SlideShare uma empresa Scribd logo
1 de 22
Baixar para ler offline
Introdução e ligações químicas
Marcelo F. Moreira
1
ETM 201
Notas de aula
Marcelo F. Moreira
Materiais de
Construção
Mecânica
Introdução e ligações químicas
Marcelo F. Moreira
2
Caros alunos,
O presente curso tem como objetivo apresentar os fundamentos básicos de
ciência dos materiais e de engenharia metalúrgica aos alunos de engenharia
mecânica e engenharia de produção mecânica. Os cursos de ciência dos materiais da
Escola de Engenharia Mauá são divididos em dois módulos:
1. materiais metálicos e
2. materiais poliméricos e cerâmicos
As presentes notas de aula abordam os temas relacionados aos materiais
metálicos comumente empregados na engenharia mecânica. É relevante destacar que
o objetivo destas notas de aula é o de orientar o aluno no acompanhamento do livro
texto e das referências complementares do curso.
A seqüência dos temas propostos pode variar de disciplina para disciplina,
assim, recomenda-se ao aluno acompanhar o plano de curso de sua disciplina
Cada tema está, na medida do possível, referenciado, indicando ao aluno um
livro texto ou um artigo no qual o assunto é abordado com maior profundidade.
Adicionalmente, foram propostas listas com exercícios sobre cada tópico.
Sempre buscando o contínuo aperfeiçoamento do curso e do material didático,
agradeço as sugestões e as correções que possam surgir durante nossas aulas.
Prof. Marcelo Ferreira Moreira
Escola de Engenharia Mauá
Instituto de Pesquisas Tecnológicas do Estado de São Paulo – IPT
REFERÊNCIAS BIBLIOGRÁFICAS PARA O CURSO
LIVRO TEXTO:
Callister, W. D. MATERIALS SCIENCE AND ENGINEERING An Introduction John
Wiley & Sons INC. 2000
REFERÊNCIAS COMPLEMENTARES:
Shackelford, J. F. INTRODUCTION TO MATERIALS SCIENCE FOR ENGINEERS
Prentice Hall 1992
Padilha, A. F. MATERIAIS DE ENGENHARIA – Microestrutura e Propriedades Ed.
HEMUS 1997
Higgins, R. A. PROPRIEDADES E ESTRUTURAS DOS MATERIAIS EM
ENGENHARIA Difel 1977
Dieter, G. E. METALURGIA MECÂNICA 2a
edição Editora Guanabara Dois 1976
Campos Filho, M. P. A ESTRUTURA DOS MATERIAIS 2a
edição Editora da
UNICAMP 1991
Introdução e ligações químicas
Marcelo F. Moreira
3
Souza, S.A. ENSAIOS MECÂNICOS DE MATERIAIS METÁLICOS Editora Edgard
Blücher Ltda 1982
Chiaverini,V. TECNOLOGIA MECÂNICA V.1 Processos de fabricação 1a
edição
McGraw Hill 1977
Metals Handbook Volume 2 PROPERTIES AND SELECTION: NONFERROUS
ALLOYS AND SPECIAL PROPOSE ALLOYS 8th edition A.S.M. 1979
Theining, K. E. STEEL AND ITS HEAT TREATEMENT 2nd
edition Butterworths
1975
Souza Santos, A B; Castello Branco, Carlos Haydt METALURGIA DOS FERROS
FUNDIDOS CINZENTOS E NODULARES IPT São Paulo 1989
Cetlin, P.R. ; Silva P. S. P. da ANÁLISE DE FRATURAS A B M 1985
Metals Handbook Volume 15 CASTING 9th edition A.S.M. 1988
Zepbour Panossian Manual: CORROSÃO E PROTEÇÃO CONTRA CORROSÃO EM
EQUIPAMENTOS E ESTRUTURAS METÁLICAS Volumes I e II - IPT 1993
Metals Handbook Volume 9 METALOGRAPHY AND MICROSTRUCTURES 9th
edition A.S.M. 1988
ASM Specialty Handbook – Aluminum and aluminum alloys ASM International
1993
INTRODUÇÃO
IMPORTÂNCIA E APLICAÇÕES DOS MATERIAIS NA ENGENHARIA:
Os materiais estão profundamente embutidos em nossa civilização.
Alimentação, habitação, transportes, vestuário, comunicações, recreação, saúde e
segurança, ou seja, todos os segmentos de nossa vida cotidiana são dependentes
dos materiais.
O desenvolvimento e avanços da nossa civilização sempre foram avaliados pela
capacidade de seus membros de produzirem e manipularem os diversos materiais da
natureza. De fato, as civilizações antigas são designadas pelo tipo de material que
estas dominavam:
• Idade da pedra (~7000 AC)
• Idade do cobre
• Idade do bronze (~3500 AC)
• Idade do ferro (~1200 AC)
Os homens primitivos tinham acesso apenas aos materiais da natureza como
pedras, madeira, ossos e peles. Com o passar do tempo foram inventadas técnicas de
processamento de outros materiais, obtendo-se propriedades muito superiores à dos
materiais disponíveis na natureza.
Somente na idade do ferro, descobriu-se que as propriedades do aço poderiam
ser alteradas por meio de tratamentos térmicos e adição de outras substâncias. Neste
ponto, o emprego dos materiais já passava por um processo de seleção, no qual, não
mais se empregavam um pequeno grupo de materiais, mas sim, de materiais com
características mais adequadas para uma dada aplicação. Um exemplo disto são as
técnicas de fabricação de espadas.
Introdução e ligações químicas
Marcelo F. Moreira
4
Somente com a 2ª Guerra Mundial, os cientistas passaram compreender as
relações entre a estrutura microscópica e as propriedades mecânicas para uma dada
composição química.
A partir daí, e ainda com o advento do microscópio eletrônico em 1960, foram
criados dezenas de milhares de materiais com características "projetadas" para
satisfazer a necessidade da sociedade. Surge neste período a Engenharia de
Materiais.
Composição
química
Propriedades
físicas e
mecânicas
Macro e microestrutura
O exemplo clássico desta época foi o inserto de metal duro ou “WI-DIA”
(partículas de WC, extremamente duras, sob uma matriz de cobalto tenaz). Outros
exemplos incluem1
:
cerâmicas avançadas (alumina translúcida para lâmpadas de vapor de Na);
materiais biocompatíveis (implantes ortopédicos e odontológicos);
superligas a base de Ni (palhetas de turbinas a gás);
polímeros de alta resistência (Kevlar);
materiais compósitos (compósitos á base de fibras de vidro e fibras de
carbono);
imãs de alto poder magnético (Nd-Fe-B);
ligas com memória de forma (nitinol) e
isolantes térmicos cerâmicos à base de fibras de SiO2 (Revestimento do
ônibus espacial americano).
Cada vez mais o desenvolvimento sustentável dos países em desenvolvimento
dependem do domínio de novos materiais e de novas técnicas de fabricação de
materiais. Alguns índices de desenvolvimento têm como base o consumo per capita
de materiais tradicionais ou de materiais avançados. Por exemplo, o consumo per
capita de alumínio no EUA é de aproximadamente 9 kg/ano enquanto que no Brasil é
de apenas 2 kg/ano.
A seguir, são apresentados alguns exemplos de materiais e componentes cujo
desenvolvimento ocorreu por meio da engenharia de materiais.
1
Scientific American 1986 v. 255 n° 4
Introdução e ligações químicas
Marcelo F. Moreira
5
Exemplo 1
ALUMINA TRANSLÚCIDA PARA LÂMPADAS DE VAPOR DE Na
Lâmpada convencional (filamento de W): produz 15 lumen/W, apresenta
microestrutura com granulação grosseira e heterogênea e porosidade > 3%.
Lâmpada de vapor de Na: produz 100 lumen/W, apresenta microestrutura com
granulação refinada e homogênea e porosidade < 0,3%.
INSERTOS PARA USINAGEM
Outra aplicação da alumina, decorrente dos estudos de ciência dos materiais, é
o seu emprego na fabricação de insertos para usinagem de metais. A alumina (Al2O3)
apresenta dureza elevada (por volta de 2000 HK, 9 na escala de Mohs) e elevada
resistência ao calor (temperatura de fusão é de 2050ºC). Entretanto, peças maciças
de alumina são extremamente frágeis. Os insertos para usinagem apresentam uma
microestrutura composta por partículas de alumina aglomeradas com um ligante
capaz de compatibilizar a elevada dureza e resistência ao calor das partículas de
alumina com elevada resistência ao impacto.
Introdução e ligações químicas
Marcelo F. Moreira
6
Exemplo 2
SUPERLIGAS Á BASE DE NÍQUEL
(Palhetas de turbinas á gás)
• O termo superliga, do inglês "superalloy", decorre do emprego de uma liga
empregada em implantes ortopédicos (Vitallium) ter sido empregada para a
fabricação de palhetas dos primeiros motores a jato na década de 40 (Haynes 21).
Naquela época o prefixo "super" era muito difundido pelas aventuras do herói
