de cinza de uma imagem
nl                        nl                 nl




     0          255   l        0   255   l        0   255   l
Histograma




   10000

    8000

    6000

    4000

    2000

       0
           0   50   100   150   200   250
Histograma




   1500



   1000



    500



      0

          0   50   100   150   200   250
Expansão de Histograma
           Quando uma faixa reduzida de níveis de
            cinza é utilizada, a expansão de
            histograma pode produzir uma imagem
            mais rica.
nl                         nl                       nl

             A                       B                   C




                       l                        l                      l
m0=0   m1        L-1        0   m0   m1   L-1        0   m0   m1=L-1
Expansão de Histograma
   Quando uma faixa reduzida de níveis de
    cinza é utilizada, a expansão de
    histograma pode produzir uma imagem
    mais rica:


                     r  rmin            
s  T ( r )  round 
                    r           ( L  1) 
                                          
                     max  rmin          
Expansão de Histograma
         1500



         1000



          500



            0

                0   50   100   150   200   250



         1500



         1000



          500



            0
                0   50   100   150   200   250
Expansão de Histograma
          Expansão é ineficaz nos seguintes casos:

nl                       nl                       nl
           A                       B                   C




                     l                        l                  l
 0   L-1       L-1        0   m0   m1   L-1        0       L-1
Equalização de Histograma
   Se a imagem apresenta pixels de valor 0
    e L-1 (ou próximos a esses extremos) a
    expansão de histograma é ineficaz.
   Nestas situações a equalização de
    histograma pode produzir bons
    resultados.
   O objetivo da equalização de histograma
    é gerar uma imagem com uma
    distribuição de níveis de cinza uniforme.
Equalização de Histograma
                        L 1 r 
    s  T (r )  round        nl 
                        RC l 0 
                   1500



                   1000



                    500



                      0

                          0   50   100   150   200   250




                   1500


                   1000


                    500


                      0
                          0   50   100   150   200   250
Equalização de Histograma
   Exemplo: imagem 64 x 64, L = 8
                nl
    l     nl
    0    790   1200
    1   1023   1000
    2    850    800
    3    656    600
    4    329
                400
    5    245
                200
    6    122
                 0
    7    81        0   1   2   3   4   5   6   7   l
Equalização de Histograma
   Exemplo   (cont.):
   r=0s     = round(790 x 7 / 4096) = 1
   r=1s     = round(1813 x 7 / 4096) = 3
   r=2s     = round(2663 x 7 / 4096) = 5
   r=3s     = round(3319 x 7 / 4096) = 6
   r=4s     = round(3648 x 7 / 4096) = 6
   r=5s     = round(3893 x 7 / 4096) = 7
   r=6s     = round(4015 x 7 / 4096) = 7
   r=7s     = round(4096 x 7 / 4096) = 7
Equalização de Histograma
   Exemplo: imagem 64 x 64, L = 8
    l     nl      nk
    0     0
    1    790     1200
                 1000
    2     0
                  800
    3   1023
                  600
    4     0
                  400
    5    850
                  200
    6    985
                   0
    7    448         0   1   2   3   4   5   6   7   k
Equalização de Histograma
nl         Hist. Original     nl    Hist. Equal. (Ideal)   nl   Hist. Equal. (Real)




 0   L-1              L-1 l    0   m0     m1      L-1 l     0                 L-1 l
Equalização de Histograma
   Expansão de histograma é pontual ou
    local? E equalização de histograma?
   O que ocorre quando uma imagem com
    um único nível passa pela operação de
    equalização de histograma?
   Melhor fazer equalização seguido por
    expansão de histograma, o inverso, ou a
    ordem não importa?
Equalização de Histograma
Local
   Para cada locação (i,j) de f

    •   Calcular histograma na vizinhança de
        (i,j)
    •   Calcular s = T(r) para equalização de
        histograma na vizinhança
    •   G(i,j) = s
Controle de contraste
     adaptativo


                            c
             (i, j )            [ f (i, j )   (i, j )]; (i, j )  0
g (i, j )               (i, j )
             f (i, j ); (i, j )  0
            
Controle de contraste
adaptativo
Filtros baseados na função
    gaussiana
   Função gaussiana:


   Derivada:

   Derivada segunda:
Filtros baseados na função
    gaussiana
   Gaussiana, derivada e derivada
    segunda
Filtros baseados na função
    gaussiana

 A máscara é construída pela
  amostragem de G(x), G’(x) e G’’(x)
 x = -5σ, ...-2, -1, 0, 1, 2..., 5σ
Filtros gaussianos
bidimensionais




      Com r = sqrt(x2 + y2)
Pseudo-cor
Nível de   R     G    B
 cinza
   0       15    20   30
   1       15    25   40
  ...
  L-1      200   0    0
Outros filtros:
 Curtose, máximo, mínimo etc.
 Filtros de suavização + filtros de
  aguçamento
 Laplaciano do Gaussiano (LoG)
 “Emboss”
 Aumento de saturação
 Correção de gama
 ...
Filtros Lineares e Invariantes
ao Deslocamento
    Filtro linear:
          T [af1 + bf2] = aT [f1] + bT [f2]
     para constantes arbitrárias a e b.
    Filtro invariante ao deslocamento:
     Se g[i, j] = T [f[i, j]]
     então g[i - a, j – b] = T [f[i - a, j – b]].
    Se i e j são coordenadas espaciais: filtros
     espacialmente invariantes.
Convolução
    Convolução de s(t) e h(t):


                                
     g (t )  s (t ) * h (t )    s( )h(t   )d
                                
Convolução
                                                  
                  g (t )  s (t ) * h (t )         s( )h(t   )d
                                                                       h ( )
s(t)




                                                                                      t3 
(0,0)
             t0                      t1       t                         0 t2
                                                                         h (t   )
                          h (  )




       -t3        -t2 0                                                                      
                                                                         -t3+t        -t2+t
Convolução
   Observe que g(t) = 0 para


            t  [t0  t2 , t1  t3 ]
Convolução Discreta Linear
   Convolução linear entre s[n] e h[n]
                                  
        g[n]  s[n ] * h[n]      s[ ]h[n   ]
                                  
   Se s[n] e h[n] têm N0 e N1 amostras,
    respectivamente => extensão com zeros:
                                 N 1
          g[n]  s[n] * h[n]     s[ ]h[n   ]
                                  0

          com N = N0 + N1 – 1.
Convolução Discreta Linear
     6         s ( )                                           6       h ( )


     4                                                          4


     2                                                          2


          0        1        2    3       4    5         
                                                        6           0    1       2   3   4   5   

                                     6       h (  )       6       h(n   )


                                     4                      4

                                     2                      2


                                                        
-5   -4       -3       -2       -1       0   1                                                       n 
Convolução Discreta Linear
                         6           s ( )


                         4


                         2


                             0       1           2   3   4   5   
                                                                 6

                             6        h (  )


                             4
                                                                g[0] = 3
                             2


-5   -4   -3   -2   -1           0    1          
Convolução Discreta Linear
                         6           s ( )


                         4


                         2


                             0       1        2     3   4   5   
                                                                6

                             6         h (1   )


                             4
                                                               g[0] = 3
                             2


                                              
                                                               g[1] = 8
-5   -4   -3   -2   -1           0    1
Convolução Discreta Linear
6       s[n]                                                     6           h[n]

4                                                                4


2                                                                2



    0    1     2    3        4       5       6   n                   0       1      2    3   4   5   n


                   30       g[n] = s[n]* h[n]


                   20


                   10


                        0        1       2   3   4   5   6   7   8       9       10 11       n
Convolução Discreta Linear

      s[n]          Filtro             g[n]
                    h[n]

                                
      g[n]  s[n ] * h[n]      s[ ]h[n   ]
                                
Impulso Unitário
   Delta de Dirac ou             (t)
    impulso unitário      1
    contínuo
   Duração = 0
   Área = 1                  0          t


                                  [n]
   Delta de Kronecker
    ou impulso unitário   1

    discreto
                              0          n
Sinais = somatório de
impulsos
   Delta de Kronecker                            A[n-n0]

                                          A




                                              0        n0    n

s[n]  s[0] [n]  s[1] [n  1]  .... s[ N  1] [n  ( N  1)]

                           N 1
                  s[n]     s[ ] [n   ]
                            0
Resposta ao impulso
   Resposta de um filtro a s[n]:
                 N 1                     N 1
       g[ n]     s[ ]h[n   ]   h[ ]s[n   ]
                  0                      0
   Resposta de um filtro ao impulso
                    N 1                  N 1
          g[ n]     [ ]h[n  ]   [n   ]h[ ]
                     0                   0
                                 N 1
                        h[n]     [n   ]h[ ]
                                  0
Resposta ao impulso

   h[n]:
       Resposta ao impulso
       Máscara convolucional
       Kernel do filtro
       Vetor de coeficientes do filtro
Filtros FIR

   Finite Impulse Response
                    N 1
           y[n]     ak x[n  k ]
                    k 0

               ak  h[k ]
Filtros IIR

   Infinite Impulse Response
               N 1            M 1
      y[n]     ak x[n  k ]   bk y[n  k ]
               k 0            k 1

   Filtros recursivos
Filtros IIR (exemplo)

   Encontre a resposta ao impulso do
    seguinte sistema recursivo. Supor que o
    sistema está originalmente relaxado (y[n]
    = 0 para n < 0)

       y[n] = x[n] - x[n-1] – 0,5y[n-1]
Filtros IIR (exemplo)

   Exemplo:
   y[n] = x[n] - x[n-1] – 0,5y[n-1]
   y[0] = delta[0]–delta[-1]–0,5y[-1] = 1
   y[1] = delta[1]–delta[0]–0,5y[0] = -1,5
   y[2] = delta[2]–delta[1]–0,5y[1] = 0,75
   y[3]= delta[3]–delta[2]–0,5y[2] = -0,325
   y[n] = -0,5y[n-1], n > 1
Filtros IIR (exemplo 2)

   Exemplo: encontre a resposta ao impulso
    do seguinte sistema recursivo. Supor que
    o sistema está originalmente relaxado
    (y[n] = 0 para n < 0)

         y[n] - y[n-1] = x[n] - x[n-4]
Filtros IIR (exemplo 2)
   Exemplo (Solução)
   y[n] = y[n-1] + x[n] - x[n-4]
   y[0] = y[-1] + delta[0] - delta[-4] = 1
   y[1] = y[0] + delta[1] - delta[-3] = 1
   y[2] = y[1] + delta[2] - delta[-2] = 1
   y[3] = y[2] + delta[3] - delta[-1] = 1
   y[4] = y[3] + delta[4] - delta[0] = 0
   y[5] = y[4] + delta[5] - delta[1] = 0
   y[6] = y[7] = ... = 0
Convolução Discreta Circular
    Sinais s[n] e h[n] com N0 e N1 amostras,
     respectivamente => extensão com zeros:
               s[n ], 0  n  N 0                 h[n ], 0  n  N1
    s e [n ]                           he [n ]  
               0, N 0  n  N                     0, N1  n  N
    Extensão periódica: considera-se que
     se[n] e he[n] são períodos de sp[n] e hp[n]
    Convolução circular:
                                              N 1
                    g p [n]  s[n]  h[n]     s p [ ]h p [n   ]
                                               0
Convolução Circular x Linear

   Fazendo-se N = N0 + N1 – 1

            s[n]  h[n]  s[n] * h[n]
Convolução de Imagens
   f[i, j] (R0xC0) e h[i, j] (R1xC1): extensão
    por zeros
                                          R 1 C 1
      g[i, j ]  f [i, j ] * h[i, j ]      f [ ,  ]h[i   , j   ]
                                           0  0

                                       R 1 C 1
g p [i, j ]  f [i, j ]  h[i, j ]       f p [ ,  ]h p [i   , j   ]
                                        0   0
   Iguais se R=R0+R1–1 e C=C0+C1–1
Máscaras Convolucionais
1   1   1     1   0    -1    -1 -1 -1
0   0   0     1   0    -1    -1   8   -1
-1 -1 -1      1   0    -1    -1 -1 -1


1/9 1/9 1/9       0.025     0.1   0.025

1/9 1/9 1/9           0.1   0.5    0.1

1/9 1/9 1/9       0.025     0.1   0.025
Operador de Bordas de
  Kirsch
  5    5   5     -3   5   5     -3 -3     5
  -3   0   -3    -3   0   5     -3    0   5
  -3 -3 -3       -3 -3 -3       -3 -3     5

  -3 -3 -3       -3 -3 -3       ...
  -3   0   5     -3   0   -3
  -3   5   5     5    5   5
 Filtragem sucessiva com cada máscara
 Pixel de saída recebe o valor máximo
Máscaras Convolucionais
 Em geral:
 Máscaras de integração somam
  para 1
 Máscaras de diferenciação somam
  para 0
Transformada z
   Transformada z de x[n]:
                                
         Z{x[n]}  X [ z ]      x[n] z  n
                               n 

   z: variável complexa
Propriedades da
Transformada z
   Linearidade: Se x[n] = ax1[n] + bx2[n],
    (a e b: constantes arbitrárias), então:

          X [ z]  aX1[ z]  bX 2 [ z]
Propriedades da
 Transformada z
    Deslocamento:
            Z{x[n+k]} = zkX[z], k inteiro
    Prova:                          
                  Z{x[n  k ]}      x[n  k ]z  n
                                   n  
    Fazendo m = n+k:
                                               
Z{x[n  k ]}      x[m]z  (n  k )  z k       x[m]z  n  z k X [ z ]
                 m                        m  
Propriedades da
Transformada z
   Convolução:
                             
    y[n]  h[n] * x[n]      h[k ]x[n  k ]  Y [ z]  H [ z] X [ z]
                           k  

   Se h[n] é a resposta ao impulso de
    um filtro, H[z] é a função de
    transferência do filtro
Propriedades da
Transformada z
   Convolução (Prova)
                                   n
Z{h[n] * x[n]}     h[k ]x[n  k ] z
                n   k  
                                    
                                     
                           
                          h[k ]x[n  k ]z  n
                 k   n  
                                        
                        h[k ]z  k     x[n]z  n
                 k                  n  

               H [ z] X [ z]
Função de Transferência

   Equação de diferenças de um filtro
                N 1            M 1
       y[n]     ak x[n  k ]   bk y[n  k ]
                k 0            k 1
      M 1               N 1
        bk y[n  k ]   ak x[n  k ]
       k 0              k 0
      b0  1
Função de Transferência
   Transformada Z da Equação de
    diferenças

           M 1
                          
                                 N 1
                                                 
                                                  
         Z   bk y[n  k ]  Z   a k x[n  k ]
            k 0
                          
                                 k 0
                                                 
                                                  
         M 1                          N 1
          bk Z{ y[n  k ]}   ak Z{ x[n  k ]}
         k 0                           k 0
         M 1                        N 1
               bk z  k Y [ z ]          ak z  k X [z ]
         k 0                        k 0
Função de Transferência
   Aplicando a transformada z em
    ambos os lados e simplificando:
                             N 1
                              ak z  k
                 Y [ z]      k 0
        H [ z]         
                 X [ z]        M 1
                            1    bk z  k
                                 k 1

 Pólos: raízes do denominador
 Zeros: raízes do numerador
 Pólos e zeros: estabilidade
Função de Transferência
 BIBO: Bounded-input, bounded-
  output
 Sistemas BIBO-estáveis: sistemas
  causais tais que:

               
               | h[k ] |  
              k 0
Estimação da Resposta em
Freqüência
   Resposta em freq. a partir de H[z]
                       
          H [ z]      h[n]z  n
                     n  
                           
          H [ e j ]       h[n]e  jn ,   0    2
                         n  

   Comparar com
                               N 1          j 2un
                   1                     
          F [u ] 
                   N
                                s[n]e          N
                               n 0
Estimação da Resposta em
Freqüência
 Exemplo: encontre a resposta em
  freqüência do filtro y[n] = (x[n] + x[n-1])/2
  utilizando a transformada Z
  Y[z] = (X[z] + z-1X[z] )/2 = X[z](1+z-1)/2
  H[z] = (1+z-1)/2
  H[ejw] = (1+e-jw)/2 = e-jw/2 (ejw/2 + e-jw/2)/2 =
  e-jw/2cos(w/2)
 |H[ejw]| = cos(w/2), -pi< w < pi
Estimação da Resposta em
Freqüência
 Exemplo: encontre a resposta em
  freqüência do filtro y[n] = (x[n] - x[n-1])/2
  utilizando a transformada Z
  Y[z] = (X[z] - z-1X[z] )/2 = X[z](1-z-1)/2
  H[z] = (1-z-1)/2
  H[ejw] = (1-e-jw)/2 = e-jw/2 (ejw/2 - e-jw/2)/2 =
  je-jw/2sen(w/2)
 |H[ejw]| = |sen(w/2)|, -pi< w < pi
Correlação
   Convolução:                    
       g[n]  s[n ] * h[n]         s[ ]h[n   ]
                                   
   Correlação:
                                  
         g[n]  s[n]  h[n]      s[ ]h[  n]
                                  

   Quando um dos sinais é par,
    correlação = convolução
Correlação
   Exemplo:
h[-1] = 3; h[0] = 7; h[1] = 5;
s[0..15] = {3, 2, 4, 1, 3, 8, 4, 0, 3, 8, 0,
  7, 7, 7, 1, 2}


   Extensão com zeros
Correlação
    Exemplo:
    g[1]  s[0]h[1]  15
              1
    g[0]      s[ ]h[ ]  s[0]h[0]  s[1]h[1]  31
              0
              2
    g[1]     s[ ]h[  1]  s[0]h[1]  s[1]h[0]  s[2]h[1]  43
              0
              3
    g[2]      s[ ]h[  2]  s[1]h[1]  s[2]h[0]  s[3]h[1]  39
              1
    ...
Correlação
   Exemplo:
g[0..15] = 31, 43, 39, 34, 64, 85, 52, 27,
  61, 65, 59, 84, 105, 75, 38, 27
 Observe que g[5] é elevado, pois é
  obtido centrando h em s[5] e calculando
  a correlação entre (3, 7, 5) e (3, 8, 4)
 Mas g[12] é ainda maior, devido aos
  valores elevados de s[11..13]
Correlação Normalizada
   A correlação normalizada elimina a
    dependência dos valores absolutos
    dos sinais:
                                  
                                  s[ ]h[  n]
g[n]  s[n]  h[n]               
                                          
                         ( s[ ]) 2       (h[  n]) 2
                                       
Correlação Normalizada
 Resultado para o exemplo anterior:
 g[0..15] = .??? .877 .934 .73 .81
  .989 .64 .59 .78 .835 .61 .931 .95
  .83 .57 .???
 Valor máximo: g[5]
Detecção e estimação

Fonte:
http://www.dspguide.com/ch7/3.htm
Detecção e estimação
   Gaivota, “filtro casado” (olho) e
    imagem de correlação normalizada
    (máximo no olho)




      Fonte: http://www.dca.fee.unicamp.br/dipcourse/html-dip/c6/s5/front-page.html
Estimação Espectral
   O cálculo direto do espectro         de
    amplitudes e fases não é fidedigno
   O espectro pode variar muito em
    diferentes seções de um mesmo sinal.

