SlideShare uma empresa Scribd logo
1 de 58
MSc. José Ahirton Batista Lopes Filho
São Luís, 03 de janeiro de 2020
Inteligência Artificial –
Uma abordagem visual
About Me
Ferramentais
Inteligência Artificial?!
Obrigado pelos avanços em
Inteligência Artificial,
além de um robô também sou
seu novo chefe.
Trabalhem pesado enquanto
eu não faço nada ou vou
esmagar seus crânios com
meu braço mecânico.
Ele é durão
mas é justo.
E não faz micro-
gereciamento.
Isso é
revigorante!
https://dilbert.com/strip/2017-09-07
Machine Learning?!
http://dilbert.com/strip/2013-02-02
Baseado no seu histórico
de internet, você deve ser
estupido suficiente para
gostar de esportes
radicais.
Clique aqui para comprar um
ingresso de Base Jump da
Estação Espacial
Internacional.
Acho que a
internet está
tentando me
matar.
Chamamos
isso de
“Machine
Learning”.
O que tem se procurado em IA?
O que é tecnologia?
O que são Tecnologias Exponenciais?
O que é Inteligência Artificial?
Aplicações
(Algumas) Áreas, Subáreas e produtos possíveis
Fluxo em Inteligência Artificial
Fluxo em Machine Learning
Aprendizagem em ML
Aprendizagem Supervisionada
Fluxo de Trabalho
Aprendizagem não Supervisionada
Fluxo de Trabalho
Aprendizagem por Reforço
Fluxo de Trabalho
Fluxo de Trabalho
Problemas Canônicos em ML
Machine Learning
Machine Learning
Machine Learning
Deep learning
Deep learning
Deep learning
Porque Deep learning?
Porque Deep learning?
Rumo a Deep Learning
Rumo a Deep Learning
Porque Deep Learning?
Pesquisadores em Deep Learning
Papers seminais
Grandes usuários de Deep Learning
Startups em Deep Learning
ML vs. Deep Learning
Deep Learning
- Uma rede neural profunda consiste em uma hierarquia de camadas, em que
cada camada transforma os dados de entrada em representações mais
abstratas (por exemplo, borda -> nariz -> face).
- A camada de saída combina esses recursos para fazer previsões.
Deep Learning
Deep Learning
- Cada camada é representada como uma série de neurônios e, progressivamente, extrai recursos
de maior e maior nível da entrada até que a camada final faça essencialmente uma decisão
sobre o que a entrada mostra;
- Quanto mais camadas a rede tiver, maiores serão as características que ela aprenderá.
Deep Learning
Deep Learning – Fluxo de Treinamento
- Ou seja, a rede gerando um sinal de erro que mede a diferença entre as previsões da rede e os
valores desejados e, em seguida, usando este sinal de erro para alterar os pesos (ou parâmetros)
para que as previsões fiquem mais precisas.
Deep Learning – Deep Autoencoders
- Composto por duas redes simétricas de crenças profundas. A rede de codificação aprende a comprimir a entrada para um vetor
condensado (redução de dimensionalidade). A rede de decodificação pode ser usada para reconstruir os dados.
- Ex: Modelagem de Tópicos: Documento em uma coleção é convertido em um Bag-of Words e transformado em um vetor de
recurso compactado usando um autoencoder. A distância de todos os outros documentos vetoriais pode ser medida e os vetores
de documentos próximos se enquadram no mesmo tópico.
Deep Learning - Convolutional
Neural Nets (CNN)
- Redes neurais convolucionais aprendem uma representação complexa de dados visuais usando grandes quantidades de dados.
Eles são inspirados pelo sistema visual humano e aprendem múltiplas camadas de transformações, que são aplicadas uma sobre
a outra para extrair uma representação progressivamente mais sofisticada da entrada.
- Cada camada de uma CNN recebe um volume 3D de números e gera um volume 3D de números. Por exemplo. A imagem é um
cubo 224 * 224 * 3 (RGB) e será transformada em1 * 1000 vetores de probabilidades.
Deep Learning - Convolutional
Neural Nets (CNN)
- A camada de convolução é um detector de recursos que aprende automaticamente a filtrar as informações não necessárias
de uma entrada usando o kernel de convolução.
- As camadas de agrupamento calculam o valor máximo ou médio de um recurso específico em uma região dos dados de
entrada (redução de tamanho das imagens de entrada).
- Também ajuda a detectar objetos em alguns locais incomuns e reduz o tamanho da memória.
Deep Learning - Recurrent
Neural Nets (RNN)
- Os RNNs são computadores gerais que podem aprender algoritmos para
mapear seqüências de entrada para seqüências de saída (vetores de tamanho
flexível).
- O conteúdo do vetor de saída é influenciado por todo o histórico de entradas.
- O estado da arte resulta em predição de séries temporais, robótica adaptativa, reconhecimento de caligrafia, classificação de
imagem, reconhecimento de fala, predição de mercado de ações e outros problemas de aprendizado de seqüência. Tudo pode
ser processado seqüencialmente.
Deep Learning - Long Short-
Term Memory
- Uma rede LSTM (Long Short-Term Memory) é um tipo particular de rede
recorrente que funciona um pouco melhor na prática, devido à sua equação de
atualização mais poderosa e a algumas dinâmicas de propagação retrógradas.
Deep Learning – CNN + RNN
– Gerador de Legenda
Deep Learning - Embeddings
Fotografia
Boto Cor
de Rosa
Golfinho
Seaworld
São Paulo
Deep Learning – Requerimentos
Grande dataset com boa qualidade;
Objetivos mensuráveis e descritíveis
(para definição do custo);
Poder computacional (Ex: instâncias de
GPUs);
Excede em tarefas onde a unidade básica (pixel, palavra) tem
muito pouco significado por si mesma, mas a combinação de
tais unidades tem um significado útil.
Ferramentais em Deep Learning
Deep Learning – Computação Quântica
• Laboratório de Inteligência Artificial
Quântica - iniciativa conjunta da NASA e
do Google para estudar como a
computação quântica pode promover o
aprendizado de máquina.
• Computadores quânticos lidam com o
que são chamados bits quânticos ou
qubits que podem facilmente ter um valor
de um ou zero ou qualquer coisa entre
eles.
• A computação quântica representa uma
mudança de paradigma, uma mudança
radical na forma como fazemos
computação e em uma escala que tem
um poder inimaginável - Eric Ladizinsky
(Co-fundador D-Wave)
Deep Learning - Chips Cognitivos
Inteligência Artificial – Conclusões
• Avanços significativos em reforço profundo e aprendizado não
supervisionado;
• Arquiteturas maiores e mais complexas baseadas em vários módulos
/ técnicas intercambiáveis;
• Modelos mais profundos que podem aprender com muito menos
casos de treinamento;
• Problemas mais difíceis, como o entendimento de vídeo e o
processamento de linguagem natural, serão abordados com sucesso
por algoritmos de aprendizado profundos.
Inteligência Artificial – Conclusões
• Máquinas que aprendem a representar o mundo a
partir da experiência.
• Deep Learning não é mágica! Apenas estatísticas em
uma caixa preta, mas eficaz em padrões de
aprendizado.
• Nós não descobrimos criatividade e empatia humana!
• Transição da pesquisa para produtos de consumo.
• Fará com que as ferramentas que você usa todos os
dias funcionem melhor, mais rápido e de maneira mais
inteligente.
“É preciso provocar sistematicamente
confusão. Isso promove a criatividade.
Tudo aquilo que é contraditório gera
vida ”
Salvador Dalí
Obrigado!
ahirtonlopes@gmail.com
github.com/AhirtonLopes
slideshare.net/JosAhirto
nBatistaLop

