SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
HELICOPTER PERFORMANCE STABILITY AND CONTROL
COURSE CODE: AE4314
Name: DEEPAK PAUL TIRKEY
ASSIGNMENT NUMBER 04 Student number: 4590929
Question 1. Flapping blade angle variation for the advancing blade for one complete revolution
Answer : My chosen helicopter is MBB Bo105
Locks inertia number 𝛾 =
𝜌𝑎𝑐𝑅4
𝐼 𝛽
= 5.07
where ρ = 1.225
𝑘𝑔
𝑚3 [sea level condition] ; a = lift curve slope = 6.113 /rad ; c = chord = 0.27 m ;
R = radius = 4.91 m ; 𝐼𝛽= 231.7
𝑘𝑔
𝑚2 [ data source : Helicopter Flight Dynamics –Padfield]
Induced Velocity in hover 𝜈𝑖 = √
𝑊
2𝜌𝜋𝑅2 = 10.8 m/sec ; where W = 2200 x 9.81 = 21582 N
Induced inflow ratio 𝜆𝑖 =
𝜈 𝑖
Ω𝑅
=
10.8
218
= 0.05
Flapping solution in hover β (t) = 𝜷 𝒉𝒐𝒎(t) + 𝜷 𝒑𝒂𝒓𝒕(t)
Particular solution 𝛽 𝑝𝑎𝑟𝑡(t) =
𝛾
8
( θ -
4
3
𝜆𝑖 ) =
5.07
8
(8 -
4
3
0.05) = 5.03 degree; where θ = 8 degree(given)
[𝛽 𝑝𝑎𝑟𝑡(t) = 5.03 degree is constant coning angle ]
Homogenous solution 𝛽ℎ𝑜𝑚(t) = 𝛽0 𝑒
−𝛾Ω𝑡
16 [cos(Ω√1 − (
𝛾
16
)
2
. 𝑡) +
𝛾
16
√1−(
𝛾
16
)
2
sin(Ω√1 − (
𝛾
16
)
2
. 𝑡)]
MS Excel was used to calculate and plot β (t) = 𝛽ℎ𝑜𝑚(t) + 𝛽 𝑝𝑎𝑟𝑡(t) ,
were azimuth angle ψ =Ω t , 𝛽0 = 𝛽 𝑝𝑎𝑟𝑡 𝑤𝑎𝑠 𝑐ℎ𝑜𝑠𝑒𝑛
Fig. 01 Flapping blade angle β (ψ) = βhom(ψ) + βpart(ψ) variation for one revolution
0
2
4
6
8
10
12
0 5 10 15 20 25 30
beta(degree)
PSI ( x 15 degree)
Beta_hom +
Beta_parti
coning angle
(Beta_parti)
HELICOPTER PERFORMANCE STABILITY AND CONTROL
COURSE CODE: AE4314
Name: DEEPAK PAUL TIRKEY
ASSIGNMENT NUMBER 04 Student number: 4590929
Question 2. Angle of attack variation for the advancing blade for one complete revolution at different radii
positions on the blade varying from 0 to R
Answer : Angle of attack of blade element located at a distance r from the rotation axis
𝜶 𝒓 = θ -
𝝂 𝒊+𝜷𝒓̇
Ω𝒓
Now to calculate 𝛽̇ from the relation 𝛽 (𝑡̇ ) = 𝛽ℎ𝑜𝑚
̇ (t) + 𝛽 𝑝𝑎𝑟𝑡
̇ (t) = 𝛽ℎ𝑜𝑚
̇ (t) [as 𝛽 𝑝𝑎𝑟𝑡(t) is a constant term]
Writing 𝛽 (𝑡̇ ) = 𝛽0[A+B]
Were A = (
−𝛾Ω
16
) 𝑒
−𝛾Ω𝑡
16 [cos (Ω√1 − (
𝛾
16
)
2
. 𝑡) +
𝛾
16
√1−(
𝛾
16
)
2
sin (Ω√1 − (
𝛾
16
)
2
. 𝑡)]
And B = 𝑒
−𝛾Ω𝑡
16 [– (Ω√1 − (
𝛾
16
)
2
)sin (Ω√1 − (
𝛾
16
)
2
. 𝑡) +
𝛾Ω
16
cos (Ω√1 − (
𝛾
16
)
2
. 𝑡)]
Simplifying [A+B] , cosine terms from both A and B cancel each other
[A+B] = (−)𝑒
−𝛾Ω𝑡
16 sin (Ω√1 − (
𝛾
16
)
2
. 𝑡) [
(
𝛾
16
)
2
Ω
√1−(
𝛾
16
)
2
+ Ω√1 − (
𝛾
16
)
2
]
Simplifying the [ ] term further
[A+B] = (−)𝑒
−𝛾Ω𝑡
16 sin (Ω√1 − (
𝛾
16
)
2
. 𝑡) [
Ω
√1−(
𝛾
16
)
2
]
or 𝛃 (𝐭̇ ) =
(−)𝛃 𝟎Ω 𝐞
−𝛄Ω𝐭
𝟏𝟔
√ 𝟏−(
𝛄
𝟏𝟔
)
𝟐
𝐬𝐢𝐧 (Ω√ 𝟏 − (
𝛄
𝟏𝟔
)
𝟐
. 𝐭)
using the β (ṫ ) value , 𝛼 𝑟 at each radial location was calculated using MS EXCEL and are plotted below.