   Variância é um indicador de qualidade
   O problema pode ser causado por ruído,
    escassez de dados, comportamento não
    estacionário etc.
Periodograma
   O quadrado do módulo do espectro de
    amplitudes: densidade espectral de
    potência (PSD), ou espectro de potência

   Periodograma: dividir sinal em K seções
    adjacentes (com ou sem intersecção) de
    mesmo tamanho; obter PSD de cada
    seção; obter média das PSDs
   Variância se reduz por fator K1/2
   Resolução espectral diminui
Janelamento (windowing)
   Todo sinal discreto obtido a partir de um
    sinal    analógico    é   resultado     da
    multiplicação de um sinal discreto de
    duração infinita por um pulso, ou janela,
    retangular:

                 1 0  n  N
            wn  
                 0 caso contrário
Janelamento (windowing)
   A janela retangular pode gerar grandes
    descontinuidades na forma de onda
    original
Janelamento (windowing)
    Multiplicação no tempo equivale          a
     convolução na freqüência (Fourier)
    DFT da janela retangular: função sinc
     (sine cardinal, kernel de Dirichlet, função
     de amostragem):

           1      x0
           
sinc( x)   sen x
            x     caso contrário
           
Janelamento (windowing)
   A convolução com um sinc introduz
    distorções no espectro
   Janelas mais “suaves” reduzem estas
    distorções, mas distorcem mais as
    amostras centrais-> Compromisso
   Dezenas dessas janelas tem sido
    avaliadas e utilizadas em diversas
    aplicações
Janela de Hamming
                     2n 
     0,54  0,46 cos        0nN
wn                  N 1
     0 caso contrário
     
Janela de Hamming
    Seno multiplicado por janela retangular e
     de Hamming
Janela de Hamming
    DFT de seno multiplicado por janela
     retangular e de Hamming
Outras Janelas
    Blackman-Harris, Dolph-Chebyshev,
     Kaiser-Bessel (superiores?)
    Tukey, Poisson, Hanning etc
Dissolve Cruzado
   ht (i, j)= (1 - t) f(i, j) + t g(i, j)
   t é um escalar no intervalo [0, 1]
Dissolve Cruzado




  t = 0,3   t = 0,5   t = 0,7
Dissolve Cruzado Não-
Uniforme
   ht(i, j)= [1 - t(i, j)] f(i, j) + t(i, j) g(i, j)
   t é uma matriz com as mesmas
    dimensões de f e g cujos elementos
    assumem valores no intervalo [0, 1]
Dissolve Cruzado Não-
Uniforme




t(i,j)=(i+j)/(R+C-2)   t(i,j)=j/(C-1)   t(i,j)=i/(R-1)
Detecção de Movimento
          L  1, se | f1  f 2 | Lt
        g
          0, caso contrario




   f1              f2               g
Redução de Ruído por Média
de Imagens
   f[i, j] imagem sem ruído
   nk(i, j) ruído de média m
   gk[i,j] = f[i,j] + nk(i,j)


                          M
                         
                      1
          g [i, j ]         g k [i, j ]
                      M k 1
Redução de Ruído por Média
de Imagens
                         M
                        
                     1
         g [i, j ]        ( f [i, j ]  nk (i, j ))
                     M k 1
                                    M
                                    
                                  1
          g [i, j ]  f [i, j ]        nk (i, j )
                                  M k 1


   Para M grande:

                 g[i, j ]  f [i, j ]  m
Operações Topológicas

   Rígidas
       Translação
       Rebatimento
       Rotação
       Mudança de Escala
   Não rígidas (Warping)
Rotação
   Rotação em torno de (ic, jc)

    i'  (i  ic ) cos   ( j  jc ) sen   ic
     j '  (i  ic ) sen   ( j  jc ) cos   jc
Rotação e Rebatimento




Imagem original   Rebatimento pela   Rotação de 90
                       diagonal       graus em torno
                                       de (R/2,C/2)
Ampliação (Zoom in)
   Por replicação de pixels

    Original     Ampliação por fator 3

     10 10      10   10   10   10   10   10
     20 30      10   10   10   10   10   10
                10   10   10   10   10   10
                20   20   20   30   30   30
                20   20   20   30   30   30
                20   20   20   30   30   30
Ampliação (Zoom in)
    Por interpolação bilinear

     Original                Ampliação por fator 3
      10 10                  10 10 10 10 10 10
      20 30

Interpolação nas linhas
Passos de níveis de cinza:
                             20 23 27 30 33 37
10 a 10: 0
20 a 30: (30-20)/3 = 3,3
Ampliação (Zoom in)
    Por interpolação bilinear

     Original                Ampliação por fator 3
      10 10                  10   10   10   10   10   10
      20 30                  13   14   16   17   18   19
Interpolação nas colunas     17   19   21   23   25   28
Passos de níveis de cinza:
                             20   23   27   30   33   37
10 a 20: (20-10)/3 = 3,3
10 a 23: (23-10)/3 = 4,3     23   27   33   37   41   46
10 a 27: (27-10)/3 = 5,7     27   32   38   43   48   55
...
Ampliação (Zoom in)
   Exemplo: Ampliação por fator 10




Original         Replicação     Interpolação
Redução (Zoom out)
    Por eliminação de pixel
    Por Média
      Original                Redução por fator 3
10   10   10   10   10   10
                                    14 18
13   14   16   17   18   19
                                    28 41
17   19   21   23   25   28
20   23   27   30   33   37
23   27   33   37   41   46
27   32   38   43   48   55
Reconstrução de Imagens
   Zoom por fatores não inteiros
   Ex: F = 3,75432
   Operações elásticas, etc.
   Técnicas mais avançadas devem ser
    utilizadas
   Uma dessas técnicas é a reconstrução
    de imagens
Reconstrução de imagens
   Dados f(i,j), f(i,j+1), f(i+1,j), f(i+1,j+1)
                           (i, j)     (i, y)       (i, j+1)
 Reconstrução:
Encontrar f(x,y),                         (x,y)
x em [i, i+1]
y em [j, j+1]


                          (i+1, j)   (i+1, y)     (i+1, j+1)
Reconstrução de imagens
    por interpolação bilinear
   f(i, y) = f(i, j)+(y–j)[f(i, j+1)-f(i, j)]
   f(i+1,y)=f(i+1,j)+(y–j)[f(i+1,j+1)-f(i+1, j)]
   f(x, y) = f(i, y) + (x – i) [f(i+1, y) - f(i, y)]
             (i, j)     (i, y)       (i, j+1)



                            (x,y)




            (i+1, j)   (i+1, y)     (i+1, j+1)
Reconstrução de imagens
   Ex: f(10.5, 15.2)=?

 f(10, 15) = 10; f(10, 16) = 20;
f(11,15) = 30; f(11, 16) = 30
Reconstrução de imagens
Solução:
x = 10.5; y = 15.2 => i = 10; j = 15
f(i, y) = f(i, j)+(y–j)[f(i, j+1)-f(i, j)]
f(10, 15.2)=f(10,15)+(15.2-15)*[f(10,16)-f(10,15)
   = 10 + 0.2*[20 – 10] = 12
f(i+1,y)=f(i+1,j)+(y–j)[f(i+1,j+1)-f(i+1, j)]
f(11, 15.2)=f(11,15)+(15.2-15)*[f(11,16)-f(11,15)
   =30 + 0.2*[30 – 30] = 30
f(x, y) = f(i, y) + (x–i) [f(i+1, y) - f(i, y)]
f(10.5, 15.2)=12+(10.5-10)*[30-12] =21
Zoom por reconstrução de
 imagens
Ex: Ampliação por fator 2.3
Passo para as coordenadas: 1/2.3 = 0.43
x = 0, 0.43, 0. 87, 1.30, 1.74, 2.17, 2.61, 3.04...
y = 0, 0.43, 0. 87, 1.30, 1.74, 2.17, 2.61, 3.04...
g(0,0) = f(0,0); g(0,1) = f(0, 0.43);
g(0,2) = f(0, 0.87); g(0,3) = f(0, 1.30);...

Ex: Redução por fator 2.3
x = 0, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8...
y = 0, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8...
g(0,0) = f(0,0); g(0,1) = f(0, 2.3);
g(0,2) = f(0, 4.6); g(0,3) = f(0,6.9);...
Operações Topológicas Não
Rígidas (warping)
 Warping = distorção
 Zoom por fator F(i, j)
 Rotação por ângulo teta(i,j)
 Translação com deslocamento d(i,j)
 Warping especificado pelo usuário
Warping baseado em
Campos
 Entretenimento
 Efeitos especiais, morphing
 Correção de distorções óticas
 Alinhamento de elementos
  correspondentes em duas ou mais
  imagens (registro)
 Modelagem e visualização de
  deformações físicas
Warping baseado em
Campos
1.   Características importantes da
     imagem são marcados por
     segmentos de reta orientados
     (vetores de referência)
2.   Para cada vetor de referência, um
     vetor alvo é especificado, indicando
     a transformação que se pretende
     realizar
Warping baseado em
Campos
3.   Para cada par de vetores
     referência-alvo, encontra-se o
     ponto X’ para onde um ponto X da
     imagem deve migrar, de forma que
     as relações espaciais entre X’ e o
     vetor alvo sejam idênticas àquelas
     entre X e o vetor de referência
4.   Parâmetros para as relações
     espaciais : u e v
Warping baseado em
Campos
Warping baseado em
Campos
   u: representa o
    deslocamento
    normalizado de P
    até O no sentido
    do vetor PQ
    (Normalizado:
    dividido pelo
    módulo de PQ)
   |v|: distância de X
    à reta suporte de
    PQ
Warping baseado em
Campos
 Se O=P, u = 0
 Se O=Q, u = 1
 Se O entre P e
  Q, 0<u<1;
 Se O após Q,
  u>1
 Se O antes de
  P, u<0
Warping baseado em
Campos
   Encontrar u e v: norma, produto interno,
    vetores perpendiculares, projeção de um
    vetor sobre outro.
   Vetores a = (x1, y1) e b = (x2, y2)
   Norma de a:

               || a ||  x  y
                          2
                          1
                                   2
                                   1


   Produto interno:
                a.b = x1x2 +y1y2
Warping baseado em
Campos
   “Norma” da projeção de a sobre b (o
    sinal indica o sentido em relação a b)
                    a
           a.b
|| c || 
          || b ||
                                             b

                        c
Warping baseado em
Campos
   Vetor b = (x2, y2) perpendicular a a =
    (x1, y1) e de norma igual à de a:
               b     a




   Perpendicularidade: x1x2 +y1y2 = 0
   Mesma norma: x22 + y22 = x12 + y12
Warping baseado em
Campos
   Soluções:
       x2 = y1, y2 = -x1
       x2 = -y1, y2 = x1

                  b        a



                           b’
Warping baseado em
Campos
   Parâmetro u:
    “norma” da
    projeção de PX
    sobre PQ, dividido
    pela norma de PQ


       PX .PQ
    u          2
       || PQ ||
Warping baseado em
Campos
   P = (xp,yp), Q =
    (xq, yq), X = (x,y)

        PX .PQ
     u          2
        || PQ ||

u = (x - xp).(xq - xp) + (y -yp)(yq – yp)
            (xq-xp)2 + (yq-yp)2
Warping baseado em
Campos
   Parâmetro v:
    distância de X à
    reta suporte de PQ

       PX .  PQ
    v
        || PQ ||
   v: vetor
    perpendicular a v e
    de mesma norma
    que este.
Warping baseado em
Campos
   PQ = (Xq-Xp, Yq-Yp)
    PQ1 = (Yq–Yp, Xp-Xq)
    PQ2 = (Yp–Yq, Xq-Xp)
   Vamos usar PQ1
Warping baseado em
Campos
   Parâmetro v:


       PX .  PQ
    v
        || PQ ||


v = (x-xp)(yq-yp) + (y-yp)(xp–xq)
        [(xq-xp)2 + (yq-yp)2]1/2
Warping baseado em
Campos
   Cálculo de X’:




                          v.  P ' Q'
        X '  P'u.P' Q'
                           || P' Q' ||
Warping baseado em
Campos

             PX .PQ
          u          2
             || PQ ||

            PX .  PQ
         v
             || PQ ||

                      v.  P ' Q'
    X '  P'u.P' Q'
                       || P' Q' ||
Warping baseado em
Campos
   Quando há mais de um par de vetores
    referência-alvo, cada pixel sofre a
    influência de todos os pares de vetores
   Será encontrado um ponto Xi’ diferente
    para cada par de vetores referência-alvo.
   Os diferentes pontos para os quais o
    ponto X da imagem original seria levado
    por cada par de vetores referência-alvo
    são combinados por intermédio de uma
    média ponderada, produzindo o ponto X’
    para onde X será efetivamente levado.
Warping baseado em
Campos
Warping baseado em
Campos
   Peso da coordenada definida pelo i-ésimo
    par de vetores de referência-alvo:




    di: Distância entre X e o segmento PiQi
    li: ||Pi Qi||
    a, b e p : Parâmetros não negativos
Warping baseado em
Campos
   Relação inversa com a distância entre a
    reta e o ponto X
   Parâmetro a : Aderência ao segmento
       a = 0 (Peso infinito ou aderência máxima)
Warping baseado em
Campos
   Parâmetro p controla a importância do
    tamanho do segmento
   p = 0: independe do tamanho do
    segmento
Warping baseado em
Campos
   Parâmetro b controla a forma como a
    influência decresce em função da
    distância
   b = 0: peso independe da distância
Warping baseado em
Campos
   Bons resultados são obtidos com:
    a entre 0 e 1
    b=2
    p = 0 ou p = 1.
Warping baseado em
Campos
   Exemplo:
P0 = (40, 10); Q0 = (20, 5)
P0’ = (35, 15); Q0’ = (25, 20)        0   5 10   15         20 25 30        35    40     45   50   55   60
P1 = (20, 30); Q1 = (10, 35)      0
                                                                                       Q1‟
P1’ = (25, 50); Q1’ = (5, 40)     5
                                                                        Q1
X = (20, 25)                     10

u0 = [(20-40) (20-40) + (25-     15
    10)(5-10)] / [(20-40)2+                                   X
    (5-10)2] = 0.76
                                 20       Q0
                                                                       P1
v0 = [(20-40) (5-10) + (25-      25                   Q0‟
                                                                                               P1‟
    10)(40-20)] / [(20-40)2+     30
    (5-10)2]1/2 = 19.40
                                 35
X0’ = (35, 10) + 0.76 (25-35,                         P0‟
    20-15) + 19.4 (20-15, 35-    40
                                           P0
                                                                                 X0‟
    25) / [(25-35)2 + (20-       45
    15)2]1/2
X0’ = (36.03, 31.17)             50
Warping baseado em
Campos
   Exemplo (cont):
u1 = [(20-20) (10-20) +
   (25-30)(35-30)] / [(10-
   20)2+ (35-30)2] = - 0.2         0   5 10   15         20 25 30        35    40     45   50    55   60
v1 = [(20-20) (35-30) +        0
   (25-30)(20-10)] / [(10-     5                                                    Q1‟
   20)2+ (35-30)2]1/2 = -     10
                                                                     Q1
   4,47
                              15
X1’ = (25, 50) - 0.2 (5-25,                                X
   40-50) -4,47 (40-50,       20       Q0
   25-5) / [(25-5)2 + (40-    25                   Q0‟
                                                                    P1
   50)2]1/2                                                                                 P1‟

X1’ = (25, 50) + (4.6, 2) +   30

   (2, -3.99) = (31.6,        35                                                           X1‟
   48,01)                     40
                                                   P0‟                        X0‟
                                        P0
                              45

                              50
Warping baseado em
Campos
   Exemplo (cont):
Dados a = 0.1; b = 2; p= 0
wi = 1/[0.1+di]2
d0 = v0 = 19.4 => w0 =
                                   0   5 10   15         20 25 30        35    40     45   50    55   60

   0.0026
                               0
                               5                                                    Q1‟
d1 = distância de X a P1 =                                           Q1
   [(20-20)2 + (25-30)2]1/2   10
   = 5 =>: w1 = 0.0384        15
X’ = [0.0026* (36.03,         20       Q0
                                                           X
   31.17) + 0.0384*(31.6,                                           P1
   48,01)]/( 0.0026+          25                   Q0‟
                                                                                            P1‟
   0.0384)                    30                                                      X‟
X’ = (31.88, 46,94)                                                                        X1‟
                              35
                                                   P0‟                        X0‟
                              40
                                        P0
                              45

                              50
Morphing
 Interpolação de formas e cores
  entre duas imagens distintas
  (f0 e fN-1)
 Encontrar imagens f1, f2, ..., fN-2:
  transição gradual de f0 a fN-1
 Efeitos especiais na publicidade e na
  indústria cinematográfica; realidade
  virtual; compressão de vídeo; etc.
Morphing
Morphing
            Warping de f0


                  cki

      f0                     fN-1


 ai                                 bi
                 “+”
           Warping de fN-1


                  cki
Morphing
  ai
       c1i
             c2i
                   c3i
                         c4i
                               c5i
                                     c6i
                                           c7i
                                                 c8i
                                                       c9i
                                                             bi
Morphing
Técnicas no Domínio da
     Freqüência
   Conversão ao domínio da freqüência:
    transformadas
   Processamento e análise no domínio da
    freqüência
   Fourier, Cosseno Discreta, Wavelets,
    etc.
Cosseno Analógico
   f: freqüência         x(t )  A cos2ft   
   T=1/f: período    A


    : fase
   A: amplitude
   Gráfico para
    fase nula e A>0



                                                 T
Uma Família de Funções
   Cosseno Analógicas
 xk (t )  Ak cos2f k t   k , k  0, 1, ..., N  1

 fk:  freqüência do k-ésimo cosseno
 Tk =1/fk: período do k-ésimo
  cosseno
  k : fase do k-ésimo cosseno
 Ak: amplitude do k-ésimo cosseno
Uma Família de Funções
Cosseno Discretas

x k [n]  Ak cos2f k n   k , n  0,1,...,N  1


   k = 0,1,...N-1
Uma Família de Funções
Cosseno Discretas
             1/ 2
     2
Ak               ck X k
     N
       1/2 1/2
                     para k  0
ck   
       1
                   para k  1, 2, ... N - 1
         k             2N                k
fk               Tk            k 
       2N               k                2N

              1/ 2
           2                    (2n  1)k 
x k [n ]          c k X k cos             , n  0,1,...,N  1
           N                       2N      
Uma Família de Funções
  Cosseno Discretas
             1/ 2
           2                   (2n  1)k 
x k [n ]         c k X k cos             , n  0,1,...,N  1
           N                      2N      

      f0  0                1/ 2
                         2  1
                                  1/ 2
k 0         x0[n]      X 0 , n  0,1,...,N  1
      0  0            N  2

              1
k  1  f1      T1  2 N (meio-período em N amostras)
             2N
                     N 1           2N
k  N  1  f N 1        TN 1 
                     2N             N 1
Uma Família de Funções
Cosseno Discretas
   xk[n] (N = 64, Xk = 10).
         2

         1

         0

        -1

        -2
             0   10   20   30   40   50   60   70



                         k=1
                       Meio-ciclo
Uma Família de Funções
Cosseno Discretas
            2

            1
 k=2
            0
1 ciclo
            -1

            -2
                 0   10   20   30   40   50   60   70


            2

            1
  k=3       0
1,5 ciclo   -1

            -2
                 0   10   20   30   40   50   60   70
Uma Família de Funções
   Cosseno Discretas
               2


  k=32         1


 16 ciclos
               0

               -1

               -2
                    0   10   20   30   40   50   60   70

               2

               1
Para           0

visualização   -1

               -2
                    0   10   20   30   40   50   60   70
Uma Família de Funções
   Cosseno Discretas
               2


  k=63         1


31,5 ciclos    0

               -1

               -2
                    0   10   20   30   40   50   60   70

               2

               1
Para
               0
visualização   -1

               -2
                    0   10   20   30   40   50   60   70
Uma Família de Funções
Cosseno Discretas
   Amostragem de um sinal periódico não
    necessariamente produz um sinal de
    mesmo período (ou mesmo periódico).
Somando Cossenos
  Discretos
    Criar um sinal x[n] somando-se os sinais
     xk[n], k = 0...N-1, amostra a amostra:
                       N 1
              x[n]     x k [n],   n 0,1,...,N  1
                       k 0

          1 / 2 N 1
        2                   (2n  1)k 
x[n ]         ck X k cos  2 N , n  0,1,...,N  1
        N    k 0                      
Somando Cossenos
        Discretos
       Exemplo:
       N = 8; X0 = 10; X1 = 5; X2 = 8,5; X3 = 2;
        X4 = 1; X5 = 1,5; X6 = 0; X7 = 0,1.

