SlideShare a Scribd company logo
1 of 49
Quais são as diretrizes da ventilação mecânica no paciente de
neurocirurgia e neurocrítico?
Carlos Darcy Alves Bersot TSA.SBA
MD RESPONSÁVEL PELO CET H.F.LAGOA
Médico Anestesiologista do Hospital Federal da Lagoa - SUS
Médico Anestesiologista do Hospital São Lucas-Copacabana, Rio, RJ
Pressão Perfusão Cerebral (PPC)
● PPC = PAM – PIC
● se PVC > PIC ⇒ PPC = PAM – PVC
● PPC normal = 80 – 100 mmHg
● PPC baixa com PIC elevada ⇒ ↓ FSC
● PPC < 50 mmHg ⇒ achatamento EEG
● PPC < 25 mmHg (tempo prolongado) ⇒ lesão
neuronal irreversível
Qual o melhor modo ventilatório mais adequado? Volume ou Pressão?
Qual o melhor modo ventilatório mais adequado? Volume ou Pressão?
Qual o melhor modo ventilatório mais adequado? Volume ou Pressão?
DISFUNÇÃO ORGÂNICA
◼ 34% dos pacientes com AVE grave desenvolveram disfunção orgânica =
Tiveram maior mortalidade intra-hospitalar (Quin, et al., Plos One 2016)
◼ Pneumonia é o tipo mais comum de infecção após AVE, com uma
incidência de até 22% = piora dos resultados clínicos e neurológicos
(Johnston KC et al,,Stroke 1997)
DISFUNÇÃO ORGÂNICA
Pneumonia
Tradicionalmente era considerada secundária à aspiração e disfagia associada a
diminuição do nível de consciência, posicionamento do corpo na cama,
ventilação mecânica e imobilidade do paciente (Huang JY et al., J Int Med Res 2006)
Inflamação sistêmica
Anrather et al., Neurotherapeutics 2016
Disfunção orgânica
Infecção secundária
Delirium
Lesão pulmonar
TNF-α, IL-6, IL-1β,
IFN-γ
FISIOPATOLOGIA DO AVE
LESÃO INFLAMATÓRIA CEREBRAL E PULMONAR
Samary et al., Crit Care 2018
LESÃO INFLAMATÓRIA CEREBRAL E PULMONAR
Samary et al., Crit Care 2018
DANO ALVEOLAR DIFUSO
◼ Edema intersticial
◼ Hemorragia
◼ Inflamação
◼ Atelectasia
● Frequentemente
● As configurações ideais do ventilador e os alvos respiratórios em pacientes
neurológicos não são claros.
● O conhecimento atual sugere a manutenção de volumes correntes protetores de 6 a
8 ml/kg de peso corporal. Essa abordagem pode reduzir a taxa de complicações pulmonares, embora não possa
ser facilmente aplicada em um ambiente neurológico devido à necessidade de cuidados especiais para minimizar o risco de
dano cerebral secundário.
● O desmame da VM é particularmente desafiador nesses pacientes que não
conseguem controlar os padrões respiratórios cerebrais e proteger as vias aéreas da
aspiração.
● A falha de extubação em neuro pacientes é muito alta, enquanto a traqueostomia é
necessária em um terço dos pacientes.
● Causas comum de VM: Traumatismo Cranioencefálico, Acidente Vascular Cerebral
isquêmico agudo, hemorragia subaracnóidea e hemorragia intracerebral.
Quando os pacientes neurocríticos precisam de ventilação
mecânica invasiva (VM)?
Os principais distúrbios pulmonares podem ocorrer após lesões cerebrais como PAV, SDRA ou NPE. Nesta
revisão, as consequências diretas do trauma torácico, como fraturas de costelas, contusões pulmonares ou
hemo/pneumotórax não serão discutidas nesta revisão
Neurocríticos
● Rebaixamento do nível de consciência é o principal fator de risco para
broncoaspirações e infecções pulmonares. Diante disto a intubação endotraqueal e a ventilação mecânica tem um papel
importante principalmente na fase aguda do trauma, uma vez que protege a via aérea, permite a sedação e evita a hipoxemia e a hipercapnia. Nesta fase, a
oxigenação encefálica e ventilação eficaz são prioridades em
neuroemergência ou qualquer outro tipo de lesão traumática grave, com
objetivo de se diminuir o sofrimento encefálico e suas complicações
secundárias.
● A ventilação mecânica é imprescindível em pacientes neurocríticos, pois
protege as vias aéreas, permite a regulação das pressões parciais de
oxigênio (O2) e dióxido de carbono (CO2) e ainda o controle da pressão
intracraniana (PIC).
A hiperventilação reduz a PIC pela hipocapnia que induz a vasoconstrição
cerebral, o que acaba por reduzir o fluxo sanguineo cerebral (FSC), e que por
sua vez agrava a perfusão levando a uma isquemia cerebral4. A
hiperventilação profilatica (PCO2 menor que 25mmHg) não é recomendada e
não deve ser realizada nas primeiras 24 horas, por ja existir uma redução do
FSC5.
A influência da ventilação mecânica sobre os parâmetros hemodinâmicos,
principalmente na PIC e a PPC, tem sido foco de diversos estudos, no entanto
os resultados ainda apresentam divergências. Este estudo tem como objetivo
demostrar a importância da ventilação mecânica nos pacientes neurocríticos,
principalmente no que diz respeito ao controle da PIC e da PPC.
PEEP(Pressão positiva expiratória final)
Para Silva et al 20144 a PEEP em níveis baixos a moderados pouco causará aumento significativo da PIC na
maioria dos casos. Tecnicamente, enquanto a vasoconstrição cerebral induzida pela hipocapnia por
hiperventilação tem maior efetividade na redução da PIC, o risco da diminuição do FSC abaixo do limite sempre
foi motivo de preocupação clínica. Estratégias de proteção pulmonar devem ser sempre respeitadas, porém
devem ser otimizadas com o monitoramento da PPC e da PIC. A monitorização da VM é de grande
importância, pois existe forte relação dos parâmetros ventilatórios com a fisiologia cerebral. Para Búfalo et al
2010, os valores da PEEP variam dependendo da análise de alguns critérios, tais como gasometria arterial,
complacência pulmonar, imagem radiológica e hemodinâmica do paciente, sempre buscando valores ideais de
acordo com cada situação à beira leito.
Em nossa opinião, após o levantamento bibliográfico realizado, vimos que é importante assegurar que a VM,
por meio do controle do dióxido de carbono com base no volume minuto e da PEEP não produza efeitos
deletérios nos parâmetros cerebrais básicos como a PIC, a PPC e o FSC. Ressalta-se ainda que quaisquer
alterações nessas pressões podem levar a consequências graves, que podem causar lesões secundárias
irreversíveis para o paciente.
● . A manutenção de um VT menor reduz o risco
de desenvolver complicações pulmonares [3]. No
entanto, isso não pode ser facilmente aplicado
em um ambiente de terapia neurointensiva (UTI)
devido à necessidade de cuidados especiais
para minimizar o risco de dano cerebral
secundário [6], mas a aplicação de uma VM
protetora associada à extubação precoce parece
melhorar o tempo livre de ventilador dias [7]. Isso
Quando os pacientes neurocríticos precisam de ventilação
mecânica invasiva (VM)?
● Neuro pacientes frequentemente necessitam de ventilação mecânica invasiva (VM) para proteger as vias aéreas da
aspiração e prevenir danos cerebrais secundários, modulando os níveis de oxigênio e dióxido de carbono [1].
● Infelizmente, a configuração ideal do ventilador e os alvos respiratórios em neuropacientes não são claros e dependem também
do tipo de lesão cerebral, fazendo parte da complexa interação cérebro-pulmão [2]
● Fig. 1)-O conhecimento atual sobre VM para pacientes neurológicos sugere a
manutenção de volumes correntes (VT) protetores (6 e 8 ml/kg de peso corporal
previsto.
Manejo atual da VM invasiva, desmame e traqueostomia para as quatro principais
subpopulações de pacientes neuro: traumatismo cranioencefálico, acidente vascular
cerebral isquêmico agudo, hemorragia subaracnóidea e hemorragia intracerebral.
Pacientes neurológicos frequentemente requerem ventilação mecânica invasiva (VM) para
proteger as vias aéreas da aspiração e prevenir danos cerebrais secundários, modulando os
níveis de oxigênio e dióxido de carbono [1]. Infelizmente, a configuração ideal do ventilador e
os alvos respiratórios em neuropacientes não são claros e dependem também do tipo de
lesão cerebral, fazendo parte da complexa interação cérebro-pulmão [2] (Fig. 1). O
conhecimento atual sobre VM para pacientes neurológicos sugere a manutenção de volumes
correntes (VT) protetores (6e8 ml/kg de peso corporal previsto (PBW)) [3,4], em vez de VT
mais alto (9 ml/kg de PBW ou superior) como de costume aplicado há muitos anos [5]. A
manutenção do VT menor reduz o risco de desenvolver complicações pulmonares [3]. No
entanto, isso não pode ser facilmente aplicado em um ambiente de terapia neurointensiva
(UTI) devido à necessidade de cuidados especiais para minimizar o risco de dano cerebral
secundário [6], mas a aplicação de uma VM protetora associada à extubação precoce
parece melhorar o tempo livre de ventilador dias [7]. Isso sugere que a estratégia de VM
protetora também pode ser aplicada com segurança em UTI, embora o monitoramento de
dióxido de carbono e oxigênio permaneça obrigatório para esses pacientes [5]. O processo
de desmame da VM visa reduzir os parâmetros do ventilador, permitindo a extubação por
pelo menos 48 h [8]. A falha de extubação em neuropacientes chega a 38% [9], enquanto a
traqueostomia é necessária em 32% e 45% deles [10,11]. Além disso, o momento para a
realização da traqueostomia ainda está em debate em ambas as populações [12,13].
O traumatismo crânio-encefálico (TCE) é um grande ônus socioeconômico e de saúde, com uma
incidência global de aproximadamente 369 casos a cada 100.000 habitantes [14]. A gravidade da lesão
cerebral influencia amplamente a ocorrência de complicações respiratórias, bem como a necessidade de
VM e traqueostomia [15]. A pneumonia adquirida no hospital é uma complicação frequente do TCE,
particularmente a pneumonia associada à ventilação mecânica (PAV) que pode ocorrer em 20,4% dos
pacientes com TCE dentro de 5 dias (3-7 dias) da intubação [16]. Pacientes com TCE e PAV têm maior
tempo de VM e permanência na UTI, mas não aumento da mortalidade [16]. Além disso, pacientes com
TCE com pneumonia podem apresentar pior Glasgow Outcome Scale Extended (GOS-E) do que aqueles
sem e maiores custos de hospitalização [17]. A maior incidência de PAV deve estar relacionada ao
manejo pré-hospitalar das vias aéreas, embora isso tenha sido desacreditado em uma coorte
retrospectiva [18]. A fisiopatologia do TCE é caracterizada por elevação da pressão intracraniana (PIC),
redução da pressão de perfusão cerebral (PPC), seguida de lesão cerebral secundária [19,20]. Além
disso, alterações nas pressões intratorácicas, oxigenação e pressão parcial arterial de dióxido de
carbono (PaCO2) podem alterar esse mecanismo autorregulador, que, em pacientes com TCE, muitas
vezes já está comprometido [21]. O TCE pode ser complicado com um aumento da PIC acima de 20e22
mmHg, definido como hipertensão intracraniana (HI) [20,22].
Traumatic brain injury
In TBI, the Glasgow coma scale (GCS)8 is generally considered the optimal threshold
for endotracheal intubation to secure airways from aspiration and reduce respiratory
drive [23]. Prehospital interventions include the tendency to hyperventilate TBI patients,
whether indicated or not by the 2 guidelines [24], thus leading more frequently to
hypoxia, hypotension, and acidosis [25]. This approach may deeply modify the cerebral
physiology by changing the PaCO2, which is considered as a major determinant of
cerebral blood flow (CBF) (for CBF between 20 and 80 mmHg) [26]. Low CBF due to low
PaCO2 is associated with cerebral ischemia, while high CBF results in cerebral