Mais conteúdo relacionado

Mais procurados

"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio..."Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...Edge AI and Vision Alliance
 
Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network Yan Xu
 
LSTM 네트워크 이해하기
LSTM 네트워크 이해하기LSTM 네트워크 이해하기
LSTM 네트워크 이해하기Mad Scientists
 
Hands-on Deep Learning in Python
Hands-on Deep Learning in PythonHands-on Deep Learning in Python
Hands-on Deep Learning in PythonImry Kissos
 
Python 활용: 이미지 처리와 데이터 분석
Python 활용: 이미지 처리와 데이터 분석Python 활용: 이미지 처리와 데이터 분석
Python 활용: 이미지 처리와 데이터 분석용 최
 
딥러닝 기본 원리의 이해
딥러닝 기본 원리의 이해딥러닝 기본 원리의 이해
딥러닝 기본 원리의 이해Hee Won Park
 
딥러닝 논문읽기 efficient netv2 논문리뷰
딥러닝 논문읽기 efficient netv2  논문리뷰딥러닝 논문읽기 efficient netv2  논문리뷰
딥러닝 논문읽기 efficient netv2 논문리뷰taeseon ryu
 
NLP using transformers
NLP using transformers NLP using transformers
NLP using transformers Arvind Devaraj
 
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)Universitat Politècnica de Catalunya
 
인공지능과 딥러닝에 대한 소개
인공지능과 딥러닝에 대한 소개인공지능과 딥러닝에 대한 소개
인공지능과 딥러닝에 대한 소개Young-Min kang
 
Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksJeremy Nixon
 
Reprogramacion mental para el exito
Reprogramacion mental para el exitoReprogramacion mental para el exito
Reprogramacion mental para el exitoComputacion
 
[PR12] PixelRNN- Jaejun Yoo
[PR12] PixelRNN- Jaejun Yoo[PR12] PixelRNN- Jaejun Yoo
[PR12] PixelRNN- Jaejun YooJaeJun Yoo
 