5
                                               1/ 2
                                        11
4                             x 0 [n ]             10
                                        22
3                            =3.5355
2
    0     2     4    6   8
Somando Cossenos
         Discretos
        X1 = 5
4                                   5     (2n  1) 
                           x1 [n ]  cos 
2
                                    2        16    
0
                           =2.4520; 2.0787; 1.3889;
-2
                            0.4877; -0.4877; -1.3889;
-4
     0    2    4   6   8
                            -2.0787; -2.4520
6


4
                           x0[n]+x1[n]
2


0
     0     2   4   6   8
Somando Cossenos
     Discretos
        X2 = 8,5
                                       8.5      (2n  1)2 
                            x 2 [n ] 
 4
                                           cos             
 2
                                        2           16     
 0
                            = 3.9265; 1.6264; -1.6264;
-2
                              -3.9265; -3.9265; -1.626;
-4
     0     2   4    6   8
                              1.6264; 3.9265
10


 5
                            x0[n]+x1[n] +x2[n]
 0


-5
     0     2   4    6   8
Somando Cossenos
       Discretos
          X3 = 2
  1                                      2     (2n  1)3 
                               x 3 [n ]  cos             
0.5                                      2         16     
  0
                             = 0.8315; -0.1951; -0.9808;
-0.5
                               -0.5556; 0.5556; 0.9808;
 -1
       0     2   4   6   8
                               0.1951; -0.8315
15

10

  5                          x0[n]+x1[n]+x2[n]+x3[n]
  0

 -5
      0      2   4   6   8
Somando Cossenos
       Discretos
          X4 = 1
0.4
                                        1     (2n  1)4 
                              x 4 [n ]  cos             
                                                         
0.2
                                        2          16
  0
                             = 0.3536; -0.3536; -0.3536;
-0.2
                               0.3536; 0.3536; -0.3536;
-0.4
       0     2   4   6   8
                               -0.3536; 0.3536
15

10

  5                          x0[n]+x1[n]+x2[n]+x3[n]
  0                            +x4[n]
 -5
      0      2   4   6   8
Somando Cossenos
       Discretos
          X5 = 1,5
  1
                                           1.5      (2n  1)5 
                                x 5 [n ]      cos             
                                                               
0.5
                                            2            16
  0

-0.5
                              = 0.4167 -0.7356 0.1463
                                0.6236 -0.6236 -0.1463
 -1
       0     2   4    6   8     0.7356 -0.4167
15

10

  5                           x0[n]+x1[n]+x2[n]+x3[n]
  0                             +x4[n]+x5[n]
 -5
      0      2   4    6   8
Somando Cossenos
       Discretos
          X6 = 0
                                         0     (2n  1)6 
                               x 6 [n ]  cos 
  1

0.5                                      2         16     
                                                           
                               =0
  0

-0.5

 -1
       0     2   4   6   8
15

10

  5                          x0[n]+x1[n]+x2[n]+x3[n]
  0                            +x4[n]+x5[n]+x6[n]
 -5
      0      2   4   6   8
Somando Cossenos
        Discretos
           X7 = 0,1
                                           0.1  (2n  1)7 
                                x 7 [n ] 
0.05
                                              cos          
                                            2       16     
   0
                               = 0.0098; -0.0278; 0.0416;
                                 -0.0490’; 0.0490; -0.0416;
-0.05
        0     2   4    6   8
                                 0.0278; -0.0098
 15

 10

   5                           x[n]=x0[n]+x1[n]+x2[n]+
   0                             x3[n] +x4[n]+x5[n]+x6[n]
  -5
                                 +x7[n]
       0      2   4    6   8
Somando Cossenos
Discretos
       X[k] é um sinal digital: X[k]= X0, X1,...XN-1
       Exemplo: X[k]=10;5;8.5;2;1;1.5;0;0.1
       Dado X[k] pode-se obter x[n]
       X[k]: representação alternativa para x[n]

                X[k]                          x[n]
10                               15

                                 10

    5                             5

                                  0

    0                            -5
        0   2    4     6   8          0   2    4     6   8
Somando Cossenos
Discretos
 xk[n]: cosseno componente de x[n],
  de freqüência fk = k/2N; ou
 xk[n]: componente de freqüência
  fk = k/2N;
 X[k]: Diretamente relacionado com a
  amplitude da componente de
  freqüência fk = k/2N
 X[k] representa a importância da
  componente de freqüência fk = k/2N
Transformada Cosseno
    Discreta (DCT)
     DCT de x[n]:
             1/ 2     N 1
         2                       (2n  1)k 
X [k ]           ck  x[n] cos             , k  0,1,...,N  1
         N           n 0        2N         

   Transformada DCT inversa (IDCT) de
    X[k]:
          1 / 2 N 1
       2                        (2n  1)k 
x[n]           ck X [k ] cos  2 N , n  0,1,...,N  1
       N      k 0                         
Transformada Cosseno
Discreta (DCT)

 X[k]: coeficientes DCT
 X: representação de x no domínio da
  freqüência
 X[0]: coeficiente DC (Direct Current)
 X[1]...X[N-1]: coeficientes AC
  (Alternate Current)
 Complexidade
 Algoritmos eficientes: FDCT
DCT – Exemplo 1
                    g1

0.1


  0


-0.1


-0.2
    0     20   40   60   80   100   120
                    g3                                   g1+ g3
  2                                       2

  1                                       1

  0                                       0

 -1                                       -1
 -2
                                          -2
      0   20   40   60   80   100 120      0   20   40    60      80   100   120
DCT – Exemplo 1 (Cont.)
                   g10                                  g1+g3+g10
 2                                       2

 1                                       1

 0                                       0

 -1                                      -1
 -2
                                         -2
     0   20   40   60     80   100 120
                                          0       20   40    60   80   100   120
                   g118                                g1+g3+g10+g118
                                                              +
                                          2
0.1
                                          1

  0                                       0

-0.1                                     -1

                                         -2
-0.2
   0     20   40    60    80   100 120        0   20    40   60   80   100   120
DCT – Exemplo 2
60                           1     π 
       f1[n]  29.99 cos 2 π   n    
40                       2N       2N 

20
 0
-20
-40
-60
  0   10   20     30     40     50     60
60                             2     π    150                 f1  f 2
       f 2 [n]  48.54 cos 2 π   n    
40                         2N       2N 
                                            100
20
                                                50
 0
-20                                              0

-40                                             -50
-60
                                            -
  0   10   20     30     40     50     60         0   10   20    30        40   50   60
DCT – Exemplo 2 (Cont.)
60                                3     π    150                 f1  f 2  f 3
          f 3 [n]  34.23 cos 2 π   n    
40                            2N       2N 
                                               100
20
                                                   50
 0
-20                                                 0

-40                                                -50
-60
                                               -
  0      10   20     30     40     50     60   1000      10   20      30      40      50   60
60                                4     π     150            f1  f 2  ...  f 4
          f 4 [n]  -35.19 cos 2π   n    
40                             2N      2N 
                                               100
20
                                                   50
 0
-20                                                 0

-40                                                -50
-60
                                               -
     0   10   20     30     40     50     60         0   10   20      30      40      50   60
DCT – Exemplo 2 (Cont.)
                                             150
60                             5     π                  f 1  f 2  ...  f 6
       f 5 [n]  -34.55 cos 2π   n    
40                          2N      2N     100

20                                            50

 0                                             0
-20
                                             -50
-40
                                             -
-60                                          100
  0   10   20     30     40     50     60       0   10   20        30       40        50   60
                                              150
60                              6     π                     f 1  f 2  ...  f 6
       f 6 [n]  -33.29 cos 2 π   n    
40                          2N       2N     100
20                                             50
 0
                                               0
-20
                                              -50
-40
-60                                          -
                                             100
  0   10   20     30     40     50     60       0   10   20         30        40      50   60
DCT – Exemplo 2 (Cont.)
                                                    200
60                                 7     π                     f 1  f 2  ...  f 7
           f 7 [n]  -63.42 cos 2π   n           150
40                              2N      2N 
                                                    100
20
                                                     50
 0
                                                      0
-20
-40                                                  -50

-60                                                 -
                                                    1000   10   20     30        40      50   60
  0       10      20     30    40     50     60
 60                                    8     π                 f1  f 2  ...  f 8
               f 8 [n]  -42.82 cos 2π   n       200
 40                                 2N      2N 
                                                    150
 20
                                                    100
  0
                                                     50
-20
                                                      0
-40
                                                    -50
-60
                                                    -
      0   10       20     30     40    50     60    100
DCT – Exemplo 2 (Cont.)
60                             9     π                 f1  f 2  ...  f 9
       f 9 [n]  -10.31cos 2 π   n       200
40                         2N       2N 
                                            150
20                                          100
 0                                           50
-20                                           0
-40                                         -50
-60                                         -
  0   10   20     30     40     50     60   1000   10   20     30       40      50   60
60                            10     π                 f1  f 2  ...  f10
       f10 [n]  7.18 cos 2 π    n       200
40                        2N        2N 
                                            150
20                                          100
 0                                           50
-20                                           0
-40                                         -50
-60                                         -
  0   10   20     30     40     50     60   1000   10   20     30       40      50   60
DCT – Exemplo 2 (Cont.)
                                               600
60                              20     π                 f 1  f 2  ...  f 20
       f 20 [n]  -62.24 cos 2π    n    
40                           2N       2N 
                                               400
20
 0                                             200

-20
                                                0
-40
-60
                                              -
  0   10   20     30      40     50     60    2000   10   20     30       40        50   60

60                              40     π    100          f1  f 2  ...  f 40
       f 40 [n]  35.54 cos 2 π    n    
40                          2N        2N    0
                                               800
20                                            600
 0                                            400
-20                                           200
-40                                             0
-60                                           -
                                              200
  0   10   20     30      40     50     60       0   10   20     30        40       50   60
DCT – Exemplo 2 (Cont.)
60                             60     π    120          f1  f 2  ...  f 60
       f 60 [n]  -6.73 cos 2π    n       0
40                          2N       2N    100
                                             0800
20
                                             600
 0
                                             400
-20                                          200
-40                                            0
-60                                          -
  0   10   20     30     40     50     60    2000   10   20     30       40       50   60
60                             63     π    120          f1  f 2  ...  f 63
       f 63 [n]  -1.51cos 2 π    n    
                           2N        2N    0
                                             100
40
                                             0800
20
                                             600
 0
                                             400
-20
                                             200
-40                                            0
-60                                          -
  0   10   20     30     40     50     60    2000   10   20     30       40       50   60
DCT – Exemplo 3
                       1250
                       1200

       Sinal           1150
                       1100
eletrocardiográfico,   1050

  2048 amostras        1000
                       950
                       900
                       850
                              0   500   1000   1500   2000
                         400



   DCT do sinal          200

eletrocardiográfico          0
 (sem termo DC)
                       -200


                       -400
                              0   500   1000   1500   2000
DCT – Exemplo 4
                20


Onda Quadrada   10


                 0


                -10

                -20
                   0   10   20   30   40   50   60
                60
                40

 DCT da Onda    20

  Quadrada       0

                -20

                -40
                -60
                   0   10   20   30   40   50   60
Freqüências em Hz

    Ta = 1/fa (Período de amostragem)
    N amostras ---- (N-1)Ta segundos


      1                             1          fa
f1     (adimensio nal)  f1                       Hz
     2N                        2( N  1)Ta 2( N  1)

                                  fa     fa
            f N 1  ( N  1)              Hz
                              2( N  1) 2
Freqüências em Hz

 Aumentar N melhora a resolução de
  freqüência.
 Aumentar fa aumenta a freqüência
  máxima digitalizável, em Hz.
 Dualidade com o domínio do tempo
Freqüências em Hz
   Sinal de ECG, N= 2048, fa=360Hz
   Valores em Hz para k = 14, 70, 683 e 2047
      14




       70      683               2047
Freqüências em Hz

   f1 = fa/[2(N-1)] Hz = 360/(2x2047) =
         0,087933561
   f14 = 14f1 = 1,23 Hz
   f70 = 70f1 = 6,16 Hz
   f683 = 683f1 = 60,06 Hz
   f2047 = 2047f1 = 180 Hz
Freqüências em Hz
   Observações
   fa = 360 Hz <=> Ta = 0,002778 Hz
   Tempo total para 2048 amostras = 5,69s
   Um batimento cardíaco: aprox. 0,8 s
   “Freqüência” Cardíaca: aprox. 1,25 bat./s
    = 1,25 Hz, ou 75 batimentos/min.
   “Freqüência” Cardíaca aprox. igual a f14
Freqüências em Hz
   Onda quadrada, N = 64, fa = 1Hz
   Valores em Hz para k = 7, 8, 9 e 63
      60
      40

      20

       0

      -20

      -40
      -60
         0   7 9                   63
Freqüências em Hz
   f1 = fa/[2(N-1)] Hz = 1/(2x63) =
        0,007936507
   f7 = 7f1 = 0,0556 Hz
   f8 = 8f1 = 0,0625 Hz
   f9 = 9f1 = 0,0714 Hz
   f63 = 63f1 = 0,5 Hz
   Obs:
   Período do sinal = 16 s
   Freqüência da onda = 0,0625
Freqüências e Conteúdo de
Freqüência

   Sinal periódico
       Freqüência
       Freqüências componentes
   Sinal não-periódico:
       Freqüências componentes
Sinais analógicos senoidais

   Representação em freqüência de um sinal
    analógico senoidal?

   Sinal analógico senoidal, de freqüência f

   fa mínimo para digitalização adequada?

   Se f não é múltiplo de f1?
Amostragem de Senóides
   Cosseno com f=10Hz, fa=100Hz, N=26
           1

         0.8

         0.6

         0.4

         0.2

           0

         -0.2

         -0.4

         -0.6

         -0.8

          -1
                0   0.05   0.1   0.15   0.2   0.25
Amostragem de Senóides
   DCT do cosseno com f = 10Hz, fa=100Hz, N=26
             4

           3.5

             3

           2.5

             2

           1.5

             1

           0.5

             0

           -0.5
                  0   5   10   15   20   25   30   35   40   45   50
Amostragem de Senóides
   Vazamento de freqüência: mais de uma
    componente de freqüência para uma
    senóide
   Minimizar vazamento de freqüência:
    aumentar N
Amostragem de Senóides
   Cosseno com f = 30Hz, fa=100Hz, N=26
            1

          0.8

          0.6

          0.4

          0.2

            0

          -0.2

          -0.4

          -0.6

          -0.8

           -1
                 0   0.05   0.1   0.15   0.2   0.25
Amostragem de Senóides
   DCT do cosseno com f = 30Hz, fa=100Hz, N=26
           3.5

             3

           2.5

             2

           1.5

             1

           0.5

             0

           -0.5

            -1

           -1.5
                  0   5   10   15   20   25   30   35   40   45   50
Amostragem de Senóides
   Cosseno com f = 48Hz, fa=100Hz, N=26
            1

          0.8

          0.6

          0.4

          0.2

            0

          -0.2

          -0.4

          -0.6

          -0.8

           -1
                 0   0.05   0.1   0.15   0.2   0.25
Amostragem de Senóides
   DCT do cosseno com f = 48Hz, fa=100Hz, N=26
           3.5


             3


           2.5


             2


           1.5


             1


           0.5


             0


           -0.5
                  0   5   10   15   20   25   30   35   40   45   50
Amostragem de Senóides
   Cosseno com f = 50Hz, fa=100Hz, N=26
            1

          0.8

          0.6

          0.4

          0.2

            0

          -0.2

          -0.4

          -0.6

          -0.8

           -1
                 0   0.05   0.1   0.15   0.2   0.25
Amostragem de Senóides
   DCT do cosseno com f = 50Hz, fa=100Hz, N=26
            5

           4.5

            4

           3.5

            3

           2.5

            2

           1.5

            1

           0.5

            0
                 0   5   10   15   20   25   30   35   40   45   50
Amostragem de Senóides
   Cosseno com f = 52Hz, fa=100Hz, N=26
           1

          0.8

          0.6

          0.4

          0.2

           0

         -0.2

         -0.4

         -0.6

         -0.8

           -1
                0   0.05   0.1   0.15   0.2   0.25
Amostragem de Senóides
   DCT do cosseno com f = 52Hz, fa=100Hz, N=26
           3.5


             3


           2.5


             2


           1.5


             1


           0.5


             0


           -0.5
                  0   5   10   15   20   25   30   35   40   45   50
Amostragem de Senóides
           Sinal digital obtido a partir do cosseno de
            52Hz é idêntico ao obtido a partir do
            cosseno de 48 Hz
  1                                      1

0.8                                  0.8

0.6                                  0.6

0.4                                  0.4

0.2                                  0.2

  0                                      0

-0.2                                 -0.2

-0.4                                 -0.4

-0.6                                 -0.6

-0.8                                 -0.8

 -1                                      -1
   0       0.0   0.1   0.1   0.2   0.2     0   0.0   0.1   0.1   0.2   0.2
Amostragem de Senóides
   Cosseno com f = 70Hz, fa=100Hz, N=26
            1

          0.8

          0.6

          0.4

          0.2

            0

          -0.2

          -0.4

          -0.6

          -0.8

           -1
                 0   0.05   0.1   0.15   0.2   0.25
Amostragem de Senóides
   DCT do cosseno com f = 70Hz, fa=100Hz, N=26
           3.5

            3

           2.5

            2

           1.5

            1

           0.5

            0

          -0.5

            -1

          -1.5
                 0   5   10   15   20   25   30   35   40   45   50
Amostragem de Senóides
           Sinal digital obtido a partir do cosseno de
            70Hz é idêntico ao obtido a partir do
            cosseno de 30 Hz
  1                                       1

0.8                                      0.8

0.6                                      0.6

0.4                                      0.4

0.2                                      0.2

  0                                       0

-0.2                                 -0.2

-0.4                                 -0.4

-0.6                                 -0.6

-0.8                                 -0.8

 -1                                      -1
   0       0.0   0.1   0.1   0.2   0.2     0   0.0   0.1   0.1   0.2   0.2
           5           5           5           5           5           5
Aliasing

 Na DCT, a maior freqüência é fa/2
 Aliasing: sinais senoidais de
  freqüência f > fa/2 são discretizados
  como sinais senoidais de freqüência
  fd < fa / 2 (fd=fa–f, para fa/2 < f < fa)
Aliasing
Teorema de Shannon-
    Nyquist

 Sinal analógico com fmax Hz
  (componente)
 Digitalizar com fa Hz, tal que:

         fa
             f max  f a  2 f max
         2
   2fmax: Freq. de Nyquist
Digitalização de áudio
 Ouvido humano é sensível a freq.
  entre 20Hz e 22KHz (aprox.)
 Digitalizar com 44KHz?
 Sons podem ter freqüências
  componentes acima de 22KHz
 Digitalização a 44KHz: aliasing.
 Filtro passa-baixas com freqüência
  de corte em 22KHz = Filtro anti-
  aliasing
Eliminação de pixels
revisitada
   Por que redução de imagens por
    eliminação de pixel deve ser evitada?
   Sinal original digitalizado com fa =2fmax
   No. de amostras do sinal digital
    reduzido pela metade por eliminação de
    amostras -> nova freqüência de
    amostragem f’a = fa/2 = fmax ->
    freqüência máxima do sinal analógico
    digitalizada sem aliasing = f’a/2 = fmax/2
Eliminação de pixels
revisitada
   Por que redução de imagens (ou
    outros sinais) por eliminação de
    pixel (ou amostras) deve ser
    evitada?
   Aliasing!
   Usar filtro passa-baixas!
Filtros no domínio da
freqüência

   Multiplicar o sinal no domínio da freq., S,
    pela função de transferência do filtro, H
   Filtros:
       Passa-baixas
       Passa-altas
       Passa-faixa
       Corta-baixas
       Corta-altas
       Corta-faixa (faixa estreita: notch)
Filtros no domínio da freq.
   Ideais   H             Passa-baixas       H             Passa-altas
                           (corta-altas)                    (corta-baixas)
                 1                                1


                             fc         N-1                   fc         N-1

             H             Passa-faixa        H             corta-faixa

                 1                                1


                     fc1          fc2   N-1           fc1          fc2   N-1
Filtros no domínio da
    freqüência
   Combinação de filtros
   Filtros não-ideais (corte suave,
    |H(fc)|=(1/2)1/2 ou |H(fc)|=1/2)
DCT 2-D

    Operação separável
    Complexidade elevada

                     N 1 N 1
             1                         (2m  1)k   (2n  1)l 
X [k , l ]     ck cl   x[m, n] cos              cos  2 N 
             2N      m 0 n 0         2N                      

          1 N 1N 1                     (2k  1)m   (2l  1)n 
x[m, n]         ck cl X [k , l ] cos  2 N  cos  2 N 
          2 N k 0 l 0                                          
DCT 2-D
   Imagem “cosseno na vertical”, 256 x 256,
    8 ciclos (k = 16) e sua DCT normalizada
DCT 2-D
   Imagem “cosseno na vertical”, 256 x 256,
    16 ciclos (k = 32) e sua DCT normalizada
DCT 2-D
   Imagem “cosseno na horizontal x cosseno
    na vertical”, 256 x 256, 16 ciclos (k = 32)
    e sua DCT normalizada
DCT 2-D
   Imagem “cosseno na horizontal x cosseno
    na vertical”, 256 x 256, 8 x 16 ciclos e
    sua DCT normalizada
DCT 2-D
   Imagem “Lena” (256x256) e sua DCT
    normalizada
DCT 2-D
   Imagem “Lena” (256x256) e o log(DCT+1)
    normalizado
Transformada de Fourier
Discreta (DFT)
                                  N 1            j 2un
                          1                   
   Direta:      F [u ] 
                          N
                                   s[n]e            N
                                  n 0
                           N 1          j 2un

   Inversa:     s[n ]     F [u]e         N
                           u 0

                  n, u = 0, 1, ..., N-1
                              j  1

 Fórmula de Euler: e j  cos   j sen 
Duas propriedades
essenciais

      F [u  N ]  ?
       |F[-u]| = ?
Duas propriedades
essenciais
   DFT é periódica de período N:

           F [u  N ]  F (u)

   Espectro de Fourier é função par:

           |F[u]| = |F[-u]|
Esboço do Espectro de
    Fourier
                 |F[u]|




                                            u
-N/2                      N/2       N-1
   u = 0, N, 2N,...: freq. 0
   u = N/2, 3N/2,...: freq. máxima (N par)
   u = (N-1)/2,...: freq. máxima (N ímpar)
Freqüências em Hz

 Ta = 1/fa (Período de amostragem)
 N amostras ---- (N-1)Ta segundos


    1                           1       fa
f1  (adimensio nal)  f1                  Hz
    N                       ( N  1)Ta N  1

                       N  1 fa     fa
        f( N 1) / 2                 Hz
                        2 ( N  1) 2
Fourier 2-D

 Operação separável
 Complexidade elevada
                     C 1 R 1
                 1
    F [u, v ] 
                RC
                       s[m, n]e     j 2 ( um / C  vn / R )

                     m 0n 0

                 C 1 R 1
     s[m, n]      F [u, v]e   j 2 ( um / C  vn / R )

                 u 0 v 0
Exibição do Espectro de
    Fourier 2-D


Flog[u, v] = round[(L - 1) log(1+|F[u, v]|)/Fmax2]
Teorema da Convolução
   Se
         g[m, n]  s[m, n]  h[m, n]
   Então:
       G[u,v] = H[u,v]F[u,v]
        onde
        G[u,v]: DFT de g[m,n]
        F[u,v]: DFT de s[m,n]
        H[u,v]: DFT de h[m,n]

   H[u,v]: Função de transferência do filtro
Filtros: espaço x freqüência
   Projeto de filtro no domínio da freqüência
    (Fourier)
   Método imediato: H[k], k = 0..N-1
   Como filtrar sinais no domínio do tempo,
    em tempo real?
   Convolução com h[n], n = 0..N-1 pode ser
    proibitiva para n grande
   Encontrar ht[n], n = 0..M-1, com M < N,
    de modo a obter uma aproximação
    adequada para H[k].
Filtros: espaço x freqüência
 Para eficiência computacional e
  redução de custos, o número de
  coeficientes do filtro deve ser o
  menor possível
 Projetar filtros relativamente imunes
  ao truncamento
Questões do PosComp 2002
   51. Histograma de uma imagem com K tons de cinza é :
        a) Contagem dos pixels da imagem.
        b) Contagem do número de tons de cinza que ocorreram na imagem.
        c) Contagem do número de vezes que cada um dos K tons de cinza
         ocorreu na imagem.
        d) Contagem do número de objetos encontrados na imagem.
        e) Nenhuma alternativa acima.

