SlideShare uma empresa Scribd logo
1 de 60
World Health Day 2014
A Global brief on Vector-borne diseases
“Small bite – Big threat”
Guided by
Dr. Y.D. Badgaiyan
Prof. & Head
Deptt. Of Community Medicine
CIMS, Bilaspur (C.G.)
INTRODUCTION
• With this World Health Day, WHO is drawing attention to a
group of diseases that are spread by insects and other vectors,
the heavy health and economic burdens they impose, and what
needs to be done to reduce these burdens.
• Vector-borne diseases cause more than one million deaths each
year.
• But death counts, though alarming, vastly underestimate the
human misery and hardship caused by these diseases, as many
people who survive infections are left permanently debilitated,
disfigured or blind.
(More than half the world at risk)
• Vector-borne diseases are illnesses caused by
pathogens and parasites in human populations.
• One sixth of the illness and disability suffered
worldwide is due to vector-borne diseases,
• with more than half the world’s population currently
estimated to be at risk of these diseases.
• Every year more than one billion people are infected and more
than one million people die from vector-borne diseases
including -
- malaria,
- dengue,
- schistosomiasis,
- leishmaniasis,
- Chagas disease,
- yellow fever,
- lymphatic filariasis and
- onchocerciasis.
• The poorest segments of society and least-developed
countries are most affected.
• These diseases affect urban, peri-urban and rural
communities but thrive predominantly among
communities with poor living conditions- particularly
lack of access to adequate housing, safe drinking
water and sanitation.
• Malnourished people and those with weakened
immunity are especially vulnerable.
• These diseases also exacerbate poverty.
• Illness and disability prevent people from working
and supporting themselves and their family, causing
further hardship and impeding economic
development.
• Dengue, for example, imposes a substantial economic
burden on families and governments, both in medical
costs and in working days lost due to illness.
• According to studies from eight countries, an average
dengue episode represents 14.8 lost days for
ambulatory patients at an average cost of US$ 514
and 18.9 days for non-fatal hospitalized patients at an
average cost of US$ 1491.
• Vector-borne diseases therefore play a central role in
poverty reduction and economic development.
• An economic model for malaria suggests that
countries with intensive malaria have income levels
of only one third of those that do not have malaria.
INCREASING THREAT
Vector Borne Diseases
• Back in the 1940s, the discovery of synthetic
insecticides was a major breakthrough in the control
of vector-borne diseases.
• Large-scale indoor spraying programmes during the
1950s and 1960s succeeded in bringing many of the
major vector-borne diseases under control.
• By the late 1960s, many of these diseases – with the
exception of malaria in Africa – were no longer
considered to be of primary public health importance.
• This triggered a major setback.
• Control programmes lapsed, resources dwindled, and
specialists in vector control disappeared from public
health units.
• Within the past two decades, many important vector-
borne diseases have re-emerged or spread to new
parts of the world.
• Traditionally regarded as a problem for countries in
tropical settings, vector-borne diseases pose an
increasingly wider threat to global public health, both
in terms of the number of people affected and their
geographical spread.
• Their potential to spread globally, changes in climate,
ecology, land-use patterns, and the rapid and
increased movement of people and goods is
threatening more than half the world’s population.
• Environmental changes are causing an increase in the
number and spread of many vectors worldwide.
• Dengue in particular is emerging as a serious public health
concern.
• In 2012, it ranked as the most important mosquito-borne viral
disease with epidemic potential in the world.
• There has been a 30-fold increase in cases during the past 50
years, and its human and economic costs are staggering.
• The primary vector for dengue, the Aedes aegypti
mosquito, is now found in more than 20 European
countries.
• This same mosquito species recently carried
chikungunya to the Caribbean islands; the first cases
of this debilitating disease seen in the Region of the
Americas.
• Alongside this alarming spread of vectors, the serious
concern is , of increasing insecticide resistance.
• Today most species of vectors are showing resistance
to many classes of insecticides.
• If existing insecticides lose their effectiveness this
could erase all the gains made against malaria and
other vector-borne diseases.
• And at the same time, the world is facing an extreme
shortage of entomologists and vector-control experts.
• Very few African countries have entomology
programmes at undergraduate university level and
some countries have only a handful of expert
entomologists.
RENEWED MOMENTUM
Renewed momentum
• The world can no longer afford to be complacent.
• If we do not take action now, the implications are extremely
serious for the entire globe.
• For many vector-borne diseases, there are no vaccines, and
drug resistance is an increasing threat.
• Vector control plays a vital role and is often the only way to
prevent disease outbreaks.
• Many existing interventions, such as insecticide-
treated bed-nets and indoor spraying, are simple and
proven measures.
• These vector-control tools can be particularly
