SlideShare uma empresa Scribd logo
1 de 199
ENZYMOLOGY ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ENZYMES © 2007 Paul Billiet  ODWS BERZELIUS 1835 Starch. Hydrolysis. KUHNE 1878 Enzyme mean yeast. EDWARD BUCHNER Sucrose to Ethanol
ENZYMES © 2007 Paul Billiet  ODWS EDWARD BUCHNER N.P.1907 ARTHUR HARDEN N.P. 1929 JAMES SUMNER N.P. 1946 JOHAN NORTHROP N.P. 1946 WILHELM OSTWALD N.P. 1909 WARBURG  N.P. 1970
ENZYMES ,[object Object],[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
[object Object],ALWAYS A GOOD CATALYST IN STUDENTS LIFE
DISTRIBUTION OF 17 HORSES ,[object Object],[object Object],[object Object],[object Object],[object Object]
ENZYMES © 2007 Paul Billiet  ODWS EDWARD BUCHNER N.P.1907 ARTHUR HARDEN N.P. 1929 JAMES SUMNER N.P. 1946 JOHAN NORTHROP N.P. 1946 WILHELM OSTWALD N.P. 1909 WARBURG  N.P. 1970
Vitro and Vivo Reactions ,[object Object],[object Object],[object Object],[object Object]
DEFINITIONS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
COFACTORS ,[object Object],[object Object],[object Object],[object Object],Nitrogenase enzyme with Fe, Mo and ADP cofactors
CO-ENZYMES ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
TABULAR FORM SHOWING CO.E
Enzyme structure ,[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS Human pancreatic amylase
STRUCTURE ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ENZYMES UNITS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ENZYMEZS ESTIMATED FROM: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
PLASMA ENZYMES ,[object Object],[object Object]
NATURE OF ENZYMES ,[object Object],[object Object]
DIFFERENCE ,[object Object],[object Object],[object Object],[object Object]
THE ENZYMES SPEAK ,[object Object]
TISSUES   BRAIN,HEART,LIVER,KIDNEY,MUSCLE MUSCLE -> ← HEART -> LIVER ← STOMACH BRAIN ← KIDNEY ← INTESTINE
 
COMPARTMENTATION ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
FUNCTIONS OF ENZYMES ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
 
What  is  a Ribozyme? 1)  Enzyme 2)  Ribonucleic Acid NOT PROTEIN 1989 Nobel Prize In Chemistry Sid Altman Tom Cech
RIBOZYMES ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Ribozymes Have following Drawbacks. ,[object Object],[object Object],[object Object],[object Object],[object Object]
ABZYMES ,[object Object],[object Object],[object Object]
Structure :  As with proteins, we consider... Primary: GGCCGAACUGGUA Secondary: Tertiary:
Secondary Structure Watson-Crick Base Pairing Helix Formation B-DNA Small pore along helical axis “ Rungs” stack obliquely to axis   A-DNA RNA RNA usually assumes A-form helices…
Secondary Structure Conserved base-pairing interactions result in... ,[object Object],[object Object],[object Object],[object Object]
Ribozyme  vs.  tRNA Phe   folding
Tertiary Structure
The Future of Ribozymes In Vitro  Molecular Evolution   of RNA High Throughput Screening Ribozyme-Based Therapies +
In Clinical Trial... HIV Gene Therapy... Bone Marrow Sample Treat Stem Cells with Retroviral Vector Re-Implant Treated Cells Encodes Gene for anti-HIV Ribozyme
ACTIVE SITE OF RIBONUCLEASES ,[object Object],[object Object],[object Object],[object Object]
The  Substrate   ,[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
PRODUCT ,[object Object],[object Object],[object Object]
ABBREVIATIONS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Enzyme Stabilizes Transition State  S P ES ES T EP S T Energy change Energy required (no catalysis) Energy decreases (under catalysis) Sub.(S) Prod. (P)Enz(E) T = Transition state V=rate of change of S to P/mt. Adapted from Alberts et al (2002) Molecular Biology of the Cell (4e) p.166 Reaction direction
 
Control Points of Gene Regulation Prokaryotics Post-translational control Eukaryotics Juang RH (2004) BCbasics DNA ribosome mRNA proteins proteins cap 5’ 3’ tail mature  mRNA DNA 5’ 3’ process mRNA Translation Activity Proteolysis Transcription RNA Processing RNA Transport RNA Degradation
 
ACTIVE SITE OF ENZYME ,[object Object],[object Object],[object Object],[object Object],[object Object]
Active Site Avoids the Influence of Water Preventing the influence of water sustains the formation of stable ionic bonds - +
Active Site Is a Deep Buried Pocket Why energy required to reach transition state is lower in the active site? It is a magic pocket (1)  Stabilizes transition (2)  Expels water (3)  Reactive groups (4)  Coenzyme helps (2) (3) (4) (1) CoE + - Juang RH (2004) BCbasics
[object Object],[object Object],[object Object],[object Object],Active Site
ACTIVE SITE ,[object Object],[object Object],[object Object],[object Object],[object Object]
ACTIVE SITE
 
 
MECHANISM OF ACTION ,[object Object],[object Object]
The Induced Fit Hypothesis ,[object Object],[object Object],[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
Induced-fit Model ,[object Object],[object Object],[object Object],[object Object]
The Lock and Key Hypothesis ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
Lock-and-Key Model ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
CLASSIFICATION ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
FACTORS AFFECTING ENZYME ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
FACTORS ……………….. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Substrate concentration: Non-enzymic reactions ,[object Object],Reaction velocity Substrate concentration
Substrate Concentration ,[object Object],[object Object]
Substrate concentration:  Enzymic reactions when[ s] conc. Is increased velocity increases in the initial phase (Vmax.),but flatten afterward. ,[object Object],[object Object],© 2007 Paul Billiet  ODWS Reaction velocity Substrate concentration V max
Salient Features of Km ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Enzyme Concentration ,[object Object],[object Object],[object Object]
The effect of temperature ,[object Object],[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
[object Object],[object Object],[object Object],[object Object],Temperature and Enzyme Action
The effect of temperature Temperature / °C Enzyme activity 0 10 20 30 40 50 Q10 Denaturation
The effect of temperature ,[object Object],[object Object],[object Object],[object Object],[object Object]
The effect of pH   ,[object Object],[object Object],[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
The effect of pH   Optimum pH values © 2007 Paul Billiet  ODWS Enzyme activity Trypsin Pepsin pH 1 3 5 7 9 11
[object Object],[object Object],[object Object],[object Object],pH and Enzyme Action
Optimum pH Values ,[object Object],[object Object]
 
ENZYME ACTIVATION BY INORGANIC IONS ,[object Object],[object Object],[object Object],[object Object]
Enzyme Inhibition ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Sigmoidal Curve Effect  Sigmoidal curve Exaggeration of  sigmoidal curve yields a drastic  zigzag line  that  shows the On/Off  point clearly  Positive effector (ATP) brings sigmoidal curve back to hyperbolic Negative effector (CTP) keeps  Consequently,  Allosteric enzyme  can sense the  concentration of  the environment and  adjust its activity  Noncooperative (Hyperbolic) Cooperative (Sigmoidal) v o [Substrate] Off On Juang RH (2004) BCbasics CTP ATP v o
EFFECT OF CONC.PRODUCT ,[object Object],[object Object],[object Object]
 
INDUCTION ,[object Object],[object Object],[object Object],[object Object],[object Object]
REPRESSION ,[object Object],[object Object],[object Object]
CO VALENT MODIFICATION ,[object Object],[object Object]
ADP RIBOSYLATION ,[object Object],[object Object],[object Object],[object Object],[object Object]
STABILIZATION ,[object Object],[object Object]
Regulation of Enzyme Activity P R R + proteolysis phosphorylation cAMP or calmodulin or regulator effector (+) Juang RH (2004) BCbasics Regulatory subunit or inhibitor P (-) Inhibitor Proteolysis Phosophorylation Signal transduction Feedback regulation
REGULATION OF ENZYMES ,[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
REGULATION OF ENZYMES ,[object Object],[object Object],[object Object],[object Object]
CHANGE IN ENZYME QUANTITY ,[object Object],[object Object],[object Object],[object Object]
CHANGE IN CATALYTIC  EFFICIENCY OF ENZYME ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
A.Activator  A.Inhibitor . ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
CCC Allosteric Enzyme ATCase + Active relaxed form Inactive tense form ATCase R R R R R R CCC Catalytic subunits Catalytic subunits Regulatory subunits Aspartate Carbamoyl phosphate Carbamoyl   aspartate Juang RH (2004) BCbasics Quaternary structure COO - CH 2 HN-C-COO - H  H - - - - O H 2 N-C-O-PO 3 2- = O H 2 N-C- = COO - CH 2 N-C-COO - H  H - - - - ATP CTP Nucleic acid metabolism Feedback  inhibition CTP CTP CTP CTP CTP CTP
EXAMPLE OF 2 nd  MESSENGER ,[object Object],[object Object]
The Reception and Transduction of Signals -GDP +GTP Adenylate cyclase   Glycogen Synthase active Insulin kinase Glucagon A The third group:  Ion-channel-linked Receptor Gilman, Rodbell (1994) Glycogen breakdown Juang RH (2007) BCbasics SH2 domain  G protein   GDP   + Signal  GDP  GTP  GTP + Signal Activation P Protein Phosphatase Glycogen Synthase P P P P P G-protein-linked Receptor Enzyme-linked Receptor Glycogen
Sigmoidal Curve Effect  Sigmoidal curve Exaggeration of  sigmoidal curve yields a drastic  zigzag line  that  shows the On/Off  point clearly  Positive effector (ATP) brings sigmoidal curve back to hyperbolic Negative effector (CTP) keeps  Consequently,  Allosteric enzyme  can sense the  concentration of  the environment and  adjust its activity  Noncooperative (Hyperbolic) Cooperative (Sigmoidal) v o [Substrate] Off On Juang RH (2004) BCbasics CTP ATP v o
FEED BACK INHIBITION ,[object Object],[object Object],[object Object]
 
