SlideShare uma empresa Scribd logo
1 de 32
Baixar para ler offline
BRUNO ROQUE FERREIRA
UTILIZAÇÃO DE PET COMO MATERIAL ALTERNATIVO NA
COMPOSIÇÃO DE CONCRETO
Londrina
2013
BRUNO ROQUE FERREIRA
UTILIZAÇÃO DE PET COMO MATERIAL ALTERNATIVO NA
COMPOSIÇÃO DE CONCRETO
Trabalho de Ciencia dos Materiais
Orientadores: Profa. Dra. Ana Mauriceia Castellani
Londrina
2013
“Você precisa fazer aquilo que pensa que não é capaz de fazer”
(Eleanor Roosevelt)
RESUMO
Um dos materiais mais utilizado no mundo é o concreto, sendo considerado o mais
versátil na construção civil, o concreto não gera nenhuma agressão ao meio
ambiente tampouco utiliza algum tipo de produto tóxico em sua composição, que é
basicamente obtido na natureza, em forma de rocha que posteriormente é
transformada em brita, areia e água. Atualmente esses recursos são obtidos com
abundancia, o que contribui para a aceleração, crescimento e desenvolvimento
social e econômico de vários países desenvolvidos e subdesenvolvidos, incluindo o
Brasil. Esse trabalho apresenta na forma de ensaios de laboratório uma fonte
inovadora de matéria-prima para esse material tão importante para nossa economia,
sendo obtido tanto na forma reciclável como na industrializada, com a intensão de
reduzir a exploração dos recursos minerais e com o bom senso e a aplicabilidade
correta à utilização de PET como agregado do concreto de aplicabilidade não
estrutural.
Palavras-chave: Concreto, Matéria-prima, Reduzir, Exploração, PET.
LISTA DE ILUSTRAÇÕES
Figura 1 – DADOS TÉNICOS DO PET............. .............................................13
Figura 2 – ESTOQUE DE AREIA..................................................................... 17
Figura 3 – COLETA DE AMOSTRA DE AREIA ...............................................17
Figura 4 – RETIRADA DE UMIDADE DA AREIA.............................................18
Figura 5 – PESANDO AMOSTRA DE AREIA...................................................18
Figura 6 – PENEIRAMENTO DA AREIA..........................................................Erro!
Indicador não definido.
Figura 7 – QUANTIDADE ACUMULADA NAS PENEIRAS..............................19
Figura 8 – COMPONENTES DO CONCRETO.................................................26
Figura 9 – PET .................................................................................................26
Figura 10 – MISTURA DOS MATERIAIS NA BETONEIRA..............................27
Figura 11 – DESFORME DOS CORPOS DE PROVA......................................27
Figura 12 – ROMPIMENTO..............................................................................28
Figura 13 – CORPOS DE PROVA ROMPIDOS NO 7° DIA.............................28
Figura 14 – CORPOS DE PROVA ROMPIDOS NO 28° DIA...........................28
Figura 15 – MEMORIAL DE CALCULO...........................................................29
Figura 16 – TABELA DE RESULTADOS FINAIS............................................30
Figura 14 – CORPOS DE PROVA ROMPIDOS NO 28° DIA..........................29.
LISTA DE ABREVIATURAS E SIGLAS
ABCP - Associação Brasileira de Cimento Portland
PET - Politereftalato de etileno
ACI - American Concrete Institute
IPT - Instituto de Pesquisas Tecnológicas de São Paulo
INT - Instituto Nacional de Tecnologia
NBR - Norma Brasileira Regulamentadora
ABNT – Associação Brasileira de Normas Técnicas
IBGE – Instituto Brasileiro de Geografia e Estatística
FONTE 12, ENTRELINHAS 1,5
SUMÁRIO
1 INTRODUÇÃO............................................................................................7
2 HISTORIA DO CONCRETO........................................................................8
3 TIPOS DE
CONCRETO..............................................................................Erro! Indicador
não definido.
3 OBJETIVO DO TRABALHO......................................................................12
5 DOSAGEM OU O TRAÇO DO CONCRETO (FORMA TRADIONAL)......14
6 DOSAGEM EXPERIMENTAL...................................................................14
6 DOSAGEM EMPÍRICA..............................................................................14
7 RESISTENCIA DE DOSAGEM.................................................................15
8 DEFININDO O DESVIO PADRÃO........................................................... 15
9 MÉTODO DE DOSAGEM.........................................................................16
10 CALCULANDO O TRAÇO........................................................................16
11 FABRICAÇÃO DOS CONCRETOS..........................................................26
12 CONCLUSÃO...........................................................................................30
13 AGRADECIMENTO..................................................................................30
14 REFERÊNCIAS........................................................................................31
7
1 INTRODUÇÃO
A busca por novas técnicas e novas aplicabilidades do concreto o tornou em
um objeto de estudo muito valioso, pois com o “boom” da construção civil no Brasil o
seu consumo cresce cada vez mais. Entre 2005 e 2012, enquanto o consumo de
cimento avançou mais de 80%, o aumento do concreto preparado em centrais foi de
180%. Estima-se que as concreteiras tenham produzido 51 milhões de m³ no ano
passado, de acordo com uma pesquisa inédita produzida pela empresa e8
Inteligência, em parceria com a Associação Brasileira de Cimento Portland (ABCP).
Junto com esse aumento de consumo veio também novas tecnologias, para
melhorar seu desempenho, como por exemplo, os aditivos que podem retardar ou
acelerar a pega do concreto, como também diminuir o consumo de água, entre
outras aplicabilidades. Muitos pesquisadores têm descoberto cada vez mais ideias e
propostas para que o uso dos materiais e as construções sejam cada vez mais úteis
e melhor aproveitados.
Tendo em vista contribuir com a evolução deste ramo, realizaremos testes
moldando corpos de prova substituindo a brita por PET nas proporções de 25%,
50%, 75% e 100%. Após analise dos resultados, poderemos determinar qual dessas
percentagens corresponde ao desempenho e as proporções mecânicas de um
concreto feito de forma tradicional.
8
2 HISTORIA DO CONCRETO
Desde os primórdios, o homem utiliza materiais com características
aglomerantes, que eram empregados principalmente na construção de abrigos.
Povos antigos, como os babilônios, utilizavam argilas não cozidas misturadas
com fibras vegetais, enquanto os egípcios usavam gesso impuro calcinado. Os
gregos e romanos recorriam ao calcário calcinado, porém, posteriormente,
aprenderam a misturar cal, água, areia e pedra britada, combinação que pode ser
considerada como o primeiro concreto da história. Um dos grandes exemplos da
humanidade na utilização desse material é a cúpula de 47 metros de diâmetro do
templo de Phanteon, em Roma, construído em 27 a.C., pelo imperador Marco
Agripa.
No século XVIII, a reconstrução do Farol de Eddystone em Cornwall, no
sudeste da Inglaterra, levou John Smeaton a procurar um material mais resistente
para suportar a ação agressiva da água do mar. Tal fato colaborou para que
surgissem as primeiras iniciativas de se industrializar o cimento. Em 1824, coube ao
pedreiro Joseph Aspdin patentear o aglomerante, que então o batizou como cimento
Portland, devido à matéria-prima (calcário) ser extraída da Ilha de Portland.
No Brasil, a primeira produção efetiva de cimento aconteceu em 1926 pela
Cia Brasileira de Cimento Portland Perus, em Perus (SP). Atualmente, o Brasil é um
dos dez maiores produtores de cimento portland do mundo, sendo o maior da
América Latina, e detém uma das mais avançadas tecnologias na fabricação desse
produto.
O cimento, por ser um material moldável que endurece na presença de água
e que possui elevada resistência, causou uma grande revolução em toda a área da
construção e possibilitou ao homem transformar o meio em que vive.
Obras cada vez mais indispensáveis para nosso bem-estar, como barragens,
pontes, edifícios, estações de tratamento de água, rodovias, portos e aeroportos
fazem do cimento, hoje, um dos materiais mais consumidos em toda a sociedade.
9
2 TIPOS DE CONCRETO
O concreto é um material com muitas aplicabilidades, por isso com o passar
dos anos foram desenvolvidos vários tipos de concretos, com o intuito de construir
prédios cada vez maiores e estruturas mais leves, entre outros. Segue abaixo a lista
dos tipos de concreto conhecidos e utilizados.
 Concreto convencional - Utilizado na maioria das obras civis, deve ser lançado
nas fôrmas por método convencional (carrinhos de mão, gericas, gruas, etc ). O
concreto convencional é de consistência seca e a sua resistência varia de 5,0
em 5,0MPa, a partir de 10,0 até 40,0MPa. É aplicado em obras civis, industriais
e em peças pré-moldadas. As vantagens são: aumento da durabilidade e
qualidade final da obra, redução dos custos da obra e redução no tempo de
execução.
 Concreto de Alto Desempenho - Normalmente elaborado com adições
minerais tipo sílica ativa e metacaulim e aditivos superplastificantes. Os
concretos assim obtidos possuem excelentes propriedades. É aplicado em obras
civis especiais, hidráulicas em geral e em recuperações. As vantagens são:
aumento da durabilidade e vida útil das obras; redução dos custos da obra e
melhor aproveitamento das áreas disponíveis para construção.
 Concreto Bombeável - Utilizado na maioria das obras civis. A sua dosagem é
apropriada para utilização em bombas de concreto, evitando segregação e
perdas de material. Sua resistência varia de 5,0 em 5,0MPa, a partir de 10,0 até
40,0MPa. É aplicado em obras civis em geral, obras industriais e peças pré-
moldadas. As vantagens são: aumento da durabilidade e qualidade final da obra;
redução dos custos da obra e redução no tempo de execução.
 Concreto de Alta Resistência inicial - O concreto de alta resistência inicial,
como o nome já diz é aquele que tem a característica de atingir grande
resistência, com pouca idade, podendo dar mais velocidade à obra ou ser
utilizado para atender situações emergenciais. Sua aplicação pode ser
necessária em indústrias de pré-moldados, em estruturas convencionais ou
protendidas, na fabricação de tubos e artefatos de concreto, entre outras. O
aumento na velocidade das obras que este concreto pode gerar traz consigo a
redução dos custos com funcionários, com alugueis de formas, equipamentos e
10
diversos outros ganhos de produtividade. A alta resistência inicial é fruto de uma
dosagem racional do concreto, feita com base nas características específicas de
cada obra. Portanto, a obra deve fornecer o maior número de informações
possíveis para a elaboração do traço, que pode exigir aditivos especiais, tipos
específicos de cimento e adições.
 Concreto de Pavimento Rígido - O principal requisito exigido para esse
concreto é a resistência à tração na flexão e ao desgaste superficial. Trata-se de
um concreto de fácil lançamento e execução. É aplicado em estradas e vias
urbanas. As vantagens são: maior durabilidade; redução dos custos de
manutenção e maior luminosidade.
 Concreto Pesado - A característica principal desse tipo de concreto é a sua alta
densidade que varia entre 2800 e 4500 kg/m³, obtida com a utilização de
agregados especiais, normalmente a hematita. É aplicado como contra peso em
