BOLETIN	DE	EXERCICIOS	4	
       1) Nun préstamo de 100. 000 € concedido o 5% de interese durante 3 anos.
          a) ¿Como o amortizarías polo sistema de amortización de reembolso único?
          b) ¿E polo sistema de amortización americano simple?
          c) ¿Cal sería o cadro de amortización polo sistema de amortización de termos
             amortizativos constantes?
          d) ¿Cal sería o cadro de amortización polo sistema de amortización de cotas de
             amortización constantes?


          a) Cn = C0 * (1 + i )n = 100.000 * (1 + 0,05)3 = 115.762,50 €

          b) I1 = I2 = C0 * i = 100.000 * 0,05 = 5.000 €
             Cn = C0 + C0 * i = 100.000 + 100.000 * 0,05 = 100.000 + 5.000 = 105.000 €


          c) an¬i = (1- (1+i)-n) / i = ( 1 – (1+0,05)-3) / 0,05 = 2,723248029

                 TERMO                                                                                                     CAPITAL
                                                                                                  CAPITAL
                                     COTA INTERESE            COTA AMORTIZACIÓN                                             VIVO
PERÍODO       AMORTIZATIVO                                                                      AMORTIZADO
                                            Ik                       Ak                                                      Ck
   n               a                                                                                Mk

                                                                                                                         C0 = 100.000
   0                 -                       -                          -                              -

                                       I1 = C0 * i =                                                                    C1 = C0 - M1 =
   1           a = C0 / an¬i =       100.000 * 0.05 =              A1 = a – I1 =                  M1 = A1 =          100.000 – 31.720,86
              100.000 / 2,72 =                                 36.720,86 – 5.000 =
                                          5.000                                                   31.720,86              = 68.279,14
                 36.720,86                                          31.720,86

                                         I2 = C1 * i =                                                                  C2 = C0 - M2 =
   2           a = C0 / an¬i =       68.279,14 * 0,05 =            A2 = a – I2 =                 M2 = M1 + A2=       100.000 – 65.027,76
              100.000 / 2,72 =                                 36.720,86 – 3.413,06          31.720,86 + 33.306,90
                                           3.413,06                                                                      = 34.972,24
                 36.720,86                                         = 33.306,90                    = 65.027,76

                                        I3 = C2 * i =                                                                   C3 = C0 - M3 =
   3           a = C0 / an¬i =       34.972,24* 0,05 =             A3 = a – I3 =                 M3 = M2 + A3=        100.000 – 100.000
              100.000 / 2,72 =                                36.720,86 – 1.748,61=          65.027,76+34.972,24
                                          1.748,61                                                                           =0
                 36.720,86                                          34.972,24                     = 100.000




          d)

                                                                                                    CAPITAL            CAPITAL
                            TERMO                      COTA                    COTA
                         AMORTIZATIVO                                                                                   VIVO
       PERÍODO                                       INTERESE               AMORTIZACIÓN
                                                                                                 AMORTIZADO              Ck
          n                   ak                         Ik                      A
                                                                                                     Mk
                                                                                                                       100.000
          0                      -                        -                        -                       -

                                                                                                                     C1 = C0 - M1 =
                         a1 = A + I1 =              I1 = C0 . i =             A = C0 / n =                             100.000 –
                                                                                                     M1 = A =
          1          33.333,33 + 5.000 =          100.000 * 0,05 =           100.000 / 3 =                            33.333,33 =
                                                                                                    33.333,33
                          38.333,33                    5.000                   33.333,33                               66.666,66
C2 = C0 - M2 =
              A2 = A + I 2 =                         A = C0 / n =
                                  I2 = C1 . i =                                          100.000 –
              33.333,33 +                           100.000 / 3 =    M2 = A + A =
   2                           66.666,66 * 0,05 =                                       66.666,66 =
               3.333,33 =                             33.333,33       66.666,66
                                   3.333,33                                              33.333,33
               36.666,66
                                                                                        C3 = C0 - M3 =
              A3 = A + I 3 =                         A = C0 / n =
                                  I3 = C2 . i =                                       100.000 -100.000
              33.333,33 +                           100.000 / 3 =   M3 = A +A + A =
   3                           33.333,33 * 0,05 =                                             =
               1.666,66 =                             33.333,33        100.000
                                   1.666,66                                                   0
               34.999,99