COVALENT MODIFICATIONS ,[object Object],[object Object],[object Object],[object Object]
cAMP Controls Activity of Protein Kinase A A A A A cAMP Active kinase CREB CREB Nucleus Activation Gene expression ON DNA Alberts et al  (2002) Molecular Biology of the Cell (4e) p. 857, 858 R C R C R R A A A A C C Regulatory subunits Catalytic subunits C P
PARTIAL PROTEOLYSIS ,[object Object],[object Object],[object Object],[object Object],[object Object]
MICHAELIS CONSTANT (Km) ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
INHIBITORS
Inhibitors ,[object Object],[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
The effect of enzyme inhibition ,[object Object],[object Object],© 2008 Paul Billiet  ODWS
The effect of enzyme inhibition ,[object Object],[object Object],© 2008 Paul Billiet  ODWS
The effect of enzyme inhibition ,[object Object],[object Object],[object Object],[object Object],[object Object],© 2008 Paul Billiet  ODWS
Applications of inhibitors ,[object Object],[object Object],[object Object],© 2008 Paul Billiet  ODWS
[object Object],[object Object],Enzyme pathways Each step is controlled by a different enzyme ( e A ,  e B ,  e C  etc)  This is possible because of enzyme specificity © 2008 Paul Billiet  ODWS e F e D e C e A e B
End point inhibition ,[object Object],[object Object],[object Object],[object Object],[object Object],e F e D e C e A e B © 2008 Paul Billiet  ODWS Inhibition
ATP is the end point ,[object Object],[object Object],[object Object],[object Object],[object Object],© 2008 Paul Billiet  ODWS
The switch: Allosteric inhibition   ,[object Object],Active site Allosteric site © 2008 Paul Billiet  ODWS E
Switching off ,[object Object],[object Object],[object Object],Inhibitor fits into  allosteric site Substrate cannot fit into the  active site Inhibitor molecule © 2008 Paul Billiet  ODWS
The allosteric site the enzyme “on-off” switch Active site Allosteric site  empty Substrate fits into the  active site The inhibitor molecule is  absent Conformational change Inhibitor fits into  allosteric site Substrate cannot fit into the  active site Inhibitor molecule is  present © 2008 Paul Billiet  ODWS E E
A change in shape ,[object Object],[object Object],[object Object],[object Object],© 2008 Paul Billiet  ODWS
Negative feedback is achieved ,[object Object],[object Object],[object Object],© 2008 Paul Billiet  ODWS
Phosphofructokinase ,[object Object],[object Object],[object Object],[object Object],© 2008 Paul Billiet  ODWS
 
 
 
Enzyme Inhibition (Mechanism) Competitive Non-competitive Uncompetitive E E Different site Compete for  active site Inhibitor Substrate Cartoon Guide Equation and Description [ I ] binds to free [E] only, and competes with [S]; increasing [S] overcomes Inhibition by [ I ].  [ I ] binds to free [E] or [ES]  complex; Increasing [S] can not overcome [ I ] inhibition. [ I ] binds to [ES] complex  only, increasing [S] favors the inhibition by [ I ]. X Juang RH (2004) BCbasics E + S   ->   ES   ->   E + P + I ↓ E I ← ↑ E + S   ->   ES   ->   E + P +  + I   I ↓  ↓ E I   +   S   ->E I S   ← ↑ ↑ E + S   ->   ES   ->   E + P + I ↓ E I S   ← ↑
Competitive Inhibition Succinate Glutarate Malonate Oxalate Succinate Dehydrogenase Substrate Competitive Inhibitor Product C-OO - C-H C-H C-OO - C-OO - H-C-H H-C-H C-OO - C-OO - H-C-H H-C-H H-C-H C-OO - C-OO - C-OO - C-OO - H-C-H C-OO -
Enzyme Inhibition (Plots) V max K m K m ’ [S], mM v o I I V max  unchanged K m  increased V max  decreased K m  unchanged Both V max  &  K m  decreased I =   K m ’ Juang RH (2004) BCbasics K m Competitive Non-competitive Uncompetitive Direct Plots Double Reciprocal V max [S], mM v o K m [S], mM V max I K m ’ V max ’ V max ’ 1/[S] 1/K m 1/ v o 1/   V max I Two parallel lines I Intersect  at X axis 1/ v o 1/   V max 1/[S] 1/K m 1/[S] 1/K m 1/   V max 1/ v o Intersect  at Y axis
The effect of enzyme inhibition ,[object Object],[object Object],© 2007 Paul Billiet  ODWS
The effect of enzyme inhibition ,[object Object],[object Object],© 2007 Paul Billiet  ODWS
The effect of enzyme inhibition ,[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS Enzyme inhibitor complex Reversible reaction E + I EI
CLINICAL APPLICATIONS OF COMPETITVE INHIBITORS METHANOL POISONING METHANOL Al.Dehy. ETHANOL ANTIBIOTIC PABA Dihydro pteroate Synthase SULFONAMIDE GOUT HYPOXANTHENE XANTHINE OXIDASE ALLOPURINOL Clinical App. TRUE SUB. ENZYME DRUG
The effect of enzyme inhibition ,[object Object],[object Object],[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
 