밑바닥부터 시작하는딥러닝 8장
밑바닥부터 시작하는딥러닝 8장밑바닥부터 시작하는딥러닝 8장
밑바닥부터 시작하는딥러닝 8장Sunggon Song
 
Segment Anything
Segment AnythingSegment Anything
Segment Anythingfake can
 
Customizing LLMs
Customizing LLMsCustomizing LLMs
Customizing LLMsJim Steele
 
PR-185: RetinaFace: Single-stage Dense Face Localisation in the Wild
PR-185: RetinaFace: Single-stage Dense Face Localisation in the WildPR-185: RetinaFace: Single-stage Dense Face Localisation in the Wild
PR-185: RetinaFace: Single-stage Dense Face Localisation in the Wildjaewon lee
 

Mais procurados (20)

"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio..."Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
 
Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network
 
LSTM 네트워크 이해하기
LSTM 네트워크 이해하기LSTM 네트워크 이해하기
LSTM 네트워크 이해하기
 
Rnn & Lstm
Rnn & LstmRnn & Lstm
Rnn & Lstm
 
Hands-on Deep Learning in Python
Hands-on Deep Learning in PythonHands-on Deep Learning in Python
Hands-on Deep Learning in Python
 
Python 활용: 이미지 처리와 데이터 분석
Python 활용: 이미지 처리와 데이터 분석Python 활용: 이미지 처리와 데이터 분석
Python 활용: 이미지 처리와 데이터 분석
 
rnn BASICS
rnn BASICSrnn BASICS
rnn BASICS
 
딥러닝 기본 원리의 이해
딥러닝 기본 원리의 이해딥러닝 기본 원리의 이해
딥러닝 기본 원리의 이해
 
딥러닝 논문읽기 efficient netv2 논문리뷰
딥러닝 논문읽기 efficient netv2  논문리뷰딥러닝 논문읽기 efficient netv2  논문리뷰
딥러닝 논문읽기 efficient netv2 논문리뷰
 
NLP using transformers
NLP using transformers NLP using transformers
NLP using transformers
 
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
 
인공지능과 딥러닝에 대한 소개
인공지능과 딥러닝에 대한 소개인공지능과 딥러닝에 대한 소개
인공지능과 딥러닝에 대한 소개
 
Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural Networks
 
Reprogramacion mental para el exito
Reprogramacion mental para el exitoReprogramacion mental para el exito
Reprogramacion mental para el exito
 
[PR12] PixelRNN- Jaejun Yoo
[PR12] PixelRNN- Jaejun Yoo[PR12] PixelRNN- Jaejun Yoo
[PR12] PixelRNN- Jaejun Yoo
 
GPT-X
GPT-XGPT-X
GPT-X
 
밑바닥부터 시작하는딥러닝 8장
밑바닥부터 시작하는딥러닝 8장밑바닥부터 시작하는딥러닝 8장
밑바닥부터 시작하는딥러닝 8장
 
Segment Anything
Segment AnythingSegment Anything
Segment Anything
 
Customizing LLMs
Customizing LLMsCustomizing LLMs
Customizing LLMs
 
PR-185: RetinaFace: Single-stage Dense Face Localisation in the Wild
PR-185: RetinaFace: Single-stage Dense Face Localisation in the WildPR-185: RetinaFace: Single-stage Dense Face Localisation in the Wild
PR-185: RetinaFace: Single-stage Dense Face Localisation in the Wild
 

Semelhante a [Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual

[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual
[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual
[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem VisualAhirton Lopes
 
[Ahirton Lopes e Rafael Arevalo] Deep Learning - Uma Abordagem Visual
[Ahirton Lopes e Rafael Arevalo] Deep Learning - Uma Abordagem Visual[Ahirton Lopes e Rafael Arevalo] Deep Learning - Uma Abordagem Visual
[Ahirton Lopes e Rafael Arevalo] Deep Learning - Uma Abordagem VisualAhirton Lopes
 
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem VisualAhirton Lopes
 
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem VisualAhirton Lopes
 
[Jose Ahirton lopes] Do Big ao Better Data
[Jose Ahirton lopes] Do Big ao Better Data[Jose Ahirton lopes] Do Big ao Better Data
[Jose Ahirton lopes] Do Big ao Better DataAhirton Lopes
 
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem VisualAhirton Lopes
 
Data Science e Inteligência de dados - Inteligencia artificial e machine lear...
Data Science e Inteligência de dados - Inteligencia artificial e machine lear...Data Science e Inteligência de dados - Inteligencia artificial e machine lear...
Data Science e Inteligência de dados - Inteligencia artificial e machine lear...Daniela Brauner
 
Introdução a Deep Learning
Introdução a Deep LearningIntrodução a Deep Learning
Introdução a Deep LearningCristian Muñoz
 
Fundamentos De Ia E Sistemas Baseados em Conhecimento
Fundamentos De Ia E Sistemas Baseados em ConhecimentoFundamentos De Ia E Sistemas Baseados em Conhecimento
Fundamentos De Ia E Sistemas Baseados em Conhecimentozehzinho
 