2) Préstanse 500.000 € ó 8% efectivo anual, para devolver en 10 anos mediante
   termos amortizativos anuais constantes. Calcula:
   a) A anualidade
   b) O capital pendente de amortizar o final do quinto ano.
   c) O capital amortizado nos catro primeiros anos.
   d) A cota de amortización do oitavo ano.
   e) A cota de interese do terceiro ano.


   a)   a?
        a = C0 / an¬i = 500.000 / 6,710081399 = 74.514,74
        an¬i = (1- (1+i)-n) / i = ( 1 – (1+0,08)-10) / 0,08 = 6,710081399

   b) C5 ?
        Ck = a * an-k¬i = 74.514,74 * 3,992710037 =297.515,75
        an-k¬i = (1- (1+i)-(n-k)) / i = ( 1 – (1+0,08)-5) / 0,08 = 3,992710037

   c) M4 ?
        Mk = C0 - Ck = 500.000 - 344.472,68 = 155.527,33
        C4 = a * an-k¬i = 74.514,74 * 4,622879664 = 344.472,68
        an-k¬i = (1- (1+i)-(n-k)) / i = ( 1 – (1+0,08)-6) / 0,08 = 4,622879664

   d) A8 ?
        Ak = A1 *(1+i )k-1 = 34.514,74 * (1+0,08 )7 = 59.152,20
        A 1 = a - I 1 = a - c0 * i
        A1 = 74.514,74 – (500.000 * 0,08) = 74.514,74 – 40.000 = 34.514,74

   e) I3 ?
        Ik = a - Ak = 74.514,74 - 40.257,99 = 34.256,74
        A3 = A1 *(1+i )2 = 34.514,74 * (1+0,08 )2 = 40.257,99
3) Concédese un préstamo de 2 millóns de euros para ser amortizado en 10 anos a
   un tipo de interese do 9 % anual. Calcula o termo amortizativo se:
   a) Durante os 3 primeiros anos so se pagan intereses e nos restantes unha
       anualidade constante.
       SOL:
       - 3 primeiros anos:
           a = c0 * i = 2.000.000 * 0,09 = 180.000
      -    Restantes 7 anos:
           C3 = C0 = a * an-k¬i
           a = C0 / an¬i = 2.000.000 / 5,032952835 =397.381,03
           an¬i = (1- (1+i)-n) / i = ( 1 – (1+0,09)-7) / 0,09 = 5,032952835


4) Fai catro anos concedeuse un préstamo amortizable polo método Francés ó 6%
   anual. Se o capital pendente de amortizar hoxe é de 804.393 € e a cota de
   amortización do quinto período será 70.000 €. Determina:
   a) O capital que se prestou.
   b) A duración da operación.

   a) C0 ?
      C0 = C4 + M4 = 804.393 + 242.557,41 =1.046.950,41
      Mk = A1 + A2 + A3 +... + Ak = A1 * Sk¬i
      M4 = A1 * S4¬i = 55.446,56 * ((1+0,06)4 -1)/ 0,09 = 242.557,41
      A5 = A1 *(1+i )4   A1 = A5 / (1+i )4 = 70.000 /(1+0,06)4 = 55.446,56

   b) n?
      C0 = a * an-k¬i       an-k¬i = C0 /a = 1.046.950,41 / 118.263,58 = 8,8526
                            (1- (1+0,06)-n) / 0,06 = 8,8526
                            -(1,06)-n = 8,8526 * 0,06 -1= - 0,468844
                            (1,06)-n = 0,468844
                            -n * lg1,06 = lg 0,468844
                            -n = lg 0,468844/ lg1,06 = -0,32897 / 0,0253
                            -n = -12,9999 ≈ -13
                            n = 12,9999 ≈ 13
      a= A5 + I5 = 70.000 + 48.263,58 = 118.263,58
      I5 = C4 * i = 804.393 * 0.06 = 48.263,58
5) Solicítase un préstamo hipotecario de 50.000 € a pagar en 30 anos mediante cotas
           mensuais e a un interese nominal anual do 9%, determinar:
           a) A contía dos termos amortizativos (mensualidade).
           b) Cadro de amortización dos 4 primeiros termos.
           c) Os intereses pagados no termo 240
           d) Capital amortizado nos 5 primeiros anos.