 
Applications of inhibitors ,[object Object],[object Object],[object Object],© 2007 Paul Billiet  ODWS
Enzyme Inhibitors Are Extensively Used ●   Sulfa drug  (anti-inflammation) Pseudo substrate  competitive inhibitor ●   Protease   inhibitor Plaques in brain contains protein inhibitor ●   HIV protease is critical to life cycle of HIV HIV protease   (homodimer): ↑ inhibitor  is used to treat AIDS Symmetry Not symmetry ->   Human  aspartyl protease: (monodimer) Alzheimer's disease  domain 1 Asp Asp domain 2 subunit 2 Asp subunit 1 Asp
DIAGNOSTIC SIGNIFICANCE ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object]
A. Plasma Enzymes as diagnostic tools ,[object Object],[object Object],[object Object]
[object Object]
Intracellular Distribution of Diagnostic Enzymes   ACP ALP GGT CK ALP AMS LPS AMS LD 1 AST CK LD 5 ALT AST Prostate Biliary Tract Muscle Bone Salivary Glands Pancreas Heart Liver
ISOENZYMES ,[object Object],[object Object],[object Object],[object Object]
IDENTIFICATION OF ISOZYMES ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Isoenzymes  ,[object Object],[object Object]
Diagnostic Significance  Enzymes  ,[object Object]
B. Isoenzymes and Heart Diseases ,[object Object],[object Object],[object Object],[object Object]
DIAGNOSTIC IMPORTANCE ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
DISORDERS DIAGNOSED BY ENZYMES ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
CARDIAC MARKERS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
LIVER MARKERS ,[object Object],[object Object],[object Object],[object Object]
PROSTATE MAR ,[object Object],[object Object]
MUSCLE MARKER ,[object Object],[object Object],[object Object]
BONE MARKER ,[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],CK LD 1 AST
2. Hepatic Disorders ,[object Object],[object Object],[object Object],[object Object],LD 5 AST ALT
[object Object],[object Object],GGT ALP
3. Skeletal Muscle Disorders ,[object Object],[object Object],[object Object],[object Object],[object Object],AST CK
4. Bone Disorders: ,[object Object],[object Object],[object Object],ALP
5. Acute Pancreatitis ,[object Object],AMS Lipase
6. Salivary Gland Inflammation: ,[object Object],[object Object]
7. Malignancies ,[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
B. Isoenzymes and Heart Diseases ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object]
Alkaline Phosphatase ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ENZYMES IN OTHER BODY FLUIDS ,[object Object],[object Object],[object Object]
Enzymes as Therapeutic Agents ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ENZYMES USED FOR DIAGNOSIS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
THANKS
Competitive Inhibition Succinate Glutarate Malonate Oxalate Succinate Dehydrogenase Substrate Competitive Inhibitor Product C-OO - C-H C-H C-OO - C-OO - H-C-H H-C-H C-OO - C-OO - H-C-H H-C-H H-C-H C-OO - C-OO - C-OO - C-OO - H-C-H C-OO -
Enzyme Active Site Is Deeper than Ab Binding Instead, active site on enzyme also recognizes substrate, but actually complementally fits the  transition state and stabilized it. Ag binding site on Ab binds to Ag complementally, no further reaction occurs.  X
cAMP Controls Activity of Protein Kinase A A A A A cAMP Active kinase CREB CREB Nucleus Activation Gene expression ON DNA Alberts et al  (2002) Molecular Biology of the Cell (4e) p. 857, 858 R C R C R R A A A A C C Regulatory subunits Catalytic subunits C P
HIV protease vs Aspartyl protease Asymmetric monomer ↓   HIV protease  (homodimer) HIV Protease   inhibitor   is used in treating  AIDS Symmetric dimer ↑ Aspartyl protease  (monomer) Juang RH (2004) BCbasics Asp subunit 2 subunit 1 Asp domain 1 domain 2 Asp Asp
Enzyme Inhibitors Are Extensively Used ●   Sulfa drug  (anti-inflammation) Pseudo substrate  competitive inhibitor ●   Protease   inhibitor Plaques in brain contains protein inhibitor ●   HIV protease is critical to life cycle of HIV HIV protease   (homodimer): ↑ inhibitor  is used to treat AIDS Symmetry Not symmetry ->   Human  aspartyl protease: (monodimer) Alzheimer's disease  domain 1 Asp Asp domain 2 subunit 2 Asp subunit 1 Asp
Sulfa Drug Is Competitive Inhibitor Precursor Folic acid Tetrahydro- folic acid Sulfanilamide Sulfa drug (anti-inflammation) Para-aminobenzoic acid (PABA) Bacteria needs PABA for  the biosynthesis of folic acid Sulfa drugs  has similar  structure  with  PABA,  and inhibit bacteria growth. Domagk (1939) -COOH H 2 N- -SONH 2 H 2 N-
The Reception and Transduction of Signals -GDP +GTP Adenylate cyclase   Glycogen Synthase active Insulin kinase Glucagon A The third group:  Ion-channel-linked Receptor Gilman, Rodbell (1994) Glycogen breakdown Juang RH (2007) BCbasics SH2 domain  G protein   GDP   + Signal  GDP  GTP  GTP + Signal Activation P Protein Phosphatase Glycogen Synthase P P P P P G-protein-linked Receptor Enzyme-linked Receptor Glycogen
Signal Transduction Network (Ras vs. P53) Cytosol Cell membrane Effector enzyme Signal protein E2F  Transcription factor Target gene mRNA Inhibitor P53 Cell division  ON Signal Receptor Nucleus Ribosome Transcription Transcription Apoptosis Cell function are controlled by protein interactions mRNA Regulator protein Juang RH (2007) BCbasics Ras
The Reception and Transduction of Signals -GDP +GTP Adenylate cyclase   Glycogen Synthase active Insulin kinase Glucagon A The third group:  Ion-channel-linked Receptor Gilman, Rodbell (1994) Glycogen breakdown Juang RH (2007) BCbasics SH2 domain  G protein   GDP   + Signal  GDP  GTP  GTP + Signal Activation P Protein Phosphatase Glycogen Synthase P P P P P G-protein-linked Receptor Enzyme-linked Receptor Glycogen
A PKA active inactive Glucagon P P GP kinase GP kinase GP  a GP  b Glycogen synthase Glycogen synthase P Protein phosphatase-1 Protein phosphatase-1 Protein phosphatase inhibitor-1 Protein phosphatase inhibitor-1 Glycogen P Phosphatase
Classification of Proteases Metal Protease Serine Protease Cysteine Protease Aspartyl Protease   Family Example   Mechanism Specificity Inhibitor Juang RH (2004) BCbasics Carboxy- peptidase A Chymotrypsin Trypsin Papain Pepsin Renin H57 D102 S195-O - C25-S - H195 D215 D32 H 2 O Non- specific Non- specific Aromatic Basic Non- polar EDTA EGTA DFP TLCK TPCK PCMB Leupeptin Pepstatin E72 H69 Zn 2+ H196
Modification of Subtilisin and Its Activity Change No enzyme   1  Asn 155   ->   Leu    ●   ●   ●   10,000,000 ( Asn 155   stabilizes transition state ) His  &  Asp   ->   Ala   ●   ○   ○ 37,000 Ser ,   His  &  Asp   ->   Ala     ○   ○   ○   4,000 Subtilisin   ●   ●   ●   10,000,000,000   Active Site Relative Modification   Triad: Ser His Asp   activity Ser   ->   Ala   ○   ●   ●   5,000 Asp   ->   Ala     ●   ●   ○   330,000
Serine Protease and  AchE Chymotrypsin  – Gly – Asp –  Ser  – Gly – Gly – Pro – Leu –  Trypsin  – Gly – Asp –  Ser  – Gly – Gly – Pro – Val –  Elastase   – Gly – Asp –  Ser  – Gly – Gly – Pro – Leu – Thrombin   – Gly – Asp –  Ser  – Gly – Gly – Pro – Phe – Plasmin   – Gly – Asp –  Ser  – Gly – Gly – Pro – Leu – Acetylcholinesterase   – Gly – Glu   –  Ser   – Ala – Gly – Gly – Ala –  Chymotrypsin  – Val – Thr – Ala – Ala –  His  – Cys – Gly –  Trypsin  – Val – Ser – Ala – Gly –  His  – Cys – Tyr –  Elastase   – Leu – Thr – Ala – Ala –  His  – Cys – Ile  –  Thrombin   – Leu – Thr – Ala – Ala –  His  – Cys – Leu –  Plasmin   – Leu – Thr – Ala – Ala –  His  – Cys – Leu –  Acetylcholinesterase   – – – – – – – – – – – – –  His  – – – – – – – –  Ser 195 Chymotrypsin  – Thr –  Ile  – Asn – Asn –  Asp  – Ile – Thr – Trypsin  – Tyr – Leu – Asn – Asn –  Asp  – Ile – Met –  Elastase   – Ser – Lys – Gly  – Asn –  Asp  – Ile – Ala –  Thrombin   – Asn – Leu – Asp – Arg –  Asp  – Ile – Ala –  Plasmin   – Phe – Thr – Arg – Lys  –  Asp  – Ile – Ala –  Acetylcholinesterase   – – – – – – – – – – – – – –  Asp  – – – – – – –  His 57 Asp   102 Adapted from Dressler & Potter  (1991)  Discovering Enzymes,  p.244
H AchE Has Similar Catalytic Mechanism H - O - H H 2 O Adapted from Dressler & Potter  (1991)  Discovering Enzymes,  p.243 ↓ Deacylation Acylation↑ AchE O   - C H O  CH 3 CH 3 – C – O–CH 2 –CH 2 – N –CH 3 CH 3 + AchE O C H O CH 3 – C CH 3 H O–CH 2 –CH 2 – N –CH 3 CH 3  + AchE O   - C H H O  CH 3 – C – OH AchE O   - C H O CH 3 – C CH 3 O–CH 2 –CH 2 – N –CH 3 H   CH 3  +
Different Enzymes Might Adopt Same Mechanism Hi, Everybody! ←   Useful ↙   Amusing Juang RH (2004) BCbasics O   - C Sesame Triad
Convergent and Divergent Trypsin Chymotrypsin Elastase Thrombin Plasmin Acetylcholin esterase Thyroglobulin Ester bond Peptide bond hydrolyze acetylcholine Serine Protease Juang RH (2004) BCbasics Divergent evolution Asp-- His-- Ser Asp--His--Ser Convergent evolution C N C C H O C C C O O Evolution Molecular
Activity Regulation of Glycogen Phosphorylase Covalent modification P P GP kinase GP phosphatase 1 Non-covalent A A A AMP ATP Glc-6-P Glucose Caffeine Glucose Caffeine spontaneously R T R T Garrett & Grisham (1999) Biochemistry (2e) p.679 P A P A P P A A P A P A P P P A P A
CCC Allosteric Enzyme ATCase + Active relaxed form Inactive tense form ATCase R R R R R R CCC Catalytic subunits Catalytic subunits Regulatory subunits Aspartate Carbamoyl phosphate Carbamoyl   aspartate Juang RH (2004) BCbasics Quaternary structure COO - CH 2 HN-C-COO - H  H - - - - O H 2 N-C-O-PO 3 2- = O H 2 N-C- = COO - CH 2 N-C-COO - H  H - - - - ATP CTP Nucleic acid metabolism Feedback  inhibition CTP CTP CTP CTP CTP CTP
Regulation of Enzyme Activity P R R + proteolysis phosphorylation cAMP or calmodulin or regulator effector (+) Juang RH (2004) BCbasics Regulatory subunit or inhibitor P (-) Inhibitor Proteolysis Phosophorylation Signal transduction Feedback regulation

Mais conteúdo relacionado

Mais procurados

Active site of an enzyme
Active site of an enzymeActive site of an enzyme
Active site of an enzymeNamrata Chhabra
 
Pyrimidine Synthesis and Degradation
Pyrimidine Synthesis and DegradationPyrimidine Synthesis and Degradation
Pyrimidine Synthesis and DegradationAshok Katta
 
Glycogen metabolism
Glycogen metabolismGlycogen metabolism
Glycogen metabolismRamesh Gupta
 
Lactate dehydrogenase assays
Lactate dehydrogenase assaysLactate dehydrogenase assays
Lactate dehydrogenase assayskakavietnam
 
Degradation of amino acids
Degradation of amino acidsDegradation of amino acids
Degradation of amino acidsAnuradha Verma
 
Multifunctional enzymes
Multifunctional enzymes Multifunctional enzymes
Multifunctional enzymes SamvedhaM
 
Biochemistry lecture notes enzymes
Biochemistry lecture notes enzymesBiochemistry lecture notes enzymes
Biochemistry lecture notes enzymesRengesh Balakrishnan
 
Enzyme Inhibition
Enzyme InhibitionEnzyme Inhibition
Enzyme InhibitionDarshan Dss
 
Metabolism of amino acids
Metabolism of amino acidsMetabolism of amino acids
Metabolism of amino acidsRamesh Gupta
 
Metabolism of Basic Amino Acids (Arginine, Histidine, Lysine)
Metabolism of Basic Amino Acids (Arginine, Histidine, Lysine)Metabolism of Basic Amino Acids (Arginine, Histidine, Lysine)
Metabolism of Basic Amino Acids (Arginine, Histidine, Lysine)Ashok Katta
 
Purine degradation
Purine degradationPurine degradation
Purine degradationsridevi244
 
Protein structure and disease
Protein structure and diseaseProtein structure and disease
Protein structure and diseaseamalreffat
 
gluconeogenesis
gluconeogenesisgluconeogenesis
gluconeogenesisWajeeha123
 

Mais procurados (20)

Active site of an enzyme
Active site of an enzymeActive site of an enzyme
Active site of an enzyme
 
Amino Acids metabolism
Amino Acids metabolismAmino Acids metabolism
Amino Acids metabolism
 
Pyrimidine Synthesis and Degradation
Pyrimidine Synthesis and DegradationPyrimidine Synthesis and Degradation
Pyrimidine Synthesis and Degradation
 
Glycogen metabolism
Glycogen metabolismGlycogen metabolism
Glycogen metabolism
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Lactate dehydrogenase assays
Lactate dehydrogenase assaysLactate dehydrogenase assays
Lactate dehydrogenase assays
 
Degradation of amino acids
Degradation of amino acidsDegradation of amino acids
Degradation of amino acids
 