Um estudo sobre inteligência artificial e o funcionamento de um agente
Um estudo sobre inteligência artificial e o funcionamento de um agenteUm estudo sobre inteligência artificial e o funcionamento de um agente
Um estudo sobre inteligência artificial e o funcionamento de um agenteUNIEURO
 
Aprendizado Profundo & CNNs
Aprendizado Profundo & CNNsAprendizado Profundo & CNNs
Aprendizado Profundo & CNNsFabio Spanhol
 
Roda de Conversa - Inteligência Artificial & Internet das Coisas
Roda de Conversa - Inteligência Artificial & Internet das CoisasRoda de Conversa - Inteligência Artificial & Internet das Coisas
Roda de Conversa - Inteligência Artificial & Internet das CoisasFelipe Mota
 
Introdução às Redes Neurais - Parte 1/2
Introdução às Redes Neurais - Parte 1/2Introdução às Redes Neurais - Parte 1/2
Introdução às Redes Neurais - Parte 1/2Bruno Catão
 
RicardoSantos_CAP657_NHK.pptx
RicardoSantos_CAP657_NHK.pptxRicardoSantos_CAP657_NHK.pptx
RicardoSantos_CAP657_NHK.pptxRicardo Santos
 
Introdução a Machine learning (Aprendizado de Máquina)
Introdução a Machine learning (Aprendizado de Máquina)Introdução a Machine learning (Aprendizado de Máquina)
Introdução a Machine learning (Aprendizado de Máquina)Mateus Moraes Pinto
 
Inteligência Artificial
Inteligência ArtificialInteligência Artificial
Inteligência ArtificialLincolm Aguiar
 
IA Redes Neurais Artificiais
IA Redes Neurais ArtificiaisIA Redes Neurais Artificiais
IA Redes Neurais Artificiaisrafael.joi
 
Introduction to Data Science in IoT Projects.
Introduction to Data Science in IoT Projects.Introduction to Data Science in IoT Projects.
Introduction to Data Science in IoT Projects.Roberto Williams Batista
 

Semelhante a [Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual (20)

[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual
[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual
[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual
 
[Ahirton Lopes e Rafael Arevalo] Deep Learning - Uma Abordagem Visual
[Ahirton Lopes e Rafael Arevalo] Deep Learning - Uma Abordagem Visual[Ahirton Lopes e Rafael Arevalo] Deep Learning - Uma Abordagem Visual
[Ahirton Lopes e Rafael Arevalo] Deep Learning - Uma Abordagem Visual
 
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
 
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
 
[Jose Ahirton lopes] Do Big ao Better Data
[Jose Ahirton lopes] Do Big ao Better Data[Jose Ahirton lopes] Do Big ao Better Data
[Jose Ahirton lopes] Do Big ao Better Data
 
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
[Jose Ahirton Lopes] Deep Learning - Uma Abordagem Visual
 
Data Science e Inteligência de dados - Inteligencia artificial e machine lear...
Data Science e Inteligência de dados - Inteligencia artificial e machine lear...Data Science e Inteligência de dados - Inteligencia artificial e machine lear...
Data Science e Inteligência de dados - Inteligencia artificial e machine lear...
 
Dismistificando deep learning
Dismistificando deep learningDismistificando deep learning
Dismistificando deep learning
 
Introdução a Deep Learning
Introdução a Deep LearningIntrodução a Deep Learning
Introdução a Deep Learning
 
Fundamentos De Ia E Sistemas Baseados em Conhecimento
Fundamentos De Ia E Sistemas Baseados em ConhecimentoFundamentos De Ia E Sistemas Baseados em Conhecimento
Fundamentos De Ia E Sistemas Baseados em Conhecimento
 
Modelos de previsão de Ocorrências
Modelos de previsão de OcorrênciasModelos de previsão de Ocorrências
Modelos de previsão de Ocorrências
 
Um estudo sobre inteligência artificial e o funcionamento de um agente
Um estudo sobre inteligência artificial e o funcionamento de um agenteUm estudo sobre inteligência artificial e o funcionamento de um agente
Um estudo sobre inteligência artificial e o funcionamento de um agente
 
Aprendizado Profundo & CNNs
Aprendizado Profundo & CNNsAprendizado Profundo & CNNs
Aprendizado Profundo & CNNs
 
Roda de Conversa - Inteligência Artificial & Internet das Coisas
Roda de Conversa - Inteligência Artificial & Internet das CoisasRoda de Conversa - Inteligência Artificial & Internet das Coisas
Roda de Conversa - Inteligência Artificial & Internet das Coisas
 
Introdução às Redes Neurais - Parte 1/2
Introdução às Redes Neurais - Parte 1/2Introdução às Redes Neurais - Parte 1/2
Introdução às Redes Neurais - Parte 1/2
 