   52. filtro da mediana é :
        a) Indicado para detectar bordas em imagens.
        b) Indicado para atenuar ruído com preservação de bordas (i.é rápidas
         transições de nível em
        imagens).
        c) Indicado para detectar formas específicas em imagens.
        d) Indicado para detectar tonalidades específicas em uma imagem.
        e) Nenhuma das respostas acima.
Questões do PosComp 2002
   51. Histograma de uma imagem com K tons de cinza é :
        a) Contagem dos pixels da imagem.
        b) Contagem do número de tons de cinza que ocorreram na imagem.
        c) Contagem do número de vezes que cada um dos K tons de
         cinza ocorreu na imagem.
        d) Contagem do número de objetos encontrados na imagem.
        e) Nenhuma alternativa acima.

   52. filtro da mediana é :
        a) Indicado para detectar bordas em imagens.
        b) Indicado para atenuar ruído com preservação de bordas (i.é
         rápidas transições de nível em
        imagens).
        c) Indicado para detectar formas específicas em imagens.
        d) Indicado para detectar tonalidades específicas em uma imagem.
        e) Nenhuma das respostas acima.
Questões do PosComp 2004
   56) Considerando as declarações abaixo, é incorreto afirmar:
        a) Filtros passa-altas são utilizados para detecção de bordas em imagens
        b) A transformada discreta de Fourier nos permite obter uma representação de
         uma imagem no domínio freqüência
        c) Filtragem no domínio espacial é realizada por meio de uma operação chamada
         “convolução”
        d) Os filtros Gaussiano e Laplaciano são exemplos de filtro passa-baixas
        e) O filtro da mediana pode ser utilizado para redução de ruído em uma imagem

   58) Identifique a declaração incorreta:
        a) As operações de ajuste de brilho e contraste são operações lineares
        b) A equalização de histograma é uma transformação não-linear e específica
         para cada imagem
        c) A transformação necessária para calcular o negativo de uma imagem pode ser
         aplicada simultaneamente (i.e., em paralelo) a todos pixels da imagem original
        d) A equalização de histograma pode ser obtida a partir de um histograma
         cumulativo da imagem original
        e) O objetivo da equalização de histograma é reduzir o constrastre nas regiões
         da imagem que correspondem à porção do histograma com maior concentração
         de pixels
Questões do PosComp 2004
   56) Considerando as declarações abaixo, é incorreto afirmar:
        a) Filtros passa-altas são utilizados para detecção de bordas em imagens
        b) A transformada discreta de Fourier nos permite obter uma representação de
         uma imagem no domínio freqüência
        c) Filtragem no domínio espacial é realizada por meio de uma operação chamada
         “convolução”
        d) Os filtros Gaussiano e Laplaciano são exemplos de filtro passa-baixas
        e) O filtro da mediana pode ser utilizado para redução de ruído em uma imagem

   58) Identifique a declaração incorreta:
        a) As operações de ajuste de brilho e contraste são operações lineares
        b) A equalização de histograma é uma transformação não-linear e específica
         para cada imagem
        c) A transformação necessária para calcular o negativo de uma imagem pode ser
         aplicada simultaneamente (i.e., em paralelo) a todos pixels da imagem original
        d) A equalização de histograma pode ser obtida a partir de um histograma
         cumulativo da imagem original
        e) O objetivo da equalização de histograma é reduzir o constrastre nas regiões
         da imagem que correspondem à porção do histograma com maior concentração
         de pixels
Questões do PosComp 2005
   59. O processo de análise de imagens é uma seqüência de etapas que são iniciadas a
    partir da definição do problema. A seqüência correta destas etapas é:
        (a) pré-processamento, aquisição, segmentação, representação, reconhecimento.
        (b) aquisição, pré-processamento, segmentação, representação, reconhecimento.
        (c) aquisição, pré-processamento, representação, segmentação, reconhecimento.
        (d) aquisição, representação, pré-processamento, segmentação, reconhecimento.
        (e) pré-processamento, aquisição, representação, segmentação, reconhecimento.

   60. O termo imagem se refere a uma função bidimensional de intensidade de luz,
    denotada por f(x; y), onde o valor ou amplitude de f nas coordenadas espaciais (x;
    y) representa a intensidade (brilho) da imagem neste ponto. Para que uma imagem
    possa ser processada num computador, a função f(x; y) deve ser discretizada tanto
    espacialmente quanto em amplitude. Estes dois processos recebem as seguintes
    denominações, respectivamente:
        (a) translação e escala.
        (b) resolução e escala.
        (c) resolução e ampliação.
        (d) amostragem e quantização.
        (e) resolução e quantização.
Questões do PosComp 2005
   59. O processo de análise de imagens é uma seqüência de etapas que são iniciadas a
    partir da definição do problema. A seqüência correta destas etapas é:
        (a) pré-processamento, aquisição, segmentação, representação, reconhecimento.
        (b) aquisição, pré-processamento, segmentação, representação, reconhecimento.
        (c) aquisição, pré-processamento, representação, segmentação, reconhecimento.
        (d) aquisição, representação, pré-processamento, segmentação, reconhecimento.
        (e) pré-processamento, aquisição, representação, segmentação, reconhecimento.

   60. O termo imagem se refere a uma função bidimensional de intensidade de luz,
    denotada por f(x; y), onde o valor ou amplitude de f nas coordenadas espaciais (x;
    y) representa a intensidade (brilho) da imagem neste ponto. Para que uma imagem
    possa ser processada num computador, a função f(x; y) deve ser discretizada tanto
    espacialmente quanto em amplitude. Estes dois processos recebem as seguintes
    denominações, respectivamente:
        (a) translação e escala.
        (b) resolução e escala.
        (c) resolução e ampliação.
        (d) amostragem e quantização.
        (e) resolução e quantização.
Questões do PosComp 2006
   47. [TE] Considere os filtros espaciais da média (m) e Mediana (M)
    aplicados em imagens em níveis de cinza f e g. Qual par de termos ou
    expressões a seguir não está associado, respectivamente, a características
    gerais de m e M?
        (a) m(f + g) = m(f) + m(g); M(f + g) != M(f) + M(g)
        (b) ruído gaussiano; ruído impulsivo
        (c) convolução; filtro estatístico da ordem
        (d) preservação de pequenos componentes; não preservação de pequenos
         componentes
        (e) filtragem com preservação de contornos; filtragem sem preservação de
         contornos

   48. [TE] A convolução da máscara [-1 2 -1] com uma linha de uma
    imagem contendo uma seqüência de pixels do tipo [... 3 4 5 6 7 8 9 10 ...]
    resulta na transformação (sem considerar efeitos de borda):
        (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais
         próximos
        (b) [...0 0 0 0 0 0 0 0...] e representa o laplaciano no espaço discreto
        (c) [...0 0 0 0 0 0 0 0...] e representa uma erosão morfológica
        (d) [...1 1 1 1 1 1 1 1...] e é equivalente a um filtro passa-baixas
        (e) [...7 9 11 13 15 17 19...] e é equivalente a um filtro passa-altas
Questões do PosComp 2006
   47. [TE] Considere os filtros espaciais da média (m) e Mediana (M)
    aplicados em imagens em níveis de cinza f e g. Qual par de termos ou
    expressões a seguir não está associado, respectivamente, a características
    gerais de m e M?
        (a) m(f + g) = m(f) + m(g); M(f + g) != M(f) + M(g)
        (b) ruído gaussiano; ruído impulsivo
        (c) convolução; filtro estatístico da ordem
        (d) preservação de pequenos componentes; não preservação de pequenos
         componentes
        (e) filtragem com preservação de contornos; filtragem sem preservação de
         contornos

   48. [TE] A convolução da máscara [-1 2 -1] com uma linha de uma
    imagem contendo uma seqüência de pixels do tipo [... 3 4 5 6 7 8 9 10 ...]
    resulta na transformação (sem considerar efeitos de borda):
        (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais
         próximos
        (b) [...0 0 0 0 0 0 0 0...] e representa o laplaciano no espaço discreto
        (c) [...0 0 0 0 0 0 0 0...] e representa uma erosão morfológica
        (d) [...1 1 1 1 1 1 1 1...] e é equivalente a um filtro passa-baixas
        (e) [...7 9 11 13 15 17 19...] e é equivalente a um filtro passa-altas
Questões do PosComp 2007
   61. [TE] O realce de imagem tem como objetivo destacar detalhes
    finos procurando obter uma representação mais adequada do que
    a imagem original para uma determinada aplicação. Dessa forma,
    sobre as técnicas utilizadas no realce de imagens, é CORRETO
    afirmar que
       (a) o melhor resultado obtido depende do filtro aplicado na imagem.
        Normalmente, o mais aplicado é o filtro da mediana.
       (b) o melhor resultado é obtido com a aplicação de filtros passa-
        baixas, cujos parâmetros dependem do resultado desejado.
       (c) a aplicação de filtros da média sempre oferece resultado adequado
        no realce de imagens.
       (d) o resultado mais adequado no realce de imagens está associado à
        aplicação de filtro passa-altas e da interpretação subjetiva do
        observador que deverá ter conhecimento a priori da imagem original.
       (e) o resultado mais adequado no realce de imagens está associado à
        aplicação de filtro passa-baixas e da interpretação subjetiva do
        observador que deverá ter conhecimento a priori da imagem original.
   62 e 63
Questões do PosComp 2007
   61. [TE] O realce de imagem tem como objetivo destacar detalhes
    finos procurando obter uma representação mais adequada do que
    a imagem original para uma determinada aplicação. Dessa forma,
    sobre as técnicas utilizadas no realce de imagens, é CORRETO
    afirmar que
       (a) o melhor resultado obtido depende do filtro aplicado na imagem.
        Normalmente, o mais aplicado é o filtro da mediana.
       (b) o melhor resultado é obtido com a aplicação de filtros passa-
        baixas, cujos parâmetros dependem do resultado desejado.
       (c) a aplicação de filtros da média sempre oferece resultado adequado
        no realce de imagens.
       (d) o resultado mais adequado no realce de imagens está associado à
        aplicação de filtro passa-altas e da interpretação subjetiva do
        observador que deverá ter conhecimento a priori da imagem original.
       (e) o resultado mais adequado no realce de imagens está associado à
        aplicação de filtro passa-baixas e da interpretação subjetiva do
        observador que deverá ter conhecimento a priori da imagem original.