hyperemia and higher ICP [26]. TBI patients exert less CBF modifications than healthier
patients because hyperventilation may lead to hypocapnia and alkalosis, redistributing
oxygen and hemoglobin [27,28]. Prophylactic hyperventilation with PaCO2 <25 mmHg
should be avoided because of possible cerebral ischemia and
Endotracheal intubation and gas exchange
infarto cerebral [5], enquanto que por curtos períodos (15e30 min) pode ser considerado. A hipocapnia deve ser sempre considerada no caso
de HI refratária, visando atingir níveis de PaCO2 de 30e35/32e35 mmHg [22,29,30]. Assim, na ausência de herniação cerebral, a PaCO2 deve
ser mantida entre 35 e 38 mmHg [5], embora a prática corrente na Europa confirme que no caso de HI, o alvo de PaCO2 mais utilizado é 36e40
mmHg [31]. Os ajustes da frequência respiratória e do VT são identificados como ferramentas úteis para regular a PaCO2 [5]. A oxigenação
deve ser rigorosamente monitorada, mantendo a saturação periférica de oxigênio (SpO2) >94% [30,32]. A hiperóxia precoce não foi associada
a maior mortalidade intra-hospitalar em uma coorte retrospectiva de 24.148 pacientes com TCE, enquanto um maior risco de morte foi
encontrado para PaO2 < 40 mmHg [33]. Pelo contrário, em uma meta-análise recente, a hiperóxia foi associada a maior mortalidade em
pacientes com TCE VM [34]. A desconfirmação final veio de um pequeno estudo randomizado controlado recente (RCT) que comparou a alta
fração inspirada de oxigênio (FiO2) (0,7) com a FiO2 normal (0,4) em pacientes com TCE MV, que revelou que a hiperóxia normobárica poderia
ser usada para aliviar a isquemia cerebral secundária sem determinar efeitos colaterais negativos. Maior FiO2 não aumentou os marcadores de
estresse oxidativo, lesão neurológica, inflamação e incidência de complicações pulmonares [35]. Quanto à prática clínica, a PaO2 mais utilizada
está na faixa de 81e100 mmHg tanto no caso de relação PaO2/FiO2 >150 quanto < 150 [31]. Os efeitos da hipocapnia e hipóxia devem ser
monitorados usando a saturação jugular de oxigênio (SjO2) ou pressão de oxigênio no tecido cerebral (PbtO2) [5]. As tendências individuais de
PbtO2 estão associadas a um resultado em pacientes com TCE [36]. Em resumo, em pacientes com TCE, tanto a hipocapnia quanto a
hipercapnia estão associadas a um desfecho ruim e devem ser evitadas
Intubação endotraqueal e troca gasosa
High VT are more often provided in brain-damaged patients than in the general critically ill population because of the need
of a wider modulation of brain gases [37]. Nevertheless, MV setting in TBI patients should include protective VT and
plateau pressures [3]. As reported in a recentsurvey (VENTILO) on 687 respondents of whom 472 are from Europe, the
most common VT applied in TBI patients is 6e8 ml/kgPBW in the case of PaO2/FiO2 >150; and 4e6 ml/kgPBW in half of
the cases of PaO2/FiO2 < 150 [31]. Among ventilator strategy, pressure-regulated volume control ventilation resulted in
less fluctuation of ICP and PaCO2 than the pressure controlled in TBI patients [38]. Some believe that elevated
intrathoracic pressures may lead to significant changes in central venous pressure and ICP from venous congestion. A
comparison between traditional ventilator mode and airway pressure release ventilation has been assessed in TBI
patients, which concludes that this strategy does not significantly affect ICP and cerebral hemodynamics, being
considered safe if applied [39]. Also, neutrally adjusted ventilatory assist and pressure support ventilation preserved CBF
velocity in a patient recovering from brain injury, without affecting pH, PaCO2, and oxygenation [40]. Positive end-
expiratory pressure (PEEP) is considered as another key component of protective MV. Although PEEP may be dangerous
on CBF and perfusion [41], in the case of concomitant brain and respiratory diseases, PEEP is considered safe because it
results in acceptable systemic and cerebral hemodynamic changes, even when low or high (5e15 cmH2O). A prospective
study on 20 TBI patients demonstrated that increasing PEEP of up to 15 cmH2O can improve brain tissue oxygenation
[42], thus challenging the concept of low/zero PEEP (ZEEP) customarily applied for decades in neuro patients [43]. In the
VENTILO survey, the mean highest PEEP is 15 cmH2O in patients with PaO2/FiO2 <300 and without IH; while it is 10
cmH2O in patients with IH [31]. The most frequent rescue strategy for refractory respiratory failure is neuromuscular
blocking agents, followed by recruitment maneuvers (RMs), and prone position [31]. RMs can improve oxygenation by
promoting gas exchange, although their effects on ICP could be deleterious due to the impaired jugular venous outflow
and venous return. Therefore, we suggest RMs in only TBI patients in the case of severe hypoxemia under strict
Tidal volume and pulmonary pressures
A positive spontaneous breathing trial test usually precedes weaning from MV. However, as
neuro patients may present with impaired breathing control and respiratory driving,
approximately 5%e20% of them cannot proceed to weaning and extubation [45]. Predictive
factors for extubation failure in TBI patients include female sex, GCS motor score <5,
moderate to large secretion volume, absent or weak cough, and MV for >10 days [46]. At
present, the VISAGE score represents the most appropriate test for identifying neuro patients
who can reveal extubation readiness. This score has been validated for general ICU patients,
but it can also be applied in TBI patients, because specific scores have not yet been
developed [47]. Before extubation is performed, chest physiotherapy is recommended for MV
critically ill patients based on a multisystemic approach, because it can reduce the incidence
of respiratory complications, promote weaning from MV, facilitate physical function among
ICU survivors, and reduce the length of stay [48]. A study that investigated manual versus
mechanical chest percussion techniques in TBI patients found that the manual technique was
associated with a transient increase in ICP and impaired hemodynamics. However, the
increase in ICP was transient and not clinically relevant in moderate-tosevere TBI without IH
[49]. Nevertheless, chest physiotherapy did not demonstrate efficacy in the prevention of
Weaning and extubation
Patients who have failed weaning and extubation often receive tracheostomy, although up to
79% of neuro patients do not receive an extubation attempt before tracheostomy [10].
Factors associated with the need for tracheostomy include CRASH, IMPACT, SAPS II, and
APACHE II scores, age, revised trauma score, GCS, subdural hematoma, abnormal pupil
reactivity, and the collapse of basal cisterns [51]. D. Battaglini, D. Siwicka Gieroba, I. Brunetti
et al. Best Practice & Research Clinical Anaesthesiology xxx (xxxx) xxx 5 Likewise, GCS,
Marshall score, chest tube, and Injury severity score have been identified as predictors for
tracheostomy in TBI patients at admission. Inpatient risk factors included the requirement of
an external ventricular drainage, number of operations, inpatient dialysis, aspiration, GCS on
day 5, and a need for reintubation [52]. Tracheostomy timing in TBI patients is still under
debate. Several definitions for early and late tracheostomy have been proposed, thus leading
to misinterpretation for daily clinical management. Although general critically ill patients
frequently receive tracheostomy 14e16 days after ICU admission, early tracheostomy (<15
days) demonstrated benefits in terms of ICU length of stay and MV-free days [53]. Early
(within 3 days from admission) versus late (after 3 days) tracheostomy has been investigated
in 98 TBI patients. Early tracheostomy reduced the ICU length of stay, antibiotic use, cost of
Tracheostomy practice
Acute ischemic stroke (AIS) is a major cause of mortality and morbidity in the adult
population, which can lead to severe disability [59]. MV is often required in these patients,
and the brain area involved in AIS is one of the major determinants of the etiology of impaired
MV. In fact, the level of consciousness, breathing, and swallow are regulated at the central
level [60,97]. As the areas commonly targeted in ischemic injury are responsible for
respiratory regulation, AIS patients are particularly prone to develop pulmonary complications
such as respiratory failure, acute respiratory distress syndrome (ARDS), pulmonary edema,
pulmonary embolism, stroke-associated pneumonia (SAP), and pleural effusion [37]. SAP
has been identified as a major determinant of respiratory failure in AIS patients, it is usually
caused by a decreased level of consciousness that reduces patients' airway patency, causes
swallowing dysfunction, and dysphagia [61]. SAP accounts an incidence of 3.9%e56.6% with
higher occurrence particularly in ICU [62]. Several scores have been developed to predict
SAP even if uncommonly applied in clinical practice, rather than biomarkers such as C-
reactive protein, dysphagia, stroke severity, and CDCP criteria [63].
Acute ischemic stroke
General recommendation for intubation is commonly guided by neurological status (i.e.,
GCS 8), signs of intracranial hypertension, seizures, large infarct size that involves more than
2/3 of middle cerebral artery territory, bulbar dysfunction with the inability to protect the
airway, and confirmed midline shift [64]. Oxygenation should be maintained within safe
ranges, and supplemental oxygen may be administered if the SpO2 is less than 94%, while
hyperbaric hyperoxia is not recommended [64,97]. Continuous monitoring of oxygenation is
strongly recommended. Moreover, during the intubation phase, 100% FiO2 may be
administered without serious adverse effects and 3 min of preoxygenation or a short period of
high flow nasal cannula [65]. In AIS patients treated with intra-arterial mechanical
thrombectomy in the anterior cerebral circulation, admission PaO2 >120 mmHg is associated
with worse functional outcome at 90 days [66].
Endotracheal intubation and gas exchange
MV setting should take into account the possibility of secondary brain damage due to
hypo/hypercapnia and/or hypo/hyperoxia (i.e., hypocapnia may determine cerebral
vasoconstriction increasing the risk for secondary brain ischemia) [67]. Therefore, MV should
include a protective ventilator strategy (VT of 6 ml/kg of PBW, plateau pressure less than 30
cm H2O, and enough PEEP to avoid both overdistension and derecruitment) to reduce the
risk for pulmonary complications [68], and a ventilator management focused on the strict
control of oxygen and PaCO2 levels to prevent the secondary brain damage [6]. However,
there is no consensus regarding the best ventilatory management (including the protective
ventilator strategy) for AIS patients, as no studies are available in this specific subpopulation
of neuro patients [69]. In summary, PEEP levels and RMs are considered safe in AIS patients
[70].
Tidal volume and pulmonary pressures
MV setting should take into account the possibility of secondary brain damage due to