gasodutos, hospitais e usinas nucleares. Pode ser citada a vantagem de ser
isolante radioativo.
 Concreto Projetado – Concreto que é lançado por equipamentos especiais e
em velocidade sobre uma superfície, proporcionando a compactação e a
aderência do mesmo a esta superfície.São utilizados para revestimentos de
túneis, paredes, pilares, contenção de encostas, etc. Este Concreto pode ser
projetado por via-seca ou via-úmida, alterando desta forma a especificação do
equipamento de aplicação e do traço que será utilizado.
 Concreto Leve Estrutural – Os concretos leves são reconhecidos pelo seu
reduzido peso específico e elevada capacidade de isolamento térmico e acústico
Enquanto os concretos normais têm sua densidade variando entre 2300 e 2500
kg/m³, os leves chegam a atingir densidades próximas a 500 kg/m³. Cabe
lembrar que a diminuição da densidade afeta diretamente a resistência do
concreto. Os concretos leves mais utilizados são os celulares, os sem finos e os
produzidos com agregados leves, como isopor, vermiculita e argila expandida.
Sua aplicação está voltada para procurar atender exigências específicas de
algumas obras e também para enchimento de lajes, fabricação de blocos,
regularização de superfícies, envelopamento de tubulações, entre outras.
 Concreto Leve - A densidade desse concreto varia de 400 a 1800kg/m³. Os
tipos mais comuns são o concreto celular espumoso, concreto com isopor e
concreto com argila expandida. É aplicado em: enchimento e regularização de
11
lajes, pisos e elementos de vedação. As vantagens são: redução de peso próprio
e isolante termo-acústico.
 Concreto Fluido - Indicados para concretagens de peças densamente armadas,
estruturas pré-moldadas, fôrmas em alto relevo, fachadas em concreto aparente,
painéis arquitetônicos, lajes, vigas etc. Este concreto, com grande variedade de
aplicações é obtido pela ação de aditivos superplastificantes, que proporcionam
maior facilidade de bombeamento, excelente homogeneidade, resistência e
durabilidade. Sua característica é de fluir com facilidade dentro das formas,
passando pelas armaduras e preenchendo os espaços sob o efeito de seu
próprio peso, sem o uso de equipamento de vibração. Para lajes e calçadas, por
exemplo, ele se auto nivela, eliminando a utilização de vibradores e diminuindo o
número de funcionários envolvidos na concretagens.
 Concreto Rolado - É utilizado em pavimentações urbanas, como sub-base de
pavimentos e barragens de grande porte. Seu acabamento não é tão bom
quanto aos concretos utilizados em pisos Industriais ou na Pavimentação de
pistas de aeroportos e rodovias, por isso ele é mais utilizado como sub-base.
 Concreto Colorido - Concreto normal adicionado de pigmentos especiais, os
quais conferem ao concreto várias cores com diferentes tonalidades, a saber:
amarela, azul, vermelha, verde, marrom e preta. É aplicado em pisos, calçadas e
fachadas. As vantagens são: elimina pintura e pode ser usado como marcador
de áreas específicas.
 Concreto Resfriado com gelo - Trata-se de um concreto, cuja quantidade de
água é parcialmente substituída por gelo, para atender a condições específicas
de projeto, por exemplo, a retração térmica. É aplicado em paredes espessas e
grandes blocos de fundação. A vantagem é a redução da fissuração de origem
térmica.
 Concreto Autoadensável - É o concreto do futuro. Trata-se de um concreto de
elevada plasticidade. Em alguns casos, pode ter a sua reologia controlada com a
utilização de aditivos de última geração. É aplicado em Fundações especiais tipo
hélice contínua e paredes diafragma; peças delgadas e peças densamente
armadas. As vantagens são: Maior durabilidade e fácil aplicação. Dispensa a
utilização total ou parcial de vibradores; redução dos custos com mão de obra e
energia e maior produtividade no lançamento.
12
 Concreto com adição de fibras - Normalmente elaborado com fibras de nylon,
polipropileno e aço, dependendo das condições de projeto. Os concretos assim
obtidos inibem os efeitos da fissuração por retração .Obras civis especiais e
pisos industriais. As vantagens são: aumenta a durabilidade das obras quanto a
abrasão e desgaste superficial; melhora a resistência à tração do concreto e
pode ser utilizado em pistas de aeroportos.
 Concreto Impermeável - Trata-se de um concreto com a relação água- cimento
limitada, normalmente menor ou igual a 0,55; e dosado com um cimento
apropriado, tipo portland de alto – forno ou pozolânico. É aplicado em obras
hidráulicas em geral, estações de tratamento d’água e esgoto e Barragens. As
vantagens são: aumento da durabilidade da obra e redução dos custos de
manutenção da obra.
3 OBJETIVO DO TRABALHO
O objetivo do trabalho é contribuir para a preservação dos recursos
naturais em nosso planeta, desenvolvendo uma nova fonte de agregado para o
concreto. O material escolhido para esta substituição é o Politereftalato de etileno,
mais conhecido como PET, que é um polímero plástico de ultima geração,
considerado plástico de engenharia, foi desenvolvido por dois químicos britânicos
chamados Whinfield e Dickson em 1941, formado pela reação entre o ácido
tereftálico e o etileno glicol, originando um polímero, termoplástico. Utiliza-se
principalmente na forma de fibras para tecelagem e de embalagens para bebidas.
Possui propriedades termoplásticas, isto é, pode ser reprocessado diversas
vezes pelo mesmo ou por outro processo de transformação. Quando aquecidos a
temperaturas adequadas, esses plásticos amolecem, fundem e podem ser
novamente moldados.
As garrafas produzidas com esse polímero podem permanecer na natureza
por até 800 anos, ou seja, além de contribuir com a não utilização dos recursos
naturais preservando fauna e a flora, contribuiremos também com a limpeza desse
meio ambiente, pois com a valorização desse material, seu descarte será mais
consciente.
13
O PET apresenta os seguintes dados técnicos:
Polietileno PET
As propriedades mecânicas a 23 ° C UNIT ASTM DIN VALORES
GRAVIDADE ESPECÍFICA g/cm3 D-792 53479 1.39
Resistir. OS TRACCs. (Fluência / Break) Kg / cm ² D-638 53455 900 / -
RES. Compressão (1 e 2% DEF) Kg / cm ² D-695 53454 260/480
RESISTÊNCIA À FLEXÃO Kg / cm ² D-790 53452 1450
RES. CHOQUE sem entalhe Kg.cm / cm ² D-256 53453 > 50
QUEBRANDO A EXTENSÃO % D-638 53455 15
MÓDULO DE ELASTICIDADE (drive) Kg / cm ² D-638 53457 37000
DUREZA Shore D D-2240 53505 85-87
COEF. Atrito estático S / AÇO D-1894 -
COEF. Atrito dinâmico S / AÇO D-1894 0.20
RES. DESGASTE POR ROCE MUITO BOM
PROPRIEDADES TÉRMICAS UNIT ASTM DIN VALORES
CALOR ESPECÍFICO Kcal / kg. ° C C-351 0.25
TEMP. DOBRA B / LOAD (18.5Kg/cm ²) º C D-648 53461 75
TEMP. USO CONTÍNUO NO AR º C -20 A 110
TEMP. FUSÃO º C 255
COEF. EXPANSÃO linear de 23 a 100 º C por ° C. D-696 52752 0.00008
COEF. Condução térmica Kcal / mh ° C. C-177 52612 0.25
PROPRIEDADES ELÉTRICAS UNIT ASTM DIN VALORES
Constante dielétrica A 60 HZ D-150 53483 3.4
Constante dielétrica A 1 KHZ D-150 53483 3.3
Constante dielétrica A 1 MHZ D-150 53483 3.2
Absorção de umidade AIR % D-570 53472 0.25
Resistência de superfície Ohm D-257 53482 > 10-14
RESISTÊNCIA VOLUMETRICA Ohms-cm D-257 53482 > 10 a 15
DIELECTRIC KV / mm D-149 22
QUÍMICAS COMENTÁRIOS
Resistência à óleo BOA
A TEMP RESISTÊNCIA ácido fraco. MEIO AMBIENTE BOA
A TEMP resistência do alcalóide fraco. MEIO
AMBIENTE
BOA
RESISTÊNCIA À PROD. QUÍMICA DEFINIDA CONSULT
Efeito da luz solar ALGO COMO AFETA
APROVADO PARA CONTATO COM ALIMENTOS SI
COMPORTAMENTO COMBUSTION Queimadura com dificuldade média
Propagação da chama Manter a chama
COMPORTAMENTO PARA QUEIMAR CONTAS
COR DA CHAMA LARANJA AMARELO Tiznado
CHEIRO DE QUEIMAR Doce aromático
Figura 1 – Dados técnicos do PET
14
4 DOSAGEM OU O TRAÇO DO CONCRETO (FORMA TRADIONAL)
É a determinação da mistura mais econômica de um concreto, com
características capazes de atender as condições de serviço, utilizando os materiais
disponíveis. Segundo a NBR 12655, há dois tipos de dosagem: a dosagem empírica
e a dosagem experimental.
5 DOSAGEM EXPERIMENTAL
Os materiais constituintes e o concreto obtido são previamente ensaiados em
laboratórios. A dosagem experimental visa estabelecer o traço do concreto com a
resistência e a trabalhabilidade prevista. A dosagem experimental pode se feita por
qualquer método que estabeleça uma correlação com esses parâmetros. Os
métodos de dosagem mais conhecidos no Brasil são: método do ACI – American
Concrete Institute, método da ABCP – Associação Brasileira de Cimento Portland,
Método IPT – Instituto de Pesquisas Tecnológicas de São Paulo e método do INT –
Instituto Nacional de Tecnologia.
A dosagem experimental, que esta diretamente ligada a relação água-cimento,
depende da resistência de dosagem, das características da obrae da definição de
uma trabalhabilidade compatível, tanto com os matérias quanto com a execução do
concreto.
6 DOSAGEM EMPÍRICA
A proporção dos materiais é fixada pela experiência do construtor ou através
de utilização de tabelas. De acordo com a NBR12655, a dosagem empírica só é
permitida para concreto de classe C10 – resistência característica a compressão de
10Mpa - , com consumo mínimo de 300 Kg de cimento por metro cubico.
15
7 RESISTENCIA DE DOSAGEM
Segundo a NBR 12655, a resistência de dosagem será calculada pela formula:
Onde,
 = Resistencia característica à compressão, especificada no projeto
estrutural.
 = Resistencia do concreto à compressão, prevista para a idade de j dias.
 = Desvio padrão da dosagem em função do controle da obra.
8 DEFINDO O DESVIO PADRÃO
= 4,0 Mpa – Condição A – Aplicável as classes C10 até C38: o cimento e os
agregados são medidos em massa, a agua de amassamento é medida em massa ou
o volume com dispositivo dosador é corrigida em função da umidade dos agregados
= 5,5 Mpa – Condição B – Aplicável as classes C10 até C25: o cimento é medido
em massa, a agua de amassamento é medida em massa ou volume com dispositivo
dosador e os agregados medidos em volume. O volume de agregados miúdos é
corrigido através da curva de inchamento estabelecida especificamente para o
material utilizado.
= 7,0 Mpa – Condição C – Aplicável as classes C10 até C15: o cimento é medido
em massa e os agregados são medido em volume.
Calculada a resistência de dosagem, deve-se adotar um dos métodos de dosagem
experimental para definir as proporções adequadas de cimento, areia, brita e água
que vão compor o concreto.
16
9 MÉTODO DE DOSAGEM
O método a ser utilizado será o método ACI – American Concrete Institute,
um dos mais utilizados no Brasil, estabelecendo as seguintes etapas para se obter o
traço do concreto, que é a proporção de seus materiais constituintes.
10 CALCULANDO O TRAÇO
Iremos produzir concreto com de 30 MPa, utilizando cimento CP II E-32 e
Sd = 5,5 MPa – condição B, considerando os agregados secos, adotando:
 Massa Unitária dos materiais.
 Massa específica dos materiais.
 Massa unitária compactada da brita.
³/40,1 dmkgMcomp 
 Módulo de Finura do agregado miúdo.
O modulo de finura é a soma das porcentagens retidas acumuladas em
massa de um agregado nas peneiras de serie normal divididas por 100.
Classificação pela granulometria:
- Grossa: módulo de finura superior a 3,3.
- Média: módulo de finura entre 2,4 e 3,3.
- Fina: módulo de finura inferior a 2,4.
3
3
/30,1
/40,1
dmkg
dmkg
brita
areia