Multifunctional enzymes
Multifunctional enzymes Multifunctional enzymes
Multifunctional enzymes
 
enzyme regulation
enzyme regulationenzyme regulation
enzyme regulation
 
Biochemistry lecture notes enzymes
Biochemistry lecture notes enzymesBiochemistry lecture notes enzymes
Biochemistry lecture notes enzymes
 
Enzyme
Enzyme Enzyme
Enzyme
 
Enzyme Inhibition
Enzyme InhibitionEnzyme Inhibition
Enzyme Inhibition
 
Metabolism of amino acids
Metabolism of amino acidsMetabolism of amino acids
Metabolism of amino acids
 
Histidine metabolism
Histidine metabolismHistidine metabolism
Histidine metabolism
 
Metabolism of Basic Amino Acids (Arginine, Histidine, Lysine)
Metabolism of Basic Amino Acids (Arginine, Histidine, Lysine)Metabolism of Basic Amino Acids (Arginine, Histidine, Lysine)
Metabolism of Basic Amino Acids (Arginine, Histidine, Lysine)
 
Nucleotide metabolism
Nucleotide metabolismNucleotide metabolism
Nucleotide metabolism
 
Purine degradation
Purine degradationPurine degradation
Purine degradation
 
Protein structure and disease
Protein structure and diseaseProtein structure and disease
Protein structure and disease
 
gluconeogenesis
gluconeogenesisgluconeogenesis
gluconeogenesis
 
Enzymes
EnzymesEnzymes
Enzymes
 

Destaque

Kuliah biokimia enzim
Kuliah biokimia enzimKuliah biokimia enzim
Kuliah biokimia enzimSantoso Jaeri
 
Enzyme inhibition
Enzyme inhibitionEnzyme inhibition
Enzyme inhibitionkingkul
 
Enzyme inhibition ppt final
Enzyme inhibition ppt finalEnzyme inhibition ppt final
Enzyme inhibition ppt finalSwapnil Agarwal
 
Enzyme inhibition
Enzyme inhibitionEnzyme inhibition
Enzyme inhibitionranjani n
 
Enzyme specificity types and applications
Enzyme specificity types and applicationsEnzyme specificity types and applications
Enzyme specificity types and applicationsrohini sane
 
фермент ба түүний үйл ажиллагаа Enzyme activity
фермент ба түүний үйл ажиллагаа Enzyme activityфермент ба түүний үйл ажиллагаа Enzyme activity
фермент ба түүний үйл ажиллагаа Enzyme activityBilegdemberel Magadaa
 
why & wherefore drug targets
why & wherefore drug targetswhy & wherefore drug targets
why & wherefore drug targetsandy diep
 
Classification of enzymes and properties of enzymes
Classification of enzymes and properties of enzymesClassification of enzymes and properties of enzymes
Classification of enzymes and properties of enzymesmuti ullah
 
Enzyme and enzyme inhibition
Enzyme and enzyme inhibitionEnzyme and enzyme inhibition
Enzyme and enzyme inhibitionsumeet kumar
 
MECHANISM OF ACTION OF DRUGS
MECHANISM OF ACTION  OF DRUGSMECHANISM OF ACTION  OF DRUGS
MECHANISM OF ACTION OF DRUGSPrathyusha Rani
 

Destaque (20)

Kuliah biokimia enzim
Kuliah biokimia enzimKuliah biokimia enzim
Kuliah biokimia enzim
 
Enzyme inhibition
Enzyme inhibitionEnzyme inhibition
Enzyme inhibition
 
Enzyme inhibition
Enzyme inhibitionEnzyme inhibition
Enzyme inhibition
 
Enzyme inhibition ppt final
Enzyme inhibition ppt finalEnzyme inhibition ppt final
Enzyme inhibition ppt final
 
Enzyme inhibition
Enzyme inhibitionEnzyme inhibition
Enzyme inhibition
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzyme specificity types and applications
Enzyme specificity types and applicationsEnzyme specificity types and applications
Enzyme specificity types and applications
 
фермент ба түүний үйл ажиллагаа Enzyme activity
фермент ба түүний үйл ажиллагаа Enzyme activityфермент ба түүний үйл ажиллагаа Enzyme activity
фермент ба түүний үйл ажиллагаа Enzyme activity
 
why & wherefore drug targets
why & wherefore drug targetswhy & wherefore drug targets
why & wherefore drug targets
 
Enzymes For Medical Students
Enzymes For Medical StudentsEnzymes For Medical Students
Enzymes For Medical Students
 
Lekts 13
Lekts 13Lekts 13
Lekts 13
 
Classification of enzymes and properties of enzymes
Classification of enzymes and properties of enzymesClassification of enzymes and properties of enzymes
Classification of enzymes and properties of enzymes
 
Enzyme and enzyme inhibition
Enzyme and enzyme inhibitionEnzyme and enzyme inhibition
Enzyme and enzyme inhibition
 
Diagnostic enzymes
Diagnostic enzymesDiagnostic enzymes
Diagnostic enzymes
 
MECHANISM OF ACTION OF DRUGS
MECHANISM OF ACTION  OF DRUGSMECHANISM OF ACTION  OF DRUGS
MECHANISM OF ACTION OF DRUGS
 
enzymes as diagnostic tools
enzymes as diagnostic toolsenzymes as diagnostic tools
enzymes as diagnostic tools
 
Mechanism of enzyme action
Mechanism of enzyme actionMechanism of enzyme action
Mechanism of enzyme action
 
Enzyme inhibition
Enzyme inhibitionEnzyme inhibition
Enzyme inhibition
 
Enzyme assays
Enzyme assaysEnzyme assays
Enzyme assays
 
Enzyme inhibitions
Enzyme inhibitionsEnzyme inhibitions
Enzyme inhibitions
 

Semelhante a (199)enzyme 2011 (20)

enzymes-classification-isoenzymes.ppt
enzymes-classification-isoenzymes.pptenzymes-classification-isoenzymes.ppt
enzymes-classification-isoenzymes.ppt
 
Enzymes and enzymes inhibition, GPCR
Enzymes and enzymes inhibition, GPCREnzymes and enzymes inhibition, GPCR
Enzymes and enzymes inhibition, GPCR
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes. classification. isoenzymes
Enzymes. classification. isoenzymesEnzymes. classification. isoenzymes
Enzymes. classification. isoenzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes. classification. isoenzymes
Enzymes. classification. isoenzymesEnzymes. classification. isoenzymes
Enzymes. classification. isoenzymes
 
Enzymes-3rd-week.ppt enzymology, molecular biology
Enzymes-3rd-week.ppt enzymology, molecular biologyEnzymes-3rd-week.ppt enzymology, molecular biology
Enzymes-3rd-week.ppt enzymology, molecular biology
 
Enzymology
EnzymologyEnzymology
Enzymology
 
Enzymes (An Introductory Approach)
Enzymes (An Introductory Approach)Enzymes (An Introductory Approach)
Enzymes (An Introductory Approach)
 
Enzymes (A Pharmacologic Approach)
Enzymes (A Pharmacologic Approach)Enzymes (A Pharmacologic Approach)
Enzymes (A Pharmacologic Approach)
 
Enzyme Bsc II Sem Zoology. MLK PG C .pdf
Enzyme Bsc II Sem Zoology. MLK PG C .pdfEnzyme Bsc II Sem Zoology. MLK PG C .pdf
Enzyme Bsc II Sem Zoology. MLK PG C .pdf
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzyme
EnzymeEnzyme
Enzyme
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes lect.-ppt
Enzymes lect.-pptEnzymes lect.-ppt
Enzymes lect.-ppt
 
Enzymes
Enzymes Enzymes
Enzymes
 
7.27.10 enzymes coloso
7.27.10 enzymes   coloso7.27.10 enzymes   coloso
7.27.10 enzymes coloso
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 

Último

Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...narwatsonia7
 
Chandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableChandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableDipal Arora
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiLow Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiSuhani Kapoor
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...narwatsonia7
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...narwatsonia7
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...narwatsonia7
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 

Último (20)

Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
 
Chandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableChandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD available
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
 
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiLow Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
 