           a)   a?
                a = C0 / an.m¬im = 50.000 / 124,28...= 402,31
                a n.m¬im = (1- (1+i)-n.m) / i = ( 1 – (1+0,0075)-360) / 0,0075 = 124,2818657
                i = (1+ im)m -1       im =(1 + i)1/m – 1 =(1 + 0,09)1/12 – 1=0,0072….≈ 0,0075


           b) b

               TERMO                                                                      CAPITAL
                                                                         CAPITAL
                               COTA INTERESE      COTA AMORTIZACIÓN                        VIVO
PERÍODO     AMORTIZATIVO                                               AMORTIZADO
                                      Ik                 Ak                                 Ck
   n             a                                                         Mk

                                                                                         C0 = 50.000
   0                -                  -                   -                 -

                                  I1 = C0 * i =                                         C1 = C0 - M1 =
   1                           50.000 * 0,0075=       A1 = a – I1 =      M1 = A1 =     50.000 – 27,31
             a = C0 / an¬i =
                                                     402,31– 375=
                402,31                375                                 27,31          = 49.972,69
                                                         27,31

                                 I2 = C1 * i =
                                                                                        C2 = C0 - M2 =
                                 49.972,69*          A2 = a – I2 =     M2 = M1 + A2=
   2         a = C0 / an¬i =                                                           50.000 – 54,82
                                   0,0075=          402,31– 374,80     27,31+ 27,51
                402,31                                                                   = 49.945,18
                                    374,80             = 27,51            = 54,82

                                 I3 = C2 * i =
                                                                                        C3 = C0 - M3 =
                                 49.945,17*          A3 = a – I3 =     M3 = M2 + A3=
   3         a = C0 / an¬i =                                                           50.000 – 82,54
                                   0,0075=          402,31– 374,59     54,82 + 27,72
                402,31                                                                   = 49.917,46
                                    374,59             = 27,72            = 82,54

                                 I4 = C3 * i =
                                                                                        C4 = C0 - M4 =
                                 49.917,46*           A4 = a – I4 =    M4 = M3 + A4=
   4         a = C0 / an¬i =                                                           50.000 – 110,47
                                   0,0075=          402,31– 374,38 =   82,54+ 27,93
                402,31                                                                   = 49.889,53
                                    374,38                27,93          =110,47

  ...                                ….                                                      ....
                   ....                                   ....              ....



           c) I240 ?
              I240 = C239 * i = 31.921,93 * 0,0075 = 239,42
                C239 = a * a121¬im = 402,31 * 79,34.... = 31.921,93
                a121¬0,0075 = (1- (1+i)-(n-k)) / i = ( 1 – (1+0,0075)-121) / 0,0075 = 79,3465932
d) M60 ?
   M60 = C0 - C60 = 50.000 - 47.939,91= 2.060,09
   C60 = a * a300¬0,0075 = 402,31 * 119,16.... = 47.939,91
   A300¬0,0075 = (1- (1+0,0075)-300) / 0,0075 = 119,1616222