3
3
3
/65,2
/60,2
/0,3
dmkg
dmkg
dmkg
brita
areia
cimento






17
Para se obter o modulo de finura foram realizados ensaios de laboratório,
seguindo os seguindo os seguintes passos:
1. Seleção da areia;
Figura 2 – Estoque de areia
2. Coleta da amostra;
Figura 3 – COLETA DE AMOSTRA DE AREIA
18
3. Retirada de umidade.
Figura 4 – RETIRADA DE UMIDADE DA AREIA
4. Determinando quantidade da amostra
Figura 5 – PESANDO AMOSTRA DE AREIA
19
5. Peneiramento
Figura 6 – PENEIRAMENTO DA AREIA
6. Separação e pesagem dos acumulados em cada peneira
Figura 7 – QUANTIDADE ACUMULADA NAS PENEIRAS
20
Obtivendo os seguintes resultados:
Peneiras em mm
Material
retido (g) % Retida % Retida
Acumulada
4,8 15,35 3,07 3,07
2,4 31,85 6,37 9,44
1,2 69,89 13,97 23,41
0,6 113,27 22,65 46,06
0,3 184,58 36,91 82,97
0,15 67,5 13,5 96,47
Fundo 17,56 3,53 100
Total 500 100
Onde,
Modulo de finura = 2,61
Dimensão máxima do agregado miúdo = 4,8 mm
 Dimensão Máxima característica do agregado graúdo.
mmD 19max 
 Consistência do concreto fresco.
Slump = 100 a 120 mm
1° ETAPA: definição da resistência de dosagem, :
= 30 + 1,65 . 5,5
= 39,075 MPa
21
2° ETAPA: fixação da relação água-cimento, a/c através da Curva de Abrams
adaptada : a/c 0,45
3° ETAPA: quantidade de água, Aágua.
Para Dmáx = 19 mm e Slump = 80 a 100 mm, temos:
Aágua = 205 l/m³
22
4° ETAPA: consumo de cimento, Ccim:
5° ETAPA: consumo de agregado graúdo, Bbrita:
Para Dmáx: 19 mm e MF = 2,61, temos: Vc = 0,690
23
6° ETAPA: determinação do consumo de agregado miúdo, Aareia:
Onde,
Portanto:
7° ETAPA: definição do traço de concreto em massa:
Ccim. ; Aareia ; Bbrita ; Aágua
455,5 : 621,4 ; 1070 ; 205 (traço em massa)
8° ETAPA: o traço do concreto é expresso proporcionalmente à quantidade de
cimento:
24
8° ETAPA: determinar a quantidade de concreto que será produzido:
Serão produzidos três corpos de prova para cada traço, para serem rompidos com
as idades de 7, 14 e 28 dias, onde o corpo de prova apresenta as seguintes
características:
Para calcular a quantidade de brita e de PET são consideradas as seguintes
informações:
Então,
 Concreto convencional;
CONCRETONALO CONVENCIONAL
1m³ (em kg) 1dm³ (em kg) x 4,5 dm³ TOTAL (em kg)
CIMENTO 455,5 0,455 x 4,5 2,05
AREIA 621,4 0,621 x 4,5 2,79
BRITA 1070 1,07 x 4,5 4,81
AGUA 205 0,205 x 4,5 0,922
CP 10x20 = 0,0015 m³
ou
1,5 dm³
25
 Concreto 100% PET;
CONCRETO 100 PET
1m³ (em kg) 1dm³ (em kg) x 4,5 dm³ TOTAL (em kg)
CIMENTO 455,5 0,455 x 4,5 2,05
AREIA 621,4 0,621 x 4,5 2,79
AGUA 205 0,205 x 4,5 0,922
PET 561,14 0,561 x 4,5 2,52
 Concreto 50% brita e 50% PET;
CONCRETO 50% BRITA E 50% PET
1m³ (em kg) 1dm³ (em kg) x 4,5 dm³ TOTAL (em kg)
CIMENTO 455,5 0,455 x 4,5 2,05
AREIA 621,4 0,621 x 4,5 2,79
BRITA 535 0,535 x 4,5 2,40
AGUA 205 0,205 x 4,5 0,922
PET 280,57 0,28057 x 4,5 1,2625
 Concreto 25% brita e 75% PET
CONCRETO 25% BRITA E 75% PET
1m³ (em kg) 1dm³ (em kg) x 4,5 dm³ TOTAL (em kg)
CIMENTO 455,5 0,455 x 4,5 2,05
AREIA 621,4 0,621 x 4,5 2,79
BRITA 267,5 0,2675 x 4,5 1,2
AGUA 205 0,205 x 4,5 0,922
PET 420,855 0,420855 x 4,5 1,89
26
11 FABRICAÇÃO DOS CONCRETOS
 Separação dos materiais: Areia, Brita, Cimento, Água e PET.
Figura 8 – COMPONENTES DO CONCRETO
Figura 9 – PET
27
 Preparação do concreto.
Figura 10 – MISTURA DOS MATERIAIS NA BETONEIRA
 Desforme dos corpos de prova.
Figura 11 – DESFORME DOS CORPOS DE PROVA
28
 Rompimento.
Figura 12 – ROMPIMENTO
 Rompimento aos 7 dias.
Figura 13 – CORPOS DE PROVA ROMPIDOS NO 7° DIA
29
 Rompimento aos 28 dias.
Figura 14 – CORPOS DE PROVA ROMPIDOS NO 28° DIA
 Memorial de calculo.
Figura 15 – MEMORIAL DE CALCULO
30
 Resultados.
Figura 16 – TABELA DE RESULTADOS FINAIS
12 CONCLUSÃO
Notoriamente a resistência à compressão do concreto possuindo PET em sua
composição é menor, em relação ao convencional, devido a menor resistência
mecânica do PET em relação à brita e a areia.
Verifica-se que o concreto utilizando PET como agregado pode ser utilizado
na Indústria da Construção Civil, lembrando que devido a sua baixa resistência
mecânica ele não pede ser utilizado em peças estruturais. Neste caso, ele pode
estar sendo utilizado em: alvenaria interna de fechamento, capas para lajes pré-
moldadas, material de enchimento (escadas, rebaixo de níveis, base de enchimento
para calçadas e pisos térreos).
13 AGRADECIMENTO
Prof. Eng.Alex Alves Severo, docente das matérias: Materiais de Construção l
e Materiais de Construção ll.
Empresa farmacêutica Dentalclean: Fornecedor do material PET para o
estudo.
Faculdade Pitágoras: Laboratório e equipamentos.
Teste de Resistência a Compressão
31
14 REFERÊNCIAS
Materiais de construção civil/Carmen Couto Ribeiro, Joana Darc da Silva Pinto, Tadeu Starling/Ribeiro et
al, 2011
http://www.abcp.org.br/conteudo/imprensa/cuidados-ao-construir-em-areas-litoraneas
http://www.abcp.org.br/conteudo/imprensa/pesquisa-inedita-e-exclusiva-revela-cenario-do-mercado-
brasileiro-de-concreto
http://www.prp.unicamp.br/pibic/congressos/xxicongresso/resumos/103566.pdf
http://www.holcim.com.br/
http://www.redimix.com.br/tiposDeConcreto/
http://www.jq.com.ar/Imagenes/Productos/PET/dtecnicos/dtecnicos.htm
http://pt.wikipedia.org/wiki/Politereftalato_de_etileno