RicardoSantos_CAP657_NHK.pptx
RicardoSantos_CAP657_NHK.pptxRicardoSantos_CAP657_NHK.pptx
RicardoSantos_CAP657_NHK.pptx
 
Introdução a Machine learning (Aprendizado de Máquina)
Introdução a Machine learning (Aprendizado de Máquina)Introdução a Machine learning (Aprendizado de Máquina)
Introdução a Machine learning (Aprendizado de Máquina)
 
Inteligência Artificial
Inteligência ArtificialInteligência Artificial
Inteligência Artificial
 
IA Redes Neurais Artificiais
IA Redes Neurais ArtificiaisIA Redes Neurais Artificiais
IA Redes Neurais Artificiais
 
Introduction to Data Science in IoT Projects.
Introduction to Data Science in IoT Projects.Introduction to Data Science in IoT Projects.
Introduction to Data Science in IoT Projects.
 

Mais de Ahirton Lopes

[Jose Ahirton Lopes] ML na Sala de Aula
[Jose Ahirton Lopes] ML na Sala de Aula[Jose Ahirton Lopes] ML na Sala de Aula
[Jose Ahirton Lopes] ML na Sala de AulaAhirton Lopes
 
[Jose Ahirton Lopes] ML na sala de aula
[Jose Ahirton Lopes] ML na sala de aula[Jose Ahirton Lopes] ML na sala de aula
[Jose Ahirton Lopes] ML na sala de aulaAhirton Lopes
 
[Jose Ahirton Lopes] IA e para todos
[Jose Ahirton Lopes] IA e para todos[Jose Ahirton Lopes] IA e para todos
[Jose Ahirton Lopes] IA e para todosAhirton Lopes
 
[Jose Ahirton Lopes] O que se espera da tal equipe de dados
[Jose Ahirton Lopes] O que se espera da tal equipe de dados[Jose Ahirton Lopes] O que se espera da tal equipe de dados
[Jose Ahirton Lopes] O que se espera da tal equipe de dadosAhirton Lopes
 
[Jose Ahirton Lopes] Detecção Precoce de Estudantes em Risco de Evasão Usan...
[Jose Ahirton Lopes]   Detecção Precoce de Estudantes em Risco de Evasão Usan...[Jose Ahirton Lopes]   Detecção Precoce de Estudantes em Risco de Evasão Usan...
[Jose Ahirton Lopes] Detecção Precoce de Estudantes em Risco de Evasão Usan...Ahirton Lopes
 
[Jose Ahirton Lopes] Transfer Learning e GANS 101
[Jose Ahirton Lopes] Transfer Learning e GANS 101[Jose Ahirton Lopes] Transfer Learning e GANS 101
[Jose Ahirton Lopes] Transfer Learning e GANS 101Ahirton Lopes
 
[Jose Ahirton Lopes] GANs 101
[Jose Ahirton Lopes] GANs 101[Jose Ahirton Lopes] GANs 101
[Jose Ahirton Lopes] GANs 101Ahirton Lopes
 
Aula1 mba fiap_2018_redes_neurais
Aula1 mba fiap_2018_redes_neuraisAula1 mba fiap_2018_redes_neurais
Aula1 mba fiap_2018_redes_neuraisAhirton Lopes
 
[Jose Ahirton Lopes] Transfer Learning e GANs 101
[Jose Ahirton Lopes] Transfer Learning e GANs 101[Jose Ahirton Lopes] Transfer Learning e GANs 101
[Jose Ahirton Lopes] Transfer Learning e GANs 101Ahirton Lopes
 
[Jose Ahirton Lopes] ML na Sala de Aula
[Jose Ahirton Lopes] ML na Sala de Aula[Jose Ahirton Lopes] ML na Sala de Aula
[Jose Ahirton Lopes] ML na Sala de AulaAhirton Lopes
 
[Jose Ahirton Lopes] ML na sala de aula
[Jose Ahirton Lopes] ML na sala de aula[Jose Ahirton Lopes] ML na sala de aula
[Jose Ahirton Lopes] ML na sala de aulaAhirton Lopes
 
[Jose Ahirton Lopes] O que se espera do tal Cientista de Dados
[Jose Ahirton Lopes] O que se espera do tal Cientista de Dados[Jose Ahirton Lopes] O que se espera do tal Cientista de Dados
[Jose Ahirton Lopes] O que se espera do tal Cientista de DadosAhirton Lopes
 
[José Ahirton Lopes e Rafael Arevalo] Aula 01 - Robótica e IOT
[José Ahirton Lopes e Rafael Arevalo] Aula 01 - Robótica e IOT[José Ahirton Lopes e Rafael Arevalo] Aula 01 - Robótica e IOT
[José Ahirton Lopes e Rafael Arevalo] Aula 01 - Robótica e IOTAhirton Lopes
 