(199)enzyme 2011

  • 1.
  • 2. ENZYMES © 2007 Paul Billiet ODWS BERZELIUS 1835 Starch. Hydrolysis. KUHNE 1878 Enzyme mean yeast. EDWARD BUCHNER Sucrose to Ethanol
  • 3. ENZYMES © 2007 Paul Billiet ODWS EDWARD BUCHNER N.P.1907 ARTHUR HARDEN N.P. 1929 JAMES SUMNER N.P. 1946 JOHAN NORTHROP N.P. 1946 WILHELM OSTWALD N.P. 1909 WARBURG N.P. 1970
  • 4.
  • 5.
  • 6.
  • 7. ENZYMES © 2007 Paul Billiet ODWS EDWARD BUCHNER N.P.1907 ARTHUR HARDEN N.P. 1929 JAMES SUMNER N.P. 1946 JOHAN NORTHROP N.P. 1946 WILHELM OSTWALD N.P. 1909 WARBURG N.P. 1970
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24. TISSUES BRAIN,HEART,LIVER,KIDNEY,MUSCLE MUSCLE -> ← HEART -> LIVER ← STOMACH BRAIN ← KIDNEY ← INTESTINE
  • 25.  
  • 26.
  • 27.  
  • 28.
  • 29.  
  • 30.  
  • 31. What is a Ribozyme? 1) Enzyme 2) Ribonucleic Acid NOT PROTEIN 1989 Nobel Prize In Chemistry Sid Altman Tom Cech
  • 32.
  • 33.
  • 34.
  • 35. Structure : As with proteins, we consider... Primary: GGCCGAACUGGUA Secondary: Tertiary:
  • 36. Secondary Structure Watson-Crick Base Pairing Helix Formation B-DNA Small pore along helical axis “ Rungs” stack obliquely to axis A-DNA RNA RNA usually assumes A-form helices…
  • 37.
  • 38. Ribozyme vs. tRNA Phe folding
  • 40. The Future of Ribozymes In Vitro Molecular Evolution of RNA High Throughput Screening Ribozyme-Based Therapies +
  • 41. In Clinical Trial... HIV Gene Therapy... Bone Marrow Sample Treat Stem Cells with Retroviral Vector Re-Implant Treated Cells Encodes Gene for anti-HIV Ribozyme
  • 42.
  • 43.
  • 44.
  • 45.
  • 46. Enzyme Stabilizes Transition State S P ES ES T EP S T Energy change Energy required (no catalysis) Energy decreases (under catalysis) Sub.(S) Prod. (P)Enz(E) T = Transition state V=rate of change of S to P/mt. Adapted from Alberts et al (2002) Molecular Biology of the Cell (4e) p.166 Reaction direction
  • 47.  
  • 48. Control Points of Gene Regulation Prokaryotics Post-translational control Eukaryotics Juang RH (2004) BCbasics DNA ribosome mRNA proteins proteins cap 5’ 3’ tail mature mRNA DNA 5’ 3’ process mRNA Translation Activity Proteolysis Transcription RNA Processing RNA Transport RNA Degradation
  • 49.  
  • 50.
  • 51. Active Site Avoids the Influence of Water Preventing the influence of water sustains the formation of stable ionic bonds - +
  • 52. Active Site Is a Deep Buried Pocket Why energy required to reach transition state is lower in the active site? It is a magic pocket (1) Stabilizes transition (2) Expels water (3) Reactive groups (4) Coenzyme helps (2) (3) (4) (1) CoE + - Juang RH (2004) BCbasics
  • 53.
  • 54.
  • 56.  
  • 57.  
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.  
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74. The effect of temperature Temperature / °C Enzyme activity 0 10 20 30 40 50 Q10 Denaturation
  • 75.
  • 76.
  • 77. The effect of pH Optimum pH values © 2007 Paul Billiet ODWS Enzyme activity Trypsin Pepsin pH 1 3 5 7 9 11
  • 78.
  • 79.
  • 80.  
  • 81.
  • 82.
  • 83.  
  • 84. Sigmoidal Curve Effect Sigmoidal curve Exaggeration of sigmoidal curve yields a drastic zigzag line that shows the On/Off point clearly Positive effector (ATP) brings sigmoidal curve back to hyperbolic Negative effector (CTP) keeps Consequently, Allosteric enzyme can sense the concentration of the environment and adjust its activity Noncooperative (Hyperbolic) Cooperative (Sigmoidal) v o [Substrate] Off On Juang RH (2004) BCbasics CTP ATP v o
  • 85.
  • 86.  
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92. Regulation of Enzyme Activity P R R + proteolysis phosphorylation cAMP or calmodulin or regulator effector (+) Juang RH (2004) BCbasics Regulatory subunit or inhibitor P (-) Inhibitor Proteolysis Phosophorylation Signal transduction Feedback regulation
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.  
  • 99.
  • 100.
  • 101.
  • 102.
  • 103. CCC Allosteric Enzyme ATCase + Active relaxed form Inactive tense form ATCase R R R R R R CCC Catalytic subunits Catalytic subunits Regulatory subunits Aspartate Carbamoyl phosphate Carbamoyl aspartate Juang RH (2004) BCbasics Quaternary structure COO - CH 2 HN-C-COO - H H - - - - O H 2 N-C-O-PO 3 2- = O H 2 N-C- = COO - CH 2 N-C-COO - H H - - - - ATP CTP Nucleic acid metabolism Feedback inhibition CTP CTP CTP CTP CTP CTP
  • 104.
  • 105. The Reception and Transduction of Signals -GDP +GTP Adenylate cyclase   Glycogen Synthase active Insulin kinase Glucagon A The third group: Ion-channel-linked Receptor Gilman, Rodbell (1994) Glycogen breakdown Juang RH (2007) BCbasics SH2 domain  G protein   GDP   + Signal  GDP  GTP  GTP + Signal Activation P Protein Phosphatase Glycogen Synthase P P P P P G-protein-linked Receptor Enzyme-linked Receptor Glycogen
  • 106. Sigmoidal Curve Effect Sigmoidal curve Exaggeration of sigmoidal curve yields a drastic zigzag line that shows the On/Off point clearly Positive effector (ATP) brings sigmoidal curve back to hyperbolic Negative effector (CTP) keeps Consequently, Allosteric enzyme can sense the concentration of the environment and adjust its activity Noncooperative (Hyperbolic) Cooperative (Sigmoidal) v o [Substrate] Off On Juang RH (2004) BCbasics CTP ATP v o
  • 107.
  • 108.  
  • 109.
  • 110. cAMP Controls Activity of Protein Kinase A A A A A cAMP Active kinase CREB CREB Nucleus Activation Gene expression ON DNA Alberts et al (2002) Molecular Biology of the Cell (4e) p. 857, 858 R C R C R R A A A A C C Regulatory subunits Catalytic subunits C P
  • 111.
  • 112.
  • 113.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125. The allosteric site the enzyme “on-off” switch Active site Allosteric site empty Substrate fits into the active site The inhibitor molecule is absent Conformational change Inhibitor fits into allosteric site Substrate cannot fit into the active site Inhibitor molecule is present © 2008 Paul Billiet ODWS E E
  • 126.
  • 127.
  • 128.
  • 129.  
  • 130.  
  • 131.  
  • 132. Enzyme Inhibition (Mechanism) Competitive Non-competitive Uncompetitive E E Different site Compete for active site Inhibitor Substrate Cartoon Guide Equation and Description [ I ] binds to free [E] only, and competes with [S]; increasing [S] overcomes Inhibition by [ I ]. [ I ] binds to free [E] or [ES] complex; Increasing [S] can not overcome [ I ] inhibition. [ I ] binds to [ES] complex only, increasing [S] favors the inhibition by [ I ]. X Juang RH (2004) BCbasics E + S -> ES -> E + P + I ↓ E I ← ↑ E + S -> ES -> E + P + + I I ↓ ↓ E I + S ->E I S ← ↑ ↑ E + S -> ES -> E + P + I ↓ E I S ← ↑
  • 133. Competitive Inhibition Succinate Glutarate Malonate Oxalate Succinate Dehydrogenase Substrate Competitive Inhibitor Product C-OO - C-H C-H C-OO - C-OO - H-C-H H-C-H C-OO - C-OO - H-C-H H-C-H H-C-H C-OO - C-OO - C-OO - C-OO - H-C-H C-OO -
  • 134. Enzyme Inhibition (Plots) V max K m K m ’ [S], mM v o I I V max unchanged K m increased V max decreased K m unchanged Both V max & K m decreased I = K m ’ Juang RH (2004) BCbasics K m Competitive Non-competitive Uncompetitive Direct Plots Double Reciprocal V max [S], mM v o K m [S], mM V max I K m ’ V max ’ V max ’ 1/[S] 1/K m 1/ v o 1/ V max I Two parallel lines I Intersect at X axis 1/ v o 1/ V max 1/[S] 1/K m 1/[S] 1/K m 1/ V max 1/ v o Intersect at Y axis
  • 135.
  • 136.
  • 137.
  • 138. CLINICAL APPLICATIONS OF COMPETITVE INHIBITORS METHANOL POISONING METHANOL Al.Dehy. ETHANOL ANTIBIOTIC PABA Dihydro pteroate Synthase SULFONAMIDE GOUT HYPOXANTHENE XANTHINE OXIDASE ALLOPURINOL Clinical App. TRUE SUB. ENZYME DRUG
  • 139.
  • 140.  
  • 141.  
  • 142.