effective when used in combination with
interventions such as mass drug administration
involving large-scale treatment of affected
communities.
• Vector management programmes can also combine
interventions and resources to target more than one
disease – a component of an approach called
integrated vector management.
• In many cases, increased funds and political
commitment are needed to scale-up access to existing
vector-control tools, as well as medicines and
diagnostic tools.
• At the same time, more investment in research is
urgently needed to find improved solutions for
fighting vectors and the diseases they transmit.
• Combating these diseases calls for renewed
momentum on a global scale; from global public
health agencies, between countries and within
regions, across government sectors, at all levels of
government, and within communities and households.
PREVENTION AND CONTROL
• The time has come to utilize the full potential for vector
control in the large-scale reduction of vector-borne
diseases.
• The need is most acute for dengue fever, chikungunya,
leishmaniasis and Chagas disease for which there is no
straightforward method of treatment nor an effective
vaccine.
• A number of interventions to control and prevent vector-
borne diseases exist.
• Some will be more appropriate than others, depending on
factors such as:-
- local ecology and behaviour of the vector species, including its
habitats, flight range, feeding preferences and seasons.
- local epidemiology of the disease.
- human activity such as irrigation and animal farming.
- socioeconomic conditions of affected communities .
- cultural context.
- feasibility of applying interventions in specific settings
acceptable to the population.
- environmental change.
Long-lasting insecticidal nets
• Insecticide-treated bed-nets are one of the most
efficient and cost-effective ways to protect against
mosquito-borne diseases, particularly malaria.
• WHO therefore recommends that everyone who is at
risk of malaria, sleeps under a long lasting
insecticidal net every night.
• Between 2004 and 2013, international donors funded
over 700 million bednets to protect families against
malaria in sub-Saharan Africa.
• Nets should be checked regularly for holes and
replaced every 2–3 years.
Indoor residual spraying
• Indoor residual spraying with insecticides is the most
widely used method to control mosquitoes.
• It is also an effective way to reduce sand-flies and
bugs inside homes.
• At least 80% of houses in a targeted area need to be
sprayed for maximum impact.
• Indoor spraying is effective for 3–6
months, depending on the insecticide used and the
type of surface on which it is sprayed.
• The insecticide DDT can be effective for 6–12
months and continues to be used in several African
countries.
Outdoor spraying
• Spraying outer surfaces of domestic animal
shelters, outdoor latrines and other damp places can
help control sandflies.
• Aerial spraying of larvae breeding sites in fast-
flowing rivers has been successful in helping to
control blackflies which transmit onchocerciasis.
• Aerial spraying has also been used to control
mosquitoes during epidemics of dengue and yellow
fever.
• If used early in an epidemic, emergency space
spraying may reduce the intensity of virus
transmission and provide time for the introduction of
longer-term measures.
• While tick control can be difficult as animal carriers
are numerous and widespread, acaricides (chemicals
that kill ticks) can be used successfully in well-
managed livestock production facilities when
required.
• Animals at risk of carrying Crimean-Congo
haemorrhagic fever should be treated with pesticides
two weeks prior to slaughter.
Addition of chemicals to water
• Addition of insecticides to drinking water storage containers
can be effective at reducing mosquito larvae where there is
significant risk of diseases such as dengue and chikungunya
fever.
• However, extreme care must be taken when treating drinking
water to avoid dosages that are toxic to humans.
• Some countries have successfully used chemicals to control
snail populations in irrigation canals and small streams.
Other insect repellents
• Insect repellents in the form of coils, vaporizing mats, aerosols
and insecticide-impregnated curtains can also be effective in
deterring and killing mosquitoes and sandflies in and around
houses.
• Coils usually have a synthetic pyrethroid as the active
ingredient.
• One coil is effective through the night in an average-sized
bedroom, unless the room is particularly draughty, which will
cause the insecticide to dilute and the coil to burn faster.
ENVIRONMENTAL MANAGEMENT
Reduce breeding habitats
• Water-storage containers can be designed to prevent
access by mosquitoes for laying their eggs.
• Domestic water storage containers should be emptied
and cleaned regularly.
Biological control
• Biological control is a method of controlling mosquitoes and
other vectors through the introduction of parasites, predators
or other living organisms.
• Larvivorous fish and copepods (small crustaceans) are
effective in controlling the larvae of Aedes mosquito.
• In many countries, small ornamental fish are introduced in
water storage tanks to feed on the larvae.
Genetic control
• Genetic control strategies aim either to suppress
target populations or to introduce a harm-reducing
trait.
• Several methods are under development and the first
field trials are showing promising progress.
Waste management
• Empty tins, plastic bottles, unused drums, coconut shells and
used car tyres can serve as important breeding sites for