Fig. 0.2 Angle of attack variation with radial and azimuth
5
5.5
6
6.5
7
7.5
8
0 10 20 30 40 50
Angleofattack(degree)
PSI (x 15)
r 0.1 r 0.2
r 0.3 r 0.4
r 0.5 r 0.6
r 0.7 r 0.8
r 0.9 r 1
HELICOPTER PERFORMANCE STABILITY AND CONTROL
COURSE CODE: AE4314
Name: DEEPAK PAUL TIRKEY
ASSIGNMENT NUMBER 04 Student number: 4590929
Question 3. Coning angle , longitudinal and lateral disc tilt angles.
Answer : Coning angle a0 = βpart(t) = 5.03 degree
Longitudinal disc tilt angle a1 = 0 degree
Lateral disc tilt angle b1 = 0 degree
Assume that the helicopter is fixed to the ground but has a body pitch rate q and roll rate p.
Question 4. Advancing blade angular velocities
Blade angular velocities: i Ω sinβ + q sinψ cosβ – p cosψ cosβ
j q cosψ + p sinψ - 𝛽̇
k Ω cosβ + p cosψ sinβ – q sinψ sinβ
Question 5. Flapping equation when the helicopter is having body rates p and q and is fixed to the ground
Kinetic Energy:
T =
1
2
𝐼 [(𝑞 𝑐𝑜𝑠𝜓 + 𝑝 𝑠𝑖𝑛𝜓 − 𝛽̇)
2
+ (Ω 𝑐𝑜𝑠𝛽 + 𝑝 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝛽 − 𝑞 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝛽)2
] eq. 01
[Note: neglecting the i axis contribution of blade angular velocities towards Kinetic Energy calculation]
Writing the above eq. 01 for simplicity T =
1
2
𝐼[𝐴 + 𝐵]
Lagrange equation of motion:
𝑑
𝑑𝑡
(
𝜕𝑇
𝜕𝛽̇ ) −
𝜕𝑇
𝜕𝛽
+
𝜕𝑉
𝜕𝛽
= 𝑄 𝛽 were 𝑄 𝛽 is the aerodynamic moment about the flapping hinge 𝑀 𝑎(𝑡)
Evaluating the first term Lagrange EoM
Now
𝜕𝑇
𝜕𝛽̇ =
1
2
𝐼 [2𝛽̇-2(𝑞 𝑐𝑜𝑠Ω𝑡 + 𝑝 𝑠𝑖𝑛Ω𝑡)] and
𝑑
𝑑𝑡
(
𝜕𝑇
𝜕𝛽̇ ) = 𝐼[𝛽̈ + 𝑞Ω 𝑠𝑖𝑛𝜓 − 𝑝Ω 𝑐𝑜𝑠𝜓] with ψ = Ωt
Now expand the B term of eq. 01
B = [(Ω 𝑐𝑜𝑠𝛽)2
+ (𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )2
𝑠𝑖𝑛2
𝛽 + 2Ω 𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛽(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )]