fictício Superman. Assim, tal liga, empregada como material biocompatível e
também como material resistente ao calor, foi chamada como uma superliga.
Recentemente o termo superliga é empregado para materiais resistentes ao calor.
As superligas à base de Ni apresentam elevada resistência mecânica, resistência
ao calor e elevada resistência à corrosão. São empregadas na fabricação de
componentes de turbinas á gás que operam em temperaturas entre 700 e 1300°C.
Microestrutura típica de uma superliga à base de Ni monocristalina (CMSX 7)
Introdução e ligações químicas
Marcelo F. Moreira
7
Exemplo 3
LIGAS BIOCOMPATÍVEIS
As ligas biocompatíveis são ligas à base de Ti, Fe, Ni ou Co empregadas em
implantes ortopédicos e odontológicos. Sua principal característica é a ausência de
reação com os fluidos corpóreos.
Prótese para fêmur: fabricada em liga de Ti com esfera em cerâmica (alumina) e
acetábulo em polietileno de alta densidade.
As ligas á base de Fe foram as primeiras a serem utilizadas em implantes
ortopédicos. Entre elas, destaca-se o emprego dos aços inoxidáveis austeníticos
refinados à vácuo. Este refino tem como objetivo a redução de inclusões não
metálicas presentes no processo de produção convencional.
As ligas á base de Co apresentam propriedades biocompatíveis superiores ás
ligas á base de Fe. Destaca-se o uso da liga ASTM F75, também conhecida como
Vitallium e sua variante mais famosa a liga Haynes 21 (Co-25%Cr-5%Mo).
Mais recentemente, grande parte das próteses ortopédicas é fabricada com
ligas à base de Ti. Isto decorre do fato destas ligas apresentarem elevada resistência
mecânica (em torno de 120 kgf/mm2
) e menor densidade. As ligas mais utilizadas são
variantes da liga Ti-6%Al-4%V, refinadas sob vácuo.
Introdução e ligações químicas
Marcelo F. Moreira
8
Exemplo 4
SUPERÍMÃS
Os superimãs de Nd-Fe-B são imãs permanentes capazes de desenvolver campos
magnéticos de alta intensidade. São largamente empregados em projetos de
miniaturização de motores elétricos.
Exemplo 5
LIGAS COM MEMÓRIA DE FORMA
As ligas com memória de forma são capazes de voltar a forma original, após terem
sofrido uma deformação, mediante um aquecimento de apenas 30ºC. A liga mais
conhecida por este efeito é a Nitinol (50% Ni e 50% Ti). Outra característica
importante desta liga é a sua capacidade de amortecer vibrações mecânicas. Na
década de 60, variantes da liga Nitinol foram empregadas no desenvolvimento de
hélices de submarinos chamadas de "silent propellers".
Introdução e ligações químicas
Marcelo F. Moreira
9
Quando passamos a pensar nas características dos materiais de engenharia, a
primeira questão que vem a tona é:
As propriedades de um material seriam proporcionais à força das
ligações entre seus átomos ?
A resposta para esta questão requer uma breve revisão sobre os conceitos de
átomos e de ligações atômicas.
MODELOS ATÔMICOS
Modelo do átomo segundo Bohr
Comparação entre os modelos de Bohr e modelo quântico
Introdução e ligações químicas
Marcelo F. Moreira
10
CONCEPÇÃO MODERNA DO ÁTOMO E SUAS SUB-PARTÍCULAS
Introdução e ligações químicas
Marcelo F. Moreira
11
Observação de átomos em microscópios de tunelamento (STM)
Em um STM, uma ponta extremamente fina varre uma superfície de alguns
nanômetros ponto-a-ponto e linha por linha. Em cada ponto, uma corrente entre a
ponta e a superfície é medida, esta corrente diminui exponencialmente com o
aumento da distância.
Por meio de um computador, a posição vertical da ponta pode ser ajustada
para uma distância constante. Os ajustes realizados são arquivados e definem uma
matriz de valores que pode ser apresentada com uma figura em tons de cinza. Os
valores da matriz são empregados para deformá-la para uma figura com três
dimensões. As figuras são coloridas de acordo com a altura ou a curvatura.
Apresentam-se a seguir exemplos de superfícies de átomos observados por
meio da microscópia de varredura (STM – Scanning Tunneling Micrscopy):
Átomos de níquel (Ni)
Plano (110) do reticulado CFC
Nota-se a regularidade do arranjo, típica
dos materiais cristalinos.
Don Eigler
(www.almaden.ibm.com/vis/stm)
Defeitos pontuais no cobre (Cu)
Plano (111) do reticulado CFC
Nota-se a deformação circular
provocada pela presença dos defeitos.
Eigler
(www.almaden.ibm.com/vis/stm)
Introdução e ligações químicas
Marcelo F. Moreira
12
MANIPULAÇÃO DE ÁTOMOS NO MICROSCÓPIO DE TUNELAMENTO.
(www.almaden.ibm.com/vis/stm)
1990
1993
Vista geral de planos no cobre (Cu)
Planos (111) do reticulado CFC
Nota-se a presença de defeitos pontuais.
Eigler
(www.almaden.ibm.com/vis/stm)
Átomo de xenônio (Xe) sobre a
superfície de níquel (Ni)
Plano (110) de Ni
Eigler
(www.almaden.ibm.com/vis/stm)
Introdução e ligações químicas
Marcelo F. Moreira
13
As ligações químicas podem ser classificadas em ligações fortes e ligações
fracas, sendo que a energia das ligações fortes é cerca de 100 vezes superior à das
ligações fracas.
LIGAÇÕES FORTES
LIGAÇÃO IÔNICA
• Exemplo de ligação puramente iônica: NaCl
• O sódio (Na) transfere um elétron para o cloro (Cl) formando íons Na+ e Cl- com
estruturas eletrônicas estáveis
• Atração eletrostática entre cátions e ânions
• A ligação NÃO apresenta direcionalidade, isto é, a energia de ligação é igual em
todas as direção do cristal
• Relação entre os raios iônicos determina a forma do cristal
• As energias de ligação, entre 3 e 8 eV, são relativamente altas e assim estes
materiais apresentam temperaturas de fusão elevadas.
• Materiais em que a ligação iônica é predominante: CERÂMICAS
Introdução e ligações químicas
Marcelo F. Moreira
14
LIGAÇÃO COVALENTE
• Átomos adjacentes compartilham orbital eletrônico de modo a apresentarem
estruturas eletrônicas estáveis. Este compartilhamento é muito comum na maioria
das moléculas orgânicas. (CH4)
• São fortemente direcionais, em outras palavras, resulta em um determinado ângulo
de ligação, como ilustra a formação de água da figura abaixo. Em uma ligação
covalente ideal, os pares de elétrons são igualmente compartilhados. Na ligação da
H2O, ocorre uma transferência de carga parcial fazendo com que o H fique
levemente positivo e o O levemente negativo. Este compartilhamento desigual
resulta em uma ligação polar. As ligações entre átomos diferentes têm sempre
algum grau de polaridade. Ligações nas quais os dois lados da molécula são
idênticos (H2, N2 ) são apolares.
• Alguns compostos cerâmicos como o BN e o SIC apresentam caráter covalente
predominante. Outro material que tem ligação covalente predominante é o
diamante.
Introdução e ligações químicas
Marcelo F. Moreira
15
LIGAÇÃO METÁLICA
• Os metais apresentam 1, 2, e no máximo, 3 elétrons de valência. Estes elétrons
não estão ligados a nenhum átomo em particular.
• Conceito da nuvem eletrônica (Em um dado instante, a última camada está
completa)
• As energias de ligação estão entre 0,7 e 8,8 eV/átomo
• A ligação NÃO apresenta direcionalidade e como conseqüência dos elétrons
“livres”, os metais apresentam boa condutibilidade térmica e elétrica.
• A ligação metálica possui uma ampla faixa de energias de ligação que vão desde o
mercúrio (Hg), com 68 kJ/mol e ponto de fusão de -39°C, até o tungstênio (W)com
849 kJ/mol e ponto de fusão de 3410°C.
Introdução e ligações químicas
Marcelo F. Moreira
16
LIGAÇÕES FRACAS
(secundárias ou ligações de van der Waals)
• A denominação de ligação de van der Waals é utilizada como designação geral
para todos os tipos de ligações secundárias (fracas). A principal causa para a
ocorrência de ligações fracas é a polarização da molécula. Os dipolos são
classificados em permanentes (moléculas de H2O) ou induzidos (átomos de Ar).
• Os polímeros em geral, e os plásticos e borrachas em particular, têm sua estrutura