hypo/hypercapnia and/or hypo/hyperoxia (i.e., hypocapnia may determine cerebral
vasoconstriction increasing the risk for secondary brain ischemia) [67]. Therefore, MV should
include a protective ventilator strategy (VT of 6 ml/kg of PBW, plateau pressure less than 30
cm H2O, and enough PEEP to avoid both overdistension and derecruitment) to reduce the
risk for pulmonary complications [68], and a ventilator management focused on the strict
control of oxygen and PaCO2 levels to prevent the secondary brain damage [6]. However,
there is no consensus regarding the best ventilatory management (including the protective
ventilator strategy) for AIS patients, as no studies are available in this specific subpopulation
of neuro patients [69]. In summary, PEEP levels and RMs are considered safe in AIS patients
[70].
T
Although MV is lifesaving in certain neurological conditions to maintain airway patency and
prevent swallowing dysfunction, its long-term use is frequently associated with increased
morbidity and mortality [47]. The correct timing for extubating AIS patients is still under
investigation, but based on studies on general neuro population, weaning from MV should be
initiated as soon as possible [8]. Generic scores for the prediction of extubation failure in
neuro patients have been developed in the latest years. The most commonly applied in the
general neuro ICU population is the VISAGE score that takes into consideration gag reflex,
cough, deglutition, and neurological status assessed by the visual subscale of the Coma
Recovery Scale Revised [47]. AIS associated dysphagia is a major determinant of extubation
readiness. A study conducted on AIS patients near to weaning and extubation revealed that
dysphagia was the main determinant of extubation failure in half of them, and the reintubation
rate reached 21.4%. After extubation, dysphagia commonly occurs in up to 69% of general
ICU patients and 93% of AIS patients [71]. The goal standard to detect swallowing
dysfunction is video fluoroscopy, although fiberoptic endoscopy has been recently suggested
as a valid alternative [72].
Weaning and extubation
Tracheostomy is required in up to 45% of neuro patients [10]. Dysphagia and GCS <10;
neuroimaging like hydrocephalus, brainstem lesion, intracranial hemorrhage (ICH); surgical
procedure and organs function were identified as possible parameters for identifying the
patients who can benefit from tracheostomy by the stroke-related early tracheostomy (SET)
score [73]. Current knowledge is still uncertain about the timing for tracheostomy in AIS
patients. However, a recent study identified a similar length of stay in patients with
hemorrhagic stroke, AIS, or subarachnoid hemorrhage (SAH) early (within three days) or late
(between 7 and 14 days) tracheostomized; while mortality was lower in the early
tracheostomized group [74]. Thus, early tracheostomy should be considered in patients who
fail a first extubation attempt as no evidence is available on possible negative clinical effects.
Tracheostomy practice
Subarachnoid hemorrhage
Specific precautions for the management of SAH is needed with respect to patients affected by other
stroke subtypes (AIS and ICH), and particularly, referring to the higher risk of SAH patients for developing
vasospasm or delayed cerebral ischemia [75]. Pulmonary complications occur in up to 20% D. Battaglini,
D. Siwicka Gieroba, I. Brunetti et al. Best Practice & Research Clinical Anaesthesiology xxx (xxxx) xxx 7 of
SAH patients, with an oxygenation impairment in up to 80% of them [76,77] thus leading to worse outcome
and higher mortality [75]. The independent risk factors for the development of VAP in ICH patients include
>65 years, smoke, coronary heart disease, diabetes, chronic obstructive pulmonary disease, ICU hospital
stay, and MV days [78].
Tracheostomy is required in up to 45% of neuro patients [10]. Dysphagia and GCS <10;
neuroimaging like hydrocephalus, brainstem lesion, intracranial hemorrhage (ICH); surgical
procedure and organs function were identified as possible parameters for identifying the
patients who can benefit from tracheostomy by the stroke-related early tracheostomy (SET)
score [73]. Current knowledge is still uncertain about the timing for tracheostomy in AIS
patients. However, a recent study identified a similar length of stay in patients with
hemorrhagic stroke, AIS, or subarachnoid hemorrhage (SAH) early (within three days) or late
(between 7 and 14 days) tracheostomized; while mortality was lower in the early
tracheostomized group [74]. Thus, early tracheostomy should be considered in patients who
fail a first extubation attempt as no evidence is available on possible negative clinical effects.
Tracheostomy practice
Indication for endotracheal intubation for SAH patients includes uncontrollable hypertension
in unsecured and ruptured aneurysm, unconsciousness, GCS8, GCS<2 points, the
optimization of ventilation and oxygenation, seizures control, airway protection in the absence
of reflexes [79]. Thus, as cerebral vasospasm is associated with higher cerebral oxygen
extraction, CPP and blood flow need to be strictly monitored and MV should be adequate to
oxygen requirements [80].
Tracheostomy practice
SAH patients receive MV in higher percental (47%) as compared to AIS (5%) and ICH (26%) patients [81]. Moreover, in-
hospital mortality for MV stroke patients varies among subpopulations, reaching up to 47%, 61%, and 56% in IS, ICH, and
SAH, respectively [82]. Status epilepticus, pneumonia, sepsis, and hydrocephalus has been associated with a higher risk
for MV in SAH patients [82]. As for other kinds of brain damage, protective MV is suggested for SAH patients, keeping
protective VT (8 ml/kg of PBW) and plateau pressure 30 cm H2O [83]. Most recent evidence confirm that PEEP could be
safely used for brain-injured patients. PEEP can act on intrathoracic pressure and impair venous return and CBF without
modifying ICP [84]. The concept of low/zero PEEP was challenged by the application of 0, 5, 8, and 12 cm H2O in MV
patients with SAH or other severe brain injury with different respiratory system compliances. Patients with normal
compliance showed an increase in central venous pressure and jugular pressure, with reduced mean arterial pressure and
CPP. After PEEP titration, ICP and CPP slightly returned to normal values thus suggesting that respiratory system
compliance may be used to detect in advance the potential harmful effects of PEEP on cerebral homeostasis [85].
However, an increase in PEEP up to 20 cm H2O may cause a decrease in CBF and mean arterial pressure [43]. Only one
study investigated the role of alveolar RMs in SAH patients with ARDS. Two RMs were tested, one by applying a
continuous positive airway pressure (CPAP) of 35 cm H2O for 40 s and the second one by using pressure-controlled
ventilation with a PEEP level of 15 cm H2O and pressure control of 35 cm H2O above PEEP for 2 min. ICP was higher
and CPP was lower for the CPAP group. Moreover, arterial oxygen tension improved in the pressure-controlled group [86].
Tidal volume and pulmonary pressures
Weaning and extubation
Extubation failure often occurs in SAH patients, particularly in those with poor neurological grading. SAH patients
show an extubation failure rate of 29%, in accordance with the other stroke subpopulations. The VISAGE score
can be applied for SAH patients, to detect the extubation failure in advance [47]. A decreased level of
consciousness can reduce patients' airway patency and cause dysphagia. Pneumonia is common in SAH patients
with higher World Federation of Neurological Surgeons score, aneurysmal SAH, secondary complications, older,
longer ICU stay, and intubation. Indeed, dysphagia risk was significantly associated with age, ICU length of stay,
intubation, tracheostomy, vasospasm, and new stroke [87].
Tracheostomy practice
SAH patients who cannot be extubated, frequently need tracheostomy performance. Tracheostomy performance
has been detected in 17% of SAH patients [81]. The median time for tracheostomy in SAH patients was 11 days
after intubation, which represents the strongest predictor for tracheostomy. Late tracheostomy has been
associated with pulmonary complications, venous thromboembolism, and D. Battaglini, D. Siwicka Gieroba, I.
Brunetti et al. Best Practice & Research Clinical Anaesthesiology xxx (xxxx) xxx 8 pneumonia [88]. Indeed, early
tracheostomy was positively associated with a shorter length of stay [89]. As there are few studies regarding
tracheostomy in SAH patients, we suggest following the same rules of MV management and tracheostomy in the
general population.
IIntracerebral hemorrhage
ICH is considered as a medical emergency that requires urgent therapeutic management, because up to 23% of
ICH patients develop hematoma expansion and neurocognitive decline within few hours [90]. MV ICH patients
show an inhospital mortality of 90%, while other studies report a 50% of survival at three years, with good
functional outcome in only 20% of them [91]. Endotracheal intubation and gas exchange Intubation followed by
MV support is often necessary for providing adequate airway protection and oxygen delivery [92]. Intubation
should be considered in the case of GCS 8 or significant respiratory distress, keeping peripheral oxygenation
higher than 92% [93]. Tidal volume and pulmonary pressures Among respiratory complications, ARDS has been
found in 27% of ICH patients, particularly those ventilated with higher VT, males, patients who received
transfusions, higher fluid balance, hypoxemia, acidosis, obesity, smoke, emergent hematoma evacuation, and
vasopressor dependence. Higher VT was identified as the strongest risk factor associated with ARDS in ICH
patients [92]. A specific recommendation for ICH patients concerning ventilator management are lacking, albeit
current management for stroke patients could be applied also for ICH patients. As suggested by a multicenter
RCT on 749 neuro patients (of whom about 40% had a stroke), the application of a lung protective MV strategy,
using VT less than 8 and PEEP of 6e8 cmH2O, can significantly reduce ventilator-free days and mortality [7].
Weaning and extubation Extubation failure in ICH patients is around 15%, while external ventricular drainage is
more associated with extubation failure than craniotomy or patients' comorbidities [94]. Tracheostomy practice
Predictors for tracheostomy have been evaluated in ICH patients in two retrospective studies. Lower GCS,
chronic obstructive pulmonary disease, ICH volume and location, midline shift, intraventricular blood, and
hydrocephalus showed a higher predictivity of the need for tracheostomy [95]. Among predictive risk factors for
tracheostomy, GCS was detected as the most significant clinical predictor; whereas hydrocephalus (H), septum
pellucidum shift (S), and the thalamus location of the ICH (L) were identified as the most useful radiological
predictors. Thus, the TRACH score was carried out by assessing the following formula: 3 þ (1 RS scale)e(0.5