Exercicios préstamos con solución 4

  • 1.
    BOLETIN DE EXERCICIOS 4 1) Nun préstamo de 100. 000 € concedido o 5% de interese durante 3 anos. a) ¿Como o amortizarías polo sistema de amortización de reembolso único? b) ¿E polo sistema de amortización americano simple? c) ¿Cal sería o cadro de amortización polo sistema de amortización de termos amortizativos constantes? d) ¿Cal sería o cadro de amortización polo sistema de amortización de cotas de amortización constantes? a) Cn = C0 * (1 + i )n = 100.000 * (1 + 0,05)3 = 115.762,50 € b) I1 = I2 = C0 * i = 100.000 * 0,05 = 5.000 € Cn = C0 + C0 * i = 100.000 + 100.000 * 0,05 = 100.000 + 5.000 = 105.000 € c) an¬i = (1- (1+i)-n) / i = ( 1 – (1+0,05)-3) / 0,05 = 2,723248029 TERMO CAPITAL CAPITAL COTA INTERESE COTA AMORTIZACIÓN VIVO PERÍODO AMORTIZATIVO AMORTIZADO Ik Ak Ck n a Mk C0 = 100.000 0 - - - - I1 = C0 * i = C1 = C0 - M1 = 1 a = C0 / an¬i = 100.000 * 0.05 = A1 = a – I1 = M1 = A1 = 100.000 – 31.720,86 100.000 / 2,72 = 36.720,86 – 5.000 = 5.000 31.720,86 = 68.279,14 36.720,86 31.720,86 I2 = C1 * i = C2 = C0 - M2 = 2 a = C0 / an¬i = 68.279,14 * 0,05 = A2 = a – I2 = M2 = M1 + A2= 100.000 – 65.027,76 100.000 / 2,72 = 36.720,86 – 3.413,06 31.720,86 + 33.306,90 3.413,06 = 34.972,24 36.720,86 = 33.306,90 = 65.027,76 I3 = C2 * i = C3 = C0 - M3 = 3 a = C0 / an¬i = 34.972,24* 0,05 = A3 = a – I3 = M3 = M2 + A3= 100.000 – 100.000 100.000 / 2,72 = 36.720,86 – 1.748,61= 65.027,76+34.972,24 1.748,61 =0 36.720,86 34.972,24 = 100.000 d) CAPITAL CAPITAL TERMO COTA COTA AMORTIZATIVO VIVO PERÍODO INTERESE AMORTIZACIÓN AMORTIZADO Ck n ak Ik A Mk 100.000 0 - - - - C1 = C0 - M1 = a1 = A + I1 = I1 = C0 . i = A = C0 / n = 100.000 – M1 = A = 1 33.333,33 + 5.000 = 100.000 * 0,05 = 100.000 / 3 = 33.333,33 = 33.333,33 38.333,33 5.000 33.333,33 66.666,66
  • 2.
    C2 = C0- M2 = A2 = A + I 2 = A = C0 / n = I2 = C1 . i = 100.000 – 33.333,33 + 100.000 / 3 = M2 = A + A = 2 66.666,66 * 0,05 = 66.666,66 = 3.333,33 = 33.333,33 66.666,66 3.333,33 33.333,33 36.666,66 C3 = C0 - M3 = A3 = A + I 3 = A = C0 / n = I3 = C2 . i = 100.000 -100.000 33.333,33 + 100.000 / 3 = M3 = A +A + A = 3 33.333,33 * 0,05 = = 1.666,66 = 33.333,33 100.000 1.666,66 0 34.999,99 2) Préstanse 500.000 € ó 8% efectivo anual, para devolver en 10 anos mediante termos amortizativos anuais constantes. Calcula: a) A anualidade b) O capital pendente de amortizar o final do quinto ano. c) O capital amortizado nos catro primeiros anos. d) A cota de amortización do oitavo ano. e) A cota de interese do terceiro ano. a) a? a = C0 / an¬i = 500.000 / 6,710081399 = 74.514,74 an¬i = (1- (1+i)-n) / i = ( 1 – (1+0,08)-10) / 0,08 = 6,710081399 b) C5 ? Ck = a * an-k¬i = 74.514,74 * 3,992710037 =297.515,75 an-k¬i = (1- (1+i)-(n-k)) / i = ( 1 – (1+0,08)-5) / 0,08 = 3,992710037 c) M4 ? Mk = C0 - Ck = 500.000 - 344.472,68 = 155.527,33 C4 = a * an-k¬i = 74.514,74 * 4,622879664 = 344.472,68 an-k¬i = (1- (1+i)-(n-k)) / i = ( 1 – (1+0,08)-6) / 0,08 = 4,622879664 d) A8 ? Ak = A1 *(1+i )k-1 = 34.514,74 * (1+0,08 )7 = 59.152,20 A 1 = a - I 1 = a - c0 * i A1 = 74.514,74 – (500.000 * 0,08) = 74.514,74 – 40.000 = 34.514,74 e) I3 ? Ik = a - Ak = 74.514,74 - 40.257,99 = 34.256,74 A3 = A1 *(1+i )2 = 34.514,74 * (1+0,08 )2 = 40.257,99