Mais conteúdo relacionado

Mais procurados

Arquitetura vernacular
Arquitetura vernacularArquitetura vernacular
Arquitetura vernacularCharles Dantas
 
Casas de taipa de pilão e pau a pique
Casas de taipa de pilão e pau a piqueCasas de taipa de pilão e pau a pique
Casas de taipa de pilão e pau a piquePatrícia Ventura
 
Arquitetura ecológica PHI
Arquitetura ecológica PHIArquitetura ecológica PHI
Arquitetura ecológica PHIArgeu Arqvisiohm
 
Técnica Construtiva : Adobe
Técnica Construtiva : AdobeTécnica Construtiva : Adobe
Técnica Construtiva : AdobePaula Bianchi
 
1ºart tijolos de solo cimento + rcc- segantini (2011)
1ºart   tijolos de solo cimento + rcc- segantini (2011)1ºart   tijolos de solo cimento + rcc- segantini (2011)
1ºart tijolos de solo cimento + rcc- segantini (2011)Petiano Camilo Bin
 
Repensando o Telhado de Produto a Serviço Eco-Sustentável
Repensando o Telhado de Produto a Serviço Eco-SustentávelRepensando o Telhado de Produto a Serviço Eco-Sustentável
Repensando o Telhado de Produto a Serviço Eco-SustentávelHilton Menezes
 
2º art blocos de vedação com entulho abreu et al. (2009)
2º art  blocos de vedação com entulho   abreu et al. (2009)2º art  blocos de vedação com entulho   abreu et al. (2009)
2º art blocos de vedação com entulho abreu et al. (2009)Petiano Camilo Bin
 
Alvenaria - Técnica e Arte
Alvenaria - Técnica e ArteAlvenaria - Técnica e Arte
Alvenaria - Técnica e ArteCarlos Cunha
 
Conheça o fogão ecológico
Conheça o fogão ecológicoConheça o fogão ecológico
Conheça o fogão ecológicoRoniele Maranhao
 
Alternativas sustentáveis trabalho (1)
Alternativas sustentáveis  trabalho (1)Alternativas sustentáveis  trabalho (1)
Alternativas sustentáveis trabalho (1)noobstyle
 
Práticas de sustentabilidade aplicadas na construção civil - Case ARC
Práticas de sustentabilidade aplicadas na construção civil - Case ARCPráticas de sustentabilidade aplicadas na construção civil - Case ARC
Práticas de sustentabilidade aplicadas na construção civil - Case ARCArc Engenharia
 

Mais procurados (19)

Arquitetura vernacular
Arquitetura vernacularArquitetura vernacular
Arquitetura vernacular
 
Casas de taipa de pilão e pau a pique
Casas de taipa de pilão e pau a piqueCasas de taipa de pilão e pau a pique
Casas de taipa de pilão e pau a pique
 
Arquitetura ecológica PHI
Arquitetura ecológica PHIArquitetura ecológica PHI
Arquitetura ecológica PHI
 
Técnica Construtiva : Adobe
Técnica Construtiva : AdobeTécnica Construtiva : Adobe
Técnica Construtiva : Adobe
 
Alternativas
AlternativasAlternativas
Alternativas
 
Análise de produtos
Análise de produtosAnálise de produtos
Análise de produtos
 
1ºart tijolos de solo cimento + rcc- segantini (2011)
1ºart   tijolos de solo cimento + rcc- segantini (2011)1ºart   tijolos de solo cimento + rcc- segantini (2011)
1ºart tijolos de solo cimento + rcc- segantini (2011)
 
Repensando o Telhado de Produto a Serviço Eco-Sustentável
Repensando o Telhado de Produto a Serviço Eco-SustentávelRepensando o Telhado de Produto a Serviço Eco-Sustentável
Repensando o Telhado de Produto a Serviço Eco-Sustentável
 
2º art blocos de vedação com entulho abreu et al. (2009)
2º art  blocos de vedação com entulho   abreu et al. (2009)2º art  blocos de vedação com entulho   abreu et al. (2009)
2º art blocos de vedação com entulho abreu et al. (2009)
 
Paula Roque - REVIGRES
Paula Roque - REVIGRESPaula Roque - REVIGRES
Paula Roque - REVIGRES
 
Livro pict2019 part1
Livro pict2019 part1Livro pict2019 part1
Livro pict2019 part1
 
Alvenaria - Técnica e Arte
Alvenaria - Técnica e ArteAlvenaria - Técnica e Arte
Alvenaria - Técnica e Arte
 
Bambu adriana
Bambu adrianaBambu adriana
Bambu adriana
 
Conheça o fogão ecológico
Conheça o fogão ecológicoConheça o fogão ecológico
Conheça o fogão ecológico
 
04 07 2004
04 07 200404 07 2004
04 07 2004
 
Alternativas sustentáveis trabalho (1)
Alternativas sustentáveis  trabalho (1)Alternativas sustentáveis  trabalho (1)
Alternativas sustentáveis trabalho (1)
 
Práticas de sustentabilidade aplicadas na construção civil - Case ARC
Práticas de sustentabilidade aplicadas na construção civil - Case ARCPráticas de sustentabilidade aplicadas na construção civil - Case ARC
Práticas de sustentabilidade aplicadas na construção civil - Case ARC
 
Superadobe
SuperadobeSuperadobe
Superadobe
 
Apresentacao ICA
Apresentacao ICAApresentacao ICA
Apresentacao ICA
 

Semelhante a Utilização de pet como material alternativo para o concreto não estrutural

Art rc cs na composição de tijolos de solo-cimento. ferraz (2004)
Art  rc cs na composição de tijolos de solo-cimento. ferraz (2004)Art  rc cs na composição de tijolos de solo-cimento. ferraz (2004)
Art rc cs na composição de tijolos de solo-cimento. ferraz (2004)Petiano Camilo Bin
 
Art resíduos de argamassa de cimento nas propriedades do solo cimento compac...
Art  resíduos de argamassa de cimento nas propriedades do solo cimento compac...Art  resíduos de argamassa de cimento nas propriedades do solo cimento compac...
Art resíduos de argamassa de cimento nas propriedades do solo cimento compac...Petiano Camilo Bin
 
Dosagem do concreto_2_ano
Dosagem do concreto_2_anoDosagem do concreto_2_ano
Dosagem do concreto_2_anomarcelovicenzo
 
Art desempenho de concretos com agregados reciclados de cerâmica vermelha
Art desempenho de concretos com agregados reciclados de cerâmica vermelhaArt desempenho de concretos com agregados reciclados de cerâmica vermelha
Art desempenho de concretos com agregados reciclados de cerâmica vermelhaPetiano Camilo Bin
 