slides PDI 2007 leonardo

  • 1.
    Introdução ao Processamento Digitalde Imagens Prof. Leonardo Vidal Batista DI/PPGI/PPGEM leonardo@di.ufpb.br leovidal@terra.com.br http://www.di.ufpb.br/leonardo
  • 2.
    Processamento Digital de Imagens  Modelagem matemática, análise, projeto e implementação (S&H) de sistemas voltados ao tratamento de informação pictórica, com fins estéticos, para torná-la mais adequada à interpretação ou aumentar eficiência de armazenamento e transmissão.
  • 3.
    PDI e áreascorrelatas Dados Visão Computação Computacional Gráfica Imagens Processamento Digital de Imagens (sinais 2D) Processamento Digital de Sinais
  • 4.
    PDI x VisãoComputacional
  • 5.
    Imagens digitais  TV digital  Câmeras digitais, celulares, scanners  DVDs  Sistemas de teleconferência  Transmissões via fax  Editoração eletrônica  Impressoras  Monitoramento da superfície terrestre e previsão climática por imagens de satélites  Detecção de movimento
  • 6.
    Imagens Digitais  Diagnóstico médico: ultrassonografia, angiografia, tomografia, ressonância magnética, contagem de células, etc  Identificação biométrica: reconhecimento de face, íris ou impressões digitais  Ciências forenses  Realce e restauração de imagens por computador  Instrumentação  Controle de qualidade  Granulometria de minérios
  • 7.
    Outros Sinais Digitais  Diagnóstico médico: eletrocardiograma, eletroencefalograma, eletromiograma, eletroretinograma, polisonograma, etc  Identificação biométrica por reconhecimento de voz  Síntese de voz  Áudio Digital  Telefonia  Suspensão ativa em automóveis  Mercado acionário
  • 8.
    Sinais Contínuos eDiscretos Sinal analógico Sinal digital ... Amplitude 2q q 0 -q -2q ... Erros de quantização 0 Ta 2Ta 3Ta ... Tempo, espaço etc.
  • 9.
    Processamento Analógico de Sinais Processador Sinal analógico analógico Sinal analógico de entrada de saída
  • 10.
    Processamento Digital de Sinais Sinal Sinal analógico Conversor Processador digital A/D Digital Sinal Sinal analógico Conversor Processador Conversor analógico A/D Digital D/A
  • 11.
    Processamento Digital de Sinais  Alguns sinais são inerentemente digitais ou puramente matemáticos  Ex: Número de gols por rodada do campeonato brasileiro de futebol  Neste caso, não há necessidade de Conversão A/D  Ainda assim, pode haver necessidade de conversão D/A  Ex: texto -> voz sintetizada
  • 12.
    Processamento Digital de Sinais  Hardware, software, ou ambos  Maior flexibilidade  Menor custo  Menor tempo de desenvolvimento  Maior facilidade de distribuição  Sinais digitais podem ser armazenados e reproduzidos sem perda de qualidade  Mas alguns sistemas exigem uma etapa analógica!
  • 13.
    Processamento Digital de Sinais– Robustez a Ruído Sinal analógico original Sinal analógico corrompido – em geral, recuperação impossível mesmo para pequenas distorções
  • 14.
    Processamento Digital de Sinais – Robustez a Ruído Sinal digital corrompido – recuperação possível Sinal digital original mesmo com distorções substanciais, principalmente com uso de códigos corretores. „1‟ „1‟ „0‟ „0‟ Sinal digital recuperado com erro „1‟ „0‟
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
    Warping (Deformação)  Interpol faz apelo público para identificar pedófilo (http://noticias.terra.com.br/mundo/interna /0,,OI1971484-EI294,00.html)  As fotos haviam sido manipuladas digitalmente para disfarçar o rosto do pedófilo, mas especialistas em computação da Agência de Polícia Federal na Alemanha conseguiram reproduzir o rosto do suspeito de forma que seja identificável
  • 25.
    Warping (Deformação)  A imagem distorcida pôde ser recuperada por especialistas para que o homem fosse identificado
  • 26.
    Você confia emseu sistema visual?
  • 27.
    Você confia emseu sistema visual?
  • 28.
    Você confia emseu sistema visual?
  • 29.
    Você confia emseu sistema visual? http://www.echalk.co.uk/ amusements/OpticalIllusi ons/illusions.htm
  • 30.
    Você confia emseu sistema visual?
  • 31.
    Você confia emseu sistema visual?
  • 32.
    Você confia emseu sistema visual?
  • 33.
    Você confia emseu sistema visual?
  • 34.
    Você confia emseu sistema visual?
  • 35.
    Você confia emseu sistema visual?
  • 36.
    Você confia emseu sistema visual?
  • 37.
    Você confia emseu sistema visual?
  • 38.
    Você confia emseu sistema visual?
  • 39.
    A Faixa Visíveldo Espectro Eletromagnético  Luz: radiação eletromagnética  Freqüência f, comprimento de onda L  Faixa visível do espectro eletromagnético: 380 nm < L < 780 nm  Na faixa visível, o sistema visual humano (SVH) percebe comprimentos de onda diferentes como cores diferentes
  • 40.
    A Faixa Visíveldo Espectro Eletromagnético  Radiação monocromática: radiação em um único comprimento de onda  Cor espectral pura: radiação monocromática na faixa visível
  • 41.
    A Faixa Visíveldo Espectro Eletromagnético
  • 42.
    A Faixa Visíveldo Espectro Eletromagnético Denominação Usual da Cor Faixa do Espectro (nm) Violeta 380 – 440 Azul 440 – 490 Verde 490 – 565 Amarelo 565 – 590 Laranja 590 – 630 Vermelho 630 – 780
  • 43.
    A Estrutura doOlho Humano  Olho humano: aproximadamente esférico, diâmetro médio em torno de dois centímetros  A luz penetra no olho passando pela pupila e pelo cristalino e atingindo a retina  Imagem invertida do cenário externo sobre a retina  Cones e bastonetes convertem energia luminosa em impulsos elétricos que são transmitidos ao cérebro.
  • 44.
    A Estrutura doOlho Humano
  • 45.
    Bastonetes  75 a 150 milhões/olho, sobre toda a retina  Não são sensíveis às cores  Baixa resolução (conectados em grupos aos terminais nervosos)  Sensíveis à radiação de baixa intensidade na faixa visível  Visão geral e de baixa luminosidade  Objetos acinzentados sob baixa luminosidade
  • 46.
    Cones  6 a 7 milhões/olho, concentrados na fóvea  Sensíveis às cores  Alta resolução (um cone por terminal nervoso)  Pouco sensíveis a radiação de baixa intensidade na faixa visível  Visão específica, de alta luminosidade  Movimentamos os olhos para que a imagem do objeto de interesse recaia sobre a fóvea.
  • 47.
    Cones  Há três tipos de cones:  Cone sensível ao vermelho  Cone sensível ao verde  Cone sensível ao azul  Cores diversas obtidas por combinações destas cores primárias
  • 48.
    Cones Cone “Verde” Resposta Cone “Azul” Cone “Vermelho” 400 500 600 700 Comprimento de onda (nm)
  • 49.
    Sistema de CoresRGB  A cor de uma fonte de radiação na faixa visível é definida pela adição das cores espectrais emitidas – sistema aditivo  Combinação de radiações monocromáticas vermelho (R), verde (G) e azul (B)  Cores primárias da luz  Sistema de cores RGB
  • 50.
    Sistema RGB  Padronização da Comissão Internacional de Iluminação (CIE):  Azul: 435,8 nm  Verde: 546,1 nm  Vermelho: 700 nm
  • 51.
    Sistema RGB -Combinação de Cores Primárias  Cores secundárias da luz: magenta (M), cíano (C) e amarelo (Y): M = R + B C = B + G Y = G + R  Cor branca (W): W = R + G + B
  • 52.
    Espaço de CoresRGB  Cor no sistema RGB é um vetor em um espaço tridimensional: G R B
  • 53.
    Espaço de CoresRGB  Reta (i, i, i): reta acromática  Pontos na reta acromática: tonalidades de cinza ou níveis de cinza  Preto: (0, 0, 0) (ausência de luz)  Branco: (M, M, M), (M é a intensidade máxima de uma componente de cor)  Monitor de vídeo: Sistema RGB
  • 54.
    Sistema de CoresCMY  Cor de um objeto que não emite radiação própria depende dos pigmentos que absorvem radiação em determinadas faixas de freqüência e refletem outras  Absorção em proporções variáveis das componentes R, G e B da radiação incidente: sistema subtrativo
  • 55.
    CMY - CoresPrimárias  Cores primárias dos pigmentos: absorvem uma cor primária da luz e refletem as outras duas C = W – R = G + B M = W – G = R + B Y = W – B = G + R
  • 56.
    CMY – Combinaçãode Cores Primárias  Cores secundárias: R = M + Y G = C + Y B = M + C  Preto (K): K = C + M + Y = W – R – G – B  Impressoras coloridas: CMY ou CMYK
  • 57.
  • 58.
    Sistema de CoresYIQ  Transmissão de TV em cores: compatibilidade com TV P & B  Y: luminância (intensidade percebida, ou brilho)  I e Q: crominâncias
  • 59.
    Conversão YIQ-RGB  Conversãode RGB para YIQ:  Y = 0.299R + 0.587G + 0.114B  I = 0.596R – 0.274G –0.322B  Q = 0.211R – 0.523G + 0.312B  Conversão de YIQ para RGB :  R = 1.000 Y + 0.956 I + 0.621 Q  G = 1.000 Y – 0.272 I – 0.647 Q  B = 1.000 Y – 1.106 I + 1.703 Q
  • 60.
    Sistema de CoresHSI  Fisiologicamente, a retina humana opera no sistema RGB  A percepção subjetiva de cor é diferente  Atributos perceptivos das cores:  Matiz (hue) ou tonalidade  Saturação  Intensidade
  • 61.
    Sistema de CoresHSI  Matiz (H): determinada pelo comprimento de onda dominante; cor espectral mais próxima; denominação usual das cores  H é um ângulo: 0o = R; 120o = G; 240o = B  Saturação: pureza da cor quanto à adição de branco  S = 0: cor insaturada (nível de cinza)  S = 1: cor completamente saturada  Cores espectrais puras tem S = 1
  • 62.
    Sistema de CoresHSI  Também chamado HSB, HSV, HSL (B=Brightness; V=Value; L=Lightness), às vezes com pequenas diferenças na conversão para RGB.
  • 63.
    Conversão HSI-RGB  Algoritmos nas Notas de Aula
  • 64.
  • 65.
    Imagem monocromática  FunçãoIa(x,y)  (x, y): coordenadas espaciais  Ia(x,y): intensidade ou brilho da imagem em (x,y)
  • 66.
    Amostragem e Quantização  Digitalização: discretização espacial (amostragem) e de intensidade (quantização)
  • 67.
    Amostragem e Quantização Sinal analógico Sinal digital ... Amplitude 2q q 0 -q -2q ... Erros de quantização 0 T 2T 3T ... Tempo ou espaço
  • 68.
    Amostragem e Quantização - Parâmetros  T: período de amostragem (unidade de espaço ou tempo)  f = 1/T: freqüência de amostragem (amostras/unidade de espaço ou tempo)  q: passo de quantização  Sinal analógico: s(t), s(x)  Sinal digitalizado: s[nT], n inteiro não negativo, s[nT] {-Mq, ..., -2q, -q, 0, q, 2q, ..., (M-1)q}
  • 69.
    Amostragem e Quantização – Exemplo 1  Sinal analógico s(t): voltagem de saída de um sistema elétrico em função do tempo 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos
  • 70.
    Amostragem e Quantização – Exemplo 1  T = 0.5s, q = 0.5V, M = 64: s[0.5.n], n = 0, 1, 2, ...  s[0.5n]  {-32, -31.5..., -0.5, 0, 0.5 1,...,31, 31.5}  s[0]=9.5V,s[0.5]=8V,s[1]=-2V, s[1.5]= -10.5V, ...  Notação Simplificada:  s[n]  {-M,..., -2, -1, 0, 1, 2,..., M-1}  s[0]=19, s[1]=16, s[2]=-4, s[3]=-21,...  s[n] = {19, 16, -4, -21, ...}
  • 71.
    Amostragem e Quantização – Exemplo 2  Em um processo de digitalização foram colhidas N=10 amostras de um sinal de temperatura (graus Celsius) igualmente espaçadas ao longo de um segmento de reta unindo duas cidades A e B. A primeira amostra foi colhida na cidade A e a última na cidade B. O sinal digital resultante é s[n] = {12 12 13 13 14 13 14 14 15 14}  Perguntas: (a) Distância entre as cidades? (b) Valores de temperatura registrados? (c) Limites de temperatura registrável? (d) Qual o valor de s[5km]?
  • 72.
    Amostragem e Quantização –Solução do Exemplo 2  Precisamos conhecer f, q e M!  Dados: f = 0.1 amostra/km q = 2o Celsius M = 16;
  • 73.
    Amostragem e Quantização – Solução do Exemplo 2  T = 10 km/amostra  (a) Distância entre as cidades = (10-1)x10 = 90km  (b) Temperaturas em graus Celsius: {24 24 26 26 28 26 28 28 28 30}  (c) Limites de temperatura em graus Celsius: [-32, 30]  (d) s[5km]: no sinal digital s[nT] não há nT = 5km!
  • 74.
    Conversores Analógico- Digitais (ADC)  Conversor Analógico/Digital (Analog to Digital Converter - ADC): amostra, quantiza em L níveis e codifica em binário.  Um transdutor deve converter o sinal de entrada para tensão elétrica (V)  Códigos de b bits: L = 2b níveis de quantização  Exemplo: b = 8, L = 256  ADC de b bits
  • 75.
    Conversores Analógico- Digitais (ADC)  ADC unipolar: voltagem de entrada de 0 a Vref  ADC bipolar: voltagem de entrada de -Vref a Vref  Exemplo: ADC unipolar de 3 bits, Vref = 10 V  L = 23 = 8, Resolução de voltagem: 10/8 = 1,25V  Exemplo: ADC bipolar de 3 bits, Vref = 5 V  L = 23 = 8, Resolução de voltagem: 10/8 = 1,25V
  • 76.
    ADC Unipolar Bipolar Voltagem Código Voltagem Código [0,00, 1,25) 000 [-5,0, -3,75) 000 [1,25, 2,50) 001 [-3,75, -2,5) 001 [2,50, 3,75) 010 [-2,5, -1,25) 010 [3,75, 5,00) 011 [-1,25, 0,0) 011 [5,00, 6,25) 100 [0,00, 1,25) 100 [6,25, 7,50) 101 [1,25, 2,50) 101 [7,50, 8,75) 110 [2,50, 3,75) 110 [8,75, 10,0) 111 [3,75, 5,00) 111
  • 77.
    Conversores Analógico- Digitais (ADC) O bit menos significativo (LSB) do código se altera em incrementos de 1,25V.  Resolução de voltagem: “valor” do LSB  Alguns parâmetros: fa, Vref, b, ...
  • 78.
    Amostragem e Quantização – Qualidade do Sinal 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos 40 40 f = 2 amostras/s Sinal analógico 20 (T = 0,5s), q = 1 20 reconstruído 0 0 -20 -20 -40 -40 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
  • 79.
    Amostragem e Quantização – Qualidade do Sinal 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos 40 f = 5 amostras/s 40 Sinal analógico (T = 0,2s), q = 1 20 20 reconstruído 0 0 -20 -20 -40 -40 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
  • 80.
    Amostragem e Quantização – Qualidade do Sinal 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos 40 40 f = 10 amostras/s Sinal analógico 20 (T = 0,1s), q = 1 20 reconstruído 0 0 -20 -20 -40 -40 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
  • 81.
    Amostragem e Quantização – Qualidade do Sinal 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos 40 40 f = 10 amostras/s Sinal analógico 20 (T = 0,1s), q = 16 20 reconstruído 0 0 -20 -20 -40 -40 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
  • 82.
    Notação simplificada para Imagens  f[i, j]  {0, 1, 2,..., M-1}  Tipicamente, M = 256
  • 83.
    Imagem digital monocromática 250 200 150 100 50 0 0 100 200 300 400 500 i=0 250 200 161 161 ... 142 150 161 161 ... 142 100   50  ... ... ... ...    0 0 50 100 150 200 250 300 350 163 163 ... 95  j = 266
  • 84.
    Resolução Espacial ede Contraste 256x256 / 256 níveis 256x256 / 64 níveis 256x256 / 2 níveis 32x32 / 256 níveis
  • 85.
    Imagens RGB Banda R Banda G Banda B Imagem RGB
  • 86.
    Imagens Digitais  Umaimagem é uma matriz bidimensional observada de forma pictórica.  Imagens de densidade demográfica, de raios x, de infravermelho, de temperaturas de uma área, etc.
  • 87.
    Scanners  Monocromáticos: fila de diodos fotossensíveis em um suporte que se desloca  Coloridos: fila de diodos fotossensíveis, recobertos por filtros R, G e B, em um suporte que se desloca  Lâmpada fluorescente branca ilumina o objeto  Diodos produzem carga elétrica proporcional à intensidade da luz refletida pelo objeto
  • 88.
  • 89.
    Scanners  Th: distância entre diodos no suporte  Tv: tamanho do passo do suporte  Th e Tv definem a resolução espacial  M: profundidade de cor ou resolução de contraste  Resolução espacial: pontos por polegada (dot per inch, dpi) (1 ponto = 1 sensor em scanner monocromático, 3 sensores em scanners RGB)  1 pol = 2,54 cm.
  • 90.
    Scanners  Ex: 300 x 300 dpi, digitalização de formato carta(8,5 x 11’’), no máximo  8,5x300=2550 diodos (mono) ou  3x2550=7650 diodos (cor)  Aumentar resolução vertical sem aumentar o número de sensores
  • 91.
    Scanners N pontos/polegada Movimento do braço: ... M passos/polegada
  • 92.
  • 93.
    Câmeras Digitais  Sensorde imagem: matriz de diodos fotosensíveis cobertos por filtros R, G e B  Diodos produzem carga elétrica proporcional à intensidade da luz refletida pelo objeto  Resolução espacial de câmeras: número de pontos (ou pixels), RxC (1 ponto = 3 sensores)
  • 94.
  • 95.
    Qualidade dos Sensores  S9500 – ISO 1600  EOS350D – ISO 1600
  • 96.
    Qualidade dos Sensores  EOS350D – ISO 1600  S9500 – ISO 1600
  • 97.
    Câmeras Digitais  Exemplo: Sony DSC V1: 1944 x 2592 pixels = 5Mpixels. Digitalizar papel em formato carta com imagem da folha ocupando todo o sensor. Resolução (em dpi)? Comparar com scanner de 300 x 300 dpi, em qualidade, número de sensores e preço. Comparar com scanner de 2400 x 2400 dpi.
  • 98.
    Câmeras Digitais  Solução:  1944 / 8,5 pol x 2592/11 pol = 228,7 dpi x = 235,6 dpi  Resolução espacial inferior à do scanner de 300 x 300 dpi, com 1944 x 2592 x 3 / 7650 = 1976 vezes mais sensores, 10 a 20 vezes mais caro, aberrações geométricas e de cor, etc.  Câmeras digitais têm escopo de aplicação maior e são mais rápidas  Scanner de 2400 x 2400 dpi = câmera de 500 Mpixels!
  • 99.
    Dispositivos Gráficos  Exemplo: câmera digital, 3000 x 2000 pontos (6 Mpixels), impressa em formato 15x10 cm, com o mesmo no. de pontos. Qual a resolução (dpi) no papel?
  • 100.
    Dispositivos Gráficos  Exemplo: câmera digital, 3000 x 2000 pontos (6 Mpixels). Imprimir em formato 15x10 cm, com o mesmo no. de pontos. Qual a resolução (dpi) no papel?  15x10 cm = 3,94 x 5,91 pol.  Resolução (dpi): 3000/5,91 = 2000/3,94 = 507x507 dpi
  • 101.
    Dispositivos Gráficos  Ex: foto 10x15cm, scanneada a 1200x1200 dpi, 24 bits/pixel. Tamanho em bytes?  Dimensões impressa em 1440x1440 dpi?  Dimensões impressa em 720 x 720 dpi?  Dimensões em tela de 14 pol., resolução 1024x768? Resolução em dpi da tela?  Dimensões em tela de 17 pol., resolução 1024x768? Resolução em dpi da tela?
  • 102.
    Dispositivos Gráficos  Solução:  Foto 10x15cm = 3,94 x 5,91 pol.  Tamanho em bytes: 3,94x1200 x 5,91x1200 pixels x 3 bytes/pixel = 4728 x 7092 x 3 = 100 milhões de bytes (96 MB)  Dimensões (pol) em impressora de 1440x1440 dpi: 4728/1440 x 7092/1440 = 3,3 x 4,9 pol.  Dimensões (pol.) em impressora de 720 x 720 dpi = 6,6 x 9,9 pol
  • 103.