More Related Content

What's hot

Anesthesia for cerebral aneurysm repair
Anesthesia for cerebral aneurysm repairAnesthesia for cerebral aneurysm repair
Anesthesia for cerebral aneurysm repairDhritiman Chakrabarti
 
ICM case based discussions
ICM case based discussionsICM case based discussions
ICM case based discussionspbsherren
 
Anaesthesia for functional neurosurgery
Anaesthesia for functional neurosurgeryAnaesthesia for functional neurosurgery
Anaesthesia for functional neurosurgeryDhritiman Chakrabarti
 
Thrombolysis and thrombectomy for acute ischaemic stroke
Thrombolysis and thrombectomy for acute ischaemic strokeThrombolysis and thrombectomy for acute ischaemic stroke
Thrombolysis and thrombectomy for acute ischaemic strokeHan Naung Tun
 
Intracranial pressure montoring standard of care
Intracranial pressure montoring standard of careIntracranial pressure montoring standard of care
Intracranial pressure montoring standard of careAbhishek Sharma
 
Artery of percheron infarct
Artery of percheron infarctArtery of percheron infarct
Artery of percheron infarctDR RML DELHI
 
Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage
Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage
Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage Ade Wijaya
 
Progress in neuroanesthesia
Progress in neuroanesthesiaProgress in neuroanesthesia
Progress in neuroanesthesiaYamini Dhengle
 
Comprehensive surgical management of the paralyzed diaphragm
Comprehensive surgical management of the paralyzed diaphragmComprehensive surgical management of the paralyzed diaphragm
Comprehensive surgical management of the paralyzed diaphragmBernard Afram
 
Anesthesia management for pituitary tumor
Anesthesia management for pituitary tumorAnesthesia management for pituitary tumor
Anesthesia management for pituitary tumorAbhijit Nair
 
Intracranial arteriovenous malformation in an infant—vein of Galen malformation
Intracranial arteriovenous malformation in an infant—vein of Galen malformationIntracranial arteriovenous malformation in an infant—vein of Galen malformation
Intracranial arteriovenous malformation in an infant—vein of Galen malformationApollo Hospitals
 
ANAESTHESIA CONSIDERATIONS IN GERIATRIC PATEINTS
ANAESTHESIA CONSIDERATIONS IN  GERIATRIC PATEINTSANAESTHESIA CONSIDERATIONS IN  GERIATRIC PATEINTS
ANAESTHESIA CONSIDERATIONS IN GERIATRIC PATEINTSHimanshu Sharma
 

What's hot (20)

Neuroanaesthesia update
Neuroanaesthesia updateNeuroanaesthesia update
Neuroanaesthesia update
 
Craniotomy for brain tumour
Craniotomy for brain tumourCraniotomy for brain tumour
Craniotomy for brain tumour
 
Anesthesia for cerebral aneurysm repair
Anesthesia for cerebral aneurysm repairAnesthesia for cerebral aneurysm repair
Anesthesia for cerebral aneurysm repair
 
ICM case based discussions
ICM case based discussionsICM case based discussions
ICM case based discussions
 
Anaesthesia for functional neurosurgery
Anaesthesia for functional neurosurgeryAnaesthesia for functional neurosurgery
Anaesthesia for functional neurosurgery
 
Thrombolysis and thrombectomy for acute ischaemic stroke
Thrombolysis and thrombectomy for acute ischaemic strokeThrombolysis and thrombectomy for acute ischaemic stroke
Thrombolysis and thrombectomy for acute ischaemic stroke
 
Intracranial pressure montoring standard of care
Intracranial pressure montoring standard of careIntracranial pressure montoring standard of care
Intracranial pressure montoring standard of care
 
Ischemic stroke. 2012
Ischemic stroke. 2012Ischemic stroke. 2012
Ischemic stroke. 2012
 
Artery of percheron infarct
Artery of percheron infarctArtery of percheron infarct
Artery of percheron infarct
 
Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage
Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage
Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage
 
Progress in neuroanesthesia
Progress in neuroanesthesiaProgress in neuroanesthesia
Progress in neuroanesthesia
 
Neuroimaging in Stroke: What and when
Neuroimaging in Stroke: What and whenNeuroimaging in Stroke: What and when
Neuroimaging in Stroke: What and when
 
Imaging in acute stroke
Imaging in acute strokeImaging in acute stroke
Imaging in acute stroke
 
Comprehensive surgical management of the paralyzed diaphragm
Comprehensive surgical management of the paralyzed diaphragmComprehensive surgical management of the paralyzed diaphragm
Comprehensive surgical management of the paralyzed diaphragm
 
Ecmo - a basic overview.
Ecmo - a basic overview.Ecmo - a basic overview.
Ecmo - a basic overview.
 
Anesthesia management for pituitary tumor
Anesthesia management for pituitary tumorAnesthesia management for pituitary tumor
Anesthesia management for pituitary tumor
 
Intracranial arteriovenous malformation in an infant—vein of Galen malformation
Intracranial arteriovenous malformation in an infant—vein of Galen malformationIntracranial arteriovenous malformation in an infant—vein of Galen malformation
Intracranial arteriovenous malformation in an infant—vein of Galen malformation
 
ANAESTHESIA CONSIDERATIONS IN GERIATRIC PATEINTS
ANAESTHESIA CONSIDERATIONS IN  GERIATRIC PATEINTSANAESTHESIA CONSIDERATIONS IN  GERIATRIC PATEINTS
ANAESTHESIA CONSIDERATIONS IN GERIATRIC PATEINTS
 
CPR in prone position
CPR in prone positionCPR in prone position
CPR in prone position
 
Blunt Aortic Injury
Blunt Aortic InjuryBlunt Aortic Injury
Blunt Aortic Injury
 

Similar to Aula COPA 2022

Neuroanesthia (3).pptx
Neuroanesthia (3).pptxNeuroanesthia (3).pptx
Neuroanesthia (3).pptxssuserb91f2d
 
Traumatic brain injury lecture g
Traumatic brain injury lecture gTraumatic brain injury lecture g
Traumatic brain injury lecture griyadAlmogahed
 
Management Of Head Injury PK anesthesia.pptx
Management Of Head Injury PK anesthesia.pptxManagement Of Head Injury PK anesthesia.pptx
Management Of Head Injury PK anesthesia.pptxAnaes6
 
Traumatic brain injury lecture g
Traumatic brain injury lecture gTraumatic brain injury lecture g
Traumatic brain injury lecture griyadAlmogahed
 
Approach to traumatic brain injury
Approach to traumatic brain injuryApproach to traumatic brain injury
Approach to traumatic brain injuryEM OMSB
 
Concerns and challenges during anesthetic management of aneurysmal
Concerns and challenges during anesthetic management of   aneurysmalConcerns and challenges during anesthetic management of   aneurysmal
Concerns and challenges during anesthetic management of aneurysmalChamika Huruggamuwa
 
Post-resusciation care
Post-resusciation carePost-resusciation care
Post-resusciation careSCGH ED CME
 
Resuscitation techniques in asthma
Resuscitation techniques in asthmaResuscitation techniques in asthma
Resuscitation techniques in asthmaEmeka Anugom
 
Brain- Lung Interactions in the Critically Ill
Brain- Lung Interactions in the Critically IllBrain- Lung Interactions in the Critically Ill
Brain- Lung Interactions in the Critically IllDr.Mahmoud Abbas
 
ICU management of the intubated post arrest adult patient.pptx
ICU management of the intubated post arrest adult patient.pptxICU management of the intubated post arrest adult patient.pptx
ICU management of the intubated post arrest adult patient.pptxMohamed Ramadan
 
Combined carotid and coronary disease the strategy should be
Combined carotid and coronary disease the strategy should beCombined carotid and coronary disease the strategy should be
Combined carotid and coronary disease the strategy should beuvcd
 
4. stroke- investigations and management
4. stroke- investigations and management4. stroke- investigations and management
4. stroke- investigations and managementmariam hamzah
 
Geriatric trauma
Geriatric traumaGeriatric trauma
Geriatric traumaAdeel Riaz
 
From vertigo to coma basilar artery occlusion بالاتر از سیاهی رنگی نیست
From vertigo to coma basilar artery occlusion بالاتر از سیاهی رنگی نیستFrom vertigo to coma basilar artery occlusion بالاتر از سیاهی رنگی نیست
From vertigo to coma basilar artery occlusion بالاتر از سیاهی رنگی نیستramtinyoung
 
Intracranial hemorrhage and intracranial hypertension
Intracranial hemorrhage and intracranial hypertensionIntracranial hemorrhage and intracranial hypertension
Intracranial hemorrhage and intracranial hypertensionTrường Sơn
 
Anesthesia for neurosurgery (zuhura)
Anesthesia for neurosurgery (zuhura)Anesthesia for neurosurgery (zuhura)
Anesthesia for neurosurgery (zuhura)AnaestHSNZ
 

Similar to Aula COPA 2022 (20)

Neuroanesthia (3).pptx
Neuroanesthia (3).pptxNeuroanesthia (3).pptx
Neuroanesthia (3).pptx
 