[Aula 01] School of AI SP - Back to Basics
[Aula 01] School of AI SP - Back to Basics[Aula 01] School of AI SP - Back to Basics
[Aula 01] School of AI SP - Back to BasicsAhirton Lopes
 
[Jose Ahirton Lopes] Apresentacao Sessao Tecnica I
[Jose Ahirton Lopes] Apresentacao Sessao Tecnica I[Jose Ahirton Lopes] Apresentacao Sessao Tecnica I
[Jose Ahirton Lopes] Apresentacao Sessao Tecnica IAhirton Lopes
 
[Jose Ahirton Lopes] Algoritmos de Recomendacao II
[Jose Ahirton Lopes] Algoritmos de Recomendacao II[Jose Ahirton Lopes] Algoritmos de Recomendacao II
[Jose Ahirton Lopes] Algoritmos de Recomendacao IIAhirton Lopes
 
[Jose Ahirton Lopes] Materiais de Referencia
[Jose Ahirton Lopes] Materiais de Referencia[Jose Ahirton Lopes] Materiais de Referencia
[Jose Ahirton Lopes] Materiais de ReferenciaAhirton Lopes
 
[Jose Ahirton Lopes] Algoritmos de Recomendacao
[Jose Ahirton Lopes] Algoritmos de Recomendacao[Jose Ahirton Lopes] Algoritmos de Recomendacao
[Jose Ahirton Lopes] Algoritmos de RecomendacaoAhirton Lopes
 
[José Ahirton Lopes] Inteligência Artificial 101
[José Ahirton Lopes] Inteligência Artificial 101[José Ahirton Lopes] Inteligência Artificial 101
[José Ahirton Lopes] Inteligência Artificial 101Ahirton Lopes
 
TDC - Trilha Machine Learning - O que sabemos de voce por meio de PLN e ML?
TDC - Trilha Machine Learning - O que sabemos de voce por meio de PLN e ML?TDC - Trilha Machine Learning - O que sabemos de voce por meio de PLN e ML?
TDC - Trilha Machine Learning - O que sabemos de voce por meio de PLN e ML?Ahirton Lopes
 

Mais de Ahirton Lopes (20)

[Jose Ahirton Lopes] ML na Sala de Aula
[Jose Ahirton Lopes] ML na Sala de Aula[Jose Ahirton Lopes] ML na Sala de Aula
[Jose Ahirton Lopes] ML na Sala de Aula
 
[Jose Ahirton Lopes] ML na sala de aula
[Jose Ahirton Lopes] ML na sala de aula[Jose Ahirton Lopes] ML na sala de aula
[Jose Ahirton Lopes] ML na sala de aula
 
[Jose Ahirton Lopes] IA e para todos
[Jose Ahirton Lopes] IA e para todos[Jose Ahirton Lopes] IA e para todos
[Jose Ahirton Lopes] IA e para todos
 
[Jose Ahirton Lopes] O que se espera da tal equipe de dados
[Jose Ahirton Lopes] O que se espera da tal equipe de dados[Jose Ahirton Lopes] O que se espera da tal equipe de dados
[Jose Ahirton Lopes] O que se espera da tal equipe de dados
 
[Jose Ahirton Lopes] Detecção Precoce de Estudantes em Risco de Evasão Usan...
[Jose Ahirton Lopes]   Detecção Precoce de Estudantes em Risco de Evasão Usan...[Jose Ahirton Lopes]   Detecção Precoce de Estudantes em Risco de Evasão Usan...
[Jose Ahirton Lopes] Detecção Precoce de Estudantes em Risco de Evasão Usan...
 
[Jose Ahirton Lopes] Transfer Learning e GANS 101
[Jose Ahirton Lopes] Transfer Learning e GANS 101[Jose Ahirton Lopes] Transfer Learning e GANS 101
[Jose Ahirton Lopes] Transfer Learning e GANS 101
 
[Jose Ahirton Lopes] GANs 101
[Jose Ahirton Lopes] GANs 101[Jose Ahirton Lopes] GANs 101
[Jose Ahirton Lopes] GANs 101
 
Aula1 mba fiap_2018_redes_neurais
Aula1 mba fiap_2018_redes_neuraisAula1 mba fiap_2018_redes_neurais
Aula1 mba fiap_2018_redes_neurais
 
[Jose Ahirton Lopes] Transfer Learning e GANs 101
[Jose Ahirton Lopes] Transfer Learning e GANs 101[Jose Ahirton Lopes] Transfer Learning e GANs 101
[Jose Ahirton Lopes] Transfer Learning e GANs 101
 
[Jose Ahirton Lopes] ML na Sala de Aula
[Jose Ahirton Lopes] ML na Sala de Aula[Jose Ahirton Lopes] ML na Sala de Aula
[Jose Ahirton Lopes] ML na Sala de Aula
 
[Jose Ahirton Lopes] ML na sala de aula
[Jose Ahirton Lopes] ML na sala de aula[Jose Ahirton Lopes] ML na sala de aula
[Jose Ahirton Lopes] ML na sala de aula
 