Concreto de pós reativos ecoeficiente na indústria do concreto pré moldado
Concreto de pós reativos ecoeficiente na indústria do concreto pré moldadoConcreto de pós reativos ecoeficiente na indústria do concreto pré moldado
Concreto de pós reativos ecoeficiente na indústria do concreto pré moldadoFelipe Lima da Costa
 
Art moldagem e ensaios em laboratório de blocos para alvenaria de vedação ...
Art  moldagem e ensaios em laboratório de blocos para alvenaria de vedação   ...Art  moldagem e ensaios em laboratório de blocos para alvenaria de vedação   ...
Art moldagem e ensaios em laboratório de blocos para alvenaria de vedação ...Petiano Camilo Bin
 
ApresentaçãO Web
ApresentaçãO WebApresentaçãO Web
ApresentaçãO Websemanact2007
 
Art solo cimento + esíduos de concreto- souza et al. (2008)
Art  solo cimento + esíduos de concreto- souza et al. (2008)Art  solo cimento + esíduos de concreto- souza et al. (2008)
Art solo cimento + esíduos de concreto- souza et al. (2008)Petiano Camilo Bin
 
TIJOLOS DE PLÁSTICOS RECICLÁVEIS
TIJOLOS DE PLÁSTICOS RECICLÁVEIS TIJOLOS DE PLÁSTICOS RECICLÁVEIS
TIJOLOS DE PLÁSTICOS RECICLÁVEIS Abner Augusto Reiis
 
Reciclagem dos resíduos de pneu, metal e vidro.
Reciclagem dos resíduos de pneu, metal e vidro.Reciclagem dos resíduos de pneu, metal e vidro.
Reciclagem dos resíduos de pneu, metal e vidro.Hávila Said
 
Trabalho de fisica
Trabalho de fisicaTrabalho de fisica
Trabalho de fisicathiagozizu
 
Anlise da adio de resduos de concreto nas caractersticas do solo cimento plst...
Anlise da adio de resduos de concreto nas caractersticas do solo cimento plst...Anlise da adio de resduos de concreto nas caractersticas do solo cimento plst...
Anlise da adio de resduos de concreto nas caractersticas do solo cimento plst...Petiano Camilo Bin
 
Trabalho oficial. rede poc
Trabalho oficial. rede pocTrabalho oficial. rede poc
Trabalho oficial. rede pocAngela Correa
 
Trabalho oficial. versão rede poc
Trabalho oficial. versão rede pocTrabalho oficial. versão rede poc
Trabalho oficial. versão rede pocAngela Correa
 
Reciclagem da borracha
Reciclagem da borrachaReciclagem da borracha
Reciclagem da borrachaBorrachas
 

Semelhante a Utilização de pet como material alternativo para o concreto não estrutural (20)

3753 12650-1-pb
3753 12650-1-pb3753 12650-1-pb
3753 12650-1-pb
 
Art rc cs na composição de tijolos de solo-cimento. ferraz (2004)
Art  rc cs na composição de tijolos de solo-cimento. ferraz (2004)Art  rc cs na composição de tijolos de solo-cimento. ferraz (2004)
Art rc cs na composição de tijolos de solo-cimento. ferraz (2004)
 
Art resíduos de argamassa de cimento nas propriedades do solo cimento compac...
Art  resíduos de argamassa de cimento nas propriedades do solo cimento compac...Art  resíduos de argamassa de cimento nas propriedades do solo cimento compac...
Art resíduos de argamassa de cimento nas propriedades do solo cimento compac...
 
Dosagem do concreto_2_ano
Dosagem do concreto_2_anoDosagem do concreto_2_ano
Dosagem do concreto_2_ano
 
E book01 2016-ehn
E book01 2016-ehnE book01 2016-ehn
E book01 2016-ehn
 
Art desempenho de concretos com agregados reciclados de cerâmica vermelha
Art desempenho de concretos com agregados reciclados de cerâmica vermelhaArt desempenho de concretos com agregados reciclados de cerâmica vermelha
Art desempenho de concretos com agregados reciclados de cerâmica vermelha
 
Concreto de pós reativos ecoeficiente na indústria do concreto pré moldado
Concreto de pós reativos ecoeficiente na indústria do concreto pré moldadoConcreto de pós reativos ecoeficiente na indústria do concreto pré moldado
Concreto de pós reativos ecoeficiente na indústria do concreto pré moldado
 
Art moldagem e ensaios em laboratório de blocos para alvenaria de vedação ...
Art  moldagem e ensaios em laboratório de blocos para alvenaria de vedação   ...Art  moldagem e ensaios em laboratório de blocos para alvenaria de vedação   ...
Art moldagem e ensaios em laboratório de blocos para alvenaria de vedação ...
 
ApresentaçãO Web
ApresentaçãO WebApresentaçãO Web
ApresentaçãO Web
 
Art solo cimento + esíduos de concreto- souza et al. (2008)
Art  solo cimento + esíduos de concreto- souza et al. (2008)Art  solo cimento + esíduos de concreto- souza et al. (2008)
Art solo cimento + esíduos de concreto- souza et al. (2008)
 
TIJOLOS DE PLÁSTICOS RECICLÁVEIS
TIJOLOS DE PLÁSTICOS RECICLÁVEIS TIJOLOS DE PLÁSTICOS RECICLÁVEIS
TIJOLOS DE PLÁSTICOS RECICLÁVEIS
 
Apostila concreto armado
Apostila concreto armadoApostila concreto armado
Apostila concreto armado
 
6013 43414-1-pb
6013 43414-1-pb6013 43414-1-pb
6013 43414-1-pb
 
Reciclagem dos resíduos de pneu, metal e vidro.
Reciclagem dos resíduos de pneu, metal e vidro.Reciclagem dos resíduos de pneu, metal e vidro.
Reciclagem dos resíduos de pneu, metal e vidro.
 
Trabalho de fisica
Trabalho de fisicaTrabalho de fisica
Trabalho de fisica
 
Anlise da adio de resduos de concreto nas caractersticas do solo cimento plst...
Anlise da adio de resduos de concreto nas caractersticas do solo cimento plst...Anlise da adio de resduos de concreto nas caractersticas do solo cimento plst...
Anlise da adio de resduos de concreto nas caractersticas do solo cimento plst...
 
Apostila de Concreto Armado 1
Apostila de Concreto Armado 1Apostila de Concreto Armado 1
Apostila de Concreto Armado 1
 
Trabalho oficial. rede poc
Trabalho oficial. rede pocTrabalho oficial. rede poc
Trabalho oficial. rede poc
 
Trabalho oficial. versão rede poc
Trabalho oficial. versão rede pocTrabalho oficial. versão rede poc
Trabalho oficial. versão rede poc
 
Reciclagem da borracha
Reciclagem da borrachaReciclagem da borracha
Reciclagem da borracha
 