Traumatic brain injury lecture g
Traumatic brain injury lecture gTraumatic brain injury lecture g
Traumatic brain injury lecture g
 
Management Of Head Injury PK anesthesia.pptx
Management Of Head Injury PK anesthesia.pptxManagement Of Head Injury PK anesthesia.pptx
Management Of Head Injury PK anesthesia.pptx
 
TRAUMATIC BRAIN INJURY
TRAUMATIC BRAIN INJURYTRAUMATIC BRAIN INJURY
TRAUMATIC BRAIN INJURY
 
Traumatic brain injury lecture g
Traumatic brain injury lecture gTraumatic brain injury lecture g
Traumatic brain injury lecture g
 
Approach to traumatic brain injury
Approach to traumatic brain injuryApproach to traumatic brain injury
Approach to traumatic brain injury
 
Concerns and challenges during anesthetic management of aneurysmal
Concerns and challenges during anesthetic management of   aneurysmalConcerns and challenges during anesthetic management of   aneurysmal
Concerns and challenges during anesthetic management of aneurysmal
 
Post-resusciation care
Post-resusciation carePost-resusciation care
Post-resusciation care
 
Resuscitation techniques in asthma
Resuscitation techniques in asthmaResuscitation techniques in asthma
Resuscitation techniques in asthma
 
Brain- Lung Interactions in the Critically Ill
Brain- Lung Interactions in the Critically IllBrain- Lung Interactions in the Critically Ill
Brain- Lung Interactions in the Critically Ill
 
ICU management of the intubated post arrest adult patient.pptx
ICU management of the intubated post arrest adult patient.pptxICU management of the intubated post arrest adult patient.pptx
ICU management of the intubated post arrest adult patient.pptx
 
Combined carotid and coronary disease the strategy should be
Combined carotid and coronary disease the strategy should beCombined carotid and coronary disease the strategy should be
Combined carotid and coronary disease the strategy should be
 
Stroke.pdf
Stroke.pdfStroke.pdf
Stroke.pdf
 
oski.pdf
oski.pdfoski.pdf
oski.pdf
 
4. stroke- investigations and management
4. stroke- investigations and management4. stroke- investigations and management
4. stroke- investigations and management
 
Sharath neuro monitoring
Sharath neuro monitoringSharath neuro monitoring
Sharath neuro monitoring
 
Geriatric trauma
Geriatric traumaGeriatric trauma
Geriatric trauma
 
From vertigo to coma basilar artery occlusion بالاتر از سیاهی رنگی نیست
From vertigo to coma basilar artery occlusion بالاتر از سیاهی رنگی نیستFrom vertigo to coma basilar artery occlusion بالاتر از سیاهی رنگی نیست
From vertigo to coma basilar artery occlusion بالاتر از سیاهی رنگی نیست
 
Intracranial hemorrhage and intracranial hypertension
Intracranial hemorrhage and intracranial hypertensionIntracranial hemorrhage and intracranial hypertension
Intracranial hemorrhage and intracranial hypertension
 
Anesthesia for neurosurgery (zuhura)
Anesthesia for neurosurgery (zuhura)Anesthesia for neurosurgery (zuhura)
Anesthesia for neurosurgery (zuhura)
 

More from Carlos D A Bersot

Enhanced recovery after surgery in neurosurgery
Enhanced recovery  after surgery in neurosurgeryEnhanced recovery  after surgery in neurosurgery
Enhanced recovery after surgery in neurosurgeryCarlos D A Bersot
 
Monitorização na área de radiologia intervencionista
Monitorização na área de radiologia intervencionistaMonitorização na área de radiologia intervencionista
Monitorização na área de radiologia intervencionistaCarlos D A Bersot
 
Monitorizacao hemodinamica com Ecocardiograma
Monitorizacao hemodinamica com EcocardiogramaMonitorizacao hemodinamica com Ecocardiograma
Monitorizacao hemodinamica com EcocardiogramaCarlos D A Bersot
 
Neurofisiologia e edema cerebral COPA 13.04.pptx
Neurofisiologia e edema cerebral  COPA 13.04.pptxNeurofisiologia e edema cerebral  COPA 13.04.pptx
Neurofisiologia e edema cerebral COPA 13.04.pptxCarlos D A Bersot
 
Fibroscopia para o anestesista
Fibroscopia  para o anestesistaFibroscopia  para o anestesista
Fibroscopia para o anestesistaCarlos D A Bersot
 
Neuroanatomia da Dor/ Neuroanatomy of Pain
Neuroanatomia da Dor/ Neuroanatomy of PainNeuroanatomia da Dor/ Neuroanatomy of Pain
Neuroanatomia da Dor/ Neuroanatomy of PainCarlos D A Bersot
 
Is the prone position indicated in critically ill patients with SARS-CoV- 2 d...
Is the prone position indicated in critically ill patients with SARS-CoV- 2 d...Is the prone position indicated in critically ill patients with SARS-CoV- 2 d...
Is the prone position indicated in critically ill patients with SARS-CoV- 2 d...Carlos D A Bersot
 
Peri-operative fluid management during neurosurgical procedures
Peri-operative fluid management during neurosurgical proceduresPeri-operative fluid management during neurosurgical procedures
Peri-operative fluid management during neurosurgical proceduresCarlos D A Bersot
 
FATE-Basic Cardiac Ultrasound I
FATE-Basic Cardiac Ultrasound IFATE-Basic Cardiac Ultrasound I
FATE-Basic Cardiac Ultrasound ICarlos D A Bersot
 
Curso de vias aéreas fármacos
  Curso de vias aéreas    fármacos  Curso de vias aéreas    fármacos
Curso de vias aéreas fármacosCarlos D A Bersot
 

More from Carlos D A Bersot (20)

Enhanced recovery after surgery in neurosurgery
Enhanced recovery  after surgery in neurosurgeryEnhanced recovery  after surgery in neurosurgery
Enhanced recovery after surgery in neurosurgery
 
Oximetria Cerebral
 Oximetria Cerebral Oximetria Cerebral
Oximetria Cerebral
 
Monitorização na área de radiologia intervencionista
Monitorização na área de radiologia intervencionistaMonitorização na área de radiologia intervencionista
Monitorização na área de radiologia intervencionista
 
Monitorizacao hemodinamica com Ecocardiograma
Monitorizacao hemodinamica com EcocardiogramaMonitorizacao hemodinamica com Ecocardiograma
Monitorizacao hemodinamica com Ecocardiograma
 
Neurofisiologia e edema cerebral COPA 13.04.pptx
Neurofisiologia e edema cerebral  COPA 13.04.pptxNeurofisiologia e edema cerebral  COPA 13.04.pptx
Neurofisiologia e edema cerebral COPA 13.04.pptx
 
Dor Crônica 2021
Dor Crônica 2021Dor Crônica 2021
Dor Crônica 2021
 
FATE POCUS .pptx
FATE POCUS .pptxFATE POCUS .pptx
FATE POCUS .pptx
 
Ultrassom pulmonar `POCUS
Ultrassom pulmonar `POCUSUltrassom pulmonar `POCUS
Ultrassom pulmonar `POCUS
 
Protocolo FAST POCUS
Protocolo  FAST POCUSProtocolo  FAST POCUS
Protocolo FAST POCUS
 
Acesso vascular POCUS
 Acesso vascular POCUS Acesso vascular POCUS
Acesso vascular POCUS
 
Fibroscopia para o anestesista
Fibroscopia  para o anestesistaFibroscopia  para o anestesista
Fibroscopia para o anestesista
 
Opioid-free anesthesia/ERAS
Opioid-free anesthesia/ERASOpioid-free anesthesia/ERAS
Opioid-free anesthesia/ERAS
 
Neuroanatomia da Dor/ Neuroanatomy of Pain
Neuroanatomia da Dor/ Neuroanatomy of PainNeuroanatomia da Dor/ Neuroanatomy of Pain
Neuroanatomia da Dor/ Neuroanatomy of Pain
 
Is the prone position indicated in critically ill patients with SARS-CoV- 2 d...
Is the prone position indicated in critically ill patients with SARS-CoV- 2 d...Is the prone position indicated in critically ill patients with SARS-CoV- 2 d...
Is the prone position indicated in critically ill patients with SARS-CoV- 2 d...
 
Peri-operative fluid management during neurosurgical procedures
Peri-operative fluid management during neurosurgical proceduresPeri-operative fluid management during neurosurgical procedures
Peri-operative fluid management during neurosurgical procedures
 
Infografico ketamina
Infografico ketamina Infografico ketamina
Infografico ketamina
 
Point of Care Pulmonar
 Point of Care Pulmonar Point of Care Pulmonar
Point of Care Pulmonar
 
FATE-Basic Cardiac Ultrasound I
FATE-Basic Cardiac Ultrasound IFATE-Basic Cardiac Ultrasound I
FATE-Basic Cardiac Ultrasound I
 
Curso de vias aéreas fármacos
  Curso de vias aéreas    fármacos  Curso de vias aéreas    fármacos
Curso de vias aéreas fármacos
 
Farmacologia dos opiaceos
  Farmacologia dos opiaceos   Farmacologia dos opiaceos
Farmacologia dos opiaceos
 

Recently uploaded

(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Silpa
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry Areesha Ahmad
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxRenuJangid3
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxSilpa
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Silpa
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Silpa
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Silpa
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Silpa
 

Recently uploaded (20)