  • 143. Enzyme Inhibitors Are Extensively Used ● Sulfa drug (anti-inflammation) Pseudo substrate competitive inhibitor ● Protease inhibitor Plaques in brain contains protein inhibitor ● HIV protease is critical to life cycle of HIV HIV protease (homodimer): ↑ inhibitor is used to treat AIDS Symmetry Not symmetry -> Human aspartyl protease: (monodimer) Alzheimer's disease domain 1 Asp Asp domain 2 subunit 2 Asp subunit 1 Asp
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150. Intracellular Distribution of Diagnostic Enzymes ACP ALP GGT CK ALP AMS LPS AMS LD 1 AST CK LD 5 ALT AST Prostate Biliary Tract Muscle Bone Salivary Glands Pancreas Heart Liver
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180. THANKS
  • 181. Competitive Inhibition Succinate Glutarate Malonate Oxalate Succinate Dehydrogenase Substrate Competitive Inhibitor Product C-OO - C-H C-H C-OO - C-OO - H-C-H H-C-H C-OO - C-OO - H-C-H H-C-H H-C-H C-OO - C-OO - C-OO - C-OO - H-C-H C-OO -
  • 182. Enzyme Active Site Is Deeper than Ab Binding Instead, active site on enzyme also recognizes substrate, but actually complementally fits the transition state and stabilized it. Ag binding site on Ab binds to Ag complementally, no further reaction occurs. X
  • 183. cAMP Controls Activity of Protein Kinase A A A A A cAMP Active kinase CREB CREB Nucleus Activation Gene expression ON DNA Alberts et al (2002) Molecular Biology of the Cell (4e) p. 857, 858 R C R C R R A A A A C C Regulatory subunits Catalytic subunits C P
  • 184. HIV protease vs Aspartyl protease Asymmetric monomer ↓ HIV protease (homodimer) HIV Protease inhibitor is used in treating AIDS Symmetric dimer ↑ Aspartyl protease (monomer) Juang RH (2004) BCbasics Asp subunit 2 subunit 1 Asp domain 1 domain 2 Asp Asp
  • 185. Enzyme Inhibitors Are Extensively Used ● Sulfa drug (anti-inflammation) Pseudo substrate competitive inhibitor ● Protease inhibitor Plaques in brain contains protein inhibitor ● HIV protease is critical to life cycle of HIV HIV protease (homodimer): ↑ inhibitor is used to treat AIDS Symmetry Not symmetry -> Human aspartyl protease: (monodimer) Alzheimer's disease domain 1 Asp Asp domain 2 subunit 2 Asp subunit 1 Asp
  • 186. Sulfa Drug Is Competitive Inhibitor Precursor Folic acid Tetrahydro- folic acid Sulfanilamide Sulfa drug (anti-inflammation) Para-aminobenzoic acid (PABA) Bacteria needs PABA for the biosynthesis of folic acid Sulfa drugs has similar structure with PABA, and inhibit bacteria growth. Domagk (1939) -COOH H 2 N- -SONH 2 H 2 N-
  • 187. The Reception and Transduction of Signals -GDP +GTP Adenylate cyclase   Glycogen Synthase active Insulin kinase Glucagon A The third group: Ion-channel-linked Receptor Gilman, Rodbell (1994) Glycogen breakdown Juang RH (2007) BCbasics SH2 domain  G protein   GDP   + Signal  GDP  GTP  GTP + Signal Activation P Protein Phosphatase Glycogen Synthase P P P P P G-protein-linked Receptor Enzyme-linked Receptor Glycogen
  • 188. Signal Transduction Network (Ras vs. P53) Cytosol Cell membrane Effector enzyme Signal protein E2F Transcription factor Target gene mRNA Inhibitor P53 Cell division ON Signal Receptor Nucleus Ribosome Transcription Transcription Apoptosis Cell function are controlled by protein interactions mRNA Regulator protein Juang RH (2007) BCbasics Ras
  • 189. The Reception and Transduction of Signals -GDP +GTP Adenylate cyclase   Glycogen Synthase active Insulin kinase Glucagon A The third group: Ion-channel-linked Receptor Gilman, Rodbell (1994) Glycogen breakdown Juang RH (2007) BCbasics SH2 domain  G protein   GDP   + Signal  GDP  GTP  GTP + Signal Activation P Protein Phosphatase Glycogen Synthase P P P P P G-protein-linked Receptor Enzyme-linked Receptor Glycogen
  • 190. A PKA active inactive Glucagon P P GP kinase GP kinase GP a GP b Glycogen synthase Glycogen synthase P Protein phosphatase-1 Protein phosphatase-1 Protein phosphatase inhibitor-1 Protein phosphatase inhibitor-1 Glycogen P Phosphatase
  • 191. Classification of Proteases Metal Protease Serine Protease Cysteine Protease Aspartyl Protease   Family Example   Mechanism Specificity Inhibitor Juang RH (2004) BCbasics Carboxy- peptidase A Chymotrypsin Trypsin Papain Pepsin Renin H57 D102 S195-O - C25-S - H195 D215 D32 H 2 O Non- specific Non- specific Aromatic Basic Non- polar EDTA EGTA DFP TLCK TPCK PCMB Leupeptin Pepstatin E72 H69 Zn 2+ H196
  • 192. Modification of Subtilisin and Its Activity Change No enzyme 1 Asn 155 -> Leu ● ● ● 10,000,000 ( Asn 155 stabilizes transition state ) His & Asp -> Ala ● ○ ○ 37,000 Ser , His & Asp -> Ala ○ ○ ○ 4,000 Subtilisin ● ● ● 10,000,000,000 Active Site Relative Modification Triad: Ser His Asp activity Ser -> Ala ○ ● ● 5,000 Asp -> Ala ● ● ○ 330,000
  • 193. Serine Protease and AchE Chymotrypsin – Gly – Asp – Ser – Gly – Gly – Pro – Leu – Trypsin – Gly – Asp – Ser – Gly – Gly – Pro – Val – Elastase – Gly – Asp – Ser – Gly – Gly – Pro – Leu – Thrombin – Gly – Asp – Ser – Gly – Gly – Pro – Phe – Plasmin – Gly – Asp – Ser – Gly – Gly – Pro – Leu – Acetylcholinesterase – Gly – Glu – Ser – Ala – Gly – Gly – Ala – Chymotrypsin – Val – Thr – Ala – Ala – His – Cys – Gly – Trypsin – Val – Ser – Ala – Gly – His – Cys – Tyr – Elastase – Leu – Thr – Ala – Ala – His – Cys – Ile – Thrombin – Leu – Thr – Ala – Ala – His – Cys – Leu – Plasmin – Leu – Thr – Ala – Ala – His – Cys – Leu – Acetylcholinesterase – – – – – – – – – – – – – His – – – – – – – – Ser 195 Chymotrypsin – Thr – Ile – Asn – Asn – Asp – Ile – Thr – Trypsin – Tyr – Leu – Asn – Asn – Asp – Ile – Met – Elastase – Ser – Lys – Gly – Asn – Asp – Ile – Ala – Thrombin – Asn – Leu – Asp – Arg – Asp – Ile – Ala – Plasmin – Phe – Thr – Arg – Lys – Asp – Ile – Ala – Acetylcholinesterase – – – – – – – – – – – – – – Asp – – – – – – – His 57 Asp 102 Adapted from Dressler & Potter (1991) Discovering Enzymes, p.244
  • 194. H AchE Has Similar Catalytic Mechanism H - O - H H 2 O Adapted from Dressler & Potter (1991) Discovering Enzymes, p.243 ↓ Deacylation Acylation↑ AchE O - C H O CH 3 CH 3 – C – O–CH 2 –CH 2 – N –CH 3 CH 3 + AchE O C H O CH 3 – C CH 3 H O–CH 2 –CH 2 – N –CH 3 CH 3 + AchE O - C H H O CH 3 – C – OH AchE O - C H O CH 3 – C CH 3 O–CH 2 –CH 2 – N –CH 3 H CH 3 +
  • 195. Different Enzymes Might Adopt Same Mechanism Hi, Everybody! ← Useful ↙ Amusing Juang RH (2004) BCbasics O - C Sesame Triad
  • 196. Convergent and Divergent Trypsin Chymotrypsin Elastase Thrombin Plasmin Acetylcholin esterase Thyroglobulin Ester bond Peptide bond hydrolyze acetylcholine Serine Protease Juang RH (2004) BCbasics Divergent evolution Asp-- His-- Ser Asp--His--Ser Convergent evolution C N C C H O C C C O O Evolution Molecular
  • 197. Activity Regulation of Glycogen Phosphorylase Covalent modification P P GP kinase GP phosphatase 1 Non-covalent A A A AMP ATP Glc-6-P Glucose Caffeine Glucose Caffeine spontaneously R T R T Garrett & Grisham (1999) Biochemistry (2e) p.679 P A P A P P A A P A P A P P P A P A
  • 198. CCC Allosteric Enzyme ATCase + Active relaxed form Inactive tense form ATCase R R R R R R CCC Catalytic subunits Catalytic subunits Regulatory subunits Aspartate Carbamoyl phosphate Carbamoyl aspartate Juang RH (2004) BCbasics Quaternary structure COO - CH 2 HN-C-COO - H H - - - - O H 2 N-C-O-PO 3 2- = O H 2 N-C- = COO - CH 2 N-C-COO - H H - - - - ATP CTP Nucleic acid metabolism Feedback inhibition CTP CTP CTP CTP CTP CTP
  • 199. Regulation of Enzyme Activity P R R + proteolysis phosphorylation cAMP or calmodulin or regulator effector (+) Juang RH (2004) BCbasics Regulatory subunit or inhibitor P (-) Inhibitor Proteolysis Phosophorylation Signal transduction Feedback regulation