mosquitoes.
• Discarded materials should be collected, recycled or disposed
of carefully in waste transformation facilities (e.g. incinerators,
energy-production plants, or lime kilns fitted with emission
control devices).
Housing modification
• Human settlements should be located away from
sandfly habitats.
• They should be fitted with door and window screens
to help keep insects out.
• Efforts need to be made to keep plaster walls and
concrete floors in good condition, with cracks and
other possible entry points sealed up against all
vectors, particularly sandflies and triatomine bugs.
• Air conditioning and fans keep mosquitoes away
effectively.
Personal protection
• For individuals, personal protection against insect bites
represents the first line of defence against many vector-borne
diseases.
• Insect repellents are substances applied to exposed skin or
clothing to protect against mosquito, sandfly and tick bites.
• The active ingredient in these repellents is most commonly a
compound called DEET (N,NDiethyl- meta-toluamide) or two
other recently approved compounds IR3535 and KBR3023.
• Repellent should be applied to the neck, wrists and
ankles, avoiding contact with eyes, nose and mouth.
• When applied to skin, the repellent effect may last
from 15 minutes to 10 hours, depending on
climate, the formulation of the product and its effect
on specific vector species.
• The effect lasts longer when applied on clothes.
Medication
• Travellers are encouraged to consult a medical
professional if possible 4–6 weeks before departure to
discuss how they can protect themselves against
vector-borne diseases during their travels.
MEETING CHALLENGES
IN
THE CONTROL OF VECTOR-BORNE DISEASES
Emerging insecticide resistance
• Insecticide resistance is a major threat to existing
vector control methods.
• This is largely due to heavy reliance on a single class
of insecticides, the pyrethroids.
• Pyrethroids are not only highly effective, but are also
the least expensive of the four classes of insecticides
available for public health vector control.
• In some areas, however, resistance to all four classes
of insecticides (temephos, methoprene, pyriproxyfen
and novaluron) has been detected.
• Long-lasting insecticidal nets and indoor residual
spraying remain highly effective tools for malaria
control.
• However, urgent action is required to prevent further
development of resistance.
Lack of expertise in vector control
• The expertise of entomologists is critical to guiding
vector control; however, the world is facing an
extreme shortage of entomologists.
• Very few African countries have entomology
programmes at undergraduate university level and
some countries have only a handful of expert
entomologists.
Surveillance
• Surveillance of vectors and their diseases is key to
measuring the effectiveness of interventions.
• In many high-burden settings, however, there is
almost no data on these diseases or their vectors.
• Surveillance of vector-borne diseases should be part
of the national health information system, with data
on disease cases and deaths collected routinely.
Sanitation and access to safe drinking water
• Poor sanitation and lack of access to clean drinking water
allows many vectors to thrive.
• WHO recommends piping water to households rather than
drawing water from wells, communal standpipes, rooftop
catchments and other water storage systems.
Pesticide safety
• Pesticide poisoning is a serious public health problem that
disproportionately affects infants and children – partly because
of their smaller size; differing metabolism; and rapidly
growing and developing organs.
• For this reason, many communities will be reluctant to add
chemicals to domestic water, particularly drinking water.
• And if they are used, it is vital to ensure that pesticides are
used at safe levels.
Environmental change
• Changing climatic conditions, such as rainfall
patterns, temperature and humidity, affect the number
and survival rate of mosquitoes and some other
vectors.
• The ambient temperature determines insects’
reproduction rate, biting behaviour and survival.
• Moreover, the incubation period of pathogens inside
vectors tends to be shorter at warmer temperatures.
• Distribution of mosquitoes and other vectors may
therefore expand with increasing temperatures.
• Climate information is important therefore both to
surveillance and forecasting trends of vector borne
diseases such as malaria.
CONCLUSION
• Vector-borne diseases are one of the greatest contributors to
human mortality and morbidity in tropical settings and beyond.
• Although significant progress is currently being made in
combating some diseases such as malaria, lymphatic filariasis
and Chagas disease, other diseases such as dengue continue to
spread and increase their number of cases at an alarming pace.
• The silent expansion of mosquito vectors and their ability to
develop resistance to insecticides threatens the gains made
through vector control and calls for concerted planning and
collaboration across sectors including health, agriculture and
the environment.
• In areas where vector-borne diseases overlap, integrated
management of insecticide resistance is essential, supported by
adequate capacity of trained personnel and resources.
• Vector control programmes need to adapt to match
the changing epidemiological patterns of new
emerging threats.
• This will require increased research to develop a
sustained approach to ecological and environmental
changes in the years ahead.
THANK YOU