Utilização de pet como material alternativo para o concreto não estrutural

  • 1. BRUNO ROQUE FERREIRA UTILIZAÇÃO DE PET COMO MATERIAL ALTERNATIVO NA COMPOSIÇÃO DE CONCRETO Londrina 2013
  • 2. BRUNO ROQUE FERREIRA UTILIZAÇÃO DE PET COMO MATERIAL ALTERNATIVO NA COMPOSIÇÃO DE CONCRETO Trabalho de Ciencia dos Materiais Orientadores: Profa. Dra. Ana Mauriceia Castellani Londrina 2013
  • 3. “Você precisa fazer aquilo que pensa que não é capaz de fazer” (Eleanor Roosevelt)
  • 4. RESUMO Um dos materiais mais utilizado no mundo é o concreto, sendo considerado o mais versátil na construção civil, o concreto não gera nenhuma agressão ao meio ambiente tampouco utiliza algum tipo de produto tóxico em sua composição, que é basicamente obtido na natureza, em forma de rocha que posteriormente é transformada em brita, areia e água. Atualmente esses recursos são obtidos com abundancia, o que contribui para a aceleração, crescimento e desenvolvimento social e econômico de vários países desenvolvidos e subdesenvolvidos, incluindo o Brasil. Esse trabalho apresenta na forma de ensaios de laboratório uma fonte inovadora de matéria-prima para esse material tão importante para nossa economia, sendo obtido tanto na forma reciclável como na industrializada, com a intensão de reduzir a exploração dos recursos minerais e com o bom senso e a aplicabilidade correta à utilização de PET como agregado do concreto de aplicabilidade não estrutural. Palavras-chave: Concreto, Matéria-prima, Reduzir, Exploração, PET.
  • 5. LISTA DE ILUSTRAÇÕES Figura 1 – DADOS TÉNICOS DO PET............. .............................................13 Figura 2 – ESTOQUE DE AREIA..................................................................... 17 Figura 3 – COLETA DE AMOSTRA DE AREIA ...............................................17 Figura 4 – RETIRADA DE UMIDADE DA AREIA.............................................18 Figura 5 – PESANDO AMOSTRA DE AREIA...................................................18 Figura 6 – PENEIRAMENTO DA AREIA..........................................................Erro! Indicador não definido. Figura 7 – QUANTIDADE ACUMULADA NAS PENEIRAS..............................19 Figura 8 – COMPONENTES DO CONCRETO.................................................26 Figura 9 – PET .................................................................................................26 Figura 10 – MISTURA DOS MATERIAIS NA BETONEIRA..............................27 Figura 11 – DESFORME DOS CORPOS DE PROVA......................................27 Figura 12 – ROMPIMENTO..............................................................................28 Figura 13 – CORPOS DE PROVA ROMPIDOS NO 7° DIA.............................28 Figura 14 – CORPOS DE PROVA ROMPIDOS NO 28° DIA...........................28 Figura 15 – MEMORIAL DE CALCULO...........................................................29 Figura 16 – TABELA DE RESULTADOS FINAIS............................................30 Figura 14 – CORPOS DE PROVA ROMPIDOS NO 28° DIA..........................29.
  • 6. LISTA DE ABREVIATURAS E SIGLAS ABCP - Associação Brasileira de Cimento Portland PET - Politereftalato de etileno ACI - American Concrete Institute IPT - Instituto de Pesquisas Tecnológicas de São Paulo INT - Instituto Nacional de Tecnologia NBR - Norma Brasileira Regulamentadora ABNT – Associação Brasileira de Normas Técnicas IBGE – Instituto Brasileiro de Geografia e Estatística FONTE 12, ENTRELINHAS 1,5
  • 7. SUMÁRIO 1 INTRODUÇÃO............................................................................................7 2 HISTORIA DO CONCRETO........................................................................8 3 TIPOS DE CONCRETO..............................................................................Erro! Indicador não definido. 3 OBJETIVO DO TRABALHO......................................................................12 5 DOSAGEM OU O TRAÇO DO CONCRETO (FORMA TRADIONAL)......14 6 DOSAGEM EXPERIMENTAL...................................................................14 6 DOSAGEM EMPÍRICA..............................................................................14 7 RESISTENCIA DE DOSAGEM.................................................................15 8 DEFININDO O DESVIO PADRÃO........................................................... 15 9 MÉTODO DE DOSAGEM.........................................................................16 10 CALCULANDO O TRAÇO........................................................................16 11 FABRICAÇÃO DOS CONCRETOS..........................................................26 12 CONCLUSÃO...........................................................................................30 13 AGRADECIMENTO..................................................................................30 14 REFERÊNCIAS........................................................................................31
  • 8. 7 1 INTRODUÇÃO A busca por novas técnicas e novas aplicabilidades do concreto o tornou em um objeto de estudo muito valioso, pois com o “boom” da construção civil no Brasil o seu consumo cresce cada vez mais. Entre 2005 e 2012, enquanto o consumo de cimento avançou mais de 80%, o aumento do concreto preparado em centrais foi de 180%. Estima-se que as concreteiras tenham produzido 51 milhões de m³ no ano passado, de acordo com uma pesquisa inédita produzida pela empresa e8 Inteligência, em parceria com a Associação Brasileira de Cimento Portland (ABCP). Junto com esse aumento de consumo veio também novas tecnologias, para melhorar seu desempenho, como por exemplo, os aditivos que podem retardar ou acelerar a pega do concreto, como também diminuir o consumo de água, entre outras aplicabilidades. Muitos pesquisadores têm descoberto cada vez mais ideias e propostas para que o uso dos materiais e as construções sejam cada vez mais úteis e melhor aproveitados. Tendo em vista contribuir com a evolução deste ramo, realizaremos testes moldando corpos de prova substituindo a brita por PET nas proporções de 25%, 50%, 75% e 100%. Após analise dos resultados, poderemos determinar qual dessas percentagens corresponde ao desempenho e as proporções mecânicas de um concreto feito de forma tradicional.
  • 9. 8 2 HISTORIA DO CONCRETO Desde os primórdios, o homem utiliza materiais com características aglomerantes, que eram empregados principalmente na construção de abrigos. Povos antigos, como os babilônios, utilizavam argilas não cozidas misturadas com fibras vegetais, enquanto os egípcios usavam gesso impuro calcinado. Os gregos e romanos recorriam ao calcário calcinado, porém, posteriormente, aprenderam a misturar cal, água, areia e pedra britada, combinação que pode ser considerada como o primeiro concreto da história. Um dos grandes exemplos da humanidade na utilização desse material é a cúpula de 47 metros de diâmetro do templo de Phanteon, em Roma, construído em 27 a.C., pelo imperador Marco Agripa. No século XVIII, a reconstrução do Farol de Eddystone em Cornwall, no sudeste da Inglaterra, levou John Smeaton a procurar um material mais resistente para suportar a ação agressiva da água do mar. Tal fato colaborou para que surgissem as primeiras iniciativas de se industrializar o cimento. Em 1824, coube ao pedreiro Joseph Aspdin patentear o aglomerante, que então o batizou como cimento Portland, devido à matéria-prima (calcário) ser extraída da Ilha de Portland. No Brasil, a primeira produção efetiva de cimento aconteceu em 1926 pela Cia Brasileira de Cimento Portland Perus, em Perus (SP). Atualmente, o Brasil é um dos dez maiores produtores de cimento portland do mundo, sendo o maior da América Latina, e detém uma das mais avançadas tecnologias na fabricação desse produto. O cimento, por ser um material moldável que endurece na presença de água e que possui elevada resistência, causou uma grande revolução em toda a área da construção e possibilitou ao homem transformar o meio em que vive. Obras cada vez mais indispensáveis para nosso bem-estar, como barragens, pontes, edifícios, estações de tratamento de água, rodovias, portos e aeroportos fazem do cimento, hoje, um dos materiais mais consumidos em toda a sociedade.