formada por longas moléculas covalentes unidas entre si por meio de ligações
dipolares fracas.
Dipolos permanentes
Dipolos induzidos
Introdução e ligações químicas
Marcelo F. Moreira
17
EXEMPLO DA FORMAÇÃO DE UM CRISTAL IÔNICO
Forças de atração coulombiana (FA): dependentes do tipo de ligação entre os dois
átomos: 2
1
a
FA ∝
Forças de repulsão nuclear: Forças intensas resultantes da repulsão nuclear:
nR
a
b
F =
onde: b é uma constante de proporcionalidade e n pode variar entre 9 e 10
Introdução e ligações químicas
Marcelo F. Moreira
18
EXEMPLO DA FORMAÇÃO DE UM CRISTAL IÔNICO
• Verifica-se pelas figuras anteriores que a energia de repulsão aumenta
exponencialmente (a9
) quando tentamos aproximar dois átomos a uma distância
inferior a a0. Assim, nas ligações fortes (iônica, covalente e metálica) os átomos e
moléculas podem ser representados por um modelo físico denominado MODELO
DE ESFERAS RÍGIDAS
Introdução e ligações químicas
Marcelo F. Moreira
19
MATERIAIS DE ENGENHARIA E SUAS LIGAÇÃO QUÍMICAS
Os materiais de engenharia são classificados em quatro grupos principais:
materiais metálicos;
materiais poliméricos;
materiais cerâmicos e
materiais compósitos.
Esta classificação é baseada na estrutura atômica e nas ligações químicas
predominantes em cada grupo. Um quinto grupo que foi incorporado nesta
classificação nas últimas décadas é o grupo dos materiais semicondutores.
1- Materiais metálicos:
Os materiais metálicos são constituídos por um ou mais elementos metálicos
combinados, formando uma liga. Eles apresentam um grande número de elétrons que
não estão ligados a nenhum átomo em particular, formando uma nuvem eletrônica.
Várias propriedades dos metais e ligas estão diretamente relacionadas a este tipo de
ligação atômica. Os metais são excelentes condutores de eletricidade e de calor e não
são transparentes á luz visível. A superfície dos metais, quando polida, tem a
aparência de um espelho (na realidade, os espelhos possuem uma camada de
alumínio metálico do outro lado do vidro que reflete a luz). Os materiais metálicos são
muito usados em aplicações estruturais devido a sua elevada resistência mecânica e
ductilidade (facilidade de conformação).
2- Materiais cerâmicos:
Os materiais cerâmicos são compostos entre elementos metálicos e não-metálicos,
principalmente o oxigênio, o nitrogênio e o carbono, formando os óxidos, os nitretos e
os carbonetos, respectivamente. Existe um grande número de materiais que entram
nesta classificação, entre eles estão a argila, o cimento e o vidro. Estes materiais são,
normalmente, isolantes elétricos, apresentam baixa condutividade térmica e são mais
resistentes ás altas temperaturas e a alguns ambientes agressivos que os metais e os
polímeros. Quando as propriedades mecânicas, os materiais cerâmicos são duros,
porém frágeis (não se deformam).
3- Materiais poliméricos:
Os materiais poliméricos incluem as famílias dos plásticos e borrachas. A maiorias
deles são compostos orgânicos e são quimicamente baseados em carbono,
hidrogênio e outros elementos não-metálicos e, além disso, apresentam longas
estruturas moleculares. Os polímeros são materiais tipicamente flexíveis (alta
ductilidade) e de baixa densidade.
4- Materiais compósitos:
Os materiais compósitos, em sua maioria, são formados por mais de um tipo de
material. Apesar de ser uma frente recente de desenvolvimento de novos materiais,
os compósitos são empregados pelo homem há muito tempo. Muitos materiais de
origem natural: a madeira e os ossos são compósitos. Um exemplo típico de um
compósito desenvolvido pelo homem é a fibra de vidro (Fiberglass) que consiste de
fibras de vidro envolvidas por um material polimérico (uma resina epóxi tipo Araldite).
Introdução e ligações químicas
Marcelo F. Moreira
20
Os materiais compósitos são desenvolvidos para apresentar as melhores
propriedades de cada um dos materiais que o compõem. A fibra de vidro adquire a
resistência do vidro e a flexibilidade do polímero. Um grande números de novos
materiais recentemente desenvolvidos são compósitos.
5- Materiais semicondutores:
Os materiais semicondutores apresentam propriedades elétricas intermediárias
entre os condutores e os isolantes elétricos. Além disso, as características elétricas
destes materiais são extremamente sensíveis á presença de concentrações mínimas
de impurezas atômicas, as quais são muito bem controladas. Os materiais
semicondutores possibilitaram o desenvolvimento do transistor e dos circuitos
integrados, que revolucionaram a indústria eletrônica nas últimas três décadas.
Caráter da ligação atômica para as quatro classes de materiais de engenharia
Classe de
materiais
Caráter
predominante
da ligação
Exemplos: Características
Metálicos
Metálica Ferro (Fe) e ligas
ferrosas
Elevada temperatura de
fusão
Alta condutividade
térmica e elétrica
opacidade
Cerâmicas e
vidros
Iônica /
covalente
Sílica (SiO2) cristalina,
e não-cristalina
Elevada temperatura de
fusão
Translúcidos
Baixa condutividade
térmica e elétrica
Polímeros
Covalente e
van der Waals
Polietileno (C2H4) Baixa temperatura de
fusão
Translúcidos
Baixa condutividade
térmica e elétrica
Semicondutores
Covalente ou
covalente /
iônica
Silício (Si) ou sulfeto
de Cádmio (CdS)
Condutividade elétrica
dependente da
temperatura
Introdução e ligações químicas
Marcelo F. Moreira
21
RELAÇÃO ENTRE A LIGAÇÃO QUÍMICA, ENERGIA DE LIGAÇÃO E
PROPRIEDADES TÉRMICAS
Temperatura de fusão e coeficiente de dilatação térmica
Tomando-se a curva de energia de ligação em função da distância interatômica,
podemos associar a temperatura de fusão de um metal com a “profundidade” da
curva. Ou seja, quanto maior energia necessária para a separação de uma ligação
metálica (ET0), maior a temperatura de fusão para aquele metal.
Outra característica relevante destas curvas é que quanto maior for energia
necessária para a separação da ligação (ET0), menor serão os espaçamentos
interatômicos para um dado nível de energia.
Assim, por exemplo, se tomarmos um metal cuja energia de ligação seja
elevada, sua temperatura de fusão será elevada e as distâncias interatômicas para um
determinado nível de energia serão pequenas, resultando em um pequeno coeficiente
de dilatação térmica. Estas relações podem ser verificadas pelas figuras abaixo:
Na figura acima verifica-se, com base em dados experimentais, a relação entre
temperatura de fusão (ou energia de ligação) com o coeficiente de dilatação térmica.
A figura divide as substâncias analisadas pelo tipo de ligação presente (metálica,
covalente e iônica).
Introdução e ligações químicas
Marcelo F. Moreira
22
A tabela abaixo apresenta relaciona a energias de ligação de algumas
substâncias com a temperatura de fusão, de acordo com o tipo de ligação química.
Energia de ligação
Tipo da ligação Substância [KJ/mol] [eV/átomo, íon ou
molécula]
Temperatura
de fusão
[°C]
Iônica NaCl 640 3.3 801
MgO 1000 5.2 2800
Covalente Si 450 4.7 1410
C
(diamante)
713 7.4 > 3550
Metálica Hg 68 0.7 -39
Al 324 3.4 660
Fe 406 4.2 1538
W 849 8.8 3410
Van der Waals Ar 7.7 0.08 -189
Cl2 31 0.32 -101
Pontes de
hidrogênio
NH3 35 0.36 -78
H2O 51 0.52 0
Com base no exposto nestas aulas, podemos concluir que a energia de ligação
química relaciona-se com as seguintes propriedades:
temperatura de fusão,
coeficiente de dilatação ou expansão térmica,
módulo de elasticidade (E) e
a transparência ou opacidade.
É importante notar que a resistência mecânica de um material (limite de
escoamento ou o limite de resistência) não está relacionada com a energia de ligação
deste. De fato, a resistência mecânica é governada por defeitos presentes na
estrutura cristalina, como veremos adiante.