Mais conteúdo relacionado

Mais procurados

Environmental change and vector borne disease
Environmental change and vector borne diseaseEnvironmental change and vector borne disease
Environmental change and vector borne disease
Nik Ronaidi
 
vector borne diseases-ASK
vector borne diseases-ASKvector borne diseases-ASK
vector borne diseases-ASK
Arvind Kushwaha
 
Yellow fever presentation
Yellow fever presentationYellow fever presentation
Yellow fever presentation
Farman Safi
 

Mais procurados (20)

Neglected Tropical Diseases
Neglected Tropical DiseasesNeglected Tropical Diseases
Neglected Tropical Diseases
 
Amoebiasis
AmoebiasisAmoebiasis
Amoebiasis
 
Vector Borne Diseases.pptx
Vector Borne Diseases.pptxVector Borne Diseases.pptx
Vector Borne Diseases.pptx
 
Taeniasis
TaeniasisTaeniasis
Taeniasis
 
Zoonotic disease and pathogens slideshare
Zoonotic disease and pathogens slideshare Zoonotic disease and pathogens slideshare
Zoonotic disease and pathogens slideshare
 
Environmental change and vector borne disease
Environmental change and vector borne diseaseEnvironmental change and vector borne disease
Environmental change and vector borne disease
 
vector borne diseases-ASK
vector borne diseases-ASKvector borne diseases-ASK
vector borne diseases-ASK
 
One health in india
One health in indiaOne health in india
One health in india
 
Emerging and re emerging diseases (part 1 of 2)
Emerging and re emerging diseases (part 1 of 2)Emerging and re emerging diseases (part 1 of 2)
Emerging and re emerging diseases (part 1 of 2)
 
One health
One healthOne health
One health
 
Covid 19 - Epidemiology and Prevention
Covid 19 - Epidemiology and PreventionCovid 19 - Epidemiology and Prevention
Covid 19 - Epidemiology and Prevention
 
Yellow fever presentation
Yellow fever presentationYellow fever presentation
Yellow fever presentation
 
Arthopod vector borne diseases
Arthopod vector borne diseases Arthopod vector borne diseases
Arthopod vector borne diseases
 
Emerging and re emerging diseases
Emerging and re emerging diseasesEmerging and re emerging diseases
Emerging and re emerging diseases
 
Integrated vector management
Integrated vector managementIntegrated vector management
Integrated vector management
 
Using a One Health Approach to Control Zoonotic Diseases: Tuberculosis as an ...
Using a One Health Approach to Control Zoonotic Diseases: Tuberculosis as an ...Using a One Health Approach to Control Zoonotic Diseases: Tuberculosis as an ...
Using a One Health Approach to Control Zoonotic Diseases: Tuberculosis as an ...
 
Yellow fever
Yellow feverYellow fever
Yellow fever
 
Disease eradication
Disease eradicationDisease eradication
Disease eradication
 
Epidemiology of Malaria
Epidemiology of MalariaEpidemiology of Malaria
Epidemiology of Malaria
 
Yellow fever
Yellow feverYellow fever
Yellow fever
 

Destaque

Destaque (7)

Im.of.climate change disease
Im.of.climate change diseaseIm.of.climate change disease
Im.of.climate change disease
 
Climate change
Climate changeClimate change
Climate change
 
Schistosoma and Global Warming
Schistosoma and Global WarmingSchistosoma and Global Warming
Schistosoma and Global Warming
 
Swine flu
Swine fluSwine flu
Swine flu
 
Swine Flu
Swine Flu Swine Flu
Swine Flu
 
Schistosoma ppt dr somesh 2015 - Parasitology - Trematodes
Schistosoma ppt dr somesh 2015 - Parasitology - TrematodesSchistosoma ppt dr somesh 2015 - Parasitology - Trematodes
Schistosoma ppt dr somesh 2015 - Parasitology - Trematodes
 
Japanese Encephalitis
Japanese Encephalitis Japanese Encephalitis
Japanese Encephalitis
 

Semelhante a Who day – 2014 a global brief on vector borne diseases.

L2 epi studies on com dx in hk
L2 epi studies on com dx in hkL2 epi studies on com dx in hk
L2 epi studies on com dx in hk
Mum Mum
 
2 environmental health1 corr ected.ppt
2 environmental health1 corr                         ected.ppt2 environmental health1 corr                         ected.ppt
2 environmental health1 corr ected.ppt
ErmiyasBeletew
 
Eid presentation doc1
Eid presentation doc1Eid presentation doc1
Eid presentation doc1
S A Tabish
 

Semelhante a Who day – 2014 a global brief on vector borne diseases. (20)

World health day 7th april 2014
World health day  7th april 2014World health day  7th april 2014
World health day 7th april 2014
 
Pandemic management at district level
Pandemic management at district levelPandemic management at district level
Pandemic management at district level
 
Who theme final
Who theme finalWho theme final
Who theme final
 
Dengue
DengueDengue
Dengue
 
EPIDEMICS AND PREVENTION OF INFECTIOUS DISEASES.pptx
EPIDEMICS AND PREVENTION OF INFECTIOUS DISEASES.pptxEPIDEMICS AND PREVENTION OF INFECTIOUS DISEASES.pptx
EPIDEMICS AND PREVENTION OF INFECTIOUS DISEASES.pptx
 
One health and its importance; notes - Dr. ROBIN.pptx
One health and its importance; notes - Dr. ROBIN.pptxOne health and its importance; notes - Dr. ROBIN.pptx
One health and its importance; notes - Dr. ROBIN.pptx
 
Communicable Diseases Discussion Paper.docx
Communicable Diseases Discussion Paper.docxCommunicable Diseases Discussion Paper.docx
Communicable Diseases Discussion Paper.docx
 
*World Health Day 2014 Vector Borne Ds - Dr Priya*
*World Health Day 2014 Vector Borne Ds -  Dr Priya**World Health Day 2014 Vector Borne Ds -  Dr Priya*
*World Health Day 2014 Vector Borne Ds - Dr Priya*
 