(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 

Aula COPA 2022

  • 1. Quais são as diretrizes da ventilação mecânica no paciente de neurocirurgia e neurocrítico? Carlos Darcy Alves Bersot TSA.SBA MD RESPONSÁVEL PELO CET H.F.LAGOA Médico Anestesiologista do Hospital Federal da Lagoa - SUS Médico Anestesiologista do Hospital São Lucas-Copacabana, Rio, RJ
  • 2. Pressão Perfusão Cerebral (PPC) ● PPC = PAM – PIC ● se PVC > PIC ⇒ PPC = PAM – PVC ● PPC normal = 80 – 100 mmHg ● PPC baixa com PIC elevada ⇒ ↓ FSC ● PPC < 50 mmHg ⇒ achatamento EEG ● PPC < 25 mmHg (tempo prolongado) ⇒ lesão neuronal irreversível
  • 3. Qual o melhor modo ventilatório mais adequado? Volume ou Pressão?
  • 4. Qual o melhor modo ventilatório mais adequado? Volume ou Pressão?
  • 5. Qual o melhor modo ventilatório mais adequado? Volume ou Pressão?
  • 6. DISFUNÇÃO ORGÂNICA ◼ 34% dos pacientes com AVE grave desenvolveram disfunção orgânica = Tiveram maior mortalidade intra-hospitalar (Quin, et al., Plos One 2016) ◼ Pneumonia é o tipo mais comum de infecção após AVE, com uma incidência de até 22% = piora dos resultados clínicos e neurológicos (Johnston KC et al,,Stroke 1997)
  • 7. DISFUNÇÃO ORGÂNICA Pneumonia Tradicionalmente era considerada secundária à aspiração e disfagia associada a diminuição do nível de consciência, posicionamento do corpo na cama, ventilação mecânica e imobilidade do paciente (Huang JY et al., J Int Med Res 2006)
  • 8. Inflamação sistêmica Anrather et al., Neurotherapeutics 2016 Disfunção orgânica Infecção secundária Delirium Lesão pulmonar TNF-α, IL-6, IL-1β, IFN-γ FISIOPATOLOGIA DO AVE
  • 9. LESÃO INFLAMATÓRIA CEREBRAL E PULMONAR Samary et al., Crit Care 2018
  • 10. LESÃO INFLAMATÓRIA CEREBRAL E PULMONAR Samary et al., Crit Care 2018
  • 11. DANO ALVEOLAR DIFUSO ◼ Edema intersticial ◼ Hemorragia ◼ Inflamação ◼ Atelectasia
  • 12.
  • 13.
  • 14. ● Frequentemente ● As configurações ideais do ventilador e os alvos respiratórios em pacientes neurológicos não são claros. ● O conhecimento atual sugere a manutenção de volumes correntes protetores de 6 a 8 ml/kg de peso corporal. Essa abordagem pode reduzir a taxa de complicações pulmonares, embora não possa ser facilmente aplicada em um ambiente neurológico devido à necessidade de cuidados especiais para minimizar o risco de dano cerebral secundário. ● O desmame da VM é particularmente desafiador nesses pacientes que não conseguem controlar os padrões respiratórios cerebrais e proteger as vias aéreas da aspiração. ● A falha de extubação em neuro pacientes é muito alta, enquanto a traqueostomia é necessária em um terço dos pacientes. ● Causas comum de VM: Traumatismo Cranioencefálico, Acidente Vascular Cerebral isquêmico agudo, hemorragia subaracnóidea e hemorragia intracerebral. Quando os pacientes neurocríticos precisam de ventilação mecânica invasiva (VM)?
  • 15.
  • 16. Os principais distúrbios pulmonares podem ocorrer após lesões cerebrais como PAV, SDRA ou NPE. Nesta revisão, as consequências diretas do trauma torácico, como fraturas de costelas, contusões pulmonares ou hemo/pneumotórax não serão discutidas nesta revisão
  • 17. Neurocríticos ● Rebaixamento do nível de consciência é o principal fator de risco para broncoaspirações e infecções pulmonares. Diante disto a intubação endotraqueal e a ventilação mecânica tem um papel importante principalmente na fase aguda do trauma, uma vez que protege a via aérea, permite a sedação e evita a hipoxemia e a hipercapnia. Nesta fase, a oxigenação encefálica e ventilação eficaz são prioridades em neuroemergência ou qualquer outro tipo de lesão traumática grave, com objetivo de se diminuir o sofrimento encefálico e suas complicações secundárias. ● A ventilação mecânica é imprescindível em pacientes neurocríticos, pois protege as vias aéreas, permite a regulação das pressões parciais de oxigênio (O2) e dióxido de carbono (CO2) e ainda o controle da pressão intracraniana (PIC).
  • 18. A hiperventilação reduz a PIC pela hipocapnia que induz a vasoconstrição cerebral, o que acaba por reduzir o fluxo sanguineo cerebral (FSC), e que por sua vez agrava a perfusão levando a uma isquemia cerebral4. A hiperventilação profilatica (PCO2 menor que 25mmHg) não é recomendada e não deve ser realizada nas primeiras 24 horas, por ja existir uma redução do FSC5. A influência da ventilação mecânica sobre os parâmetros hemodinâmicos, principalmente na PIC e a PPC, tem sido foco de diversos estudos, no entanto os resultados ainda apresentam divergências. Este estudo tem como objetivo demostrar a importância da ventilação mecânica nos pacientes neurocríticos, principalmente no que diz respeito ao controle da PIC e da PPC.
  • 19. PEEP(Pressão positiva expiratória final) Para Silva et al 20144 a PEEP em níveis baixos a moderados pouco causará aumento significativo da PIC na maioria dos casos. Tecnicamente, enquanto a vasoconstrição cerebral induzida pela hipocapnia por hiperventilação tem maior efetividade na redução da PIC, o risco da diminuição do FSC abaixo do limite sempre foi motivo de preocupação clínica. Estratégias de proteção pulmonar devem ser sempre respeitadas, porém devem ser otimizadas com o monitoramento da PPC e da PIC. A monitorização da VM é de grande importância, pois existe forte relação dos parâmetros ventilatórios com a fisiologia cerebral. Para Búfalo et al 2010, os valores da PEEP variam dependendo da análise de alguns critérios, tais como gasometria arterial, complacência pulmonar, imagem radiológica e hemodinâmica do paciente, sempre buscando valores ideais de acordo com cada situação à beira leito. Em nossa opinião, após o levantamento bibliográfico realizado, vimos que é importante assegurar que a VM, por meio do controle do dióxido de carbono com base no volume minuto e da PEEP não produza efeitos deletérios nos parâmetros cerebrais básicos como a PIC, a PPC e o FSC. Ressalta-se ainda que quaisquer alterações nessas pressões podem levar a consequências graves, que podem causar lesões secundárias irreversíveis para o paciente.
  • 20. ● . A manutenção de um VT menor reduz o risco de desenvolver complicações pulmonares [3]. No entanto, isso não pode ser facilmente aplicado em um ambiente de terapia neurointensiva (UTI) devido à necessidade de cuidados especiais para minimizar o risco de dano cerebral secundário [6], mas a aplicação de uma VM protetora associada à extubação precoce parece melhorar o tempo livre de ventilador dias [7]. Isso Quando os pacientes neurocríticos precisam de ventilação mecânica invasiva (VM)?
  • 21. ● Neuro pacientes frequentemente necessitam de ventilação mecânica invasiva (VM) para proteger as vias aéreas da aspiração e prevenir danos cerebrais secundários, modulando os níveis de oxigênio e dióxido de carbono [1].
  • 22. ● Infelizmente, a configuração ideal do ventilador e os alvos respiratórios em neuropacientes não são claros e dependem também do tipo de lesão cerebral, fazendo parte da complexa interação cérebro-pulmão [2]
  • 23. ● Fig. 1)-O conhecimento atual sobre VM para pacientes neurológicos sugere a manutenção de volumes correntes (VT) protetores (6 e 8 ml/kg de peso corporal previsto.
  • 24.
  • 25.
  • 26. Manejo atual da VM invasiva, desmame e traqueostomia para as quatro principais subpopulações de pacientes neuro: traumatismo cranioencefálico, acidente vascular cerebral isquêmico agudo, hemorragia subaracnóidea e hemorragia intracerebral.
  • 27.
  • 28.
  • 29. Pacientes neurológicos frequentemente requerem ventilação mecânica invasiva (VM) para proteger as vias aéreas da aspiração e prevenir danos cerebrais secundários, modulando os níveis de oxigênio e dióxido de carbono [1]. Infelizmente, a configuração ideal do ventilador e os alvos respiratórios em neuropacientes não são claros e dependem também do tipo de lesão cerebral, fazendo parte da complexa interação cérebro-pulmão [2] (Fig. 1). O conhecimento atual sobre VM para pacientes neurológicos sugere a manutenção de volumes correntes (VT) protetores (6e8 ml/kg de peso corporal previsto (PBW)) [3,4], em vez de VT mais alto (9 ml/kg de PBW ou superior) como de costume aplicado há muitos anos [5]. A manutenção do VT menor reduz o risco de desenvolver complicações pulmonares [3]. No entanto, isso não pode ser facilmente aplicado em um ambiente de terapia neurointensiva (UTI) devido à necessidade de cuidados especiais para minimizar o risco de dano cerebral secundário [6], mas a aplicação de uma VM protetora associada à extubação precoce parece melhorar o tempo livre de ventilador dias [7]. Isso sugere que a estratégia de VM protetora também pode ser aplicada com segurança em UTI, embora o monitoramento de dióxido de carbono e oxigênio permaneça obrigatório para esses pacientes [5]. O processo de desmame da VM visa reduzir os parâmetros do ventilador, permitindo a extubação por pelo menos 48 h [8]. A falha de extubação em neuropacientes chega a 38% [9], enquanto a traqueostomia é necessária em 32% e 45% deles [10,11]. Além disso, o momento para a realização da traqueostomia ainda está em debate em ambas as populações [12,13].
  • 30. O traumatismo crânio-encefálico (TCE) é um grande ônus socioeconômico e de saúde, com uma incidência global de aproximadamente 369 casos a cada 100.000 habitantes [14]. A gravidade da lesão cerebral influencia amplamente a ocorrência de complicações respiratórias, bem como a necessidade de VM e traqueostomia [15]. A pneumonia adquirida no hospital é uma complicação frequente do TCE, particularmente a pneumonia associada à ventilação mecânica (PAV) que pode ocorrer em 20,4% dos pacientes com TCE dentro de 5 dias (3-7 dias) da intubação [16]. Pacientes com TCE e PAV têm maior tempo de VM e permanência na UTI, mas não aumento da mortalidade [16]. Além disso, pacientes com TCE com pneumonia podem apresentar pior Glasgow Outcome Scale Extended (GOS-E) do que aqueles sem e maiores custos de hospitalização [17]. A maior incidência de PAV deve estar relacionada ao manejo pré-hospitalar das vias aéreas, embora isso tenha sido desacreditado em uma coorte retrospectiva [18]. A fisiopatologia do TCE é caracterizada por elevação da pressão intracraniana (PIC), redução da pressão de perfusão cerebral (PPC), seguida de lesão cerebral secundária [19,20]. Além disso, alterações nas pressões intratorácicas, oxigenação e pressão parcial arterial de dióxido de carbono (PaCO2) podem alterar esse mecanismo autorregulador, que, em pacientes com TCE, muitas vezes já está comprometido [21]. O TCE pode ser complicado com um aumento da PIC acima de 20e22 mmHg, definido como hipertensão intracraniana (HI) [20,22]. Traumatic brain injury
  • 31. In TBI, the Glasgow coma scale (GCS)8 is generally considered the optimal threshold for endotracheal intubation to secure airways from aspiration and reduce respiratory drive [23]. Prehospital interventions include the tendency to hyperventilate TBI patients, whether indicated or not by the 2 guidelines [24], thus leading more frequently to hypoxia, hypotension, and acidosis [25]. This approach may deeply modify the cerebral physiology by changing the PaCO2, which is considered as a major determinant of cerebral blood flow (CBF) (for CBF between 20 and 80 mmHg) [26]. Low CBF due to low PaCO2 is associated with cerebral ischemia, while high CBF results in cerebral hyperemia and higher ICP [26]. TBI patients exert less CBF modifications than healthier patients because hyperventilation may lead to hypocapnia and alkalosis, redistributing oxygen and hemoglobin [27,28]. Prophylactic hyperventilation with PaCO2 <25 mmHg should be avoided because of possible cerebral ischemia and Endotracheal intubation and gas exchange