    Dispositivos Gráficos  Solução:  Dimensões em tela de 14 pol., em resolução de 1024x768 pontos? Resolução em dpi da tela? x2 + y2 = 142 x/y = 3/4 x = 8,4 pol; y = 11,2 pol.  Res. = 1024/11,2 x 768/8,4 = 91,4 x 91,4 dpi.  Dimensões = 4728 / 91,4 x 7092 / 91,4 =51,73 x 77,59 pol = 131,39 x 197,09cm (apenas parte da imagem será visível)
  • 104.
    Dispositivos Gráficos  Solução:  Dimensões em tela de 17 pol., em resolução de 1024x768 pontos? Resolução em dpi da tela? y = 13,6 pol; x = 10,2 pol  Res. = 1024/13,6 x 768/10,2 = 75,3 x 75, 3 dpi (pior que no monitor de 14 pol)  Dimensões = 4728 / 75,3,4 x 7092 / 75,3 =62,79 x 94,18 pol = 159,49 x 239,22cm (apenas parte da imagem será visível)
  • 105.
    Monitor CRT  A e C: Placas aceleradoras e defletoras  D: tela com pontos de fósforos RGB  F: Máscara de sombra ou grade de abertura
  • 106.
  • 107.
  • 108.
    Monitor RGB Linha0 Linha 1 Linha R-1
  • 109.
    Operações com Imagens Espaço / freqüência  Locais / pontuais  Unárias / binárias / ... / n-árias
  • 110.
    Operações n-árias  Operação T sobre n imagens, f1, f2, ..., fn, produzindo imagem de saída g g = T[f1, f2, ..., fn]  Operações binárias: n = 2  Operações unárias ou filtros: n = 1 g = T[f]
  • 111.
    Operações Pontuais  g(i, j) depende do valor do pixel em (i’, j’) das imagens de entrada  Se (i, j) = (i’, j’) e operação unária:s = T(r) r, s: nível de cinza de f e g em (i, j) s s (0,0) m r (0,0) m r
  • 112.
    Operações Pontuais s s L-1 L-1 (r2, s2) (r1, s1) (0,0) (0,0) r L-1 r L-1
  • 113.
    Operações Locais  g(i, j) depende dos valores dos pixels das imagens de entrada em uma vizinhança de (i’, j’) f g j j i i Vizinhança de (i, j)
  • 114.
    Operações Locais  Exemplo: Filtro “Média” 1 g (i, j )  [ f (i  1, j  1)  f (i  1, j )  f (i  1, j  1)  9  f (i, j  1)  f (i, j )  f (i, j  1)   f (i  1, j  1)  f (i  1, j )  f (i  1, j  1)]  Operação sobre pixels da imagem original: resultado do filtro em um dado pixel não altera o resultado em outros pixels.  Primeira e última coluna/linha?
  • 115.
    Filtros de suavização Média, Moda, Mediana, Gaussiano...  Vizinhança m x n
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
    Filtros de aguçamentoe detecção de bordas  Efeito contrário ao de suavização: acentuam variações de intensidade entre pixels adjacentes.  Baseados no gradiente de funções bidimensionais.  Gradiente de f(x, y):  f   x   f 2 2 1 / 2      f  G[f(x, y)] = G[ f ( x, y )]         y     x      f       y 
  • 121.
    Filtros de detecçãode bordas  g(i, j): aproximação discreta do módulo do vetor gradiente em f(i, j).  Aproximações usuais: g(i, j) = {[f(i,j)-f(i+1,j)]2 + [f(i,j)-f(i,j+1)]2}1/2 g(i, j) = |f(i,j)-f(i+1,j)| + |f(i,j)-f(i,j+1)| Gradiente de Roberts: g(i,j) = {[f(i,j)-f(i+1,j+1)]2+[f(i+1,j)-f(i,j+1)]2}1/2 g(i, j) = |f(i,j)-f(i+1,j+1)| + |f(i+1,j)-f(i,j+1)|
  • 122.
    Filtros de detecçãode bordas Gradiente de Prewitt: g(i, j) = |f(i+1,j-1) + f(i+1, j) + f(i+1, j+1) - f(i-1, j-1) - f(i-1, j) - f(i-1, j+1)| +|f(i-1, j+1) + f(i, j+1) + f(i+1, j+1) - f(i-1, j-1) - f(i, j-1) - f(i+1, j-1)| Gradiente de Sobel: g(i, j) = |f(i+1, j-1) + 2f(i+1, j) + f(i+1, j+1) - f(i-1, j-1) - 2f(i-1, j) - f(i-1, j+1)| + |f(i-1, j+1) + f(i, j+1) + f(i+1, j+1) - f(i-1, j-1) - 2f(i, j-1) - f(i+1, j-1)|
  • 123.
    Gradiente de Roberts Limiares 15, 30 e 60
  • 124.
    Processamento de Histograma  Se o nível de cinza l ocorre nl vezes em imagem com n pixels, então nl P(l )  n  Histograma da imagem é uma representação gráfica de nl ou P(l)
  • 125.
    Histograma Histograma nl Imagem 7 6 1 0 0 3 3 5 4 0 0 3 3 3 3 1 1 1 3 3 2 1 0 0 1 2 3 l Imagem 3 x 5 (L = 4) e seu histograma
  • 126.
    Histograma  O histograma representa a distribuição estatística de níveis de cinza de uma imagem nl nl nl 0 255 l 0 255 l 0 255 l
  • 127.
    Histograma 10000 8000 6000 4000 2000 0 0 50 100 150 200 250
  • 128.
    Histograma 1500 1000 500 0 0 50 100 150 200 250
  • 129.
    Expansão de Histograma  Quando uma faixa reduzida de níveis de cinza é utilizada, a expansão de histograma pode produzir uma imagem mais rica. nl nl nl A B C l l l m0=0 m1 L-1 0 m0 m1 L-1 0 m0 m1=L-1
  • 130.
    Expansão de Histograma  Quando uma faixa reduzida de níveis de cinza é utilizada, a expansão de histograma pode produzir uma imagem mais rica:  r  rmin  s  T ( r )  round  r ( L  1)    max  rmin 
  • 131.
    Expansão de Histograma 1500 1000 500 0 0 50 100 150 200 250 1500 1000 500 0 0 50 100 150 200 250
  • 132.
    Expansão de Histograma  Expansão é ineficaz nos seguintes casos: nl nl nl A B C l l l 0 L-1 L-1 0 m0 m1 L-1 0 L-1
  • 133.
    Equalização de Histograma  Se a imagem apresenta pixels de valor 0 e L-1 (ou próximos a esses extremos) a expansão de histograma é ineficaz.  Nestas situações a equalização de histograma pode produzir bons resultados.  O objetivo da equalização de histograma é gerar uma imagem com uma distribuição de níveis de cinza uniforme.
  • 134.
    Equalização de Histograma  L 1 r  s  T (r )  round   nl   RC l 0  1500 1000 500 0 0 50 100 150 200 250 1500 1000 500 0 0 50 100 150 200 250
  • 135.
    Equalização de Histograma  Exemplo: imagem 64 x 64, L = 8 nl l nl 0 790 1200 1 1023 1000 2 850 800 3 656 600 4 329 400 5 245 200 6 122 0 7 81 0 1 2 3 4 5 6 7 l
  • 136.
    Equalização de Histograma  Exemplo (cont.):  r=0s = round(790 x 7 / 4096) = 1  r=1s = round(1813 x 7 / 4096) = 3  r=2s = round(2663 x 7 / 4096) = 5  r=3s = round(3319 x 7 / 4096) = 6  r=4s = round(3648 x 7 / 4096) = 6  r=5s = round(3893 x 7 / 4096) = 7  r=6s = round(4015 x 7 / 4096) = 7  r=7s = round(4096 x 7 / 4096) = 7
  • 137.
    Equalização de Histograma  Exemplo: imagem 64 x 64, L = 8 l nl nk 0 0 1 790 1200 1000 2 0 800 3 1023 600 4 0 400 5 850 200 6 985 0 7 448 0 1 2 3 4 5 6 7 k
  • 138.
    Equalização de Histograma nl Hist. Original nl Hist. Equal. (Ideal) nl Hist. Equal. (Real) 0 L-1 L-1 l 0 m0 m1 L-1 l 0 L-1 l
  • 139.
    Equalização de Histograma  Expansão de histograma é pontual ou local? E equalização de histograma?  O que ocorre quando uma imagem com um único nível passa pela operação de equalização de histograma?  Melhor fazer equalização seguido por expansão de histograma, o inverso, ou a ordem não importa?
  • 140.
    Equalização de Histograma Local  Para cada locação (i,j) de f • Calcular histograma na vizinhança de (i,j) • Calcular s = T(r) para equalização de histograma na vizinhança • G(i,j) = s
  • 141.
    Controle de contraste adaptativo  c  (i, j )  [ f (i, j )   (i, j )]; (i, j )  0 g (i, j )    (i, j )  f (i, j ); (i, j )  0 
  • 142.
  • 143.
    Filtros baseados nafunção gaussiana  Função gaussiana:  Derivada:  Derivada segunda:
  • 144.
    Filtros baseados nafunção gaussiana  Gaussiana, derivada e derivada segunda
  • 145.
    Filtros baseados nafunção gaussiana  A máscara é construída pela amostragem de G(x), G’(x) e G’’(x)  x = -5σ, ...-2, -1, 0, 1, 2..., 5σ
  • 146.
  • 147.
    Pseudo-cor Nível de R G B cinza 0 15 20 30 1 15 25 40 ... L-1 200 0 0
  • 148.
    Outros filtros:  Curtose,máximo, mínimo etc.  Filtros de suavização + filtros de aguçamento  Laplaciano do Gaussiano (LoG)  “Emboss”  Aumento de saturação  Correção de gama  ...
  • 149.
    Filtros Lineares eInvariantes ao Deslocamento  Filtro linear: T [af1 + bf2] = aT [f1] + bT [f2] para constantes arbitrárias a e b.  Filtro invariante ao deslocamento: Se g[i, j] = T [f[i, j]] então g[i - a, j – b] = T [f[i - a, j – b]].  Se i e j são coordenadas espaciais: filtros espacialmente invariantes.
  • 150.
    Convolução  Convolução de s(t) e h(t):  g (t )  s (t ) * h (t )   s( )h(t   )d 
  • 151.
    Convolução  g (t )  s (t ) * h (t )   s( )h(t   )d  h ( ) s(t) t3  (0,0) t0 t1 t 0 t2 h (t   ) h (  ) -t3 -t2 0   -t3+t -t2+t
  • 152.
    Convolução  Observe que g(t) = 0 para t  [t0  t2 , t1  t3 ]
  • 153.
    Convolução Discreta Linear  Convolução linear entre s[n] e h[n]  g[n]  s[n ] * h[n]   s[ ]h[n   ]     Se s[n] e h[n] têm N0 e N1 amostras, respectivamente => extensão com zeros: N 1 g[n]  s[n] * h[n]   s[ ]h[n   ]  0 com N = N0 + N1 – 1.
  • 154.
    Convolução Discreta Linear 6 s ( ) 6 h ( ) 4 4 2 2 0 1 2 3 4 5  6 0 1 2 3 4 5  6 h (  ) 6 h(n   ) 4 4 2 2  -5 -4 -3 -2 -1 0 1 n 
  • 155.
    Convolução Discreta Linear 6 s ( ) 4 2 0 1 2 3 4 5  6 6 h (  ) 4  g[0] = 3 2 -5 -4 -3 -2 -1 0 1 
  • 156.
    Convolução Discreta Linear 6 s ( ) 4 2 0 1 2 3 4 5  6 6 h (1   ) 4  g[0] = 3 2   g[1] = 8 -5 -4 -3 -2 -1 0 1
  • 157.
    Convolução Discreta Linear 6 s[n] 6 h[n] 4 4 2 2 0 1 2 3 4 5 6 n 0 1 2 3 4 5 n 30 g[n] = s[n]* h[n] 20 10 0 1 2 3 4 5 6 7 8 9 10 11 n
  • 158.
    Convolução Discreta Linear s[n] Filtro g[n] h[n]  g[n]  s[n ] * h[n]   s[ ]h[n   ]   
  • 159.
    Impulso Unitário  Delta de Dirac ou (t) impulso unitário 1 contínuo  Duração = 0  Área = 1 0 t [n]  Delta de Kronecker ou impulso unitário 1 discreto 0 n
  • 160.
    Sinais = somatóriode impulsos  Delta de Kronecker A[n-n0] A 0 n0 n s[n]  s[0] [n]  s[1] [n  1]  .... s[ N  1] [n  ( N  1)] N 1 s[n]   s[ ] [n   ]  0
  • 161.
    Resposta ao impulso  Resposta de um filtro a s[n]: N 1 N 1 g[ n]   s[ ]h[n   ]   h[ ]s[n   ]  0  0  Resposta de um filtro ao impulso N 1 N 1 g[ n]   [ ]h[n  ]   [n   ]h[ ]  0  0 N 1 h[n]   [n   ]h[ ]  0
  • 162.
    Resposta ao impulso  h[n]:  Resposta ao impulso  Máscara convolucional  Kernel do filtro  Vetor de coeficientes do filtro
  • 163.
    Filtros FIR  Finite Impulse Response N 1 y[n]   ak x[n  k ] k 0 ak  h[k ]
  • 164.
    Filtros IIR  Infinite Impulse Response N 1 M 1 y[n]   ak x[n  k ]   bk y[n  k ] k 0 k 1  Filtros recursivos
  • 165.
    Filtros IIR (exemplo)  Encontre a resposta ao impulso do seguinte sistema recursivo. Supor que o sistema está originalmente relaxado (y[n] = 0 para n < 0) y[n] = x[n] - x[n-1] – 0,5y[n-1]
  • 166.
    Filtros IIR (exemplo)  Exemplo:  y[n] = x[n] - x[n-1] – 0,5y[n-1]  y[0] = delta[0]–delta[-1]–0,5y[-1] = 1  y[1] = delta[1]–delta[0]–0,5y[0] = -1,5  y[2] = delta[2]–delta[1]–0,5y[1] = 0,75  y[3]= delta[3]–delta[2]–0,5y[2] = -0,325  y[n] = -0,5y[n-1], n > 1
  • 167.
    Filtros IIR (exemplo2)  Exemplo: encontre a resposta ao impulso do seguinte sistema recursivo. Supor que o sistema está originalmente relaxado (y[n] = 0 para n < 0) y[n] - y[n-1] = x[n] - x[n-4]
  • 168.
    Filtros IIR (exemplo2)  Exemplo (Solução)  y[n] = y[n-1] + x[n] - x[n-4]  y[0] = y[-1] + delta[0] - delta[-4] = 1  y[1] = y[0] + delta[1] - delta[-3] = 1  y[2] = y[1] + delta[2] - delta[-2] = 1  y[3] = y[2] + delta[3] - delta[-1] = 1  y[4] = y[3] + delta[4] - delta[0] = 0  y[5] = y[4] + delta[5] - delta[1] = 0  y[6] = y[7] = ... = 0
  • 169.
    Convolução Discreta Circular  Sinais s[n] e h[n] com N0 e N1 amostras, respectivamente => extensão com zeros: s[n ], 0  n  N 0 h[n ], 0  n  N1 s e [n ]   he [n ]   0, N 0  n  N 0, N1  n  N  Extensão periódica: considera-se que se[n] e he[n] são períodos de sp[n] e hp[n]  Convolução circular: N 1 g p [n]  s[n]  h[n]   s p [ ]h p [n   ]  0
  • 170.
    Convolução Circular xLinear  Fazendo-se N = N0 + N1 – 1 s[n]  h[n]  s[n] * h[n]
  • 171.
    Convolução de Imagens  f[i, j] (R0xC0) e h[i, j] (R1xC1): extensão por zeros R 1 C 1 g[i, j ]  f [i, j ] * h[i, j ]    f [ ,  ]h[i   , j   ]  0  0 R 1 C 1 g p [i, j ]  f [i, j ]  h[i, j ]    f p [ ,  ]h p [i   , j   ]  0   0  Iguais se R=R0+R1–1 e C=C0+C1–1
  • 172.
    Máscaras Convolucionais 1 1 1 1 0 -1 -1 -1 -1 0 0 0 1 0 -1 -1 8 -1 -1 -1 -1 1 0 -1 -1 -1 -1 1/9 1/9 1/9 0.025 0.1 0.025 1/9 1/9 1/9 0.1 0.5 0.1 1/9 1/9 1/9 0.025 0.1 0.025
  • 173.
    Operador de Bordasde Kirsch 5 5 5 -3 5 5 -3 -3 5 -3 0 -3 -3 0 5 -3 0 5 -3 -3 -3 -3 -3 -3 -3 -3 5 -3 -3 -3 -3 -3 -3 ... -3 0 5 -3 0 -3 -3 5 5 5 5 5  Filtragem sucessiva com cada máscara  Pixel de saída recebe o valor máximo
  • 174.
    Máscaras Convolucionais  Emgeral:  Máscaras de integração somam para 1  Máscaras de diferenciação somam para 0
  • 175.
    Transformada z  Transformada z de x[n]:  Z{x[n]}  X [ z ]   x[n] z  n n   z: variável complexa
  • 176.
    Propriedades da Transformada z  Linearidade: Se x[n] = ax1[n] + bx2[n], (a e b: constantes arbitrárias), então: X [ z]  aX1[ z]  bX 2 [ z]
  • 177.
    Propriedades da Transformadaz  Deslocamento: Z{x[n+k]} = zkX[z], k inteiro  Prova:  Z{x[n  k ]}   x[n  k ]z  n n    Fazendo m = n+k:   Z{x[n  k ]}   x[m]z  (n  k )  z k  x[m]z  n  z k X [ z ] m   m  
  • 178.
    Propriedades da Transformada z  Convolução:  y[n]  h[n] * x[n]   h[k ]x[n  k ]  Y [ z]  H [ z] X [ z] k    Se h[n] é a resposta ao impulso de um filtro, H[z] é a função de transferência do filtro
  • 179.
    Propriedades da Transformada z  Convolução (Prova)     n Z{h[n] * x[n]}     h[k ]x[n  k ] z n   k           h[k ]x[n  k ]z  n k   n       h[k ]z  k  x[n]z  n k   n    H [ z] X [ z]
  • 180.
    Função de Transferência  Equação de diferenças de um filtro N 1 M 1 y[n]   ak x[n  k ]   bk y[n  k ] k 0 k 1 M 1 N 1  bk y[n  k ]   ak x[n  k ] k 0 k 0 b0  1
  • 181.
    Função de Transferência  Transformada Z da Equação de diferenças M 1     N 1    Z   bk y[n  k ]  Z   a k x[n  k ]  k 0     k 0    M 1 N 1  bk Z{ y[n  k ]}   ak Z{ x[n  k ]} k 0 k 0 M 1 N 1  bk z  k Y [ z ]   ak z  k X [z ] k 0 k 0
  • 182.
    Função de Transferência  Aplicando a transformada z em ambos os lados e simplificando: N 1  ak z  k Y [ z] k 0 H [ z]   X [ z] M 1 1  bk z  k k 1  Pólos: raízes do denominador  Zeros: raízes do numerador  Pólos e zeros: estabilidade
  • 183.
    Função de Transferência BIBO: Bounded-input, bounded- output  Sistemas BIBO-estáveis: sistemas causais tais que:   | h[k ] |   k 0
  • 184.
    Estimação da Respostaem Freqüência  Resposta em freq. a partir de H[z]  H [ z]   h[n]z  n n    H [ e j ]   h[n]e  jn , 0    2 n    Comparar com N 1 j 2un 1  F [u ]  N  s[n]e N n 0
  • 185.
    Estimação da Respostaem Freqüência  Exemplo: encontre a resposta em freqüência do filtro y[n] = (x[n] + x[n-1])/2 utilizando a transformada Z Y[z] = (X[z] + z-1X[z] )/2 = X[z](1+z-1)/2 H[z] = (1+z-1)/2 H[ejw] = (1+e-jw)/2 = e-jw/2 (ejw/2 + e-jw/2)/2 = e-jw/2cos(w/2)  |H[ejw]| = cos(w/2), -pi< w < pi
  • 186.
    Estimação da Respostaem Freqüência  Exemplo: encontre a resposta em freqüência do filtro y[n] = (x[n] - x[n-1])/2 utilizando a transformada Z Y[z] = (X[z] - z-1X[z] )/2 = X[z](1-z-1)/2 H[z] = (1-z-1)/2 H[ejw] = (1-e-jw)/2 = e-jw/2 (ejw/2 - e-jw/2)/2 = je-jw/2sen(w/2)  |H[ejw]| = |sen(w/2)|, -pi< w < pi
  • 187.
    Correlação  Convolução:  g[n]  s[n ] * h[n]   s[ ]h[n   ]     Correlação:  g[n]  s[n]  h[n]   s[ ]h[  n]     Quando um dos sinais é par, correlação = convolução
  • 188.
    Correlação  Exemplo: h[-1] = 3; h[0] = 7; h[1] = 5; s[0..15] = {3, 2, 4, 1, 3, 8, 4, 0, 3, 8, 0, 7, 7, 7, 1, 2}  Extensão com zeros
  • 189.
    Correlação  Exemplo: g[1]  s[0]h[1]  15 1 g[0]   s[ ]h[ ]  s[0]h[0]  s[1]h[1]  31  0 2 g[1]   s[ ]h[  1]  s[0]h[1]  s[1]h[0]  s[2]h[1]  43  0 3 g[2]   s[ ]h[  2]  s[1]h[1]  s[2]h[0]  s[3]h[1]  39  1 ...
  • 190.
    Correlação  Exemplo: g[0..15] = 31, 43, 39, 34, 64, 85, 52, 27, 61, 65, 59, 84, 105, 75, 38, 27  Observe que g[5] é elevado, pois é obtido centrando h em s[5] e calculando a correlação entre (3, 7, 5) e (3, 8, 4)  Mas g[12] é ainda maior, devido aos valores elevados de s[11..13]
  • 191.
    Correlação Normalizada  A correlação normalizada elimina a dependência dos valores absolutos dos sinais:   s[ ]h[  n] g[n]  s[n]  h[n]        ( s[ ]) 2  (h[  n]) 2      
  • 192.
    Correlação Normalizada  Resultadopara o exemplo anterior:  g[0..15] = .??? .877 .934 .73 .81 .989 .64 .59 .78 .835 .61 .931 .95 .83 .57 .???  Valor máximo: g[5]
  • 193.
  • 194.
    Detecção e estimação  Gaivota, “filtro casado” (olho) e imagem de correlação normalizada (máximo no olho) Fonte: http://www.dca.fee.unicamp.br/dipcourse/html-dip/c6/s5/front-page.html
  • 195.
    Estimação Espectral  O cálculo direto do espectro de amplitudes e fases não é fidedigno  O espectro pode variar muito em diferentes seções de um mesmo sinal.  Variância é um indicador de qualidade  O problema pode ser causado por ruído, escassez de dados, comportamento não estacionário etc.
  • 196.
    Periodograma  O quadrado do módulo do espectro de amplitudes: densidade espectral de potência (PSD), ou espectro de potência  Periodograma: dividir sinal em K seções adjacentes (com ou sem intersecção) de mesmo tamanho; obter PSD de cada seção; obter média das PSDs  Variância se reduz por fator K1/2  Resolução espectral diminui
  • 197.
    Janelamento (windowing)  Todo sinal discreto obtido a partir de um sinal analógico é resultado da multiplicação de um sinal discreto de duração infinita por um pulso, ou janela, retangular: 1 0  n  N wn   0 caso contrário
  • 198.
    Janelamento (windowing)  A janela retangular pode gerar grandes descontinuidades na forma de onda original
  • 199.
    Janelamento (windowing)  Multiplicação no tempo equivale a convolução na freqüência (Fourier)  DFT da janela retangular: função sinc (sine cardinal, kernel de Dirichlet, função de amostragem): 1 x0  sinc( x)   sen x  x caso contrário 
  • 200.
    Janelamento (windowing)  A convolução com um sinc introduz distorções no espectro  Janelas mais “suaves” reduzem estas distorções, mas distorcem mais as amostras centrais-> Compromisso  Dezenas dessas janelas tem sido avaliadas e utilizadas em diversas aplicações
  • 201.
    Janela de Hamming   2n  0,54  0,46 cos  0nN wn    N 1 0 caso contrário 
  • 202.
    Janela de Hamming  Seno multiplicado por janela retangular e de Hamming
  • 203.
    Janela de Hamming  DFT de seno multiplicado por janela retangular e de Hamming
  • 204.
    Outras Janelas  Blackman-Harris, Dolph-Chebyshev, Kaiser-Bessel (superiores?)  Tukey, Poisson, Hanning etc
  • 205.
    Dissolve Cruzado  ht (i, j)= (1 - t) f(i, j) + t g(i, j)  t é um escalar no intervalo [0, 1]
  • 206.
    Dissolve Cruzado t = 0,3 t = 0,5 t = 0,7
  • 207.
    Dissolve Cruzado Não- Uniforme  ht(i, j)= [1 - t(i, j)] f(i, j) + t(i, j) g(i, j)  t é uma matriz com as mesmas dimensões de f e g cujos elementos assumem valores no intervalo [0, 1]
