SlideShare uma empresa Scribd logo
1 de 54
Baixar para ler offline
Conics
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse


   e=1           parabola
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse


   e=1           parabola


   e>1           hyperbola
Ellipse (e < 1)
     y

     b
A’         A
-a        a    x
     -b
Ellipse (e < 1)
     y

     b
A’             A
-a        S   a    Z x
     -b
Ellipse (e < 1)
           y

            b
  A’                   A
  -a             S    a       Z x
           -b

SA = eAZ   and   SA’ = eA’Z
Ellipse (e < 1)
                y

                 b
    A’                        A
    -a                   S   a       Z x
                -b

 SA = eAZ      and      SA’ = eA’Z
(1) SA’ + SA = 2a
(2) SA’ – SA = e(A’Z – AZ)
Ellipse (e < 1)
                y

                 b
    A’                        A
    -a                   S   a       Z x
                -b

 SA = eAZ      and      SA’ = eA’Z
(1) SA’ + SA = 2a
(2) SA’ – SA = e(A’Z – AZ)
            = e(AA’)
            = e(2a)
            = 2ae
b
             A’                      A
             -a                 S   a    Z x
                         -b

(1) + (2);   2SA’ = 2a(1 + e)
              SA’ = a(1 + e)
b
             A’                         A
             -a                 S      a     Z x
                         -b

(1) + (2);   2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
              SA’ = a(1 + e)                  SA = a(1 - e)
b
              A’                         A
              -a                 S      a     Z x
                          -b

 (1) + (2);   2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
               SA’ = a(1 + e)                  SA = a(1 - e)
Focus
OS = OA - SA
b
                A’                         A
                -a                 S      a     Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                  SA = a(1 - e)
Focus
OS = OA - SA
   = a – a(1 – e)
   = ae
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
   = a – a(1 – e)
   = ae
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
                                             SA
   = a – a(1 – e)                      OA             SA  eAZ 
   = ae                                       e
 S  ae,0 
b
                A’                              A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
                                             SA
   = a – a(1 – e)                      OA           SA  eAZ 
   = ae                                       e
                                        ae a1  e 
 S  ae,0                           
                                         e      e                     a
                                        a          directrices x  
                                                                     e
                                        e
S ae,0 
                  b        P
P  x, y 
                                    N
             A’                 A
             -a                a
N , y
   a                   S            Z x
     
 e              -b
S ae,0 
                        b        P
P  x, y 
                                          N
                 A’                   A
                 -a                  a
N , y
   a                         S            Z x
     
 e                    -b
             SP  ePN
S ae,0 
                                         b             P
P  x, y 
                                                               N
                        A’                                 A
                        -a                                 a
N , y
   a                                               S           Z x
     
 e                                     -b
                  SP  ePN
                                     2

 x  ae 2   y  02  e  x     y  y 2
                                 a
                                  
                               e
                                   2
                        2    a
       x  ae   y  e  x  
                2   2

                             e
S ae,0 
                                                     b        P
   P  x, y 
                                                                       N
                                 A’                                A
                                 -a                               a
  N , y
     a                                                    S            Z x
       
   e                                               -b
                        SP  ePN
                                                 2

   x  ae 2   y  02  e  x     y  y 2
                                   a
                                    
                                          e
                                                 2
                              2       a
         x  ae   y  e  x  
                  2     2

                                      e
x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2
         x 2 1  e 2   y 2  a 2 1  e 2 
S ae,0 
                                                     b        P
   P  x, y 
                                                                      N
                                 A’                               A
                                 -a                               a
  N , y
     a                                                    S           Z x
       
   e                                               -b
                        SP  ePN
                                                 2

   x  ae 2   y  02  e  x     y  y 2
                                   a
                                    
                                          e
                                                 2
                              2       a
         x  ae   y  e  x  
                  2     2

                                      e
x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2
         x 2 1  e 2   y 2  a 2 1  e 2 

                 x2     y2
                     2       1
                 a a 1  e 
                  2        2
b2
when x  0, y  b                  1
                         a 1  e 
                     i.e. 2      2


                               b 2  a 2 1  e 2 
b2
when x  0, y  b                      1
                             a 1  e 
                         i.e. 2      2


                                     b 2  a 2 1  e 2 

 Ellipse: (a > b)              x2 y2
                                2
                                   2 1
                               a b

 where; b 2  a 2 1  e 2 
           focus :  ae,0 
                              a
           directrices : x  
                              e
            e is the eccentricity
 major semi-axis = a units
 minor semi-axis = b units
b2
when x  0, y  b                     1
                            a 1  e 
                        i.e. 2      2


                                      b 2  a 2 1  e 2 

 Ellipse: (a > b)               x2 y2                  Note: If b > a
                                 2
                                    2 1
                                a b                    foci on the y axis

 where; b  a 1  e
            2       2   2
                                                       a 2  b 2 1  e 2 

          focus :  ae,0                             focus : 0,be 
                              a                                            b
          directrices : x                            directrices : y  
                              e                                            e
           e is the eccentricity
 major semi-axis = a units
 minor semi-axis = b units
b2
when x  0, y  b                     1
                            a 1  e 
                        i.e. 2      2