  • 32. infarto cerebral [5], enquanto que por curtos períodos (15e30 min) pode ser considerado. A hipocapnia deve ser sempre considerada no caso de HI refratária, visando atingir níveis de PaCO2 de 30e35/32e35 mmHg [22,29,30]. Assim, na ausência de herniação cerebral, a PaCO2 deve ser mantida entre 35 e 38 mmHg [5], embora a prática corrente na Europa confirme que no caso de HI, o alvo de PaCO2 mais utilizado é 36e40 mmHg [31]. Os ajustes da frequência respiratória e do VT são identificados como ferramentas úteis para regular a PaCO2 [5]. A oxigenação deve ser rigorosamente monitorada, mantendo a saturação periférica de oxigênio (SpO2) >94% [30,32]. A hiperóxia precoce não foi associada a maior mortalidade intra-hospitalar em uma coorte retrospectiva de 24.148 pacientes com TCE, enquanto um maior risco de morte foi encontrado para PaO2 < 40 mmHg [33]. Pelo contrário, em uma meta-análise recente, a hiperóxia foi associada a maior mortalidade em pacientes com TCE VM [34]. A desconfirmação final veio de um pequeno estudo randomizado controlado recente (RCT) que comparou a alta fração inspirada de oxigênio (FiO2) (0,7) com a FiO2 normal (0,4) em pacientes com TCE MV, que revelou que a hiperóxia normobárica poderia ser usada para aliviar a isquemia cerebral secundária sem determinar efeitos colaterais negativos. Maior FiO2 não aumentou os marcadores de estresse oxidativo, lesão neurológica, inflamação e incidência de complicações pulmonares [35]. Quanto à prática clínica, a PaO2 mais utilizada está na faixa de 81e100 mmHg tanto no caso de relação PaO2/FiO2 >150 quanto < 150 [31]. Os efeitos da hipocapnia e hipóxia devem ser monitorados usando a saturação jugular de oxigênio (SjO2) ou pressão de oxigênio no tecido cerebral (PbtO2) [5]. As tendências individuais de PbtO2 estão associadas a um resultado em pacientes com TCE [36]. Em resumo, em pacientes com TCE, tanto a hipocapnia quanto a hipercapnia estão associadas a um desfecho ruim e devem ser evitadas Intubação endotraqueal e troca gasosa
  • 33.
  • 34. High VT are more often provided in brain-damaged patients than in the general critically ill population because of the need of a wider modulation of brain gases [37]. Nevertheless, MV setting in TBI patients should include protective VT and plateau pressures [3]. As reported in a recentsurvey (VENTILO) on 687 respondents of whom 472 are from Europe, the most common VT applied in TBI patients is 6e8 ml/kgPBW in the case of PaO2/FiO2 >150; and 4e6 ml/kgPBW in half of the cases of PaO2/FiO2 < 150 [31]. Among ventilator strategy, pressure-regulated volume control ventilation resulted in less fluctuation of ICP and PaCO2 than the pressure controlled in TBI patients [38]. Some believe that elevated intrathoracic pressures may lead to significant changes in central venous pressure and ICP from venous congestion. A comparison between traditional ventilator mode and airway pressure release ventilation has been assessed in TBI patients, which concludes that this strategy does not significantly affect ICP and cerebral hemodynamics, being considered safe if applied [39]. Also, neutrally adjusted ventilatory assist and pressure support ventilation preserved CBF velocity in a patient recovering from brain injury, without affecting pH, PaCO2, and oxygenation [40]. Positive end- expiratory pressure (PEEP) is considered as another key component of protective MV. Although PEEP may be dangerous on CBF and perfusion [41], in the case of concomitant brain and respiratory diseases, PEEP is considered safe because it results in acceptable systemic and cerebral hemodynamic changes, even when low or high (5e15 cmH2O). A prospective study on 20 TBI patients demonstrated that increasing PEEP of up to 15 cmH2O can improve brain tissue oxygenation [42], thus challenging the concept of low/zero PEEP (ZEEP) customarily applied for decades in neuro patients [43]. In the VENTILO survey, the mean highest PEEP is 15 cmH2O in patients with PaO2/FiO2 <300 and without IH; while it is 10 cmH2O in patients with IH [31]. The most frequent rescue strategy for refractory respiratory failure is neuromuscular blocking agents, followed by recruitment maneuvers (RMs), and prone position [31]. RMs can improve oxygenation by promoting gas exchange, although their effects on ICP could be deleterious due to the impaired jugular venous outflow and venous return. Therefore, we suggest RMs in only TBI patients in the case of severe hypoxemia under strict Tidal volume and pulmonary pressures
  • 35.
  • 36. A positive spontaneous breathing trial test usually precedes weaning from MV. However, as neuro patients may present with impaired breathing control and respiratory driving, approximately 5%e20% of them cannot proceed to weaning and extubation [45]. Predictive factors for extubation failure in TBI patients include female sex, GCS motor score <5, moderate to large secretion volume, absent or weak cough, and MV for >10 days [46]. At present, the VISAGE score represents the most appropriate test for identifying neuro patients who can reveal extubation readiness. This score has been validated for general ICU patients, but it can also be applied in TBI patients, because specific scores have not yet been developed [47]. Before extubation is performed, chest physiotherapy is recommended for MV critically ill patients based on a multisystemic approach, because it can reduce the incidence of respiratory complications, promote weaning from MV, facilitate physical function among ICU survivors, and reduce the length of stay [48]. A study that investigated manual versus mechanical chest percussion techniques in TBI patients found that the manual technique was associated with a transient increase in ICP and impaired hemodynamics. However, the increase in ICP was transient and not clinically relevant in moderate-tosevere TBI without IH [49]. Nevertheless, chest physiotherapy did not demonstrate efficacy in the prevention of Weaning and extubation
  • 37. Patients who have failed weaning and extubation often receive tracheostomy, although up to 79% of neuro patients do not receive an extubation attempt before tracheostomy [10]. Factors associated with the need for tracheostomy include CRASH, IMPACT, SAPS II, and APACHE II scores, age, revised trauma score, GCS, subdural hematoma, abnormal pupil reactivity, and the collapse of basal cisterns [51]. D. Battaglini, D. Siwicka Gieroba, I. Brunetti et al. Best Practice & Research Clinical Anaesthesiology xxx (xxxx) xxx 5 Likewise, GCS, Marshall score, chest tube, and Injury severity score have been identified as predictors for tracheostomy in TBI patients at admission. Inpatient risk factors included the requirement of an external ventricular drainage, number of operations, inpatient dialysis, aspiration, GCS on day 5, and a need for reintubation [52]. Tracheostomy timing in TBI patients is still under debate. Several definitions for early and late tracheostomy have been proposed, thus leading to misinterpretation for daily clinical management. Although general critically ill patients frequently receive tracheostomy 14e16 days after ICU admission, early tracheostomy (<15 days) demonstrated benefits in terms of ICU length of stay and MV-free days [53]. Early (within 3 days from admission) versus late (after 3 days) tracheostomy has been investigated in 98 TBI patients. Early tracheostomy reduced the ICU length of stay, antibiotic use, cost of Tracheostomy practice
  • 38. Acute ischemic stroke (AIS) is a major cause of mortality and morbidity in the adult population, which can lead to severe disability [59]. MV is often required in these patients, and the brain area involved in AIS is one of the major determinants of the etiology of impaired MV. In fact, the level of consciousness, breathing, and swallow are regulated at the central level [60,97]. As the areas commonly targeted in ischemic injury are responsible for respiratory regulation, AIS patients are particularly prone to develop pulmonary complications such as respiratory failure, acute respiratory distress syndrome (ARDS), pulmonary edema, pulmonary embolism, stroke-associated pneumonia (SAP), and pleural effusion [37]. SAP has been identified as a major determinant of respiratory failure in AIS patients, it is usually caused by a decreased level of consciousness that reduces patients' airway patency, causes swallowing dysfunction, and dysphagia [61]. SAP accounts an incidence of 3.9%e56.6% with higher occurrence particularly in ICU [62]. Several scores have been developed to predict SAP even if uncommonly applied in clinical practice, rather than biomarkers such as C- reactive protein, dysphagia, stroke severity, and CDCP criteria [63]. Acute ischemic stroke
  • 39. General recommendation for intubation is commonly guided by neurological status (i.e., GCS 8), signs of intracranial hypertension, seizures, large infarct size that involves more than 2/3 of middle cerebral artery territory, bulbar dysfunction with the inability to protect the airway, and confirmed midline shift [64]. Oxygenation should be maintained within safe ranges, and supplemental oxygen may be administered if the SpO2 is less than 94%, while hyperbaric hyperoxia is not recommended [64,97]. Continuous monitoring of oxygenation is strongly recommended. Moreover, during the intubation phase, 100% FiO2 may be administered without serious adverse effects and 3 min of preoxygenation or a short period of high flow nasal cannula [65]. In AIS patients treated with intra-arterial mechanical thrombectomy in the anterior cerebral circulation, admission PaO2 >120 mmHg is associated with worse functional outcome at 90 days [66]. Endotracheal intubation and gas exchange
  • 40. MV setting should take into account the possibility of secondary brain damage due to hypo/hypercapnia and/or hypo/hyperoxia (i.e., hypocapnia may determine cerebral vasoconstriction increasing the risk for secondary brain ischemia) [67]. Therefore, MV should include a protective ventilator strategy (VT of 6 ml/kg of PBW, plateau pressure less than 30 cm H2O, and enough PEEP to avoid both overdistension and derecruitment) to reduce the risk for pulmonary complications [68], and a ventilator management focused on the strict control of oxygen and PaCO2 levels to prevent the secondary brain damage [6]. However, there is no consensus regarding the best ventilatory management (including the protective ventilator strategy) for AIS patients, as no studies are available in this specific subpopulation of neuro patients [69]. In summary, PEEP levels and RMs are considered safe in AIS patients [70]. Tidal volume and pulmonary pressures