Notas do Editor

  1. 有沒有 使用酵素催化的最大差別,在於過渡狀態的能量不同。由上圖可以看出在酵素催化下,到達過渡狀態的能量較低,也就是有酵素存在時,其過渡狀態比較容易形成。為什麼?最直接的原因是因為酵素可以穩定過渡狀態,因此反應物一下子就可跳到過渡狀態,然後很快以轉變成生成物。 那麼,為什麼酵素可以穩定過渡狀態?
  2. 上圖 把原核細胞及真核細胞中的基因表現過程作一整理,並且指出整個過程中可供調控的控制點。有許多都是在 DNA 或 RNA 層次的調控,細胞可以藉由開關某基因,而開啟或關閉相對應蛋白質的表現。而此種基因表現的控制方式,是十分複雜的;多是利用某種調節性蛋白質,在基因的前端 ( 調控區 ) 指揮該基因是否能夠被轉錄出 mRNA 。因此細胞內酵素活性的調節,有許多不同的層次,本課程的焦點放在蛋白質生合成之後,對蛋白質進行的種種修飾與控制;至於基因表現層次的調控機制,就是分子生物學的主軸,台大有許多相關課程可以選修。
  3. 活性區 深埋在內部的一個重要原因是,催化反應必須避開水分子,以免反應受到水合的干擾,產生適當的鍵結與質子或電子轉移 ( 水分子實在太厲害了 ) 。
  4. 酵素 活性區像一個魔術口袋,把反應物放進去後,就可以變成生成物出來。當然我們已經知道,這個口袋可以降低反應中間物的活化能,但它是如何做到的呢? 本圖解提出四個可能的機制。 (1) 過渡狀態分子的構造中,經常都有相當高的局部電荷,而催化口袋內的適當位置上,剛好佈置有可以中和掉此局部高電荷的基團,因而得以穩定過渡狀態。 (2) 在水溶液中,許多離子間的鍵結或反應都會被水分子干擾,因此凹陷的催化口袋可以隔離大多數水分子,使得離子間的反應順利進行。 (3) 在活性區內的胺基酸基團,有些可以因為特別的空間排列,而使得原本反應性低的基團 ( 例如 Ser-OH) ,因為附近其他基團的影響 ( 如 His 可奪取其 H + ) ,而變成具有高反應性的基團 ( 如 Ser-O - ) 。 (4) 活性區通常也是輔 脢 的結合區,輔 脢 分子都帶有強大的電荷基團,可以直接參與反應或者輔助反應進行。
  5. S 型 曲線有其特別意義︰ 在 S 曲線上的轉折點 ( 也就是整個線條的中點 ) ,代表 ATCase 的活性在此點之上很快變成活性型,此點之下則保持在非活性型。有點像一個負責開關的關鍵濃度,當基質的濃度到達此點,酵素的活性迅速上升;反之若在此濃度之下,酵素的活性保持著較低的活性。因此,異位 脢 可以說是具有感受環境中基質濃度的能力,藉以調節其活性的大小。 正效應物 ATP 會增加 ATCase 的活性,其動力學的 S 型曲線則變回原來的傳統式 M-M 拋物線。而負效應物 CTP 會降低 ATCase 活性,雖仍保持原來的 S 型曲線,但會往高基質濃度位移,亦即需要更高的基質濃度來維持其正常活性。
  6. 上圖 整理出五種酵素的調控方式,其中以抑制劑來抑制酵素的方法與機制已在第四節中介紹過,將不再談。 其餘四種除了胜鍵裂解 (6.1) 是不可逆性的修飾方法外,都是可逆性的調節。 而三種可逆性調節方式當中,只有磷酸化 (6.2) 是共價性修飾,其餘兩種為非共價性的結合,都是利用某種分子與酵素結合而修飾之;其中 cAMP 及 calmodulin (6.3) 是都信息傳導的分子,是把指令由細胞外面傳到裡面的中間人;另外的迴饋控制 (6.4) 則是以細胞內的上下游代謝物質來控制酵素活性。這幾種方法,都同時在生物體中努力地進行細胞內外酵素活性的調控,以便讓細胞達到最有效,而且可以控制自如的生理功能。 近年來,酵素的活性調控方面有很大的進展,尤其是信息傳導的方式極複雜,其五花八門更是令人眼花撩亂。本課程只是一個入門,因此儘量簡化各種所要介紹的主題,通常是以一個比較成熟的實例或機制為故事的主角來說明,點出該主題的最重要主軸;至於深入到何種程度,則通常適可而止,其深度與廣度要靠同學自行去努力。最近台大已經有很多相關課程,深入討論信息傳導,有志者應可挑選適當的課程進一步精研。
  7. 異位脢 的最典型例子,就是 aspartate transcarbamoylase (ATCase) 。此酵素催化上圖的反應,所產生的生成物會繼續代謝,最後生成 CTP 。 此 CTP 會回頭與 ATCase 結合,再迴饋抑制其活性 ( 因為 CTP 太多表示不用再繼續此一代謝路徑了 ) 。因為 CTP 與 ATCase 結合在其 R 次體上,而非 C 次體上的活性區,因此是一種道地的異位 脢 。 CTP 之所以能抑制 ATCase 的活性,是因為當 CTP 結合到 R 次體後,會牽動 C 次體的構形,使得 ATCase 由原來活躍的 relaxed form 轉變成較不具活性的 tense form 。
  8. 細胞膜上 到底如何傳遞信息? 其方式實在非常多,一般依照 receptor 種類,可整理出三大類主要模式: (1) G-protein-linked Receptor: Receptor 與 G protein 連結後活化之, G protein 本身是 GTP 結合蛋白,與 GTP 結合後可以活化 adenylate cyclase ,後者催化 ATP 成為 cAMP 。 (2) Enzyme-linked Receptor: Receptor 連結著 激 脢 ( 如 tyrosine kinase) ,後者自我磷酸化活化自己,也吸引來一些酵素 ( 如含有 SH2 domain 的磷酸 脢 ) 並且活化之,然後繼續下游的催化路徑。 (3) Ion-channel-linked Receptor: 與細胞膜上的離子主動運輸有關。
  9. S 型 曲線有其特別意義︰ 在 S 曲線上的轉折點 ( 也就是整個線條的中點 ) ,代表 ATCase 的活性在此點之上很快變成活性型,此點之下則保持在非活性型。有點像一個負責開關的關鍵濃度,當基質的濃度到達此點,酵素的活性迅速上升;反之若在此濃度之下,酵素的活性保持著較低的活性。因此,異位 脢 可以說是具有感受環境中基質濃度的能力,藉以調節其活性的大小。 正效應物 ATP 會增加 ATCase 的活性,其動力學的 S 型曲線則變回原來的傳統式 M-M 拋物線。而負效應物 CTP 會降低 ATCase 活性,雖仍保持原來的 S 型曲線,但會往高基質濃度位移,亦即需要更高的基質濃度來維持其正常活性。
  10. 蛋白質 激 脢 中的 protein kinase A (PKA) 可以對較廣泛的蛋白質進行磷酸化反應,其本身的活性又被 cAMP 所活化。在某些細胞中, PKA 會進入細胞核中,並且磷酸化促進基因轉錄的蛋白質 ( 如上面的 CRE-binding protein, CREB) ,啟動某些基因。 PKA 共有四個次體,含有兩個催化次體 (C) 及兩個調節次體 (R) , R 接受 cAMP 後即釋放出具有活性的催化次體。
  11. 酵素 的抑制劑有不同的抑制機制,通常依照抑制劑對酵素的結合方式,可分成兩大類。其一為競爭同一活性區 (competitive) ,可以用提高基質濃度的方法來競爭;另一則是結合在活性區之外的地方,又可分成 non-competitive 及 uncompetitive 兩種。後面兩種抑制方式大致相同,因此有些課本也就不再細分,其差別在於基質的結合,會不會影響抑制劑的結合。雖然這幾種抑制方式,都是可逆反應,但只有 competitive 可以用提高基質的方式來對抗抑制。
  12. 競爭性 抑制劑通常都與正常的基質相像,可以與酵素結合,但無法繼續反應,產生生成物;因為都是競爭同一活性區,因此可提高基質來對抗抑制。
  13. 這些 抑制機制都可以用酵素動力學來描述,使用雙倒數作圖更可明顯地指出是屬於何種抑制方式。不過,以上三種作圖都是屬於最典型者,很多時候實驗所得到的作圖結果,可能會有混合型態出現,則是較為複雜的抑制機制,或者有其他的干擾因子在內。
  14. 抑制劑 在生理或醫藥上,有極重大的作用。例如我們常用的磺胺藥,即所謂的消炎粉,就是一種競爭性抑制劑;磺胺藥分子構造,類似細菌的一種重要代謝物 (PABA) ,因而可與催化 PABA 的酵素結合,造成其抑制。 細胞內有一大群蛋白 脢 ,也在細胞內負責重要的生理功能;而自然界中存在著這些蛋白 脢 的各種抑制劑,有些具生理效果,有些是病理上的致病因子,有些是治病的妙藥;我們將各舉一例,其中可以治療 AIDS 的蛋白 脢 抑制劑,是近年來醫學上的要角之一。
  15. 競爭性 抑制劑通常都與正常的基質相像,可以與酵素結合,但無法繼續反應,產生生成物;因為都是競爭同一活性區,因此可提高基質來對抗抑制。
  16. 酵素 與抗體的最大不同點,在於兩者對目標的結合區構形不一樣。抗體只是很專一性遞與抗原結合了,再來就沒有進一步動作;酵素則不但與其基質結合,活化區口袋會誘導基質變成中間過渡狀態,然後很快轉成生成物。
  17. 蛋白質 激 脢 中的 protein kinase A (PKA) 可以對較廣泛的蛋白質進行磷酸化反應,其本身的活性又被 cAMP 所活化。在某些細胞中, PKA 會進入細胞核中,並且磷酸化促進基因轉錄的蛋白質 ( 如上面的 CRE-binding protein, CREB) ,啟動某些基因。 PKA 共有四個次體,含有兩個催化次體 (C) 及兩個調節次體 (R) , R 接受 cAMP 後即釋放出具有活性的催化次體。
  18. 因為 HIV 蛋白 脢 屬於 aspartyl protease ,其分子中含有兩個 Asp ( 如上圖所示 ) ,因此要使用這類蛋白 脢 的抑制劑來對付 HIV 。問題是,人體內也有相似的 aspartyl protease ,對付 HIV 的抑制劑也對人體有害;因此,要如何找到只對 HIV protease 有抑制作用的藥物? 藥物設計在目前的生物技術產業上,是一支非常重要的研究發展單位;我們可以從人類以及 HIV protease 在分子構造上的差異來下手。 這兩種 proteases 剛好可複習 domain 與 subunit 的概念。 HIV protease 是由兩個相同的次體所組成,是同質二元體,整體四級構造相當對稱;而人體的 Asp protease 則由兩個相似的 domains 所構成,沒有四級構造,但也有兩個 Asp 可夾住水分子,這兩個相似的 domains 可能是由同一基因複製所形成。