Infectious disease
Infectious diseaseInfectious disease
Infectious disease
 
L2 epi studies on com dx in hk
L2 epi studies on com dx in hkL2 epi studies on com dx in hk
L2 epi studies on com dx in hk
 
World health day theme for 2014- vector borne disease
World health day theme for 2014- vector borne diseaseWorld health day theme for 2014- vector borne disease
World health day theme for 2014- vector borne disease
 
Control and Eradication of Animal diseases.pptx
Control and Eradication of Animal diseases.pptxControl and Eradication of Animal diseases.pptx
Control and Eradication of Animal diseases.pptx
 
2 environmental health1 corr ected.ppt
2 environmental health1 corr                         ected.ppt2 environmental health1 corr                         ected.ppt
2 environmental health1 corr ected.ppt
 
Eid presentation doc1
Eid presentation doc1Eid presentation doc1
Eid presentation doc1
 
CGIAR One Health Initiative and ICT4Health
CGIAR One Health Initiative and ICT4HealthCGIAR One Health Initiative and ICT4Health
CGIAR One Health Initiative and ICT4Health
 
Nutrition and parasitic diseases 2020
Nutrition and parasitic diseases 2020Nutrition and parasitic diseases 2020
Nutrition and parasitic diseases 2020
 
Dengue.pptx
Dengue.pptxDengue.pptx
Dengue.pptx
 
ONE HEALTH.pptx
ONE HEALTH.pptxONE HEALTH.pptx
ONE HEALTH.pptx
 
World health day 2014
World health day 2014World health day 2014
World health day 2014
 
Self hygene in epidemic area
Self hygene in epidemic areaSelf hygene in epidemic area
Self hygene in epidemic area
 

Mais de Dr. Dharmendra Gahwai

Social and economic implications of noncommunicable diseases in india
Social and economic implications of noncommunicable diseases in indiaSocial and economic implications of noncommunicable diseases in india
Social and economic implications of noncommunicable diseases in india
Dr. Dharmendra Gahwai
 
Prevention of rotavirus in india is vaccination the only strategy.
Prevention of rotavirus in india  is vaccination the only strategy.Prevention of rotavirus in india  is vaccination the only strategy.
Prevention of rotavirus in india is vaccination the only strategy.
Dr. Dharmendra Gahwai
 
Population stabilization in india 13.02.2014
Population stabilization in india 13.02.2014Population stabilization in india 13.02.2014
Population stabilization in india 13.02.2014
Dr. Dharmendra Gahwai
 
Medical ethics and public health (2)
Medical ethics and public health (2)Medical ethics and public health (2)
Medical ethics and public health (2)
Dr. Dharmendra Gahwai
 
Human resource management in public health ppt
Human resource management in public health pptHuman resource management in public health ppt
Human resource management in public health ppt
Dr. Dharmendra Gahwai
 
Burden of nc ds, policies and programme for
Burden of nc ds, policies and programme forBurden of nc ds, policies and programme for
Burden of nc ds, policies and programme for
Dr. Dharmendra Gahwai
 

Mais de Dr. Dharmendra Gahwai (20)

COVID SITUATION IN INDIA 09.01.2022
COVID SITUATION IN INDIA 09.01.2022COVID SITUATION IN INDIA 09.01.2022
COVID SITUATION IN INDIA 09.01.2022
 
Zika virus disease
Zika virus diseaseZika virus disease
Zika virus disease
 
IDSP- Dr. Dharmendra Gahwai
IDSP- Dr. Dharmendra GahwaiIDSP- Dr. Dharmendra Gahwai
IDSP- Dr. Dharmendra Gahwai
 
Operational research in Public Health in India
Operational research in Public Health in IndiaOperational research in Public Health in India
Operational research in Public Health in India
 
International health
International healthInternational health
International health
 
Role of Medical Audit
 Role of Medical Audit Role of Medical Audit
Role of Medical Audit
 
Basic concepts and principles of epidemiology
Basic concepts and  principles of epidemiologyBasic concepts and  principles of epidemiology
Basic concepts and principles of epidemiology
 
Basic concepts and principles of epidemiology
Basic concepts and  principles of epidemiologyBasic concepts and  principles of epidemiology
Basic concepts and principles of epidemiology
 
Social and economic implications of noncommunicable diseases in india
Social and economic implications of noncommunicable diseases in indiaSocial and economic implications of noncommunicable diseases in india
Social and economic implications of noncommunicable diseases in india
 
Role of medical audit
Role of medical auditRole of medical audit
Role of medical audit
 
Prevention of rotavirus in india is vaccination the only strategy.
Prevention of rotavirus in india  is vaccination the only strategy.Prevention of rotavirus in india  is vaccination the only strategy.
Prevention of rotavirus in india is vaccination the only strategy.
 