  • 10. 9 2 TIPOS DE CONCRETO O concreto é um material com muitas aplicabilidades, por isso com o passar dos anos foram desenvolvidos vários tipos de concretos, com o intuito de construir prédios cada vez maiores e estruturas mais leves, entre outros. Segue abaixo a lista dos tipos de concreto conhecidos e utilizados.  Concreto convencional - Utilizado na maioria das obras civis, deve ser lançado nas fôrmas por método convencional (carrinhos de mão, gericas, gruas, etc ). O concreto convencional é de consistência seca e a sua resistência varia de 5,0 em 5,0MPa, a partir de 10,0 até 40,0MPa. É aplicado em obras civis, industriais e em peças pré-moldadas. As vantagens são: aumento da durabilidade e qualidade final da obra, redução dos custos da obra e redução no tempo de execução.  Concreto de Alto Desempenho - Normalmente elaborado com adições minerais tipo sílica ativa e metacaulim e aditivos superplastificantes. Os concretos assim obtidos possuem excelentes propriedades. É aplicado em obras civis especiais, hidráulicas em geral e em recuperações. As vantagens são: aumento da durabilidade e vida útil das obras; redução dos custos da obra e melhor aproveitamento das áreas disponíveis para construção.  Concreto Bombeável - Utilizado na maioria das obras civis. A sua dosagem é apropriada para utilização em bombas de concreto, evitando segregação e perdas de material. Sua resistência varia de 5,0 em 5,0MPa, a partir de 10,0 até 40,0MPa. É aplicado em obras civis em geral, obras industriais e peças pré- moldadas. As vantagens são: aumento da durabilidade e qualidade final da obra; redução dos custos da obra e redução no tempo de execução.  Concreto de Alta Resistência inicial - O concreto de alta resistência inicial, como o nome já diz é aquele que tem a característica de atingir grande resistência, com pouca idade, podendo dar mais velocidade à obra ou ser utilizado para atender situações emergenciais. Sua aplicação pode ser necessária em indústrias de pré-moldados, em estruturas convencionais ou protendidas, na fabricação de tubos e artefatos de concreto, entre outras. O aumento na velocidade das obras que este concreto pode gerar traz consigo a redução dos custos com funcionários, com alugueis de formas, equipamentos e
  • 11. 10 diversos outros ganhos de produtividade. A alta resistência inicial é fruto de uma dosagem racional do concreto, feita com base nas características específicas de cada obra. Portanto, a obra deve fornecer o maior número de informações possíveis para a elaboração do traço, que pode exigir aditivos especiais, tipos específicos de cimento e adições.  Concreto de Pavimento Rígido - O principal requisito exigido para esse concreto é a resistência à tração na flexão e ao desgaste superficial. Trata-se de um concreto de fácil lançamento e execução. É aplicado em estradas e vias urbanas. As vantagens são: maior durabilidade; redução dos custos de manutenção e maior luminosidade.  Concreto Pesado - A característica principal desse tipo de concreto é a sua alta densidade que varia entre 2800 e 4500 kg/m³, obtida com a utilização de agregados especiais, normalmente a hematita. É aplicado como contra peso em gasodutos, hospitais e usinas nucleares. Pode ser citada a vantagem de ser isolante radioativo.  Concreto Projetado – Concreto que é lançado por equipamentos especiais e em velocidade sobre uma superfície, proporcionando a compactação e a aderência do mesmo a esta superfície.São utilizados para revestimentos de túneis, paredes, pilares, contenção de encostas, etc. Este Concreto pode ser projetado por via-seca ou via-úmida, alterando desta forma a especificação do equipamento de aplicação e do traço que será utilizado.  Concreto Leve Estrutural – Os concretos leves são reconhecidos pelo seu reduzido peso específico e elevada capacidade de isolamento térmico e acústico Enquanto os concretos normais têm sua densidade variando entre 2300 e 2500 kg/m³, os leves chegam a atingir densidades próximas a 500 kg/m³. Cabe lembrar que a diminuição da densidade afeta diretamente a resistência do concreto. Os concretos leves mais utilizados são os celulares, os sem finos e os produzidos com agregados leves, como isopor, vermiculita e argila expandida. Sua aplicação está voltada para procurar atender exigências específicas de algumas obras e também para enchimento de lajes, fabricação de blocos, regularização de superfícies, envelopamento de tubulações, entre outras.  Concreto Leve - A densidade desse concreto varia de 400 a 1800kg/m³. Os tipos mais comuns são o concreto celular espumoso, concreto com isopor e concreto com argila expandida. É aplicado em: enchimento e regularização de
  • 12. 11 lajes, pisos e elementos de vedação. As vantagens são: redução de peso próprio e isolante termo-acústico.  Concreto Fluido - Indicados para concretagens de peças densamente armadas, estruturas pré-moldadas, fôrmas em alto relevo, fachadas em concreto aparente, painéis arquitetônicos, lajes, vigas etc. Este concreto, com grande variedade de aplicações é obtido pela ação de aditivos superplastificantes, que proporcionam maior facilidade de bombeamento, excelente homogeneidade, resistência e durabilidade. Sua característica é de fluir com facilidade dentro das formas, passando pelas armaduras e preenchendo os espaços sob o efeito de seu próprio peso, sem o uso de equipamento de vibração. Para lajes e calçadas, por exemplo, ele se auto nivela, eliminando a utilização de vibradores e diminuindo o número de funcionários envolvidos na concretagens.  Concreto Rolado - É utilizado em pavimentações urbanas, como sub-base de pavimentos e barragens de grande porte. Seu acabamento não é tão bom quanto aos concretos utilizados em pisos Industriais ou na Pavimentação de pistas de aeroportos e rodovias, por isso ele é mais utilizado como sub-base.  Concreto Colorido - Concreto normal adicionado de pigmentos especiais, os quais conferem ao concreto várias cores com diferentes tonalidades, a saber: amarela, azul, vermelha, verde, marrom e preta. É aplicado em pisos, calçadas e fachadas. As vantagens são: elimina pintura e pode ser usado como marcador de áreas específicas.  Concreto Resfriado com gelo - Trata-se de um concreto, cuja quantidade de água é parcialmente substituída por gelo, para atender a condições específicas de projeto, por exemplo, a retração térmica. É aplicado em paredes espessas e grandes blocos de fundação. A vantagem é a redução da fissuração de origem térmica.  Concreto Autoadensável - É o concreto do futuro. Trata-se de um concreto de elevada plasticidade. Em alguns casos, pode ter a sua reologia controlada com a utilização de aditivos de última geração. É aplicado em Fundações especiais tipo hélice contínua e paredes diafragma; peças delgadas e peças densamente armadas. As vantagens são: Maior durabilidade e fácil aplicação. Dispensa a utilização total ou parcial de vibradores; redução dos custos com mão de obra e energia e maior produtividade no lançamento.
  • 13. 12  Concreto com adição de fibras - Normalmente elaborado com fibras de nylon, polipropileno e aço, dependendo das condições de projeto. Os concretos assim obtidos inibem os efeitos da fissuração por retração .Obras civis especiais e pisos industriais. As vantagens são: aumenta a durabilidade das obras quanto a abrasão e desgaste superficial; melhora a resistência à tração do concreto e pode ser utilizado em pistas de aeroportos.  Concreto Impermeável - Trata-se de um concreto com a relação água- cimento limitada, normalmente menor ou igual a 0,55; e dosado com um cimento apropriado, tipo portland de alto – forno ou pozolânico. É aplicado em obras hidráulicas em geral, estações de tratamento d’água e esgoto e Barragens. As vantagens são: aumento da durabilidade da obra e redução dos custos de manutenção da obra. 3 OBJETIVO DO TRABALHO O objetivo do trabalho é contribuir para a preservação dos recursos naturais em nosso planeta, desenvolvendo uma nova fonte de agregado para o concreto. O material escolhido para esta substituição é o Politereftalato de etileno, mais conhecido como PET, que é um polímero plástico de ultima geração, considerado plástico de engenharia, foi desenvolvido por dois químicos britânicos chamados Whinfield e Dickson em 1941, formado pela reação entre o ácido tereftálico e o etileno glicol, originando um polímero, termoplástico. Utiliza-se principalmente na forma de fibras para tecelagem e de embalagens para bebidas. Possui propriedades termoplásticas, isto é, pode ser reprocessado diversas vezes pelo mesmo ou por outro processo de transformação. Quando aquecidos a temperaturas adequadas, esses plásticos amolecem, fundem e podem ser novamente moldados. As garrafas produzidas com esse polímero podem permanecer na natureza por até 800 anos, ou seja, além de contribuir com a não utilização dos recursos naturais preservando fauna e a flora, contribuiremos também com a limpeza desse meio ambiente, pois com a valorização desse material, seu descarte será mais consciente.
  • 14. 13 O PET apresenta os seguintes dados técnicos: Polietileno PET As propriedades mecânicas a 23 ° C UNIT ASTM DIN VALORES GRAVIDADE ESPECÍFICA g/cm3 D-792 53479 1.39 Resistir. OS TRACCs. (Fluência / Break) Kg / cm ² D-638 53455 900 / - RES. Compressão (1 e 2% DEF) Kg / cm ² D-695 53454 260/480 RESISTÊNCIA À FLEXÃO Kg / cm ² D-790 53452 1450 RES. CHOQUE sem entalhe Kg.cm / cm ² D-256 53453 > 50 QUEBRANDO A EXTENSÃO % D-638 53455 15 MÓDULO DE ELASTICIDADE (drive) Kg / cm ² D-638 53457 37000 DUREZA Shore D D-2240 53505 85-87 COEF. Atrito estático S / AÇO D-1894 - COEF. Atrito dinâmico S / AÇO D-1894 0.20 RES. DESGASTE POR ROCE MUITO BOM PROPRIEDADES TÉRMICAS UNIT ASTM DIN VALORES CALOR ESPECÍFICO Kcal / kg. ° C C-351 0.25 TEMP. DOBRA B / LOAD (18.5Kg/cm ²) º C D-648 53461 75 TEMP. USO CONTÍNUO NO AR º C -20 A 110 TEMP. FUSÃO º C 255 COEF. EXPANSÃO linear de 23 a 100 º C por ° C. D-696 52752 0.00008 COEF. Condução térmica Kcal / mh ° C. C-177 52612 0.25 PROPRIEDADES ELÉTRICAS UNIT ASTM DIN VALORES Constante dielétrica A 60 HZ D-150 53483 3.4 Constante dielétrica A 1 KHZ D-150 53483 3.3 Constante dielétrica A 1 MHZ D-150 53483 3.2 Absorção de umidade AIR % D-570 53472 0.25 Resistência de superfície Ohm D-257 53482 > 10-14 RESISTÊNCIA VOLUMETRICA Ohms-cm D-257 53482 > 10 a 15 DIELECTRIC KV / mm D-149 22 QUÍMICAS COMENTÁRIOS Resistência à óleo BOA A TEMP RESISTÊNCIA ácido fraco. MEIO AMBIENTE BOA A TEMP resistência do alcalóide fraco. MEIO AMBIENTE BOA RESISTÊNCIA À PROD. QUÍMICA DEFINIDA CONSULT Efeito da luz solar ALGO COMO AFETA APROVADO PARA CONTATO COM ALIMENTOS SI COMPORTAMENTO COMBUSTION Queimadura com dificuldade média Propagação da chama Manter a chama COMPORTAMENTO PARA QUEIMAR CONTAS COR DA CHAMA LARANJA AMARELO Tiznado CHEIRO DE QUEIMAR Doce aromático Figura 1 – Dados técnicos do PET