  • 208.
  • 209.
    Detecção de Movimento L  1, se | f1  f 2 | Lt g 0, caso contrario f1 f2 g
  • 210.
    Redução de Ruídopor Média de Imagens  f[i, j] imagem sem ruído  nk(i, j) ruído de média m  gk[i,j] = f[i,j] + nk(i,j) M  1 g [i, j ]  g k [i, j ] M k 1
  • 211.
    Redução de Ruídopor Média de Imagens M  1 g [i, j ]  ( f [i, j ]  nk (i, j )) M k 1 M  1 g [i, j ]  f [i, j ]  nk (i, j ) M k 1  Para M grande: g[i, j ]  f [i, j ]  m
  • 212.
    Operações Topológicas  Rígidas  Translação  Rebatimento  Rotação  Mudança de Escala  Não rígidas (Warping)
  • 213.
    Rotação  Rotação em torno de (ic, jc) i'  (i  ic ) cos   ( j  jc ) sen   ic j '  (i  ic ) sen   ( j  jc ) cos   jc
  • 214.
    Rotação e Rebatimento Imagemoriginal Rebatimento pela Rotação de 90 diagonal graus em torno de (R/2,C/2)
  • 215.
    Ampliação (Zoom in)  Por replicação de pixels Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 10 10 10 10 10 10 10 10 10 10 10 10 20 20 20 30 30 30 20 20 20 30 30 30 20 20 20 30 30 30
  • 216.
    Ampliação (Zoom in)  Por interpolação bilinear Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 Interpolação nas linhas Passos de níveis de cinza: 20 23 27 30 33 37 10 a 10: 0 20 a 30: (30-20)/3 = 3,3
  • 217.
    Ampliação (Zoom in)  Por interpolação bilinear Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 13 14 16 17 18 19 Interpolação nas colunas 17 19 21 23 25 28 Passos de níveis de cinza: 20 23 27 30 33 37 10 a 20: (20-10)/3 = 3,3 10 a 23: (23-10)/3 = 4,3 23 27 33 37 41 46 10 a 27: (27-10)/3 = 5,7 27 32 38 43 48 55 ...
  • 218.
    Ampliação (Zoom in)  Exemplo: Ampliação por fator 10 Original Replicação Interpolação
  • 219.
    Redução (Zoom out)  Por eliminação de pixel  Por Média Original Redução por fator 3 10 10 10 10 10 10 14 18 13 14 16 17 18 19 28 41 17 19 21 23 25 28 20 23 27 30 33 37 23 27 33 37 41 46 27 32 38 43 48 55
  • 220.
    Reconstrução de Imagens  Zoom por fatores não inteiros  Ex: F = 3,75432  Operações elásticas, etc.  Técnicas mais avançadas devem ser utilizadas  Uma dessas técnicas é a reconstrução de imagens
  • 221.
    Reconstrução de imagens  Dados f(i,j), f(i,j+1), f(i+1,j), f(i+1,j+1) (i, j) (i, y) (i, j+1)  Reconstrução: Encontrar f(x,y), (x,y) x em [i, i+1] y em [j, j+1] (i+1, j) (i+1, y) (i+1, j+1)
  • 222.
    Reconstrução de imagens por interpolação bilinear  f(i, y) = f(i, j)+(y–j)[f(i, j+1)-f(i, j)]  f(i+1,y)=f(i+1,j)+(y–j)[f(i+1,j+1)-f(i+1, j)]  f(x, y) = f(i, y) + (x – i) [f(i+1, y) - f(i, y)] (i, j) (i, y) (i, j+1) (x,y) (i+1, j) (i+1, y) (i+1, j+1)
  • 223.
    Reconstrução de imagens  Ex: f(10.5, 15.2)=?  f(10, 15) = 10; f(10, 16) = 20; f(11,15) = 30; f(11, 16) = 30
  • 224.
    Reconstrução de imagens Solução: x= 10.5; y = 15.2 => i = 10; j = 15 f(i, y) = f(i, j)+(y–j)[f(i, j+1)-f(i, j)] f(10, 15.2)=f(10,15)+(15.2-15)*[f(10,16)-f(10,15) = 10 + 0.2*[20 – 10] = 12 f(i+1,y)=f(i+1,j)+(y–j)[f(i+1,j+1)-f(i+1, j)] f(11, 15.2)=f(11,15)+(15.2-15)*[f(11,16)-f(11,15) =30 + 0.2*[30 – 30] = 30 f(x, y) = f(i, y) + (x–i) [f(i+1, y) - f(i, y)] f(10.5, 15.2)=12+(10.5-10)*[30-12] =21
  • 225.
    Zoom por reconstruçãode imagens Ex: Ampliação por fator 2.3 Passo para as coordenadas: 1/2.3 = 0.43 x = 0, 0.43, 0. 87, 1.30, 1.74, 2.17, 2.61, 3.04... y = 0, 0.43, 0. 87, 1.30, 1.74, 2.17, 2.61, 3.04... g(0,0) = f(0,0); g(0,1) = f(0, 0.43); g(0,2) = f(0, 0.87); g(0,3) = f(0, 1.30);... Ex: Redução por fator 2.3 x = 0, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8... y = 0, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8... g(0,0) = f(0,0); g(0,1) = f(0, 2.3); g(0,2) = f(0, 4.6); g(0,3) = f(0,6.9);...
  • 226.
    Operações Topológicas Não Rígidas(warping)  Warping = distorção  Zoom por fator F(i, j)  Rotação por ângulo teta(i,j)  Translação com deslocamento d(i,j)  Warping especificado pelo usuário
  • 227.
    Warping baseado em Campos Entretenimento  Efeitos especiais, morphing  Correção de distorções óticas  Alinhamento de elementos correspondentes em duas ou mais imagens (registro)  Modelagem e visualização de deformações físicas
  • 228.
    Warping baseado em Campos 1. Características importantes da imagem são marcados por segmentos de reta orientados (vetores de referência) 2. Para cada vetor de referência, um vetor alvo é especificado, indicando a transformação que se pretende realizar
  • 229.
    Warping baseado em Campos 3. Para cada par de vetores referência-alvo, encontra-se o ponto X’ para onde um ponto X da imagem deve migrar, de forma que as relações espaciais entre X’ e o vetor alvo sejam idênticas àquelas entre X e o vetor de referência 4. Parâmetros para as relações espaciais : u e v
  • 230.
  • 231.
    Warping baseado em Campos  u: representa o deslocamento normalizado de P até O no sentido do vetor PQ (Normalizado: dividido pelo módulo de PQ)  |v|: distância de X à reta suporte de PQ
  • 232.
    Warping baseado em Campos Se O=P, u = 0  Se O=Q, u = 1  Se O entre P e Q, 0<u<1;  Se O após Q, u>1  Se O antes de P, u<0
  • 233.
    Warping baseado em Campos  Encontrar u e v: norma, produto interno, vetores perpendiculares, projeção de um vetor sobre outro.  Vetores a = (x1, y1) e b = (x2, y2)  Norma de a: || a ||  x  y 2 1 2 1  Produto interno: a.b = x1x2 +y1y2
  • 234.
    Warping baseado em Campos  “Norma” da projeção de a sobre b (o sinal indica o sentido em relação a b) a a.b || c ||  || b || b c
  • 235.
    Warping baseado em Campos  Vetor b = (x2, y2) perpendicular a a = (x1, y1) e de norma igual à de a: b a  Perpendicularidade: x1x2 +y1y2 = 0  Mesma norma: x22 + y22 = x12 + y12
  • 236.
    Warping baseado em Campos  Soluções: x2 = y1, y2 = -x1 x2 = -y1, y2 = x1 b a b’
  • 237.
    Warping baseado em Campos  Parâmetro u: “norma” da projeção de PX sobre PQ, dividido pela norma de PQ PX .PQ u 2 || PQ ||
  • 238.
    Warping baseado em Campos  P = (xp,yp), Q = (xq, yq), X = (x,y) PX .PQ u 2 || PQ || u = (x - xp).(xq - xp) + (y -yp)(yq – yp) (xq-xp)2 + (yq-yp)2
  • 239.
    Warping baseado em Campos  Parâmetro v: distância de X à reta suporte de PQ PX .  PQ v || PQ ||  v: vetor perpendicular a v e de mesma norma que este.
  • 240.
    Warping baseado em Campos  PQ = (Xq-Xp, Yq-Yp) PQ1 = (Yq–Yp, Xp-Xq) PQ2 = (Yp–Yq, Xq-Xp)  Vamos usar PQ1
  • 241.
    Warping baseado em Campos  Parâmetro v: PX .  PQ v || PQ || v = (x-xp)(yq-yp) + (y-yp)(xp–xq) [(xq-xp)2 + (yq-yp)2]1/2
  • 242.
    Warping baseado em Campos  Cálculo de X’: v.  P ' Q' X '  P'u.P' Q' || P' Q' ||
  • 243.
    Warping baseado em Campos PX .PQ u 2 || PQ || PX .  PQ v || PQ || v.  P ' Q' X '  P'u.P' Q' || P' Q' ||
  • 244.
    Warping baseado em Campos  Quando há mais de um par de vetores referência-alvo, cada pixel sofre a influência de todos os pares de vetores  Será encontrado um ponto Xi’ diferente para cada par de vetores referência-alvo.  Os diferentes pontos para os quais o ponto X da imagem original seria levado por cada par de vetores referência-alvo são combinados por intermédio de uma média ponderada, produzindo o ponto X’ para onde X será efetivamente levado.
  • 245.
  • 246.
    Warping baseado em Campos  Peso da coordenada definida pelo i-ésimo par de vetores de referência-alvo: di: Distância entre X e o segmento PiQi li: ||Pi Qi|| a, b e p : Parâmetros não negativos
  • 247.
    Warping baseado em Campos  Relação inversa com a distância entre a reta e o ponto X  Parâmetro a : Aderência ao segmento  a = 0 (Peso infinito ou aderência máxima)
  • 248.
    Warping baseado em Campos  Parâmetro p controla a importância do tamanho do segmento  p = 0: independe do tamanho do segmento
  • 249.
    Warping baseado em Campos  Parâmetro b controla a forma como a influência decresce em função da distância  b = 0: peso independe da distância
  • 250.
    Warping baseado em Campos  Bons resultados são obtidos com: a entre 0 e 1 b=2 p = 0 ou p = 1.
  • 251.
    Warping baseado em Campos  Exemplo: P0 = (40, 10); Q0 = (20, 5) P0’ = (35, 15); Q0’ = (25, 20) 0 5 10 15 20 25 30 35 40 45 50 55 60 P1 = (20, 30); Q1 = (10, 35) 0 Q1‟ P1’ = (25, 50); Q1’ = (5, 40) 5 Q1 X = (20, 25) 10 u0 = [(20-40) (20-40) + (25- 15 10)(5-10)] / [(20-40)2+ X (5-10)2] = 0.76 20 Q0 P1 v0 = [(20-40) (5-10) + (25- 25 Q0‟ P1‟ 10)(40-20)] / [(20-40)2+ 30 (5-10)2]1/2 = 19.40 35 X0’ = (35, 10) + 0.76 (25-35, P0‟ 20-15) + 19.4 (20-15, 35- 40 P0 X0‟ 25) / [(25-35)2 + (20- 45 15)2]1/2 X0’ = (36.03, 31.17) 50
  • 252.
    Warping baseado em Campos  Exemplo (cont): u1 = [(20-20) (10-20) + (25-30)(35-30)] / [(10- 20)2+ (35-30)2] = - 0.2 0 5 10 15 20 25 30 35 40 45 50 55 60 v1 = [(20-20) (35-30) + 0 (25-30)(20-10)] / [(10- 5 Q1‟ 20)2+ (35-30)2]1/2 = - 10 Q1 4,47 15 X1’ = (25, 50) - 0.2 (5-25, X 40-50) -4,47 (40-50, 20 Q0 25-5) / [(25-5)2 + (40- 25 Q0‟ P1 50)2]1/2 P1‟ X1’ = (25, 50) + (4.6, 2) + 30 (2, -3.99) = (31.6, 35 X1‟ 48,01) 40 P0‟ X0‟ P0 45 50
  • 253.
    Warping baseado em Campos  Exemplo (cont): Dados a = 0.1; b = 2; p= 0 wi = 1/[0.1+di]2 d0 = v0 = 19.4 => w0 = 0 5 10 15 20 25 30 35 40 45 50 55 60 0.0026 0 5 Q1‟ d1 = distância de X a P1 = Q1 [(20-20)2 + (25-30)2]1/2 10 = 5 =>: w1 = 0.0384 15 X’ = [0.0026* (36.03, 20 Q0 X 31.17) + 0.0384*(31.6, P1 48,01)]/( 0.0026+ 25 Q0‟ P1‟ 0.0384) 30 X‟ X’ = (31.88, 46,94) X1‟ 35 P0‟ X0‟ 40 P0 45 50
  • 254.
    Morphing  Interpolação deformas e cores entre duas imagens distintas (f0 e fN-1)  Encontrar imagens f1, f2, ..., fN-2: transição gradual de f0 a fN-1  Efeitos especiais na publicidade e na indústria cinematográfica; realidade virtual; compressão de vídeo; etc.
  • 255.
  • 256.
    Morphing Warping de f0 cki f0 fN-1 ai bi “+” Warping de fN-1 cki
  • 257.
    Morphing ai c1i c2i c3i c4i c5i c6i c7i c8i c9i bi
  • 258.
  • 259.
    Técnicas no Domínioda Freqüência  Conversão ao domínio da freqüência: transformadas  Processamento e análise no domínio da freqüência  Fourier, Cosseno Discreta, Wavelets, etc.
  • 260.
    Cosseno Analógico  f: freqüência x(t )  A cos2ft     T=1/f: período A   : fase  A: amplitude  Gráfico para fase nula e A>0 T
  • 261.
    Uma Família deFunções Cosseno Analógicas xk (t )  Ak cos2f k t   k , k  0, 1, ..., N  1  fk: freqüência do k-ésimo cosseno  Tk =1/fk: período do k-ésimo cosseno   k : fase do k-ésimo cosseno  Ak: amplitude do k-ésimo cosseno
  • 262.
    Uma Família deFunções Cosseno Discretas x k [n]  Ak cos2f k n   k , n  0,1,...,N  1 k = 0,1,...N-1
  • 263.
    Uma Família deFunções Cosseno Discretas 1/ 2 2 Ak    ck X k N 1/2 1/2  para k  0 ck  1  para k  1, 2, ... N - 1 k 2N k fk  Tk  k  2N k 2N 1/ 2 2  (2n  1)k  x k [n ]    c k X k cos  , n  0,1,...,N  1 N  2N 
  • 264.
    Uma Família deFunções Cosseno Discretas 1/ 2 2  (2n  1)k  x k [n ]    c k X k cos  , n  0,1,...,N  1 N  2N   f0  0 1/ 2  2  1 1/ 2 k 0  x0[n]      X 0 , n  0,1,...,N  1  0  0  N  2 1 k  1  f1   T1  2 N (meio-período em N amostras) 2N N 1 2N k  N  1  f N 1   TN 1  2N N 1
  • 265.
    Uma Família deFunções Cosseno Discretas  xk[n] (N = 64, Xk = 10). 2 1 0 -1 -2 0 10 20 30 40 50 60 70 k=1 Meio-ciclo
  • 266.
    Uma Família deFunções Cosseno Discretas 2 1 k=2 0 1 ciclo -1 -2 0 10 20 30 40 50 60 70 2 1 k=3 0 1,5 ciclo -1 -2 0 10 20 30 40 50 60 70
  • 267.
    Uma Família deFunções Cosseno Discretas 2 k=32 1 16 ciclos 0 -1 -2 0 10 20 30 40 50 60 70 2 1 Para 0 visualização -1 -2 0 10 20 30 40 50 60 70
  • 268.
    Uma Família deFunções Cosseno Discretas 2 k=63 1 31,5 ciclos 0 -1 -2 0 10 20 30 40 50 60 70 2 1 Para 0 visualização -1 -2 0 10 20 30 40 50 60 70
  • 269.
    Uma Família deFunções Cosseno Discretas  Amostragem de um sinal periódico não necessariamente produz um sinal de mesmo período (ou mesmo periódico).
  • 270.
    Somando Cossenos Discretos  Criar um sinal x[n] somando-se os sinais xk[n], k = 0...N-1, amostra a amostra: N 1 x[n]   x k [n], n 0,1,...,N  1 k 0 1 / 2 N 1 2  (2n  1)k  x[n ]     ck X k cos  2 N , n  0,1,...,N  1 N k 0  
  • 271.
    Somando Cossenos Discretos  Exemplo:  N = 8; X0 = 10; X1 = 5; X2 = 8,5; X3 = 2; X4 = 1; X5 = 1,5; X6 = 0; X7 = 0,1. 5 1/ 2 11 4 x 0 [n ]    10 22 3 =3.5355 2 0 2 4 6 8
  • 272.
    Somando Cossenos Discretos  X1 = 5 4 5  (2n  1)  x1 [n ]  cos  2 2  16   0 =2.4520; 2.0787; 1.3889; -2 0.4877; -0.4877; -1.3889; -4 0 2 4 6 8 -2.0787; -2.4520 6 4 x0[n]+x1[n] 2 0 0 2 4 6 8
  • 273.
    Somando Cossenos Discretos  X2 = 8,5 8.5  (2n  1)2  x 2 [n ]  4 cos   2 2  16  0 = 3.9265; 1.6264; -1.6264; -2 -3.9265; -3.9265; -1.626; -4 0 2 4 6 8 1.6264; 3.9265 10 5 x0[n]+x1[n] +x2[n] 0 -5 0 2 4 6 8
  • 274.
    Somando Cossenos Discretos  X3 = 2 1 2  (2n  1)3  x 3 [n ]  cos   0.5 2  16  0 = 0.8315; -0.1951; -0.9808; -0.5 -0.5556; 0.5556; 0.9808; -1 0 2 4 6 8 0.1951; -0.8315 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 -5 0 2 4 6 8
  • 275.
    Somando Cossenos Discretos  X4 = 1 0.4 1  (2n  1)4  x 4 [n ]  cos     0.2 2 16 0 = 0.3536; -0.3536; -0.3536; -0.2 0.3536; 0.3536; -0.3536; -0.4 0 2 4 6 8 -0.3536; 0.3536 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n] -5 0 2 4 6 8
  • 276.
    Somando Cossenos Discretos  X5 = 1,5 1 1.5  (2n  1)5  x 5 [n ]  cos     0.5 2 16 0 -0.5 = 0.4167 -0.7356 0.1463 0.6236 -0.6236 -0.1463 -1 0 2 4 6 8 0.7356 -0.4167 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n]+x5[n] -5 0 2 4 6 8
  • 277.
    Somando Cossenos Discretos  X6 = 0 0  (2n  1)6  x 6 [n ]  cos  1 0.5 2  16   =0 0 -0.5 -1 0 2 4 6 8 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n]+x5[n]+x6[n] -5 0 2 4 6 8
  • 278.
    Somando Cossenos Discretos  X7 = 0,1 0.1  (2n  1)7  x 7 [n ]  0.05 cos   2  16  0 = 0.0098; -0.0278; 0.0416; -0.0490’; 0.0490; -0.0416; -0.05 0 2 4 6 8 0.0278; -0.0098 15 10 5 x[n]=x0[n]+x1[n]+x2[n]+ 0 x3[n] +x4[n]+x5[n]+x6[n] -5 +x7[n] 0 2 4 6 8
  • 279.
    Somando Cossenos Discretos  X[k] é um sinal digital: X[k]= X0, X1,...XN-1  Exemplo: X[k]=10;5;8.5;2;1;1.5;0;0.1  Dado X[k] pode-se obter x[n]  X[k]: representação alternativa para x[n] X[k] x[n] 10 15 10 5 5 0 0 -5 0 2 4 6 8 0 2 4 6 8
  • 280.
    Somando Cossenos Discretos  xk[n]:cosseno componente de x[n], de freqüência fk = k/2N; ou  xk[n]: componente de freqüência fk = k/2N;  X[k]: Diretamente relacionado com a amplitude da componente de freqüência fk = k/2N  X[k] representa a importância da componente de freqüência fk = k/2N
  • 281.
    Transformada Cosseno Discreta (DCT)  DCT de x[n]: 1/ 2 N 1 2  (2n  1)k  X [k ]    ck  x[n] cos  , k  0,1,...,N  1 N n 0  2N   Transformada DCT inversa (IDCT) de X[k]: 1 / 2 N 1 2  (2n  1)k  x[n]     ck X [k ] cos  2 N , n  0,1,...,N  1 N k 0  
  • 282.
    Transformada Cosseno Discreta (DCT) X[k]: coeficientes DCT  X: representação de x no domínio da freqüência  X[0]: coeficiente DC (Direct Current)  X[1]...X[N-1]: coeficientes AC (Alternate Current)  Complexidade  Algoritmos eficientes: FDCT
  • 283.
    DCT – Exemplo1 g1 0.1 0 -0.1 -0.2 0 20 40 60 80 100 120 g3 g1+ g3 2 2 1 1 0 0 -1 -1 -2 -2 0 20 40 60 80 100 120 0 20 40 60 80 100 120
  • 284.
    DCT – Exemplo1 (Cont.) g10 g1+g3+g10 2 2 1 1 0 0 -1 -1 -2 -2 0 20 40 60 80 100 120 0 20 40 60 80 100 120 g118 g1+g3+g10+g118 + 2 0.1 1 0 0 -0.1 -1 -2 -0.2 0 20 40 60 80 100 120 0 20 40 60 80 100 120
  • 285.
    DCT – Exemplo2 60  1 π  f1[n]  29.99 cos 2 π n  40  2N 2N  20 0 -20 -40 -60 0 10 20 30 40 50 60 60  2 π  150 f1  f 2 f 2 [n]  48.54 cos 2 π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 286.
    DCT – Exemplo2 (Cont.) 60  3 π  150 f1  f 2  f 3 f 3 [n]  34.23 cos 2 π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60 60  4 π  150 f1  f 2  ...  f 4 f 4 [n]  -35.19 cos 2π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 287.
    DCT – Exemplo2 (Cont.) 150 60  5 π  f 1  f 2  ...  f 6 f 5 [n]  -34.55 cos 2π n  40  2N 2N  100 20 50 0 0 -20 -50 -40 - -60 100 0 10 20 30 40 50 60 0 10 20 30 40 50 60 150 60  6 π  f 1  f 2  ...  f 6 f 6 [n]  -33.29 cos 2 π n  40  2N 2N  100 20 50 0 0 -20 -50 -40 -60 - 100 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 288.
    DCT – Exemplo2 (Cont.) 200 60  7 π  f 1  f 2  ...  f 7 f 7 [n]  -63.42 cos 2π n  150 40  2N 2N  100 20 50 0 0 -20 -40 -50 -60 - 1000 10 20 30 40 50 60 0 10 20 30 40 50 60 60  8 π  f1  f 2  ...  f 8 f 8 [n]  -42.82 cos 2π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 100
  • 289.
    DCT – Exemplo2 (Cont.) 60  9 π  f1  f 2  ...  f 9 f 9 [n]  -10.31cos 2 π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60 60  10 π  f1  f 2  ...  f10 f10 [n]  7.18 cos 2 π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60
  • 290.
    DCT – Exemplo2 (Cont.) 600 60  20 π  f 1  f 2  ...  f 20 f 20 [n]  -62.24 cos 2π n  40  2N 2N  400 20 0 200 -20 0 -40 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60 60  40 π  100 f1  f 2  ...  f 40 f 40 [n]  35.54 cos 2 π n  40  2N 2N  0 800 20 600 0 400 -20 200 -40 0 -60 - 200 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 291.
    DCT – Exemplo2 (Cont.) 60  60 π  120 f1  f 2  ...  f 60 f 60 [n]  -6.73 cos 2π n  0 40  2N 2N  100 0800 20 600 0 400 -20 200 -40 0 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60 60  63 π  120 f1  f 2  ...  f 63 f 63 [n]  -1.51cos 2 π n   2N 2N  0 100 40 0800 20 600 0 400 -20 200 -40 0 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60
  • 292.
    DCT – Exemplo3 1250 1200 Sinal 1150 1100 eletrocardiográfico, 1050 2048 amostras 1000 950 900 850 0 500 1000 1500 2000 400 DCT do sinal 200 eletrocardiográfico 0 (sem termo DC) -200 -400 0 500 1000 1500 2000
  • 293.
    DCT – Exemplo4 20 Onda Quadrada 10 0 -10 -20 0 10 20 30 40 50 60 60 40 DCT da Onda 20 Quadrada 0 -20 -40 -60 0 10 20 30 40 50 60
  • 294.
    Freqüências em Hz  Ta = 1/fa (Período de amostragem)  N amostras ---- (N-1)Ta segundos 1 1 fa f1  (adimensio nal)  f1   Hz 2N 2( N  1)Ta 2( N  1) fa fa f N 1  ( N  1)  Hz 2( N  1) 2
  • 295.
    Freqüências em Hz Aumentar N melhora a resolução de freqüência.  Aumentar fa aumenta a freqüência máxima digitalizável, em Hz.  Dualidade com o domínio do tempo