Population stabilization in india 13.02.2014
Population stabilization in india 13.02.2014Population stabilization in india 13.02.2014
Population stabilization in india 13.02.2014
 
Operational reseach
Operational reseachOperational reseach
Operational reseach
 
National response to hiv
National response to hivNational response to hiv
National response to hiv
 
Medical ethics and public health (2)
Medical ethics and public health (2)Medical ethics and public health (2)
Medical ethics and public health (2)
 
Management of an epidemic
Management of an epidemicManagement of an epidemic
Management of an epidemic
 
Human resource management in public health ppt
Human resource management in public health pptHuman resource management in public health ppt
Human resource management in public health ppt
 
Hiv aids in india
Hiv  aids in indiaHiv  aids in india
Hiv aids in india
 
Conflict management
Conflict managementConflict management
Conflict management
 
Burden of nc ds, policies and programme for
Burden of nc ds, policies and programme forBurden of nc ds, policies and programme for
Burden of nc ds, policies and programme for
 

Último

Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
adilkhan87451
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
Sheetaleventcompany
 
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
adilkhan87451
 
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
Call Girls In Delhi Whatsup 9873940964 Enjoy Unlimited Pleasure
 

Último (20)

Call Girls Coimbatore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 8250077686 Top Class Call Girl Service Available
 
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
 
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
 
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 8250077686 Top Class Call Girl Service Available
 
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...
Andheri East ) Call Girls in Mumbai Phone No 9004268417 Elite Escort Service ...
 
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
 
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
 
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
 
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
 
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service Avai...
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
 
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
 
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
 
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
 
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...
Andheri East ^ (Genuine) Escort Service Mumbai ₹7.5k Pick Up & Drop With Cash...
 
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
 
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
 

Who day – 2014 a global brief on vector borne diseases.