[Jose Ahirton Lopes] O que se espera do tal Cientista de Dados
[Jose Ahirton Lopes] O que se espera do tal Cientista de Dados[Jose Ahirton Lopes] O que se espera do tal Cientista de Dados
[Jose Ahirton Lopes] O que se espera do tal Cientista de Dados
 
[José Ahirton Lopes e Rafael Arevalo] Aula 01 - Robótica e IOT
[José Ahirton Lopes e Rafael Arevalo] Aula 01 - Robótica e IOT[José Ahirton Lopes e Rafael Arevalo] Aula 01 - Robótica e IOT
[José Ahirton Lopes e Rafael Arevalo] Aula 01 - Robótica e IOT
 
[Aula 01] School of AI SP - Back to Basics
[Aula 01] School of AI SP - Back to Basics[Aula 01] School of AI SP - Back to Basics
[Aula 01] School of AI SP - Back to Basics
 
[Jose Ahirton Lopes] Apresentacao Sessao Tecnica I
[Jose Ahirton Lopes] Apresentacao Sessao Tecnica I[Jose Ahirton Lopes] Apresentacao Sessao Tecnica I
[Jose Ahirton Lopes] Apresentacao Sessao Tecnica I
 
[Jose Ahirton Lopes] Algoritmos de Recomendacao II
[Jose Ahirton Lopes] Algoritmos de Recomendacao II[Jose Ahirton Lopes] Algoritmos de Recomendacao II
[Jose Ahirton Lopes] Algoritmos de Recomendacao II
 
[Jose Ahirton Lopes] Materiais de Referencia
[Jose Ahirton Lopes] Materiais de Referencia[Jose Ahirton Lopes] Materiais de Referencia
[Jose Ahirton Lopes] Materiais de Referencia
 
[Jose Ahirton Lopes] Algoritmos de Recomendacao
[Jose Ahirton Lopes] Algoritmos de Recomendacao[Jose Ahirton Lopes] Algoritmos de Recomendacao
[Jose Ahirton Lopes] Algoritmos de Recomendacao
 
[José Ahirton Lopes] Inteligência Artificial 101
[José Ahirton Lopes] Inteligência Artificial 101[José Ahirton Lopes] Inteligência Artificial 101
[José Ahirton Lopes] Inteligência Artificial 101
 
TDC - Trilha Machine Learning - O que sabemos de voce por meio de PLN e ML?
TDC - Trilha Machine Learning - O que sabemos de voce por meio de PLN e ML?TDC - Trilha Machine Learning - O que sabemos de voce por meio de PLN e ML?
TDC - Trilha Machine Learning - O que sabemos de voce por meio de PLN e ML?
 