  19. 抑制劑 在生理或醫藥上,有極重大的作用。例如我們常用的磺胺藥,即所謂的消炎粉,就是一種競爭性抑制劑;磺胺藥分子構造,類似細菌的一種重要代謝物 (PABA) ,因而可與催化 PABA 的酵素結合,造成其抑制。 細胞內有一大群蛋白 脢 ,也在細胞內負責重要的生理功能;而自然界中存在著這些蛋白 脢 的各種抑制劑,有些具生理效果,有些是病理上的致病因子,有些是治病的妙藥;我們將各舉一例,其中可以治療 AIDS 的蛋白 脢 抑制劑,是近年來醫學上的要角之一。
  20. 磺胺藥 就是消炎藥,因為其構造類似細菌生長細胞壁所需之 PABA ,會競爭性地抑制利用 PABA 的酵素,因而阻礙細菌的生長,但無法完全殺菌。
  21. 細胞膜上 到底如何傳遞信息? 其方式實在非常多,一般依照 receptor 種類,可整理出三大類主要模式: (1) G-protein-linked Receptor: Receptor 與 G protein 連結後活化之, G protein 本身是 GTP 結合蛋白,與 GTP 結合後可以活化 adenylate cyclase ,後者催化 ATP 成為 cAMP 。 (2) Enzyme-linked Receptor: Receptor 連結著 激 脢 ( 如 tyrosine kinase) ,後者自我磷酸化活化自己,也吸引來一些酵素 ( 如含有 SH2 domain 的磷酸 脢 ) 並且活化之,然後繼續下游的催化路徑。 (3) Ion-channel-linked Receptor: 與細胞膜上的離子主動運輸有關。
  22. 信息傳導 的說明例,分別有兩個互相對抗的蛋白質家族,共同控制細胞的分裂。 當細胞接受到外界的信息,由細胞膜上的受體接受,然後以 Ras 為主的信息傳導路徑,把信號蛋白 ▲ 傳入細胞核。在細胞核裡,抑制者蛋白原本抓住 E2F 轉錄因子,不讓 E2F 啟動目標基因。當信號蛋白進入核內與抑制者結合,釋出 E2F 與目標基因之啟動子結合,就可啟動細胞分裂。 另一個 P53 家族,有比較保守而謹慎的控制策略, P53 會啟動另一基因,轉錄並轉譯出另一種蛋白質 ( 六角形的援軍蛋白 ) ,進入細胞核與信號蛋白結合,放出抑制者,後者再回去抓住 E2F 轉錄因子,因此又把目標基因關掉,細胞分裂就被中止。 若 P53 發現無法控制該細胞的分裂,有可能惡化成癌細胞時, P53 也會啟動細胞凋亡,把自己的細胞摧毀掉,以免癌化。 這兩個家族好像一個是激進的細胞分裂派 (Ras) ,另一個是保守的控制分裂派 (P53) ,共同制衡維持細胞的正常發展。這兩個家族的蛋白質份子中,若有出現突變而導致失效者,生物個體就很容易得到癌症。
  23. 細胞膜上 到底如何傳遞信息? 其方式實在非常多,一般依照 receptor 種類,可整理出三大類主要模式: (1) G-protein-linked Receptor: Receptor 與 G protein 連結後活化之, G protein 本身是 GTP 結合蛋白,與 GTP 結合後可以活化 adenylate cyclase ,後者催化 ATP 成為 cAMP 。 (2) Enzyme-linked Receptor: Receptor 連結著 激 脢 ( 如 tyrosine kinase) ,後者自我磷酸化活化自己,也吸引來一些酵素 ( 如含有 SH2 domain 的磷酸 脢 ) 並且活化之,然後繼續下游的催化路徑。 (3) Ion-channel-linked Receptor: 與細胞膜上的離子主動運輸有關。
  24. 細胞 表面的接受體 receptor 非常重要,因為它標明該細胞內的活動為何,以接受正確的外來信息,做出正確的生理反應。以肝糖代謝的細胞為例,可以接受 glucagon 的細胞,就會引發細胞內一連串反應,產生 cAMP 活化 PKA ,此 PKA 接著對幾種酵素進行磷酸化反應,磷酸化的結果使某些酵素活性上升 ( 如 GP kinase, protein phosphatase inhibitor) ,但也使某些酵素活性下降 ( 如 glycogen synthase, protein phosphatase) 。其最後結果,就是使得肝糖的合成降低,增加肝糖降解,以供身體利用葡萄糖產生能量。 上圖的 protein phosphatase 會去除磷酸化 ( 見上圖彎曲向上點線箭頭 ) ,因而降低肝糖磷解 脢 的活性,並且增加肝糖合成 脢 活性,與 glucagon 所要的結果相反,因此在這個細胞中被抑制 ( 雖然也是被磷酸化,但磷酸化後活性降低 ) 。反過來看,此一酵素的 inhibitor 則被活化,進一步控制了 protein phosphatase 的活性。
  25. 凡是 可以水解胜肽鍵的酵素,均統稱為蛋白 脢 。蛋白 脢 的種類非常多,我們大致歸納為四大類,均依其催化特性來命名。例如 metal protease 是因為分子中含一金屬離子,此金屬離子不但可維持酵素的正確分子構形,也可以參與催化反應; Ser 及 Cys protease 是因為催化區上含有一個 Ser 或 Cys 胺基酸為主要的催化機團;而 Asp protease 也是因為分子上需要有兩個 Asp 基團,以便抓住水解所需的水分子。 每一類蛋白 脢 家族內,其成員的催化機制都相同,但催化目標的專一性不同;例如 Ser 家族內的 trypsin 嗜好水解鹼性胺基酸,而 chymotrypsin 喜歡較大的芳香基團。 以下將把重點放在 Ser 蛋白 脢 的催化區,看其催化鐵三角如何作用,以及此家族在分子演化上的奇特表現。最有趣的是,這種有效的催化鐵三角,居然也會被其它酵素盜用 ( 或是純屬雷同? ) 。
  26. 為了 研究 Ser protease 的催化區,有人把 subtilisin 催化鐵三角上面的胺基酸修改,再看影響修飾後的蛋白 脢 活性大小。結果發現 Ser195 是絕對不可以改變的重要胺基酸, His57 及 Asp102 次之。同時,若把可以穩定過渡狀態分子的 Asn155 改成不具電荷的 Leu ,活性也會下降一千倍。因此,這三個重要胺基酸是不能任意改變,所有 Ser protease 家族成員,都有這三個胺基酸在固定的位置。
  27. 把 Ser 家族幾個成員拿出來比較,看催化鐵三角附近胺基酸序列的差異性如何。最重要的 Ser 附近的胺基酸保守性非常高,其它地方也都是半保守性地取代 ( 即極性取代極性、非極性取代非極性 ) 。 成員中有一個 acetylcholinesterase (AchE) 似乎是認養來的, AchE 也有催化鐵三角,但是整體的胺基酸序列並不太像 ( 因此上圖無法列出比較的序列 ) ,好像沒有『血緣』關係。的確如此, AchE 原來並非 Ser 家族的嫡系成員,只是趨同演化出具有與鐵三角類似的催化機制。
  28. Acetylcholinesterase 的催化機制與胜肽鍵水解極相似,活性區有高反應性的 Ser 以及 His 和 Asp 的質子接力,也分成 acylation 及 deacylation 兩個階段。
  29. 看來 它們是各自發展出類似的催化機制,一個有用的組合不但會被重複使用,還會有趨同演化的情形,天底下大家想的真是都差不多。
  30. Acetylcholinesterase (AchE) 是與 Ser protease 家族完全無關的一個酵素,它獨立演化出類似 Ser 催化鐵三角的 Asp-His-Ser 活性區,其作用模式也與 Ser protease 類似,但催化的是水解 acetylcholin 的 ester bond 而非 peptide bond ;事實上,這兩種鍵結的水解方式,也極為相像。這種由不相關的前驅物開始,卻發展出相同的催化機制,稱為 趨同演化 ;而 Ser protease 家族則是由一個相同的始祖開始, 趨異演化 成各個不同的家族成員。 因此,演化現象不但在鉅觀的生物圈發生,同時也在分子層次的微觀世界上演。
  31. 肝糖磷解脢 的重要性可由其複雜的調控機制得證,幾乎囊括所有重要的調節方式。因此異位 脢 這種細膩的蛋白質調控方法,當然在肝糖磷解 脢 也有,而且效應物種類繁多。 肝糖磷解 脢 的各種調控機制可以整理成為兩大類,其一為共價性修飾,就是 Ser 14 的磷酸化反應;另一則為非共價性的修飾,正向的活化物只有 AMP 一種,要特別注意並不是 cAMP ;而負面的抑制劑則有許多,例如葡萄糖、 Glc-6-P 、 ATP 與咖啡因。這兩大類效應物真是壁壘分明,例如 AMP 與 ATP 的能量狀況恰好相反,血中的 AMP 濃度高了,表示需要能量,因此活化了肝糖磷解 脢 以便進行磷解反應,取得能量;反之,若血中充滿了 ATP ,則關掉肝糖磷解 脢 活性,不須再降解肝糖。 上圖的右半部需加說明,在磷酸化之後,肝糖磷解 脢 很快由 T 轉換成 R ,因此往下的箭頭較粗。但是即使有磷酸化,當加入負效應物時,也會由 R 轉回 T 而失去活性。
  32. 異位脢 的最典型例子,就是 aspartate transcarbamoylase (ATCase) 。此酵素催化上圖的反應,所產生的生成物會繼續代謝,最後生成 CTP 。 此 CTP 會回頭與 ATCase 結合,再迴饋抑制其活性 ( 因為 CTP 太多表示不用再繼續此一代謝路徑了 ) 。因為 CTP 與 ATCase 結合在其 R 次體上,而非 C 次體上的活性區,因此是一種道地的異位 脢 。 CTP 之所以能抑制 ATCase 的活性,是因為當 CTP 結合到 R 次體後,會牽動 C 次體的構形,使得 ATCase 由原來活躍的 relaxed form 轉變成較不具活性的 tense form 。
  33. 上圖 整理出五種酵素的調控方式,其中以抑制劑來抑制酵素的方法與機制已在第四節中介紹過,將不再談。 其餘四種除了胜鍵裂解 (6.1) 是不可逆性的修飾方法外,都是可逆性的調節。 而三種可逆性調節方式當中,只有磷酸化 (6.2) 是共價性修飾,其餘兩種為非共價性的結合,都是利用某種分子與酵素結合而修飾之;其中 cAMP 及 calmodulin (6.3) 是都信息傳導的分子,是把指令由細胞外面傳到裡面的中間人;另外的迴饋控制 (6.4) 則是以細胞內的上下游代謝物質來控制酵素活性。這幾種方法,都同時在生物體中努力地進行細胞內外酵素活性的調控,以便讓細胞達到最有效,而且可以控制自如的生理功能。 近年來,酵素的活性調控方面有很大的進展,尤其是信息傳導的方式極複雜,其五花八門更是令人眼花撩亂。本課程只是一個入門,因此儘量簡化各種所要介紹的主題,通常是以一個比較成熟的實例或機制為故事的主角來說明,點出該主題的最重要主軸;至於深入到何種程度,則通常適可而止,其深度與廣度要靠同學自行去努力。最近台大已經有很多相關課程,深入討論信息傳導,有志者應可挑選適當的課程進一步精研。