  • 41. MV setting should take into account the possibility of secondary brain damage due to hypo/hypercapnia and/or hypo/hyperoxia (i.e., hypocapnia may determine cerebral vasoconstriction increasing the risk for secondary brain ischemia) [67]. Therefore, MV should include a protective ventilator strategy (VT of 6 ml/kg of PBW, plateau pressure less than 30 cm H2O, and enough PEEP to avoid both overdistension and derecruitment) to reduce the risk for pulmonary complications [68], and a ventilator management focused on the strict control of oxygen and PaCO2 levels to prevent the secondary brain damage [6]. However, there is no consensus regarding the best ventilatory management (including the protective ventilator strategy) for AIS patients, as no studies are available in this specific subpopulation of neuro patients [69]. In summary, PEEP levels and RMs are considered safe in AIS patients [70]. T
  • 42. Although MV is lifesaving in certain neurological conditions to maintain airway patency and prevent swallowing dysfunction, its long-term use is frequently associated with increased morbidity and mortality [47]. The correct timing for extubating AIS patients is still under investigation, but based on studies on general neuro population, weaning from MV should be initiated as soon as possible [8]. Generic scores for the prediction of extubation failure in neuro patients have been developed in the latest years. The most commonly applied in the general neuro ICU population is the VISAGE score that takes into consideration gag reflex, cough, deglutition, and neurological status assessed by the visual subscale of the Coma Recovery Scale Revised [47]. AIS associated dysphagia is a major determinant of extubation readiness. A study conducted on AIS patients near to weaning and extubation revealed that dysphagia was the main determinant of extubation failure in half of them, and the reintubation rate reached 21.4%. After extubation, dysphagia commonly occurs in up to 69% of general ICU patients and 93% of AIS patients [71]. The goal standard to detect swallowing dysfunction is video fluoroscopy, although fiberoptic endoscopy has been recently suggested as a valid alternative [72]. Weaning and extubation
  • 43. Tracheostomy is required in up to 45% of neuro patients [10]. Dysphagia and GCS <10; neuroimaging like hydrocephalus, brainstem lesion, intracranial hemorrhage (ICH); surgical procedure and organs function were identified as possible parameters for identifying the patients who can benefit from tracheostomy by the stroke-related early tracheostomy (SET) score [73]. Current knowledge is still uncertain about the timing for tracheostomy in AIS patients. However, a recent study identified a similar length of stay in patients with hemorrhagic stroke, AIS, or subarachnoid hemorrhage (SAH) early (within three days) or late (between 7 and 14 days) tracheostomized; while mortality was lower in the early tracheostomized group [74]. Thus, early tracheostomy should be considered in patients who fail a first extubation attempt as no evidence is available on possible negative clinical effects. Tracheostomy practice
  • 44. Subarachnoid hemorrhage Specific precautions for the management of SAH is needed with respect to patients affected by other stroke subtypes (AIS and ICH), and particularly, referring to the higher risk of SAH patients for developing vasospasm or delayed cerebral ischemia [75]. Pulmonary complications occur in up to 20% D. Battaglini, D. Siwicka Gieroba, I. Brunetti et al. Best Practice & Research Clinical Anaesthesiology xxx (xxxx) xxx 7 of SAH patients, with an oxygenation impairment in up to 80% of them [76,77] thus leading to worse outcome and higher mortality [75]. The independent risk factors for the development of VAP in ICH patients include >65 years, smoke, coronary heart disease, diabetes, chronic obstructive pulmonary disease, ICU hospital stay, and MV days [78].
  • 45. Tracheostomy is required in up to 45% of neuro patients [10]. Dysphagia and GCS <10; neuroimaging like hydrocephalus, brainstem lesion, intracranial hemorrhage (ICH); surgical procedure and organs function were identified as possible parameters for identifying the patients who can benefit from tracheostomy by the stroke-related early tracheostomy (SET) score [73]. Current knowledge is still uncertain about the timing for tracheostomy in AIS patients. However, a recent study identified a similar length of stay in patients with hemorrhagic stroke, AIS, or subarachnoid hemorrhage (SAH) early (within three days) or late (between 7 and 14 days) tracheostomized; while mortality was lower in the early tracheostomized group [74]. Thus, early tracheostomy should be considered in patients who fail a first extubation attempt as no evidence is available on possible negative clinical effects. Tracheostomy practice
  • 46. Indication for endotracheal intubation for SAH patients includes uncontrollable hypertension in unsecured and ruptured aneurysm, unconsciousness, GCS8, GCS<2 points, the optimization of ventilation and oxygenation, seizures control, airway protection in the absence of reflexes [79]. Thus, as cerebral vasospasm is associated with higher cerebral oxygen extraction, CPP and blood flow need to be strictly monitored and MV should be adequate to oxygen requirements [80]. Tracheostomy practice
  • 47. SAH patients receive MV in higher percental (47%) as compared to AIS (5%) and ICH (26%) patients [81]. Moreover, in- hospital mortality for MV stroke patients varies among subpopulations, reaching up to 47%, 61%, and 56% in IS, ICH, and SAH, respectively [82]. Status epilepticus, pneumonia, sepsis, and hydrocephalus has been associated with a higher risk for MV in SAH patients [82]. As for other kinds of brain damage, protective MV is suggested for SAH patients, keeping protective VT (8 ml/kg of PBW) and plateau pressure 30 cm H2O [83]. Most recent evidence confirm that PEEP could be safely used for brain-injured patients. PEEP can act on intrathoracic pressure and impair venous return and CBF without modifying ICP [84]. The concept of low/zero PEEP was challenged by the application of 0, 5, 8, and 12 cm H2O in MV patients with SAH or other severe brain injury with different respiratory system compliances. Patients with normal compliance showed an increase in central venous pressure and jugular pressure, with reduced mean arterial pressure and CPP. After PEEP titration, ICP and CPP slightly returned to normal values thus suggesting that respiratory system compliance may be used to detect in advance the potential harmful effects of PEEP on cerebral homeostasis [85]. However, an increase in PEEP up to 20 cm H2O may cause a decrease in CBF and mean arterial pressure [43]. Only one study investigated the role of alveolar RMs in SAH patients with ARDS. Two RMs were tested, one by applying a continuous positive airway pressure (CPAP) of 35 cm H2O for 40 s and the second one by using pressure-controlled ventilation with a PEEP level of 15 cm H2O and pressure control of 35 cm H2O above PEEP for 2 min. ICP was higher and CPP was lower for the CPAP group. Moreover, arterial oxygen tension improved in the pressure-controlled group [86]. Tidal volume and pulmonary pressures
  • 48. Weaning and extubation Extubation failure often occurs in SAH patients, particularly in those with poor neurological grading. SAH patients show an extubation failure rate of 29%, in accordance with the other stroke subpopulations. The VISAGE score can be applied for SAH patients, to detect the extubation failure in advance [47]. A decreased level of consciousness can reduce patients' airway patency and cause dysphagia. Pneumonia is common in SAH patients with higher World Federation of Neurological Surgeons score, aneurysmal SAH, secondary complications, older, longer ICU stay, and intubation. Indeed, dysphagia risk was significantly associated with age, ICU length of stay, intubation, tracheostomy, vasospasm, and new stroke [87]. Tracheostomy practice SAH patients who cannot be extubated, frequently need tracheostomy performance. Tracheostomy performance has been detected in 17% of SAH patients [81]. The median time for tracheostomy in SAH patients was 11 days after intubation, which represents the strongest predictor for tracheostomy. Late tracheostomy has been associated with pulmonary complications, venous thromboembolism, and D. Battaglini, D. Siwicka Gieroba, I. Brunetti et al. Best Practice & Research Clinical Anaesthesiology xxx (xxxx) xxx 8 pneumonia [88]. Indeed, early tracheostomy was positively associated with a shorter length of stay [89]. As there are few studies regarding tracheostomy in SAH patients, we suggest following the same rules of MV management and tracheostomy in the general population.
  • 49. IIntracerebral hemorrhage ICH is considered as a medical emergency that requires urgent therapeutic management, because up to 23% of ICH patients develop hematoma expansion and neurocognitive decline within few hours [90]. MV ICH patients show an inhospital mortality of 90%, while other studies report a 50% of survival at three years, with good functional outcome in only 20% of them [91]. Endotracheal intubation and gas exchange Intubation followed by MV support is often necessary for providing adequate airway protection and oxygen delivery [92]. Intubation should be considered in the case of GCS 8 or significant respiratory distress, keeping peripheral oxygenation higher than 92% [93]. Tidal volume and pulmonary pressures Among respiratory complications, ARDS has been found in 27% of ICH patients, particularly those ventilated with higher VT, males, patients who received transfusions, higher fluid balance, hypoxemia, acidosis, obesity, smoke, emergent hematoma evacuation, and vasopressor dependence. Higher VT was identified as the strongest risk factor associated with ARDS in ICH patients [92]. A specific recommendation for ICH patients concerning ventilator management are lacking, albeit current management for stroke patients could be applied also for ICH patients. As suggested by a multicenter RCT on 749 neuro patients (of whom about 40% had a stroke), the application of a lung protective MV strategy, using VT less than 8 and PEEP of 6e8 cmH2O, can significantly reduce ventilator-free days and mortality [7]. Weaning and extubation Extubation failure in ICH patients is around 15%, while external ventricular drainage is more associated with extubation failure than craniotomy or patients' comorbidities [94]. Tracheostomy practice Predictors for tracheostomy have been evaluated in ICH patients in two retrospective studies. Lower GCS, chronic obstructive pulmonary disease, ICH volume and location, midline shift, intraventricular blood, and hydrocephalus showed a higher predictivity of the need for tracheostomy [95]. Among predictive risk factors for tracheostomy, GCS was detected as the most significant clinical predictor; whereas hydrocephalus (H), septum pellucidum shift (S), and the thalamus location of the ICH (L) were identified as the most useful radiological predictors. Thus, the TRACH score was carried out by assessing the following formula: 3 þ (1 RS scale)e(0.5