[Jose Ahirton Lopes] Inteligencia Artificial - Uma Abordagem Visual

  • 1. MSc. José Ahirton Batista Lopes Filho São Luís, 03 de janeiro de 2020 Inteligência Artificial – Uma abordagem visual
  • 4. Inteligência Artificial?! Obrigado pelos avanços em Inteligência Artificial, além de um robô também sou seu novo chefe. Trabalhem pesado enquanto eu não faço nada ou vou esmagar seus crânios com meu braço mecânico. Ele é durão mas é justo. E não faz micro- gereciamento. Isso é revigorante! https://dilbert.com/strip/2017-09-07
  • 5. Machine Learning?! http://dilbert.com/strip/2013-02-02 Baseado no seu histórico de internet, você deve ser estupido suficiente para gostar de esportes radicais. Clique aqui para comprar um ingresso de Base Jump da Estação Espacial Internacional. Acho que a internet está tentando me matar. Chamamos isso de “Machine Learning”.
  • 6. O que tem se procurado em IA?
  • 7. O que é tecnologia?
  • 8. O que são Tecnologias Exponenciais?
  • 9. O que é Inteligência Artificial?
  • 11. (Algumas) Áreas, Subáreas e produtos possíveis
  • 13. Fluxo em Machine Learning
  • 31. Rumo a Deep Learning
  • 32. Rumo a Deep Learning
  • 36. Grandes usuários de Deep Learning
  • 37. Startups em Deep Learning
  • 38. ML vs. Deep Learning
  • 39. Deep Learning - Uma rede neural profunda consiste em uma hierarquia de camadas, em que cada camada transforma os dados de entrada em representações mais abstratas (por exemplo, borda -> nariz -> face). - A camada de saída combina esses recursos para fazer previsões.
  • 41. Deep Learning - Cada camada é representada como uma série de neurônios e, progressivamente, extrai recursos de maior e maior nível da entrada até que a camada final faça essencialmente uma decisão sobre o que a entrada mostra; - Quanto mais camadas a rede tiver, maiores serão as características que ela aprenderá.
  • 43. Deep Learning – Fluxo de Treinamento - Ou seja, a rede gerando um sinal de erro que mede a diferença entre as previsões da rede e os valores desejados e, em seguida, usando este sinal de erro para alterar os pesos (ou parâmetros) para que as previsões fiquem mais precisas.
  • 44. Deep Learning – Deep Autoencoders - Composto por duas redes simétricas de crenças profundas. A rede de codificação aprende a comprimir a entrada para um vetor condensado (redução de dimensionalidade). A rede de decodificação pode ser usada para reconstruir os dados. - Ex: Modelagem de Tópicos: Documento em uma coleção é convertido em um Bag-of Words e transformado em um vetor de recurso compactado usando um autoencoder. A distância de todos os outros documentos vetoriais pode ser medida e os vetores de documentos próximos se enquadram no mesmo tópico.
  • 45. Deep Learning - Convolutional Neural Nets (CNN) - Redes neurais convolucionais aprendem uma representação complexa de dados visuais usando grandes quantidades de dados. Eles são inspirados pelo sistema visual humano e aprendem múltiplas camadas de transformações, que são aplicadas uma sobre a outra para extrair uma representação progressivamente mais sofisticada da entrada. - Cada camada de uma CNN recebe um volume 3D de números e gera um volume 3D de números. Por exemplo. A imagem é um cubo 224 * 224 * 3 (RGB) e será transformada em1 * 1000 vetores de probabilidades.
  • 46. Deep Learning - Convolutional Neural Nets (CNN) - A camada de convolução é um detector de recursos que aprende automaticamente a filtrar as informações não necessárias de uma entrada usando o kernel de convolução. - As camadas de agrupamento calculam o valor máximo ou médio de um recurso específico em uma região dos dados de entrada (redução de tamanho das imagens de entrada). - Também ajuda a detectar objetos em alguns locais incomuns e reduz o tamanho da memória.
  • 47. Deep Learning - Recurrent Neural Nets (RNN) - Os RNNs são computadores gerais que podem aprender algoritmos para mapear seqüências de entrada para seqüências de saída (vetores de tamanho flexível). - O conteúdo do vetor de saída é influenciado por todo o histórico de entradas. - O estado da arte resulta em predição de séries temporais, robótica adaptativa, reconhecimento de caligrafia, classificação de imagem, reconhecimento de fala, predição de mercado de ações e outros problemas de aprendizado de seqüência. Tudo pode ser processado seqüencialmente.
  • 48. Deep Learning - Long Short- Term Memory - Uma rede LSTM (Long Short-Term Memory) é um tipo particular de rede recorrente que funciona um pouco melhor na prática, devido à sua equação de atualização mais poderosa e a algumas dinâmicas de propagação retrógradas.
  • 49. Deep Learning – CNN + RNN – Gerador de Legenda
  • 50. Deep Learning - Embeddings Fotografia Boto Cor de Rosa Golfinho Seaworld São Paulo
  • 51. Deep Learning – Requerimentos Grande dataset com boa qualidade; Objetivos mensuráveis e descritíveis (para definição do custo); Poder computacional (Ex: instâncias de GPUs); Excede em tarefas onde a unidade básica (pixel, palavra) tem muito pouco significado por si mesma, mas a combinação de tais unidades tem um significado útil.
  • 53. Deep Learning – Computação Quântica • Laboratório de Inteligência Artificial Quântica - iniciativa conjunta da NASA e do Google para estudar como a computação quântica pode promover o aprendizado de máquina. • Computadores quânticos lidam com o que são chamados bits quânticos ou qubits que podem facilmente ter um valor de um ou zero ou qualquer coisa entre eles. • A computação quântica representa uma mudança de paradigma, uma mudança radical na forma como fazemos computação e em uma escala que tem um poder inimaginável - Eric Ladizinsky (Co-fundador D-Wave)
  • 54. Deep Learning - Chips Cognitivos
  • 55. Inteligência Artificial – Conclusões • Avanços significativos em reforço profundo e aprendizado não supervisionado; • Arquiteturas maiores e mais complexas baseadas em vários módulos / técnicas intercambiáveis; • Modelos mais profundos que podem aprender com muito menos casos de treinamento; • Problemas mais difíceis, como o entendimento de vídeo e o processamento de linguagem natural, serão abordados com sucesso por algoritmos de aprendizado profundos.
  • 56. Inteligência Artificial – Conclusões • Máquinas que aprendem a representar o mundo a partir da experiência. • Deep Learning não é mágica! Apenas estatísticas em uma caixa preta, mas eficaz em padrões de aprendizado. • Nós não descobrimos criatividade e empatia humana! • Transição da pesquisa para produtos de consumo. • Fará com que as ferramentas que você usa todos os dias funcionem melhor, mais rápido e de maneira mais inteligente.
  • 57. “É preciso provocar sistematicamente confusão. Isso promove a criatividade. Tudo aquilo que é contraditório gera vida ” Salvador Dalí