Mais conteúdo relacionado

Mais procurados

Boas Praticas e uso do Cobre na Climatização e Refrigeração - SENAI - ABRAVA ...
Boas Praticas e uso do Cobre na Climatização e Refrigeração - SENAI - ABRAVA ...Boas Praticas e uso do Cobre na Climatização e Refrigeração - SENAI - ABRAVA ...
Boas Praticas e uso do Cobre na Climatização e Refrigeração - SENAI - ABRAVA ...Ulisses Ricardo Romão
 
37473822 prevencao-da-corrosao-em-elementos-metalicos
37473822 prevencao-da-corrosao-em-elementos-metalicos37473822 prevencao-da-corrosao-em-elementos-metalicos
37473822 prevencao-da-corrosao-em-elementos-metalicosProfjorge Silva
 
Aula 3- Principais Tipos de Corrosão
Aula 3- Principais Tipos de CorrosãoAula 3- Principais Tipos de Corrosão
Aula 3- Principais Tipos de Corrosãoprimaquim
 
Processo de soldagem ufmg
Processo de soldagem ufmgProcesso de soldagem ufmg
Processo de soldagem ufmgAdilmar Cardozo
 
Materiais metálicos para a construção de reatores anaeróbios
Materiais metálicos para a construção de reatores anaeróbiosMateriais metálicos para a construção de reatores anaeróbios
Materiais metálicos para a construção de reatores anaeróbiosJose de Souza
 
Introdução à Corrosão - Autor desconhecido
Introdução à Corrosão - Autor desconhecidoIntrodução à Corrosão - Autor desconhecido
Introdução à Corrosão - Autor desconhecidoLaura Marques
 
Palestra viabilidade nas construções análise dos sistemas construtivos em con...
Palestra viabilidade nas construções análise dos sistemas construtivos em con...Palestra viabilidade nas construções análise dos sistemas construtivos em con...
Palestra viabilidade nas construções análise dos sistemas construtivos em con...Edson Fernando Leite Filho
 
Materiais de construção civil isbet compressed
Materiais de construção civil   isbet compressedMateriais de construção civil   isbet compressed
Materiais de construção civil isbet compressedProfessorRogerioSant
 
consumiveisNomeclatura consumiveis
consumiveisNomeclatura consumiveisconsumiveisNomeclatura consumiveis
consumiveisNomeclatura consumiveisVenicio Acherman
 
Corrosão dos metais
Corrosão dos metaisCorrosão dos metais
Corrosão dos metaisIsaquebadboy
 
Extensão da vida útil das estruturas de concreto com uso de armaduras de aço ...
Extensão da vida útil das estruturas de concreto com uso de armaduras de aço ...Extensão da vida útil das estruturas de concreto com uso de armaduras de aço ...
Extensão da vida útil das estruturas de concreto com uso de armaduras de aço ...Adriana de Araujo
 
Construção metálica
Construção metálicaConstrução metálica
Construção metálicaJuliana Silva
 
Os metais e as suas propriedades
Os metais e as suas propriedadesOs metais e as suas propriedades
Os metais e as suas propriedadesAnaFPinto
 

Mais procurados (20)

Boas Praticas e uso do Cobre na Climatização e Refrigeração - SENAI - ABRAVA ...
Boas Praticas e uso do Cobre na Climatização e Refrigeração - SENAI - ABRAVA ...Boas Praticas e uso do Cobre na Climatização e Refrigeração - SENAI - ABRAVA ...
Boas Praticas e uso do Cobre na Climatização e Refrigeração - SENAI - ABRAVA ...
 
Corrosão de metais
Corrosão de metaisCorrosão de metais
Corrosão de metais
 
37473822 prevencao-da-corrosao-em-elementos-metalicos
37473822 prevencao-da-corrosao-em-elementos-metalicos37473822 prevencao-da-corrosao-em-elementos-metalicos
37473822 prevencao-da-corrosao-em-elementos-metalicos
 
Cobre e Ferro
Cobre e FerroCobre e Ferro
Cobre e Ferro
 
Aula 3- Principais Tipos de Corrosão
Aula 3- Principais Tipos de CorrosãoAula 3- Principais Tipos de Corrosão
Aula 3- Principais Tipos de Corrosão
 
Processo de soldagem ufmg
Processo de soldagem ufmgProcesso de soldagem ufmg
Processo de soldagem ufmg
 
Cobre e suas ligas
Cobre e suas ligasCobre e suas ligas
Cobre e suas ligas
 
Materiais metálicos para a construção de reatores anaeróbios
Materiais metálicos para a construção de reatores anaeróbiosMateriais metálicos para a construção de reatores anaeróbios
Materiais metálicos para a construção de reatores anaeróbios
 
Estrutura de aço para telhados
Estrutura de aço para telhadosEstrutura de aço para telhados
Estrutura de aço para telhados
 
Introdução à Corrosão - Autor desconhecido
Introdução à Corrosão - Autor desconhecidoIntrodução à Corrosão - Autor desconhecido
Introdução à Corrosão - Autor desconhecido
 
Palestra viabilidade nas construções análise dos sistemas construtivos em con...
Palestra viabilidade nas construções análise dos sistemas construtivos em con...Palestra viabilidade nas construções análise dos sistemas construtivos em con...
Palestra viabilidade nas construções análise dos sistemas construtivos em con...
 
Materiais de construção civil isbet compressed
Materiais de construção civil   isbet compressedMateriais de construção civil   isbet compressed
Materiais de construção civil isbet compressed
 
Luminária ON e o aço inox
Luminária ON e o aço inoxLuminária ON e o aço inox
Luminária ON e o aço inox
 
consumiveisNomeclatura consumiveis
consumiveisNomeclatura consumiveisconsumiveisNomeclatura consumiveis
consumiveisNomeclatura consumiveis
 
Corrosão dos metais
Corrosão dos metaisCorrosão dos metais
Corrosão dos metais
 
Materiais
Materiais Materiais
Materiais
 
Extensão da vida útil das estruturas de concreto com uso de armaduras de aço ...
Extensão da vida útil das estruturas de concreto com uso de armaduras de aço ...Extensão da vida útil das estruturas de concreto com uso de armaduras de aço ...
Extensão da vida útil das estruturas de concreto com uso de armaduras de aço ...
 
Construção metálica
Construção metálicaConstrução metálica
Construção metálica
 
Slides corrosão por corrente de fuga
Slides corrosão por corrente de fugaSlides corrosão por corrente de fuga
Slides corrosão por corrente de fuga
 
Os metais e as suas propriedades
Os metais e as suas propriedadesOs metais e as suas propriedades
Os metais e as suas propriedades
 

Destaque

Destaque (6)

Materiais metalicos
Materiais metalicosMateriais metalicos
Materiais metalicos
 
Cien mat propriedades mecanicas
Cien mat propriedades mecanicasCien mat propriedades mecanicas
Cien mat propriedades mecanicas
 
Seleção de Materiais
Seleção de MateriaisSeleção de Materiais
Seleção de Materiais
 
Tecnologia dos Materiais 1
Tecnologia dos Materiais 1Tecnologia dos Materiais 1
Tecnologia dos Materiais 1
 
Estrutura cristalina
Estrutura cristalinaEstrutura cristalina
Estrutura cristalina
 
Tecnologia dos materiais
Tecnologia dos materiaisTecnologia dos materiais
Tecnologia dos materiais
 

Semelhante a Introdução às ligações químicas e aplicações de materiais na engenharia