                                      b 2  a 2 1  e 2 

 Ellipse: (a > b)               x2 y2                  Note: If b > a
                                 2
                                    2 1
                                a b                    foci on the y axis

 where; b  a 1  e
            2       2   2
                                                       a 2  b 2 1  e 2 

          focus :  ae,0                             focus : 0,be 
                              a                                            b
          directrices : x                            directrices : y  
                              e                                            e
           e is the eccentricity
 major semi-axis = a units                                   Area  ab
 minor semi-axis = b units
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1
      9 5

       a2  9
        a3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
       a2  9
        a3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
                       91  e 2   5
       a2  9
        a3
                                     5
                          1 e 2

                                     9
                                     4
                              e 
                                2

                                     9
                                     2
                                e
                                     3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
                       91  e 2   5
       a2  9
                                                            2
        a3                                 eccentricity 
                                     5                      3
                          1 e 2

                                     9         foci :  2,0 
                                     4
                              e 
                                2
                                                                    3
                                     9       directrices : x  3 
                                                                    2
                                     2
                                e                              9
                                     3                    x
                                                                2
y

         Auxiliary circle




-3                 3        x
b    5
     y                      a  3 
                                  
         Auxiliary circle




-3                 3             x
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
                y                          a  3 
                                                 
                        Auxiliary circle
                    5




-3   S’(-2,0)            S(2,0)   3             x



             5
b    5
                    y                             a  3 
                                                        
                            Auxiliary circle
                        5




    -3   S’(-2,0)            S(2,0)   3                x



                 5
    9                                             9
x                                            x
    2                                             2
b    5
                        y                                 a  3 
                                                                
                                Auxiliary circle
                            5




       -3   S’(-2,0)             S(2,0)   3                    x



                        5
     9                                                9
 x                                               x
     2                                                2
Major axis = 6 units             Minor axis  2 5 units
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
      b2  9
       b3
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                            1
         4            9
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                   e
                      3
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                            1
         4            9
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                 e
                      3
  foci :  1,2  5 
                                               9
                         directrices : y  2 
                                                5
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22                   Exercise 6A; 1, 2, 3, 5, 7,
                            1
         4            9                         8, 9, 11, 13, 15
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                 e
                      3
  foci :  1,2  5 
                                               9
                         directrices : y  2 
                                                5

Mais conteúdo relacionado

Mais de Nigel Simmons

11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 

Mais de Nigel Simmons (20)

11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 

Último

Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 

Último (20)

Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 

X2 T03 01 Ellipse (2010)

  • 2. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix)
  • 3. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix)
  • 4. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle
  • 5. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse
  • 6. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola
  • 7. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola e>1 hyperbola
  • 8. Ellipse (e < 1) y b A’ A -a a x -b
  • 9. Ellipse (e < 1) y b A’ A -a S a Z x -b
  • 10. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z
  • 11. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z (1) SA’ + SA = 2a (2) SA’ – SA = e(A’Z – AZ)
  • 12. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z (1) SA’ + SA = 2a (2) SA’ – SA = e(A’Z – AZ) = e(AA’) = e(2a) = 2ae
  • 13. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) SA’ = a(1 + e)
  • 14. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)
  • 15. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus OS = OA - SA
  • 16. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus OS = OA - SA = a – a(1 – e) = ae  S  ae,0 
  • 17. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ = a – a(1 – e) = ae  S  ae,0 
  • 18. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e  S  ae,0 
  • 19. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e ae a1  e   S  ae,0    e e a a  directrices x    e e
  • 20. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b
  • 21. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN
  • 22. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e
  • 23. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2 
  • 24. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2  x2 y2  2 1 a a 1  e  2 2
  • 25. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2 
  • 26. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 2  2 1 a b where; b 2  a 2 1  e 2  focus :  ae,0  a directrices : x   e e is the eccentricity major semi-axis = a units minor semi-axis = b units
  • 27. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity major semi-axis = a units minor semi-axis = b units
  • 28. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity major semi-axis = a units Area  ab minor semi-axis = b units
  • 29. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features.
  • 30. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 9 5 a2  9 a3
  • 31. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 a2  9 a3
  • 32. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 91  e 2   5 a2  9 a3 5 1 e 2 9 4 e  2 9 2 e 3
  • 33. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 91  e 2   5 a2  9 2 a3  eccentricity  5 3 1 e 2 9 foci :  2,0  4 e  2 3 9 directrices : x  3  2 2 e 9 3 x 2
  • 34. y Auxiliary circle -3 3 x
  • 35. b 5 y a  3    Auxiliary circle -3 3 x
  • 36. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 37. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 38. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 39. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 40. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 41. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 42. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 43. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5
  • 44. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2
  • 45. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2 Major axis = 6 units Minor axis  2 5 units
  • 46. (ii) 9 x 2  4 y 2  18 x  16 y  11  0
  • 47. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36
  • 48. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9
  • 49. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9
  • 50. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2)
  • 51. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 b3
  • 52. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3
  • 53. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3 foci :  1,2  5  9 directrices : y  2  5
  • 54. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22 Exercise 6A; 1, 2, 3, 5, 7,  1 4 9 8, 9, 11, 13, 15 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3 foci :  1,2  5  9 directrices : y  2  5