  • 296.
    Freqüências em Hz  Sinal de ECG, N= 2048, fa=360Hz  Valores em Hz para k = 14, 70, 683 e 2047 14 70 683 2047
  • 297.
    Freqüências em Hz  f1 = fa/[2(N-1)] Hz = 360/(2x2047) = 0,087933561  f14 = 14f1 = 1,23 Hz  f70 = 70f1 = 6,16 Hz  f683 = 683f1 = 60,06 Hz  f2047 = 2047f1 = 180 Hz
  • 298.
    Freqüências em Hz  Observações  fa = 360 Hz <=> Ta = 0,002778 Hz  Tempo total para 2048 amostras = 5,69s  Um batimento cardíaco: aprox. 0,8 s  “Freqüência” Cardíaca: aprox. 1,25 bat./s = 1,25 Hz, ou 75 batimentos/min.  “Freqüência” Cardíaca aprox. igual a f14
  • 299.
    Freqüências em Hz  Onda quadrada, N = 64, fa = 1Hz  Valores em Hz para k = 7, 8, 9 e 63 60 40 20 0 -20 -40 -60 0 7 9 63
  • 300.
    Freqüências em Hz  f1 = fa/[2(N-1)] Hz = 1/(2x63) = 0,007936507  f7 = 7f1 = 0,0556 Hz  f8 = 8f1 = 0,0625 Hz  f9 = 9f1 = 0,0714 Hz  f63 = 63f1 = 0,5 Hz  Obs:  Período do sinal = 16 s  Freqüência da onda = 0,0625
  • 301.
    Freqüências e Conteúdode Freqüência  Sinal periódico  Freqüência  Freqüências componentes  Sinal não-periódico:  Freqüências componentes
  • 302.
    Sinais analógicos senoidais  Representação em freqüência de um sinal analógico senoidal?  Sinal analógico senoidal, de freqüência f  fa mínimo para digitalização adequada?  Se f não é múltiplo de f1?
  • 303.
    Amostragem de Senóides  Cosseno com f=10Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 304.
    Amostragem de Senóides  DCT do cosseno com f = 10Hz, fa=100Hz, N=26 4 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 305.
    Amostragem de Senóides  Vazamento de freqüência: mais de uma componente de freqüência para uma senóide  Minimizar vazamento de freqüência: aumentar N
  • 306.
    Amostragem de Senóides  Cosseno com f = 30Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 307.
    Amostragem de Senóides  DCT do cosseno com f = 30Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 0 5 10 15 20 25 30 35 40 45 50
  • 308.
    Amostragem de Senóides  Cosseno com f = 48Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 309.
    Amostragem de Senóides  DCT do cosseno com f = 48Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 310.
    Amostragem de Senóides  Cosseno com f = 50Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 311.
    Amostragem de Senóides  DCT do cosseno com f = 50Hz, fa=100Hz, N=26 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 50
  • 312.
    Amostragem de Senóides  Cosseno com f = 52Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 313.
    Amostragem de Senóides  DCT do cosseno com f = 52Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 314.
    Amostragem de Senóides  Sinal digital obtido a partir do cosseno de 52Hz é idêntico ao obtido a partir do cosseno de 48 Hz 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 0.0 0.1 0.1 0.2 0.2 0 0.0 0.1 0.1 0.2 0.2
  • 315.
    Amostragem de Senóides  Cosseno com f = 70Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 316.
    Amostragem de Senóides  DCT do cosseno com f = 70Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 0 5 10 15 20 25 30 35 40 45 50
  • 317.
    Amostragem de Senóides  Sinal digital obtido a partir do cosseno de 70Hz é idêntico ao obtido a partir do cosseno de 30 Hz 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 0.0 0.1 0.1 0.2 0.2 0 0.0 0.1 0.1 0.2 0.2 5 5 5 5 5 5
  • 318.
    Aliasing  Na DCT,a maior freqüência é fa/2  Aliasing: sinais senoidais de freqüência f > fa/2 são discretizados como sinais senoidais de freqüência fd < fa / 2 (fd=fa–f, para fa/2 < f < fa)
  • 319.
  • 320.
    Teorema de Shannon- Nyquist  Sinal analógico com fmax Hz (componente)  Digitalizar com fa Hz, tal que: fa  f max  f a  2 f max 2  2fmax: Freq. de Nyquist
  • 321.
    Digitalização de áudio Ouvido humano é sensível a freq. entre 20Hz e 22KHz (aprox.)  Digitalizar com 44KHz?  Sons podem ter freqüências componentes acima de 22KHz  Digitalização a 44KHz: aliasing.  Filtro passa-baixas com freqüência de corte em 22KHz = Filtro anti- aliasing
  • 322.
    Eliminação de pixels revisitada  Por que redução de imagens por eliminação de pixel deve ser evitada?  Sinal original digitalizado com fa =2fmax  No. de amostras do sinal digital reduzido pela metade por eliminação de amostras -> nova freqüência de amostragem f’a = fa/2 = fmax -> freqüência máxima do sinal analógico digitalizada sem aliasing = f’a/2 = fmax/2
  • 323.
    Eliminação de pixels revisitada  Por que redução de imagens (ou outros sinais) por eliminação de pixel (ou amostras) deve ser evitada?  Aliasing!  Usar filtro passa-baixas!
  • 324.
    Filtros no domínioda freqüência  Multiplicar o sinal no domínio da freq., S, pela função de transferência do filtro, H  Filtros:  Passa-baixas  Passa-altas  Passa-faixa  Corta-baixas  Corta-altas  Corta-faixa (faixa estreita: notch)
  • 325.
    Filtros no domínioda freq.  Ideais H Passa-baixas H Passa-altas (corta-altas) (corta-baixas) 1 1 fc N-1 fc N-1 H Passa-faixa H corta-faixa 1 1 fc1 fc2 N-1 fc1 fc2 N-1
  • 326.
    Filtros no domínioda freqüência  Combinação de filtros  Filtros não-ideais (corte suave, |H(fc)|=(1/2)1/2 ou |H(fc)|=1/2)
  • 327.
    DCT 2-D  Operação separável  Complexidade elevada N 1 N 1 1  (2m  1)k   (2n  1)l  X [k , l ]  ck cl   x[m, n] cos   cos  2 N  2N m 0 n 0  2N    1 N 1N 1  (2k  1)m   (2l  1)n  x[m, n]    ck cl X [k , l ] cos  2 N  cos  2 N  2 N k 0 l 0    
  • 328.
    DCT 2-D  Imagem “cosseno na vertical”, 256 x 256, 8 ciclos (k = 16) e sua DCT normalizada
  • 329.
    DCT 2-D  Imagem “cosseno na vertical”, 256 x 256, 16 ciclos (k = 32) e sua DCT normalizada
  • 330.
    DCT 2-D  Imagem “cosseno na horizontal x cosseno na vertical”, 256 x 256, 16 ciclos (k = 32) e sua DCT normalizada
  • 331.
    DCT 2-D  Imagem “cosseno na horizontal x cosseno na vertical”, 256 x 256, 8 x 16 ciclos e sua DCT normalizada
  • 332.
    DCT 2-D  Imagem “Lena” (256x256) e sua DCT normalizada
  • 333.
    DCT 2-D  Imagem “Lena” (256x256) e o log(DCT+1) normalizado
  • 334.
    Transformada de Fourier Discreta(DFT) N 1 j 2un 1   Direta: F [u ]  N  s[n]e N n 0 N 1 j 2un  Inversa: s[n ]   F [u]e N u 0 n, u = 0, 1, ..., N-1 j  1  Fórmula de Euler: e j  cos   j sen 
  • 335.
    Duas propriedades essenciais F [u  N ]  ? |F[-u]| = ?
  • 336.
    Duas propriedades essenciais  DFT é periódica de período N: F [u  N ]  F (u)  Espectro de Fourier é função par: |F[u]| = |F[-u]|
  • 337.
    Esboço do Espectrode Fourier |F[u]| u -N/2 N/2 N-1  u = 0, N, 2N,...: freq. 0  u = N/2, 3N/2,...: freq. máxima (N par)  u = (N-1)/2,...: freq. máxima (N ímpar)
  • 338.
    Freqüências em Hz Ta = 1/fa (Período de amostragem)  N amostras ---- (N-1)Ta segundos 1 1 fa f1  (adimensio nal)  f1   Hz N ( N  1)Ta N  1 N  1 fa fa f( N 1) / 2   Hz 2 ( N  1) 2
  • 339.
    Fourier 2-D  Operaçãoseparável  Complexidade elevada C 1 R 1 1 F [u, v ]  RC   s[m, n]e  j 2 ( um / C  vn / R ) m 0n 0 C 1 R 1 s[m, n]    F [u, v]e j 2 ( um / C  vn / R ) u 0 v 0
  • 340.
    Exibição do Espectrode Fourier 2-D Flog[u, v] = round[(L - 1) log(1+|F[u, v]|)/Fmax2]
  • 341.
    Teorema da Convolução  Se g[m, n]  s[m, n]  h[m, n]  Então:  G[u,v] = H[u,v]F[u,v] onde G[u,v]: DFT de g[m,n] F[u,v]: DFT de s[m,n] H[u,v]: DFT de h[m,n]  H[u,v]: Função de transferência do filtro
  • 342.
    Filtros: espaço xfreqüência  Projeto de filtro no domínio da freqüência (Fourier)  Método imediato: H[k], k = 0..N-1  Como filtrar sinais no domínio do tempo, em tempo real?  Convolução com h[n], n = 0..N-1 pode ser proibitiva para n grande  Encontrar ht[n], n = 0..M-1, com M < N, de modo a obter uma aproximação adequada para H[k].
  • 343.
    Filtros: espaço xfreqüência  Para eficiência computacional e redução de custos, o número de coeficientes do filtro deve ser o menor possível  Projetar filtros relativamente imunes ao truncamento
  • 344.
    Questões do PosComp2002  51. Histograma de uma imagem com K tons de cinza é :  a) Contagem dos pixels da imagem.  b) Contagem do número de tons de cinza que ocorreram na imagem.  c) Contagem do número de vezes que cada um dos K tons de cinza ocorreu na imagem.  d) Contagem do número de objetos encontrados na imagem.  e) Nenhuma alternativa acima.  52. filtro da mediana é :  a) Indicado para detectar bordas em imagens.  b) Indicado para atenuar ruído com preservação de bordas (i.é rápidas transições de nível em  imagens).  c) Indicado para detectar formas específicas em imagens.  d) Indicado para detectar tonalidades específicas em uma imagem.  e) Nenhuma das respostas acima.
  • 345.
    Questões do PosComp2002  51. Histograma de uma imagem com K tons de cinza é :  a) Contagem dos pixels da imagem.  b) Contagem do número de tons de cinza que ocorreram na imagem.  c) Contagem do número de vezes que cada um dos K tons de cinza ocorreu na imagem.  d) Contagem do número de objetos encontrados na imagem.  e) Nenhuma alternativa acima.  52. filtro da mediana é :  a) Indicado para detectar bordas em imagens.  b) Indicado para atenuar ruído com preservação de bordas (i.é rápidas transições de nível em  imagens).  c) Indicado para detectar formas específicas em imagens.  d) Indicado para detectar tonalidades específicas em uma imagem.  e) Nenhuma das respostas acima.
  • 346.
    Questões do PosComp2004  56) Considerando as declarações abaixo, é incorreto afirmar:  a) Filtros passa-altas são utilizados para detecção de bordas em imagens  b) A transformada discreta de Fourier nos permite obter uma representação de uma imagem no domínio freqüência  c) Filtragem no domínio espacial é realizada por meio de uma operação chamada “convolução”  d) Os filtros Gaussiano e Laplaciano são exemplos de filtro passa-baixas  e) O filtro da mediana pode ser utilizado para redução de ruído em uma imagem  58) Identifique a declaração incorreta:  a) As operações de ajuste de brilho e contraste são operações lineares  b) A equalização de histograma é uma transformação não-linear e específica para cada imagem  c) A transformação necessária para calcular o negativo de uma imagem pode ser aplicada simultaneamente (i.e., em paralelo) a todos pixels da imagem original  d) A equalização de histograma pode ser obtida a partir de um histograma cumulativo da imagem original  e) O objetivo da equalização de histograma é reduzir o constrastre nas regiões da imagem que correspondem à porção do histograma com maior concentração de pixels
  • 347.
    Questões do PosComp2004  56) Considerando as declarações abaixo, é incorreto afirmar:  a) Filtros passa-altas são utilizados para detecção de bordas em imagens  b) A transformada discreta de Fourier nos permite obter uma representação de uma imagem no domínio freqüência  c) Filtragem no domínio espacial é realizada por meio de uma operação chamada “convolução”  d) Os filtros Gaussiano e Laplaciano são exemplos de filtro passa-baixas  e) O filtro da mediana pode ser utilizado para redução de ruído em uma imagem  58) Identifique a declaração incorreta:  a) As operações de ajuste de brilho e contraste são operações lineares  b) A equalização de histograma é uma transformação não-linear e específica para cada imagem  c) A transformação necessária para calcular o negativo de uma imagem pode ser aplicada simultaneamente (i.e., em paralelo) a todos pixels da imagem original  d) A equalização de histograma pode ser obtida a partir de um histograma cumulativo da imagem original  e) O objetivo da equalização de histograma é reduzir o constrastre nas regiões da imagem que correspondem à porção do histograma com maior concentração de pixels
  • 348.
    Questões do PosComp2005  59. O processo de análise de imagens é uma seqüência de etapas que são iniciadas a partir da definição do problema. A seqüência correta destas etapas é:  (a) pré-processamento, aquisição, segmentação, representação, reconhecimento.  (b) aquisição, pré-processamento, segmentação, representação, reconhecimento.  (c) aquisição, pré-processamento, representação, segmentação, reconhecimento.  (d) aquisição, representação, pré-processamento, segmentação, reconhecimento.  (e) pré-processamento, aquisição, representação, segmentação, reconhecimento.  60. O termo imagem se refere a uma função bidimensional de intensidade de luz, denotada por f(x; y), onde o valor ou amplitude de f nas coordenadas espaciais (x; y) representa a intensidade (brilho) da imagem neste ponto. Para que uma imagem possa ser processada num computador, a função f(x; y) deve ser discretizada tanto espacialmente quanto em amplitude. Estes dois processos recebem as seguintes denominações, respectivamente:  (a) translação e escala.  (b) resolução e escala.  (c) resolução e ampliação.  (d) amostragem e quantização.  (e) resolução e quantização.
  • 349.
    Questões do PosComp2005  59. O processo de análise de imagens é uma seqüência de etapas que são iniciadas a partir da definição do problema. A seqüência correta destas etapas é:  (a) pré-processamento, aquisição, segmentação, representação, reconhecimento.  (b) aquisição, pré-processamento, segmentação, representação, reconhecimento.  (c) aquisição, pré-processamento, representação, segmentação, reconhecimento.  (d) aquisição, representação, pré-processamento, segmentação, reconhecimento.  (e) pré-processamento, aquisição, representação, segmentação, reconhecimento.  60. O termo imagem se refere a uma função bidimensional de intensidade de luz, denotada por f(x; y), onde o valor ou amplitude de f nas coordenadas espaciais (x; y) representa a intensidade (brilho) da imagem neste ponto. Para que uma imagem possa ser processada num computador, a função f(x; y) deve ser discretizada tanto espacialmente quanto em amplitude. Estes dois processos recebem as seguintes denominações, respectivamente:  (a) translação e escala.  (b) resolução e escala.  (c) resolução e ampliação.  (d) amostragem e quantização.  (e) resolução e quantização.
  • 350.
    Questões do PosComp2006  47. [TE] Considere os filtros espaciais da média (m) e Mediana (M) aplicados em imagens em níveis de cinza f e g. Qual par de termos ou expressões a seguir não está associado, respectivamente, a características gerais de m e M?  (a) m(f + g) = m(f) + m(g); M(f + g) != M(f) + M(g)  (b) ruído gaussiano; ruído impulsivo  (c) convolução; filtro estatístico da ordem  (d) preservação de pequenos componentes; não preservação de pequenos componentes  (e) filtragem com preservação de contornos; filtragem sem preservação de contornos  48. [TE] A convolução da máscara [-1 2 -1] com uma linha de uma imagem contendo uma seqüência de pixels do tipo [... 3 4 5 6 7 8 9 10 ...] resulta na transformação (sem considerar efeitos de borda):  (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais próximos  (b) [...0 0 0 0 0 0 0 0...] e representa o laplaciano no espaço discreto  (c) [...0 0 0 0 0 0 0 0...] e representa uma erosão morfológica  (d) [...1 1 1 1 1 1 1 1...] e é equivalente a um filtro passa-baixas  (e) [...7 9 11 13 15 17 19...] e é equivalente a um filtro passa-altas
  • 351.
    Questões do PosComp2006  47. [TE] Considere os filtros espaciais da média (m) e Mediana (M) aplicados em imagens em níveis de cinza f e g. Qual par de termos ou expressões a seguir não está associado, respectivamente, a características gerais de m e M?  (a) m(f + g) = m(f) + m(g); M(f + g) != M(f) + M(g)  (b) ruído gaussiano; ruído impulsivo  (c) convolução; filtro estatístico da ordem  (d) preservação de pequenos componentes; não preservação de pequenos componentes  (e) filtragem com preservação de contornos; filtragem sem preservação de contornos  48. [TE] A convolução da máscara [-1 2 -1] com uma linha de uma imagem contendo uma seqüência de pixels do tipo [... 3 4 5 6 7 8 9 10 ...] resulta na transformação (sem considerar efeitos de borda):  (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais próximos  (b) [...0 0 0 0 0 0 0 0...] e representa o laplaciano no espaço discreto  (c) [...0 0 0 0 0 0 0 0...] e representa uma erosão morfológica  (d) [...1 1 1 1 1 1 1 1...] e é equivalente a um filtro passa-baixas  (e) [...7 9 11 13 15 17 19...] e é equivalente a um filtro passa-altas
  • 352.
    Questões do PosComp2007  61. [TE] O realce de imagem tem como objetivo destacar detalhes finos procurando obter uma representação mais adequada do que a imagem original para uma determinada aplicação. Dessa forma, sobre as técnicas utilizadas no realce de imagens, é CORRETO afirmar que  (a) o melhor resultado obtido depende do filtro aplicado na imagem. Normalmente, o mais aplicado é o filtro da mediana.  (b) o melhor resultado é obtido com a aplicação de filtros passa- baixas, cujos parâmetros dependem do resultado desejado.  (c) a aplicação de filtros da média sempre oferece resultado adequado no realce de imagens.  (d) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-altas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  (e) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-baixas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  62 e 63
  • 353.
    Questões do PosComp2007  61. [TE] O realce de imagem tem como objetivo destacar detalhes finos procurando obter uma representação mais adequada do que a imagem original para uma determinada aplicação. Dessa forma, sobre as técnicas utilizadas no realce de imagens, é CORRETO afirmar que  (a) o melhor resultado obtido depende do filtro aplicado na imagem. Normalmente, o mais aplicado é o filtro da mediana.  (b) o melhor resultado é obtido com a aplicação de filtros passa- baixas, cujos parâmetros dependem do resultado desejado.  (c) a aplicação de filtros da média sempre oferece resultado adequado no realce de imagens.  (d) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-altas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  (e) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-baixas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.