Aula 08 de ciências naturais e suas tecnologias
Aula 08 de ciências naturais e suas tecnologiasAula 08 de ciências naturais e suas tecnologias
Aula 08 de ciências naturais e suas tecnologiasHomero Alves de Lima
 
Aços inoxidáveis duplex e super duplex obtenção e
Aços inoxidáveis duplex e super duplex   obtenção eAços inoxidáveis duplex e super duplex   obtenção e
Aços inoxidáveis duplex e super duplex obtenção eAdelmo SEAV Ribeiro Moreira
 
Aru suzy apostila_tecnologia_dos_materiais
Aru suzy apostila_tecnologia_dos_materiaisAru suzy apostila_tecnologia_dos_materiais
Aru suzy apostila_tecnologia_dos_materiaisRicardoTadeuAurelian
 
Elementos org. de máquinas i parte 4
Elementos org. de máquinas i   parte 4Elementos org. de máquinas i   parte 4
Elementos org. de máquinas i parte 4Olivio Gustavo Conte
 
Tratamento e Propriedade dos Materiais - V2.pptx
Tratamento e Propriedade dos Materiais - V2.pptxTratamento e Propriedade dos Materiais - V2.pptx
Tratamento e Propriedade dos Materiais - V2.pptxSamuelCaldas6
 
Tratamentos térmicos de aços ferramentas [braz]
Tratamentos térmicos de aços ferramentas [braz]Tratamentos térmicos de aços ferramentas [braz]
Tratamentos térmicos de aços ferramentas [braz]EngenheiroMarcio
 
Aula 01 e Aula 02 - aulas um e doisb.pdf
Aula 01 e Aula 02 - aulas um e doisb.pdfAula 01 e Aula 02 - aulas um e doisb.pdf
Aula 01 e Aula 02 - aulas um e doisb.pdfkarinnasanttosever
 
Aula 01 e Aula 02 - aulas um e doisb.pdf
Aula 01 e Aula 02 - aulas um e doisb.pdfAula 01 e Aula 02 - aulas um e doisb.pdf
Aula 01 e Aula 02 - aulas um e doisb.pdfkarinnasanttosever
 
O que é que o gusa tem luisa ometto dal prete
O que é que o gusa tem luisa ometto dal preteO que é que o gusa tem luisa ometto dal prete
O que é que o gusa tem luisa ometto dal preteLuisa Ometto Dal Prete
 
Introdução a materiais em engenharia elétrica
Introdução a materiais em engenharia elétricaIntrodução a materiais em engenharia elétrica
Introdução a materiais em engenharia elétricaMatheus Vale
 
Acos inoxidaveis aplicacoes_e_especifica
Acos inoxidaveis aplicacoes_e_especificaAcos inoxidaveis aplicacoes_e_especifica
Acos inoxidaveis aplicacoes_e_especificajcjaneiro
 
I Seminário Tratamentos Térmicos "IH"
I Seminário Tratamentos Térmicos "IH"I Seminário Tratamentos Térmicos "IH"
I Seminário Tratamentos Térmicos "IH"João Carmo Vendramim
 
Revisão prova 1 unidade 1 ano
Revisão prova 1 unidade 1 anoRevisão prova 1 unidade 1 ano
Revisão prova 1 unidade 1 anoRodrigo Sampaio
 
Tpicos especiais em_cincia_dos_materiais_-_1_introduo
Tpicos especiais em_cincia_dos_materiais_-_1_introduoTpicos especiais em_cincia_dos_materiais_-_1_introduo
Tpicos especiais em_cincia_dos_materiais_-_1_introduoMarianaDias735764
 
Materiais têm personalidade luisa ometto dal prete
Materiais têm personalidade luisa ometto dal preteMateriais têm personalidade luisa ometto dal prete
Materiais têm personalidade luisa ometto dal preteLuisa Ometto Dal Prete
 
Estudo das propriedades mecânicas de uma estrutura de alumínio poroso
Estudo das propriedades mecânicas de uma estrutura de alumínio porosoEstudo das propriedades mecânicas de uma estrutura de alumínio poroso
Estudo das propriedades mecânicas de uma estrutura de alumínio porosoFelipe José Lucchesi Rocha
 

Semelhante a Introdução às ligações químicas e aplicações de materiais na engenharia (20)

Aula 08 de ciências naturais e suas tecnologias
Aula 08 de ciências naturais e suas tecnologiasAula 08 de ciências naturais e suas tecnologias
Aula 08 de ciências naturais e suas tecnologias
 
Aços inoxidáveis duplex e super duplex obtenção e
Aços inoxidáveis duplex e super duplex   obtenção eAços inoxidáveis duplex e super duplex   obtenção e
Aços inoxidáveis duplex e super duplex obtenção e
 
Aru suzy apostila_tecnologia_dos_materiais
Aru suzy apostila_tecnologia_dos_materiaisAru suzy apostila_tecnologia_dos_materiais
Aru suzy apostila_tecnologia_dos_materiais
 
Elementos org. de máquinas i parte 4
Elementos org. de máquinas i   parte 4Elementos org. de máquinas i   parte 4
Elementos org. de máquinas i parte 4
 
Tratamento e Propriedade dos Materiais - V2.pptx
Tratamento e Propriedade dos Materiais - V2.pptxTratamento e Propriedade dos Materiais - V2.pptx
Tratamento e Propriedade dos Materiais - V2.pptx
 
Tratamentos térmicos de aços ferramentas [braz]
Tratamentos térmicos de aços ferramentas [braz]Tratamentos térmicos de aços ferramentas [braz]
Tratamentos térmicos de aços ferramentas [braz]
 
Aula 01 e Aula 02 - aulas um e doisb.pdf
Aula 01 e Aula 02 - aulas um e doisb.pdfAula 01 e Aula 02 - aulas um e doisb.pdf
Aula 01 e Aula 02 - aulas um e doisb.pdf
 
Aula 01 e Aula 02 - aulas um e doisb.pdf
Aula 01 e Aula 02 - aulas um e doisb.pdfAula 01 e Aula 02 - aulas um e doisb.pdf
Aula 01 e Aula 02 - aulas um e doisb.pdf
 
O que é que o gusa tem luisa ometto dal prete
O que é que o gusa tem luisa ometto dal preteO que é que o gusa tem luisa ometto dal prete
O que é que o gusa tem luisa ometto dal prete
 
Ferrofinall
FerrofinallFerrofinall
Ferrofinall
 
Seminario pp1-metais nao ferrosos
Seminario pp1-metais nao ferrososSeminario pp1-metais nao ferrosos
Seminario pp1-metais nao ferrosos
 
Introdução a materiais em engenharia elétrica
Introdução a materiais em engenharia elétricaIntrodução a materiais em engenharia elétrica
Introdução a materiais em engenharia elétrica
 
Acos inoxidaveis aplicacoes_e_especifica
Acos inoxidaveis aplicacoes_e_especificaAcos inoxidaveis aplicacoes_e_especifica
Acos inoxidaveis aplicacoes_e_especifica
 
Matec 1b
Matec 1bMatec 1b
Matec 1b
 
I Seminário Tratamentos Térmicos "IH"
I Seminário Tratamentos Térmicos "IH"I Seminário Tratamentos Térmicos "IH"
I Seminário Tratamentos Térmicos "IH"
 
processo.pdf
processo.pdfprocesso.pdf
processo.pdf
 
Revisão prova 1 unidade 1 ano
Revisão prova 1 unidade 1 anoRevisão prova 1 unidade 1 ano
Revisão prova 1 unidade 1 ano
 
Tpicos especiais em_cincia_dos_materiais_-_1_introduo
Tpicos especiais em_cincia_dos_materiais_-_1_introduoTpicos especiais em_cincia_dos_materiais_-_1_introduo
Tpicos especiais em_cincia_dos_materiais_-_1_introduo
 
Materiais têm personalidade luisa ometto dal prete
Materiais têm personalidade luisa ometto dal preteMateriais têm personalidade luisa ometto dal prete
Materiais têm personalidade luisa ometto dal prete
 
Estudo das propriedades mecânicas de uma estrutura de alumínio poroso
Estudo das propriedades mecânicas de uma estrutura de alumínio porosoEstudo das propriedades mecânicas de uma estrutura de alumínio poroso
Estudo das propriedades mecânicas de uma estrutura de alumínio poroso
 