  • 15. 14 4 DOSAGEM OU O TRAÇO DO CONCRETO (FORMA TRADIONAL) É a determinação da mistura mais econômica de um concreto, com características capazes de atender as condições de serviço, utilizando os materiais disponíveis. Segundo a NBR 12655, há dois tipos de dosagem: a dosagem empírica e a dosagem experimental. 5 DOSAGEM EXPERIMENTAL Os materiais constituintes e o concreto obtido são previamente ensaiados em laboratórios. A dosagem experimental visa estabelecer o traço do concreto com a resistência e a trabalhabilidade prevista. A dosagem experimental pode se feita por qualquer método que estabeleça uma correlação com esses parâmetros. Os métodos de dosagem mais conhecidos no Brasil são: método do ACI – American Concrete Institute, método da ABCP – Associação Brasileira de Cimento Portland, Método IPT – Instituto de Pesquisas Tecnológicas de São Paulo e método do INT – Instituto Nacional de Tecnologia. A dosagem experimental, que esta diretamente ligada a relação água-cimento, depende da resistência de dosagem, das características da obrae da definição de uma trabalhabilidade compatível, tanto com os matérias quanto com a execução do concreto. 6 DOSAGEM EMPÍRICA A proporção dos materiais é fixada pela experiência do construtor ou através de utilização de tabelas. De acordo com a NBR12655, a dosagem empírica só é permitida para concreto de classe C10 – resistência característica a compressão de 10Mpa - , com consumo mínimo de 300 Kg de cimento por metro cubico.
  • 16. 15 7 RESISTENCIA DE DOSAGEM Segundo a NBR 12655, a resistência de dosagem será calculada pela formula: Onde,  = Resistencia característica à compressão, especificada no projeto estrutural.  = Resistencia do concreto à compressão, prevista para a idade de j dias.  = Desvio padrão da dosagem em função do controle da obra. 8 DEFINDO O DESVIO PADRÃO = 4,0 Mpa – Condição A – Aplicável as classes C10 até C38: o cimento e os agregados são medidos em massa, a agua de amassamento é medida em massa ou o volume com dispositivo dosador é corrigida em função da umidade dos agregados = 5,5 Mpa – Condição B – Aplicável as classes C10 até C25: o cimento é medido em massa, a agua de amassamento é medida em massa ou volume com dispositivo dosador e os agregados medidos em volume. O volume de agregados miúdos é corrigido através da curva de inchamento estabelecida especificamente para o material utilizado. = 7,0 Mpa – Condição C – Aplicável as classes C10 até C15: o cimento é medido em massa e os agregados são medido em volume. Calculada a resistência de dosagem, deve-se adotar um dos métodos de dosagem experimental para definir as proporções adequadas de cimento, areia, brita e água que vão compor o concreto.
  • 17. 16 9 MÉTODO DE DOSAGEM O método a ser utilizado será o método ACI – American Concrete Institute, um dos mais utilizados no Brasil, estabelecendo as seguintes etapas para se obter o traço do concreto, que é a proporção de seus materiais constituintes. 10 CALCULANDO O TRAÇO Iremos produzir concreto com de 30 MPa, utilizando cimento CP II E-32 e Sd = 5,5 MPa – condição B, considerando os agregados secos, adotando:  Massa Unitária dos materiais.  Massa específica dos materiais.  Massa unitária compactada da brita. ³/40,1 dmkgMcomp   Módulo de Finura do agregado miúdo. O modulo de finura é a soma das porcentagens retidas acumuladas em massa de um agregado nas peneiras de serie normal divididas por 100. Classificação pela granulometria: - Grossa: módulo de finura superior a 3,3. - Média: módulo de finura entre 2,4 e 3,3. - Fina: módulo de finura inferior a 2,4. 3 3 /30,1 /40,1 dmkg dmkg brita areia     3 3 3 /65,2 /60,2 /0,3 dmkg dmkg dmkg brita areia cimento      
  • 18. 17 Para se obter o modulo de finura foram realizados ensaios de laboratório, seguindo os seguindo os seguintes passos: 1. Seleção da areia; Figura 2 – Estoque de areia 2. Coleta da amostra; Figura 3 – COLETA DE AMOSTRA DE AREIA
  • 19. 18 3. Retirada de umidade. Figura 4 – RETIRADA DE UMIDADE DA AREIA 4. Determinando quantidade da amostra Figura 5 – PESANDO AMOSTRA DE AREIA
  • 20. 19 5. Peneiramento Figura 6 – PENEIRAMENTO DA AREIA 6. Separação e pesagem dos acumulados em cada peneira Figura 7 – QUANTIDADE ACUMULADA NAS PENEIRAS
  • 21. 20 Obtivendo os seguintes resultados: Peneiras em mm Material retido (g) % Retida % Retida Acumulada 4,8 15,35 3,07 3,07 2,4 31,85 6,37 9,44 1,2 69,89 13,97 23,41 0,6 113,27 22,65 46,06 0,3 184,58 36,91 82,97 0,15 67,5 13,5 96,47 Fundo 17,56 3,53 100 Total 500 100 Onde, Modulo de finura = 2,61 Dimensão máxima do agregado miúdo = 4,8 mm  Dimensão Máxima característica do agregado graúdo. mmD 19max   Consistência do concreto fresco. Slump = 100 a 120 mm 1° ETAPA: definição da resistência de dosagem, : = 30 + 1,65 . 5,5 = 39,075 MPa
  • 22. 21 2° ETAPA: fixação da relação água-cimento, a/c através da Curva de Abrams adaptada : a/c 0,45 3° ETAPA: quantidade de água, Aágua. Para Dmáx = 19 mm e Slump = 80 a 100 mm, temos: Aágua = 205 l/m³
  • 23. 22 4° ETAPA: consumo de cimento, Ccim: 5° ETAPA: consumo de agregado graúdo, Bbrita: Para Dmáx: 19 mm e MF = 2,61, temos: Vc = 0,690
  • 24. 23 6° ETAPA: determinação do consumo de agregado miúdo, Aareia: Onde, Portanto: 7° ETAPA: definição do traço de concreto em massa: Ccim. ; Aareia ; Bbrita ; Aágua 455,5 : 621,4 ; 1070 ; 205 (traço em massa) 8° ETAPA: o traço do concreto é expresso proporcionalmente à quantidade de cimento:
  • 25. 24 8° ETAPA: determinar a quantidade de concreto que será produzido: Serão produzidos três corpos de prova para cada traço, para serem rompidos com as idades de 7, 14 e 28 dias, onde o corpo de prova apresenta as seguintes características: Para calcular a quantidade de brita e de PET são consideradas as seguintes informações: Então,  Concreto convencional; CONCRETONALO CONVENCIONAL 1m³ (em kg) 1dm³ (em kg) x 4,5 dm³ TOTAL (em kg) CIMENTO 455,5 0,455 x 4,5 2,05 AREIA 621,4 0,621 x 4,5 2,79 BRITA 1070 1,07 x 4,5 4,81 AGUA 205 0,205 x 4,5 0,922 CP 10x20 = 0,0015 m³ ou 1,5 dm³
  • 26. 25  Concreto 100% PET; CONCRETO 100 PET 1m³ (em kg) 1dm³ (em kg) x 4,5 dm³ TOTAL (em kg) CIMENTO 455,5 0,455 x 4,5 2,05 AREIA 621,4 0,621 x 4,5 2,79 AGUA 205 0,205 x 4,5 0,922 PET 561,14 0,561 x 4,5 2,52  Concreto 50% brita e 50% PET; CONCRETO 50% BRITA E 50% PET 1m³ (em kg) 1dm³ (em kg) x 4,5 dm³ TOTAL (em kg) CIMENTO 455,5 0,455 x 4,5 2,05 AREIA 621,4 0,621 x 4,5 2,79 BRITA 535 0,535 x 4,5 2,40 AGUA 205 0,205 x 4,5 0,922 PET 280,57 0,28057 x 4,5 1,2625  Concreto 25% brita e 75% PET CONCRETO 25% BRITA E 75% PET 1m³ (em kg) 1dm³ (em kg) x 4,5 dm³ TOTAL (em kg) CIMENTO 455,5 0,455 x 4,5 2,05 AREIA 621,4 0,621 x 4,5 2,79 BRITA 267,5 0,2675 x 4,5 1,2 AGUA 205 0,205 x 4,5 0,922 PET 420,855 0,420855 x 4,5 1,89
  • 27. 26 11 FABRICAÇÃO DOS CONCRETOS  Separação dos materiais: Areia, Brita, Cimento, Água e PET. Figura 8 – COMPONENTES DO CONCRETO Figura 9 – PET
  • 28. 27  Preparação do concreto. Figura 10 – MISTURA DOS MATERIAIS NA BETONEIRA  Desforme dos corpos de prova. Figura 11 – DESFORME DOS CORPOS DE PROVA
  • 29. 28  Rompimento. Figura 12 – ROMPIMENTO  Rompimento aos 7 dias. Figura 13 – CORPOS DE PROVA ROMPIDOS NO 7° DIA
  • 30. 29  Rompimento aos 28 dias. Figura 14 – CORPOS DE PROVA ROMPIDOS NO 28° DIA  Memorial de calculo. Figura 15 – MEMORIAL DE CALCULO
  • 31. 30  Resultados. Figura 16 – TABELA DE RESULTADOS FINAIS 12 CONCLUSÃO Notoriamente a resistência à compressão do concreto possuindo PET em sua composição é menor, em relação ao convencional, devido a menor resistência mecânica do PET em relação à brita e a areia. Verifica-se que o concreto utilizando PET como agregado pode ser utilizado na Indústria da Construção Civil, lembrando que devido a sua baixa resistência mecânica ele não pede ser utilizado em peças estruturais. Neste caso, ele pode estar sendo utilizado em: alvenaria interna de fechamento, capas para lajes pré- moldadas, material de enchimento (escadas, rebaixo de níveis, base de enchimento para calçadas e pisos térreos). 13 AGRADECIMENTO Prof. Eng.Alex Alves Severo, docente das matérias: Materiais de Construção l e Materiais de Construção ll. Empresa farmacêutica Dentalclean: Fornecedor do material PET para o estudo. Faculdade Pitágoras: Laboratório e equipamentos. Teste de Resistência a Compressão
  • 32. 31 14 REFERÊNCIAS Materiais de construção civil/Carmen Couto Ribeiro, Joana Darc da Silva Pinto, Tadeu Starling/Ribeiro et al, 2011 http://www.abcp.org.br/conteudo/imprensa/cuidados-ao-construir-em-areas-litoraneas http://www.abcp.org.br/conteudo/imprensa/pesquisa-inedita-e-exclusiva-revela-cenario-do-mercado- brasileiro-de-concreto http://www.prp.unicamp.br/pibic/congressos/xxicongresso/resumos/103566.pdf http://www.holcim.com.br/ http://www.redimix.com.br/tiposDeConcreto/ http://www.jq.com.ar/Imagenes/Productos/PET/dtecnicos/dtecnicos.htm http://pt.wikipedia.org/wiki/Politereftalato_de_etileno