  • 1. World Health Day 2014 A Global brief on Vector-borne diseases “Small bite – Big threat” Guided by Dr. Y.D. Badgaiyan Prof. & Head Deptt. Of Community Medicine CIMS, Bilaspur (C.G.)
  • 2. INTRODUCTION • With this World Health Day, WHO is drawing attention to a group of diseases that are spread by insects and other vectors, the heavy health and economic burdens they impose, and what needs to be done to reduce these burdens. • Vector-borne diseases cause more than one million deaths each year. • But death counts, though alarming, vastly underestimate the human misery and hardship caused by these diseases, as many people who survive infections are left permanently debilitated, disfigured or blind.
  • 3. (More than half the world at risk) • Vector-borne diseases are illnesses caused by pathogens and parasites in human populations. • One sixth of the illness and disability suffered worldwide is due to vector-borne diseases, • with more than half the world’s population currently estimated to be at risk of these diseases.
  • 4. • Every year more than one billion people are infected and more than one million people die from vector-borne diseases including - - malaria, - dengue, - schistosomiasis, - leishmaniasis, - Chagas disease, - yellow fever, - lymphatic filariasis and - onchocerciasis.
  • 5. • The poorest segments of society and least-developed countries are most affected. • These diseases affect urban, peri-urban and rural communities but thrive predominantly among communities with poor living conditions- particularly lack of access to adequate housing, safe drinking water and sanitation.
  • 6. • Malnourished people and those with weakened immunity are especially vulnerable. • These diseases also exacerbate poverty. • Illness and disability prevent people from working and supporting themselves and their family, causing further hardship and impeding economic development.
  • 7. • Dengue, for example, imposes a substantial economic burden on families and governments, both in medical costs and in working days lost due to illness. • According to studies from eight countries, an average dengue episode represents 14.8 lost days for ambulatory patients at an average cost of US$ 514 and 18.9 days for non-fatal hospitalized patients at an average cost of US$ 1491.
  • 8. • Vector-borne diseases therefore play a central role in poverty reduction and economic development. • An economic model for malaria suggests that countries with intensive malaria have income levels of only one third of those that do not have malaria.
  • 9.
  • 11. • Back in the 1940s, the discovery of synthetic insecticides was a major breakthrough in the control of vector-borne diseases. • Large-scale indoor spraying programmes during the 1950s and 1960s succeeded in bringing many of the major vector-borne diseases under control.
  • 12. • By the late 1960s, many of these diseases – with the exception of malaria in Africa – were no longer considered to be of primary public health importance. • This triggered a major setback. • Control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units.
  • 13. • Within the past two decades, many important vector- borne diseases have re-emerged or spread to new parts of the world. • Traditionally regarded as a problem for countries in tropical settings, vector-borne diseases pose an increasingly wider threat to global public health, both in terms of the number of people affected and their geographical spread.
  • 14. • Their potential to spread globally, changes in climate, ecology, land-use patterns, and the rapid and increased movement of people and goods is threatening more than half the world’s population. • Environmental changes are causing an increase in the number and spread of many vectors worldwide.
  • 15. • Dengue in particular is emerging as a serious public health concern. • In 2012, it ranked as the most important mosquito-borne viral disease with epidemic potential in the world. • There has been a 30-fold increase in cases during the past 50 years, and its human and economic costs are staggering.
  • 16.
  • 17. • The primary vector for dengue, the Aedes aegypti mosquito, is now found in more than 20 European countries. • This same mosquito species recently carried chikungunya to the Caribbean islands; the first cases of this debilitating disease seen in the Region of the Americas.
  • 18. • Alongside this alarming spread of vectors, the serious concern is , of increasing insecticide resistance. • Today most species of vectors are showing resistance to many classes of insecticides. • If existing insecticides lose their effectiveness this could erase all the gains made against malaria and other vector-borne diseases.
  • 19. • And at the same time, the world is facing an extreme shortage of entomologists and vector-control experts. • Very few African countries have entomology programmes at undergraduate university level and some countries have only a handful of expert entomologists.
  • 21. Renewed momentum • The world can no longer afford to be complacent. • If we do not take action now, the implications are extremely serious for the entire globe. • For many vector-borne diseases, there are no vaccines, and drug resistance is an increasing threat. • Vector control plays a vital role and is often the only way to prevent disease outbreaks.
  • 22. • Many existing interventions, such as insecticide- treated bed-nets and indoor spraying, are simple and proven measures. • These vector-control tools can be particularly effective when used in combination with interventions such as mass drug administration involving large-scale treatment of affected communities.
  • 23. • Vector management programmes can also combine interventions and resources to target more than one disease – a component of an approach called integrated vector management. • In many cases, increased funds and political commitment are needed to scale-up access to existing vector-control tools, as well as medicines and diagnostic tools.
  • 24. • At the same time, more investment in research is urgently needed to find improved solutions for fighting vectors and the diseases they transmit. • Combating these diseases calls for renewed momentum on a global scale; from global public health agencies, between countries and within regions, across government sectors, at all levels of government, and within communities and households.
  • 26. • The time has come to utilize the full potential for vector control in the large-scale reduction of vector-borne diseases. • The need is most acute for dengue fever, chikungunya, leishmaniasis and Chagas disease for which there is no straightforward method of treatment nor an effective vaccine. • A number of interventions to control and prevent vector- borne diseases exist.
  • 27. • Some will be more appropriate than others, depending on factors such as:- - local ecology and behaviour of the vector species, including its habitats, flight range, feeding preferences and seasons. - local epidemiology of the disease. - human activity such as irrigation and animal farming. - socioeconomic conditions of affected communities . - cultural context. - feasibility of applying interventions in specific settings acceptable to the population. - environmental change.
  • 28. Long-lasting insecticidal nets • Insecticide-treated bed-nets are one of the most efficient and cost-effective ways to protect against mosquito-borne diseases, particularly malaria. • WHO therefore recommends that everyone who is at risk of malaria, sleeps under a long lasting insecticidal net every night.
  • 29. • Between 2004 and 2013, international donors funded over 700 million bednets to protect families against malaria in sub-Saharan Africa. • Nets should be checked regularly for holes and replaced every 2–3 years.
  • 30. Indoor residual spraying • Indoor residual spraying with insecticides is the most widely used method to control mosquitoes. • It is also an effective way to reduce sand-flies and bugs inside homes. • At least 80% of houses in a targeted area need to be sprayed for maximum impact.
  • 31. • Indoor spraying is effective for 3–6 months, depending on the insecticide used and the type of surface on which it is sprayed. • The insecticide DDT can be effective for 6–12 months and continues to be used in several African countries.