Introdução às ligações químicas e aplicações de materiais na engenharia

  • 1. Introdução e ligações químicas Marcelo F. Moreira 1 ETM 201 Notas de aula Marcelo F. Moreira Materiais de Construção Mecânica
  • 2. Introdução e ligações químicas Marcelo F. Moreira 2 Caros alunos, O presente curso tem como objetivo apresentar os fundamentos básicos de ciência dos materiais e de engenharia metalúrgica aos alunos de engenharia mecânica e engenharia de produção mecânica. Os cursos de ciência dos materiais da Escola de Engenharia Mauá são divididos em dois módulos: 1. materiais metálicos e 2. materiais poliméricos e cerâmicos As presentes notas de aula abordam os temas relacionados aos materiais metálicos comumente empregados na engenharia mecânica. É relevante destacar que o objetivo destas notas de aula é o de orientar o aluno no acompanhamento do livro texto e das referências complementares do curso. A seqüência dos temas propostos pode variar de disciplina para disciplina, assim, recomenda-se ao aluno acompanhar o plano de curso de sua disciplina Cada tema está, na medida do possível, referenciado, indicando ao aluno um livro texto ou um artigo no qual o assunto é abordado com maior profundidade. Adicionalmente, foram propostas listas com exercícios sobre cada tópico. Sempre buscando o contínuo aperfeiçoamento do curso e do material didático, agradeço as sugestões e as correções que possam surgir durante nossas aulas. Prof. Marcelo Ferreira Moreira Escola de Engenharia Mauá Instituto de Pesquisas Tecnológicas do Estado de São Paulo – IPT REFERÊNCIAS BIBLIOGRÁFICAS PARA O CURSO LIVRO TEXTO: Callister, W. D. MATERIALS SCIENCE AND ENGINEERING An Introduction John Wiley & Sons INC. 2000 REFERÊNCIAS COMPLEMENTARES: Shackelford, J. F. INTRODUCTION TO MATERIALS SCIENCE FOR ENGINEERS Prentice Hall 1992 Padilha, A. F. MATERIAIS DE ENGENHARIA – Microestrutura e Propriedades Ed. HEMUS 1997 Higgins, R. A. PROPRIEDADES E ESTRUTURAS DOS MATERIAIS EM ENGENHARIA Difel 1977 Dieter, G. E. METALURGIA MECÂNICA 2a edição Editora Guanabara Dois 1976 Campos Filho, M. P. A ESTRUTURA DOS MATERIAIS 2a edição Editora da UNICAMP 1991
  • 3. Introdução e ligações químicas Marcelo F. Moreira 3 Souza, S.A. ENSAIOS MECÂNICOS DE MATERIAIS METÁLICOS Editora Edgard Blücher Ltda 1982 Chiaverini,V. TECNOLOGIA MECÂNICA V.1 Processos de fabricação 1a edição McGraw Hill 1977 Metals Handbook Volume 2 PROPERTIES AND SELECTION: NONFERROUS ALLOYS AND SPECIAL PROPOSE ALLOYS 8th edition A.S.M. 1979 Theining, K. E. STEEL AND ITS HEAT TREATEMENT 2nd edition Butterworths 1975 Souza Santos, A B; Castello Branco, Carlos Haydt METALURGIA DOS FERROS FUNDIDOS CINZENTOS E NODULARES IPT São Paulo 1989 Cetlin, P.R. ; Silva P. S. P. da ANÁLISE DE FRATURAS A B M 1985 Metals Handbook Volume 15 CASTING 9th edition A.S.M. 1988 Zepbour Panossian Manual: CORROSÃO E PROTEÇÃO CONTRA CORROSÃO EM EQUIPAMENTOS E ESTRUTURAS METÁLICAS Volumes I e II - IPT 1993 Metals Handbook Volume 9 METALOGRAPHY AND MICROSTRUCTURES 9th edition A.S.M. 1988 ASM Specialty Handbook – Aluminum and aluminum alloys ASM International 1993 INTRODUÇÃO IMPORTÂNCIA E APLICAÇÕES DOS MATERIAIS NA ENGENHARIA: Os materiais estão profundamente embutidos em nossa civilização. Alimentação, habitação, transportes, vestuário, comunicações, recreação, saúde e segurança, ou seja, todos os segmentos de nossa vida cotidiana são dependentes dos materiais. O desenvolvimento e avanços da nossa civilização sempre foram avaliados pela capacidade de seus membros de produzirem e manipularem os diversos materiais da natureza. De fato, as civilizações antigas são designadas pelo tipo de material que estas dominavam: • Idade da pedra (~7000 AC) • Idade do cobre • Idade do bronze (~3500 AC) • Idade do ferro (~1200 AC) Os homens primitivos tinham acesso apenas aos materiais da natureza como pedras, madeira, ossos e peles. Com o passar do tempo foram inventadas técnicas de processamento de outros materiais, obtendo-se propriedades muito superiores à dos materiais disponíveis na natureza. Somente na idade do ferro, descobriu-se que as propriedades do aço poderiam ser alteradas por meio de tratamentos térmicos e adição de outras substâncias. Neste ponto, o emprego dos materiais já passava por um processo de seleção, no qual, não mais se empregavam um pequeno grupo de materiais, mas sim, de materiais com características mais adequadas para uma dada aplicação. Um exemplo disto são as técnicas de fabricação de espadas.
  • 4. Introdução e ligações químicas Marcelo F. Moreira 4 Somente com a 2ª Guerra Mundial, os cientistas passaram compreender as relações entre a estrutura microscópica e as propriedades mecânicas para uma dada composição química. A partir daí, e ainda com o advento do microscópio eletrônico em 1960, foram criados dezenas de milhares de materiais com características "projetadas" para satisfazer a necessidade da sociedade. Surge neste período a Engenharia de Materiais. Composição química Propriedades físicas e mecânicas Macro e microestrutura O exemplo clássico desta época foi o inserto de metal duro ou “WI-DIA” (partículas de WC, extremamente duras, sob uma matriz de cobalto tenaz). Outros exemplos incluem1 : cerâmicas avançadas (alumina translúcida para lâmpadas de vapor de Na); materiais biocompatíveis (implantes ortopédicos e odontológicos); superligas a base de Ni (palhetas de turbinas a gás); polímeros de alta resistência (Kevlar); materiais compósitos (compósitos á base de fibras de vidro e fibras de carbono); imãs de alto poder magnético (Nd-Fe-B); ligas com memória de forma (nitinol) e isolantes térmicos cerâmicos à base de fibras de SiO2 (Revestimento do ônibus espacial americano). Cada vez mais o desenvolvimento sustentável dos países em desenvolvimento dependem do domínio de novos materiais e de novas técnicas de fabricação de materiais. Alguns índices de desenvolvimento têm como base o consumo per capita de materiais tradicionais ou de materiais avançados. Por exemplo, o consumo per capita de alumínio no EUA é de aproximadamente 9 kg/ano enquanto que no Brasil é de apenas 2 kg/ano. A seguir, são apresentados alguns exemplos de materiais e componentes cujo desenvolvimento ocorreu por meio da engenharia de materiais. 1 Scientific American 1986 v. 255 n° 4
  • 5. Introdução e ligações químicas Marcelo F. Moreira 5 Exemplo 1 ALUMINA TRANSLÚCIDA PARA LÂMPADAS DE VAPOR DE Na Lâmpada convencional (filamento de W): produz 15 lumen/W, apresenta microestrutura com granulação grosseira e heterogênea e porosidade > 3%. Lâmpada de vapor de Na: produz 100 lumen/W, apresenta microestrutura com granulação refinada e homogênea e porosidade < 0,3%. INSERTOS PARA USINAGEM Outra aplicação da alumina, decorrente dos estudos de ciência dos materiais, é o seu emprego na fabricação de insertos para usinagem de metais. A alumina (Al2O3) apresenta dureza elevada (por volta de 2000 HK, 9 na escala de Mohs) e elevada resistência ao calor (temperatura de fusão é de 2050ºC). Entretanto, peças maciças de alumina são extremamente frágeis. Os insertos para usinagem apresentam uma microestrutura composta por partículas de alumina aglomeradas com um ligante capaz de compatibilizar a elevada dureza e resistência ao calor das partículas de alumina com elevada resistência ao impacto.