  • 3.
    3) Concédese unpréstamo de 2 millóns de euros para ser amortizado en 10 anos a un tipo de interese do 9 % anual. Calcula o termo amortizativo se: a) Durante os 3 primeiros anos so se pagan intereses e nos restantes unha anualidade constante. SOL: - 3 primeiros anos: a = c0 * i = 2.000.000 * 0,09 = 180.000 - Restantes 7 anos: C3 = C0 = a * an-k¬i a = C0 / an¬i = 2.000.000 / 5,032952835 =397.381,03 an¬i = (1- (1+i)-n) / i = ( 1 – (1+0,09)-7) / 0,09 = 5,032952835 4) Fai catro anos concedeuse un préstamo amortizable polo método Francés ó 6% anual. Se o capital pendente de amortizar hoxe é de 804.393 € e a cota de amortización do quinto período será 70.000 €. Determina: a) O capital que se prestou. b) A duración da operación. a) C0 ? C0 = C4 + M4 = 804.393 + 242.557,41 =1.046.950,41 Mk = A1 + A2 + A3 +... + Ak = A1 * Sk¬i M4 = A1 * S4¬i = 55.446,56 * ((1+0,06)4 -1)/ 0,09 = 242.557,41 A5 = A1 *(1+i )4 A1 = A5 / (1+i )4 = 70.000 /(1+0,06)4 = 55.446,56 b) n? C0 = a * an-k¬i an-k¬i = C0 /a = 1.046.950,41 / 118.263,58 = 8,8526 (1- (1+0,06)-n) / 0,06 = 8,8526 -(1,06)-n = 8,8526 * 0,06 -1= - 0,468844 (1,06)-n = 0,468844 -n * lg1,06 = lg 0,468844 -n = lg 0,468844/ lg1,06 = -0,32897 / 0,0253 -n = -12,9999 ≈ -13 n = 12,9999 ≈ 13 a= A5 + I5 = 70.000 + 48.263,58 = 118.263,58 I5 = C4 * i = 804.393 * 0.06 = 48.263,58
  • 4.
    5) Solicítase unpréstamo hipotecario de 50.000 € a pagar en 30 anos mediante cotas mensuais e a un interese nominal anual do 9%, determinar: a) A contía dos termos amortizativos (mensualidade). b) Cadro de amortización dos 4 primeiros termos. c) Os intereses pagados no termo 240 d) Capital amortizado nos 5 primeiros anos. a) a? a = C0 / an.m¬im = 50.000 / 124,28...= 402,31 a n.m¬im = (1- (1+i)-n.m) / i = ( 1 – (1+0,0075)-360) / 0,0075 = 124,2818657 i = (1+ im)m -1 im =(1 + i)1/m – 1 =(1 + 0,09)1/12 – 1=0,0072….≈ 0,0075 b) b TERMO CAPITAL CAPITAL COTA INTERESE COTA AMORTIZACIÓN VIVO PERÍODO AMORTIZATIVO AMORTIZADO Ik Ak Ck n a Mk C0 = 50.000 0 - - - - I1 = C0 * i = C1 = C0 - M1 = 1 50.000 * 0,0075= A1 = a – I1 = M1 = A1 = 50.000 – 27,31 a = C0 / an¬i = 402,31– 375= 402,31 375 27,31 = 49.972,69 27,31 I2 = C1 * i = C2 = C0 - M2 = 49.972,69* A2 = a – I2 = M2 = M1 + A2= 2 a = C0 / an¬i = 50.000 – 54,82 0,0075= 402,31– 374,80 27,31+ 27,51 402,31 = 49.945,18 374,80 = 27,51 = 54,82 I3 = C2 * i = C3 = C0 - M3 = 49.945,17* A3 = a – I3 = M3 = M2 + A3= 3 a = C0 / an¬i = 50.000 – 82,54 0,0075= 402,31– 374,59 54,82 + 27,72 402,31 = 49.917,46 374,59 = 27,72 = 82,54 I4 = C3 * i = C4 = C0 - M4 = 49.917,46* A4 = a – I4 = M4 = M3 + A4= 4 a = C0 / an¬i = 50.000 – 110,47 0,0075= 402,31– 374,38 = 82,54+ 27,93 402,31 = 49.889,53 374,38 27,93 =110,47 ... …. .... .... .... .... c) I240 ? I240 = C239 * i = 31.921,93 * 0,0075 = 239,42 C239 = a * a121¬im = 402,31 * 79,34.... = 31.921,93 a121¬0,0075 = (1- (1+i)-(n-k)) / i = ( 1 – (1+0,0075)-121) / 0,0075 = 79,3465932
  • 5.
    d) M60 ? M60 = C0 - C60 = 50.000 - 47.939,91= 2.060,09 C60 = a * a300¬0,0075 = 402,31 * 119,16.... = 47.939,91 A300¬0,0075 = (1- (1+0,0075)-300) / 0,0075 = 119,1616222