  • 32. Outdoor spraying • Spraying outer surfaces of domestic animal shelters, outdoor latrines and other damp places can help control sandflies. • Aerial spraying of larvae breeding sites in fast- flowing rivers has been successful in helping to control blackflies which transmit onchocerciasis.
  • 33. • Aerial spraying has also been used to control mosquitoes during epidemics of dengue and yellow fever. • If used early in an epidemic, emergency space spraying may reduce the intensity of virus transmission and provide time for the introduction of longer-term measures.
  • 34. • While tick control can be difficult as animal carriers are numerous and widespread, acaricides (chemicals that kill ticks) can be used successfully in well- managed livestock production facilities when required. • Animals at risk of carrying Crimean-Congo haemorrhagic fever should be treated with pesticides two weeks prior to slaughter.
  • 35. Addition of chemicals to water • Addition of insecticides to drinking water storage containers can be effective at reducing mosquito larvae where there is significant risk of diseases such as dengue and chikungunya fever. • However, extreme care must be taken when treating drinking water to avoid dosages that are toxic to humans. • Some countries have successfully used chemicals to control snail populations in irrigation canals and small streams.
  • 36. Other insect repellents • Insect repellents in the form of coils, vaporizing mats, aerosols and insecticide-impregnated curtains can also be effective in deterring and killing mosquitoes and sandflies in and around houses. • Coils usually have a synthetic pyrethroid as the active ingredient. • One coil is effective through the night in an average-sized bedroom, unless the room is particularly draughty, which will cause the insecticide to dilute and the coil to burn faster.
  • 38. Reduce breeding habitats • Water-storage containers can be designed to prevent access by mosquitoes for laying their eggs. • Domestic water storage containers should be emptied and cleaned regularly.
  • 39. Biological control • Biological control is a method of controlling mosquitoes and other vectors through the introduction of parasites, predators or other living organisms. • Larvivorous fish and copepods (small crustaceans) are effective in controlling the larvae of Aedes mosquito. • In many countries, small ornamental fish are introduced in water storage tanks to feed on the larvae.
  • 40. Genetic control • Genetic control strategies aim either to suppress target populations or to introduce a harm-reducing trait. • Several methods are under development and the first field trials are showing promising progress.
  • 41. Waste management • Empty tins, plastic bottles, unused drums, coconut shells and used car tyres can serve as important breeding sites for mosquitoes. • Discarded materials should be collected, recycled or disposed of carefully in waste transformation facilities (e.g. incinerators, energy-production plants, or lime kilns fitted with emission control devices).
  • 42. Housing modification • Human settlements should be located away from sandfly habitats. • They should be fitted with door and window screens to help keep insects out.
  • 43. • Efforts need to be made to keep plaster walls and concrete floors in good condition, with cracks and other possible entry points sealed up against all vectors, particularly sandflies and triatomine bugs. • Air conditioning and fans keep mosquitoes away effectively.
  • 44. Personal protection • For individuals, personal protection against insect bites represents the first line of defence against many vector-borne diseases. • Insect repellents are substances applied to exposed skin or clothing to protect against mosquito, sandfly and tick bites. • The active ingredient in these repellents is most commonly a compound called DEET (N,NDiethyl- meta-toluamide) or two other recently approved compounds IR3535 and KBR3023.
  • 45. • Repellent should be applied to the neck, wrists and ankles, avoiding contact with eyes, nose and mouth. • When applied to skin, the repellent effect may last from 15 minutes to 10 hours, depending on climate, the formulation of the product and its effect on specific vector species. • The effect lasts longer when applied on clothes.
  • 46. Medication • Travellers are encouraged to consult a medical professional if possible 4–6 weeks before departure to discuss how they can protect themselves against vector-borne diseases during their travels.
  • 47. MEETING CHALLENGES IN THE CONTROL OF VECTOR-BORNE DISEASES
  • 48. Emerging insecticide resistance • Insecticide resistance is a major threat to existing vector control methods. • This is largely due to heavy reliance on a single class of insecticides, the pyrethroids. • Pyrethroids are not only highly effective, but are also the least expensive of the four classes of insecticides available for public health vector control.
  • 49. • In some areas, however, resistance to all four classes of insecticides (temephos, methoprene, pyriproxyfen and novaluron) has been detected. • Long-lasting insecticidal nets and indoor residual spraying remain highly effective tools for malaria control. • However, urgent action is required to prevent further development of resistance.
  • 50. Lack of expertise in vector control • The expertise of entomologists is critical to guiding vector control; however, the world is facing an extreme shortage of entomologists. • Very few African countries have entomology programmes at undergraduate university level and some countries have only a handful of expert entomologists.
  • 51. Surveillance • Surveillance of vectors and their diseases is key to measuring the effectiveness of interventions. • In many high-burden settings, however, there is almost no data on these diseases or their vectors. • Surveillance of vector-borne diseases should be part of the national health information system, with data on disease cases and deaths collected routinely.
  • 52. Sanitation and access to safe drinking water • Poor sanitation and lack of access to clean drinking water allows many vectors to thrive. • WHO recommends piping water to households rather than drawing water from wells, communal standpipes, rooftop catchments and other water storage systems.
  • 53. Pesticide safety • Pesticide poisoning is a serious public health problem that disproportionately affects infants and children – partly because of their smaller size; differing metabolism; and rapidly growing and developing organs. • For this reason, many communities will be reluctant to add chemicals to domestic water, particularly drinking water. • And if they are used, it is vital to ensure that pesticides are used at safe levels.
  • 54. Environmental change • Changing climatic conditions, such as rainfall patterns, temperature and humidity, affect the number and survival rate of mosquitoes and some other vectors. • The ambient temperature determines insects’ reproduction rate, biting behaviour and survival. • Moreover, the incubation period of pathogens inside vectors tends to be shorter at warmer temperatures.
  • 55. • Distribution of mosquitoes and other vectors may therefore expand with increasing temperatures. • Climate information is important therefore both to surveillance and forecasting trends of vector borne diseases such as malaria.
  • 57. • Vector-borne diseases are one of the greatest contributors to human mortality and morbidity in tropical settings and beyond. • Although significant progress is currently being made in combating some diseases such as malaria, lymphatic filariasis and Chagas disease, other diseases such as dengue continue to spread and increase their number of cases at an alarming pace.
  • 58. • The silent expansion of mosquito vectors and their ability to develop resistance to insecticides threatens the gains made through vector control and calls for concerted planning and collaboration across sectors including health, agriculture and the environment. • In areas where vector-borne diseases overlap, integrated management of insecticide resistance is essential, supported by adequate capacity of trained personnel and resources.
  • 59. • Vector control programmes need to adapt to match the changing epidemiological patterns of new emerging threats. • This will require increased research to develop a sustained approach to ecological and environmental changes in the years ahead.