  • 6. Introdução e ligações químicas Marcelo F. Moreira 6 Exemplo 2 SUPERLIGAS Á BASE DE NÍQUEL (Palhetas de turbinas á gás) • O termo superliga, do inglês "superalloy", decorre do emprego de uma liga empregada em implantes ortopédicos (Vitallium) ter sido empregada para a fabricação de palhetas dos primeiros motores a jato na década de 40 (Haynes 21). Naquela época o prefixo "super" era muito difundido pelas aventuras do herói fictício Superman. Assim, tal liga, empregada como material biocompatível e também como material resistente ao calor, foi chamada como uma superliga. Recentemente o termo superliga é empregado para materiais resistentes ao calor. As superligas à base de Ni apresentam elevada resistência mecânica, resistência ao calor e elevada resistência à corrosão. São empregadas na fabricação de componentes de turbinas á gás que operam em temperaturas entre 700 e 1300°C. Microestrutura típica de uma superliga à base de Ni monocristalina (CMSX 7)
  • 7. Introdução e ligações químicas Marcelo F. Moreira 7 Exemplo 3 LIGAS BIOCOMPATÍVEIS As ligas biocompatíveis são ligas à base de Ti, Fe, Ni ou Co empregadas em implantes ortopédicos e odontológicos. Sua principal característica é a ausência de reação com os fluidos corpóreos. Prótese para fêmur: fabricada em liga de Ti com esfera em cerâmica (alumina) e acetábulo em polietileno de alta densidade. As ligas á base de Fe foram as primeiras a serem utilizadas em implantes ortopédicos. Entre elas, destaca-se o emprego dos aços inoxidáveis austeníticos refinados à vácuo. Este refino tem como objetivo a redução de inclusões não metálicas presentes no processo de produção convencional. As ligas á base de Co apresentam propriedades biocompatíveis superiores ás ligas á base de Fe. Destaca-se o uso da liga ASTM F75, também conhecida como Vitallium e sua variante mais famosa a liga Haynes 21 (Co-25%Cr-5%Mo). Mais recentemente, grande parte das próteses ortopédicas é fabricada com ligas à base de Ti. Isto decorre do fato destas ligas apresentarem elevada resistência mecânica (em torno de 120 kgf/mm2 ) e menor densidade. As ligas mais utilizadas são variantes da liga Ti-6%Al-4%V, refinadas sob vácuo.
  • 8. Introdução e ligações químicas Marcelo F. Moreira 8 Exemplo 4 SUPERÍMÃS Os superimãs de Nd-Fe-B são imãs permanentes capazes de desenvolver campos magnéticos de alta intensidade. São largamente empregados em projetos de miniaturização de motores elétricos. Exemplo 5 LIGAS COM MEMÓRIA DE FORMA As ligas com memória de forma são capazes de voltar a forma original, após terem sofrido uma deformação, mediante um aquecimento de apenas 30ºC. A liga mais conhecida por este efeito é a Nitinol (50% Ni e 50% Ti). Outra característica importante desta liga é a sua capacidade de amortecer vibrações mecânicas. Na década de 60, variantes da liga Nitinol foram empregadas no desenvolvimento de hélices de submarinos chamadas de "silent propellers".
  • 9. Introdução e ligações químicas Marcelo F. Moreira 9 Quando passamos a pensar nas características dos materiais de engenharia, a primeira questão que vem a tona é: As propriedades de um material seriam proporcionais à força das ligações entre seus átomos ? A resposta para esta questão requer uma breve revisão sobre os conceitos de átomos e de ligações atômicas. MODELOS ATÔMICOS Modelo do átomo segundo Bohr Comparação entre os modelos de Bohr e modelo quântico
  • 10. Introdução e ligações químicas Marcelo F. Moreira 10 CONCEPÇÃO MODERNA DO ÁTOMO E SUAS SUB-PARTÍCULAS
  • 11. Introdução e ligações químicas Marcelo F. Moreira 11 Observação de átomos em microscópios de tunelamento (STM) Em um STM, uma ponta extremamente fina varre uma superfície de alguns nanômetros ponto-a-ponto e linha por linha. Em cada ponto, uma corrente entre a ponta e a superfície é medida, esta corrente diminui exponencialmente com o aumento da distância. Por meio de um computador, a posição vertical da ponta pode ser ajustada para uma distância constante. Os ajustes realizados são arquivados e definem uma matriz de valores que pode ser apresentada com uma figura em tons de cinza. Os valores da matriz são empregados para deformá-la para uma figura com três dimensões. As figuras são coloridas de acordo com a altura ou a curvatura. Apresentam-se a seguir exemplos de superfícies de átomos observados por meio da microscópia de varredura (STM – Scanning Tunneling Micrscopy): Átomos de níquel (Ni) Plano (110) do reticulado CFC Nota-se a regularidade do arranjo, típica dos materiais cristalinos. Don Eigler (www.almaden.ibm.com/vis/stm) Defeitos pontuais no cobre (Cu) Plano (111) do reticulado CFC Nota-se a deformação circular provocada pela presença dos defeitos. Eigler (www.almaden.ibm.com/vis/stm)
  • 12. Introdução e ligações químicas Marcelo F. Moreira 12 MANIPULAÇÃO DE ÁTOMOS NO MICROSCÓPIO DE TUNELAMENTO. (www.almaden.ibm.com/vis/stm) 1990 1993 Vista geral de planos no cobre (Cu) Planos (111) do reticulado CFC Nota-se a presença de defeitos pontuais. Eigler (www.almaden.ibm.com/vis/stm) Átomo de xenônio (Xe) sobre a superfície de níquel (Ni) Plano (110) de Ni Eigler (www.almaden.ibm.com/vis/stm)
  • 13. Introdução e ligações químicas Marcelo F. Moreira 13 As ligações químicas podem ser classificadas em ligações fortes e ligações fracas, sendo que a energia das ligações fortes é cerca de 100 vezes superior à das ligações fracas. LIGAÇÕES FORTES LIGAÇÃO IÔNICA • Exemplo de ligação puramente iônica: NaCl • O sódio (Na) transfere um elétron para o cloro (Cl) formando íons Na+ e Cl- com estruturas eletrônicas estáveis • Atração eletrostática entre cátions e ânions • A ligação NÃO apresenta direcionalidade, isto é, a energia de ligação é igual em todas as direção do cristal • Relação entre os raios iônicos determina a forma do cristal • As energias de ligação, entre 3 e 8 eV, são relativamente altas e assim estes materiais apresentam temperaturas de fusão elevadas. • Materiais em que a ligação iônica é predominante: CERÂMICAS
  • 14. Introdução e ligações químicas Marcelo F. Moreira 14 LIGAÇÃO COVALENTE • Átomos adjacentes compartilham orbital eletrônico de modo a apresentarem estruturas eletrônicas estáveis. Este compartilhamento é muito comum na maioria das moléculas orgânicas. (CH4) • São fortemente direcionais, em outras palavras, resulta em um determinado ângulo de ligação, como ilustra a formação de água da figura abaixo. Em uma ligação covalente ideal, os pares de elétrons são igualmente compartilhados. Na ligação da H2O, ocorre uma transferência de carga parcial fazendo com que o H fique levemente positivo e o O levemente negativo. Este compartilhamento desigual resulta em uma ligação polar. As ligações entre átomos diferentes têm sempre algum grau de polaridade. Ligações nas quais os dois lados da molécula são idênticos (H2, N2 ) são apolares. • Alguns compostos cerâmicos como o BN e o SIC apresentam caráter covalente predominante. Outro material que tem ligação covalente predominante é o diamante.
  • 15. Introdução e ligações químicas Marcelo F. Moreira 15 LIGAÇÃO METÁLICA • Os metais apresentam 1, 2, e no máximo, 3 elétrons de valência. Estes elétrons não estão ligados a nenhum átomo em particular. • Conceito da nuvem eletrônica (Em um dado instante, a última camada está completa) • As energias de ligação estão entre 0,7 e 8,8 eV/átomo • A ligação NÃO apresenta direcionalidade e como conseqüência dos elétrons “livres”, os metais apresentam boa condutibilidade térmica e elétrica. • A ligação metálica possui uma ampla faixa de energias de ligação que vão desde o mercúrio (Hg), com 68 kJ/mol e ponto de fusão de -39°C, até o tungstênio (W)com 849 kJ/mol e ponto de fusão de 3410°C.
  • 16. Introdução e ligações químicas Marcelo F. Moreira 16 LIGAÇÕES FRACAS (secundárias ou ligações de van der Waals) • A denominação de ligação de van der Waals é utilizada como designação geral para todos os tipos de ligações secundárias (fracas). A principal causa para a ocorrência de ligações fracas é a polarização da molécula. Os dipolos são classificados em permanentes (moléculas de H2O) ou induzidos (átomos de Ar). • Os polímeros em geral, e os plásticos e borrachas em particular, têm sua estrutura formada por longas moléculas covalentes unidas entre si por meio de ligações dipolares fracas. Dipolos permanentes Dipolos induzidos
  • 17. Introdução e ligações químicas Marcelo F. Moreira 17 EXEMPLO DA FORMAÇÃO DE UM CRISTAL IÔNICO Forças de atração coulombiana (FA): dependentes do tipo de ligação entre os dois átomos: 2 1 a FA ∝ Forças de repulsão nuclear: Forças intensas resultantes da repulsão nuclear: nR a b F = onde: b é uma constante de proporcionalidade e n pode variar entre 9 e 10
  • 18. Introdução e ligações químicas Marcelo F. Moreira 18 EXEMPLO DA FORMAÇÃO DE UM CRISTAL IÔNICO • Verifica-se pelas figuras anteriores que a energia de repulsão aumenta exponencialmente (a9 ) quando tentamos aproximar dois átomos a uma distância inferior a a0. Assim, nas ligações fortes (iônica, covalente e metálica) os átomos e moléculas podem ser representados por um modelo físico denominado MODELO DE ESFERAS RÍGIDAS
  • 19. Introdução e ligações químicas Marcelo F. Moreira 19 MATERIAIS DE ENGENHARIA E SUAS LIGAÇÃO QUÍMICAS Os materiais de engenharia são classificados em quatro grupos principais: materiais metálicos; materiais poliméricos; materiais cerâmicos e materiais compósitos. Esta classificação é baseada na estrutura atômica e nas ligações químicas predominantes em cada grupo. Um quinto grupo que foi incorporado nesta classificação nas últimas décadas é o grupo dos materiais semicondutores. 1- Materiais metálicos: Os materiais metálicos são constituídos por um ou mais elementos metálicos combinados, formando uma liga. Eles apresentam um grande número de elétrons que não estão ligados a nenhum átomo em particular, formando uma nuvem eletrônica. Várias propriedades dos metais e ligas estão diretamente relacionadas a este tipo de ligação atômica. Os metais são excelentes condutores de eletricidade e de calor e não são transparentes á luz visível. A superfície dos metais, quando polida, tem a aparência de um espelho (na realidade, os espelhos possuem uma camada de alumínio metálico do outro lado do vidro que reflete a luz). Os materiais metálicos são muito usados em aplicações estruturais devido a sua elevada resistência mecânica e ductilidade (facilidade de conformação). 2- Materiais cerâmicos: Os materiais cerâmicos são compostos entre elementos metálicos e não-metálicos, principalmente o oxigênio, o nitrogênio e o carbono, formando os óxidos, os nitretos e os carbonetos, respectivamente. Existe um grande número de materiais que entram nesta classificação, entre eles estão a argila, o cimento e o vidro. Estes materiais são, normalmente, isolantes elétricos, apresentam baixa condutividade térmica e são mais resistentes ás altas temperaturas e a alguns ambientes agressivos que os metais e os polímeros. Quando as propriedades mecânicas, os materiais cerâmicos são duros, porém frágeis (não se deformam). 3- Materiais poliméricos: Os materiais poliméricos incluem as famílias dos plásticos e borrachas. A maiorias deles são compostos orgânicos e são quimicamente baseados em carbono, hidrogênio e outros elementos não-metálicos e, além disso, apresentam longas estruturas moleculares. Os polímeros são materiais tipicamente flexíveis (alta ductilidade) e de baixa densidade. 4- Materiais compósitos: Os materiais compósitos, em sua maioria, são formados por mais de um tipo de material. Apesar de ser uma frente recente de desenvolvimento de novos materiais, os compósitos são empregados pelo homem há muito tempo. Muitos materiais de origem natural: a madeira e os ossos são compósitos. Um exemplo típico de um compósito desenvolvido pelo homem é a fibra de vidro (Fiberglass) que consiste de fibras de vidro envolvidas por um material polimérico (uma resina epóxi tipo Araldite).
  • 20. Introdução e ligações químicas Marcelo F. Moreira 20 Os materiais compósitos são desenvolvidos para apresentar as melhores propriedades de cada um dos materiais que o compõem. A fibra de vidro adquire a resistência do vidro e a flexibilidade do polímero. Um grande números de novos materiais recentemente desenvolvidos são compósitos. 5- Materiais semicondutores: Os materiais semicondutores apresentam propriedades elétricas intermediárias entre os condutores e os isolantes elétricos. Além disso, as características elétricas destes materiais são extremamente sensíveis á presença de concentrações mínimas de impurezas atômicas, as quais são muito bem controladas. Os materiais semicondutores possibilitaram o desenvolvimento do transistor e dos circuitos integrados, que revolucionaram a indústria eletrônica nas últimas três décadas. Caráter da ligação atômica para as quatro classes de materiais de engenharia Classe de materiais Caráter predominante da ligação Exemplos: Características Metálicos Metálica Ferro (Fe) e ligas ferrosas Elevada temperatura de fusão Alta condutividade térmica e elétrica opacidade Cerâmicas e vidros Iônica / covalente Sílica (SiO2) cristalina, e não-cristalina Elevada temperatura de fusão Translúcidos Baixa condutividade térmica e elétrica Polímeros Covalente e van der Waals Polietileno (C2H4) Baixa temperatura de fusão Translúcidos Baixa condutividade térmica e elétrica Semicondutores Covalente ou covalente / iônica Silício (Si) ou sulfeto de Cádmio (CdS) Condutividade elétrica dependente da temperatura
  • 21. Introdução e ligações químicas Marcelo F. Moreira 21 RELAÇÃO ENTRE A LIGAÇÃO QUÍMICA, ENERGIA DE LIGAÇÃO E PROPRIEDADES TÉRMICAS Temperatura de fusão e coeficiente de dilatação térmica Tomando-se a curva de energia de ligação em função da distância interatômica, podemos associar a temperatura de fusão de um metal com a “profundidade” da curva. Ou seja, quanto maior energia necessária para a separação de uma ligação metálica (ET0), maior a temperatura de fusão para aquele metal. Outra característica relevante destas curvas é que quanto maior for energia necessária para a separação da ligação (ET0), menor serão os espaçamentos interatômicos para um dado nível de energia. Assim, por exemplo, se tomarmos um metal cuja energia de ligação seja elevada, sua temperatura de fusão será elevada e as distâncias interatômicas para um determinado nível de energia serão pequenas, resultando em um pequeno coeficiente de dilatação térmica. Estas relações podem ser verificadas pelas figuras abaixo: Na figura acima verifica-se, com base em dados experimentais, a relação entre temperatura de fusão (ou energia de ligação) com o coeficiente de dilatação térmica. A figura divide as substâncias analisadas pelo tipo de ligação presente (metálica, covalente e iônica).
  • 22. Introdução e ligações químicas Marcelo F. Moreira 22 A tabela abaixo apresenta relaciona a energias de ligação de algumas substâncias com a temperatura de fusão, de acordo com o tipo de ligação química. Energia de ligação Tipo da ligação Substância [KJ/mol] [eV/átomo, íon ou molécula] Temperatura de fusão [°C] Iônica NaCl 640 3.3 801 MgO 1000 5.2 2800 Covalente Si 450 4.7 1410 C (diamante) 713 7.4 > 3550 Metálica Hg 68 0.7 -39 Al 324 3.4 660 Fe 406 4.2 1538 W 849 8.8 3410 Van der Waals Ar 7.7 0.08 -189 Cl2 31 0.32 -101 Pontes de hidrogênio NH3 35 0.36 -78 H2O 51 0.52 0 Com base no exposto nestas aulas, podemos concluir que a energia de ligação química relaciona-se com as seguintes propriedades: temperatura de fusão, coeficiente de dilatação ou expansão térmica, módulo de elasticidade (E) e a transparência ou opacidade. É importante notar que a resistência mecânica de um material (limite de escoamento ou o limite de resistência) não está relacionada com a energia de ligação deste. De fato, a resistência mecânica é governada por defeitos presentes na estrutura cristalina, como veremos adiante.