= [(Ω 𝑐𝑜𝑠𝛽)2
+ (𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )2
𝑠𝑖𝑛2
𝛽 + Ω 𝑠𝑖𝑛2𝛽(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )]
= [(Ω 𝑐𝑜𝑠𝛽)2
+ 0 + Ω 𝑠𝑖𝑛2𝛽(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )]
Middle term became 0 as 𝛽 is small and neglecting 𝑝2
, 𝑞2
, 𝑝. 𝑞 terms
Now evaluating the second term of Lagrange EoM
𝜕𝑇
𝜕𝛽
=
1
2
𝐼[−2Ω2
𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛽 + 2Ω𝑐𝑜𝑠2𝛽(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 ) ]
= 𝐼[−Ω2
𝛽 + Ω(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 ) ] assuming 𝛽 is small
Third term of the Lagrange EoM is zero
HELICOPTER PERFORMANCE STABILITY AND CONTROL
COURSE CODE: AE4314
Name: DEEPAK PAUL TIRKEY
ASSIGNMENT NUMBER 04 Student number: 4590929
Now evaluating the complete Lagrange EoM:
𝐼𝛽̈ + 𝐼𝑞Ω 𝑠𝑖𝑛𝜓 − 𝐼𝑝Ω 𝑐𝑜𝑠𝜓 + 𝐼Ω2
𝛽 − 𝐼Ω𝑝 𝑐𝑜𝑠𝜓 + 𝐼Ω𝑞 𝑠𝑖𝑛𝜓 = 𝑀 𝑎(𝑡)
Retaining the 𝛽 terms on LHS and dividing throughout by 𝐼
𝜷̈ + Ω 𝟐
𝜷 = −𝟐Ω𝒒 𝒔𝒊𝒏𝝍 + 𝟐Ω𝒑 𝒄𝒐𝒔𝝍 +
𝑴 𝒂(𝒕)
𝑰
eq. 02
Question 6. Disc tilt angles a0 , a1 and b1
Angle of attack of a blade element
𝛼 = 𝜃 −
𝜈 𝑖+𝛽̇ 𝑟−𝑞 𝑟 𝑐𝑜𝑠𝜓−𝑝𝑟𝑠𝑖𝑛𝜓
Ω𝑟
Evaluate aerodynamic moment about flapping hinge:
𝑴 𝒂
𝑰
=
1
𝐼
∫ 𝑎 (𝜃 −
𝜈 𝑖+𝛽̇ 𝑟−𝑞 𝑟 𝑐𝑜𝑠𝜓−𝑝𝑟𝑠𝑖𝑛𝜓
Ω𝑟
)
1
2
𝜌(Ω𝑟)2
𝑐𝑟 𝑑𝑟
𝑅
0
=
𝜌𝑎𝑐
𝐼
.
Ω2
2
∫ (𝜃0 −
𝜈 𝑖
Ω𝑅𝑥
−
𝛽̇
Ω
+
𝑞 𝑐𝑜𝑠𝜓
Ω
+
𝑝𝑠𝑖𝑛𝜓
Ω
) 𝑥3
𝑅4
𝑑𝑥
1
0
taking 𝑥 =
𝑟
𝑅
; 𝑟 = 𝑥𝑅 ; 𝑑𝑟 = 𝑅 𝑑𝑥
=
𝜌𝑎𝑐𝑅4
𝐼
.
Ω2
2
∫ (𝜃0 𝑥3
− 𝜆𝑖 𝑥2
−
𝛽̇
Ω
𝑥3
+
𝑞 𝑐𝑜𝑠𝜓
Ω
𝑥3
+
𝑝𝑠𝑖𝑛𝜓
Ω
𝑥3
) 𝑑𝑥
1
0
= 𝛾.
Ω2
2
[
𝜃0
4
−
𝜆 𝑖
3
−
𝛽̇
4Ω
+
𝑞 𝑐𝑜𝑠𝜓
4Ω
+
𝑝𝑠𝑖𝑛𝜓
4Ω
]
𝑴 𝒂
𝑰
=
𝛾Ω2
8
(𝜃0 −
4𝜆 𝑖
3
) −
𝛾𝛽 Ω̇
8
+
𝛾 𝑞Ω 𝑐𝑜𝑠𝜓
8
+
𝛾 𝑝Ω 𝑠𝑖𝑛𝜓
8
eq. 03
Now rewriting eq. 02 using eq. 03
𝛽̈ + Ω2
𝛽 = −2Ω𝑞 𝑠𝑖𝑛𝜓 + 2Ω𝑝 𝑐𝑜𝑠𝜓 +
𝛾Ω2
8
(𝜃0 −
4𝜆 𝑖
3
) −
𝛾𝛽 Ω̇
8
+
𝛾 𝑞Ω 𝑐𝑜𝑠𝜓
8
+
𝛾 𝑝Ω 𝑠𝑖𝑛𝜓
8
𝛽̈ +
𝛾𝛽 Ω̇
8
+ Ω2
𝛽 =
𝛾Ω2
8
(𝜃0 −
4𝜆 𝑖
3
) +
𝛾 𝑞Ω 𝑐𝑜𝑠𝜓
8
+
𝛾 𝑝Ω 𝑠𝑖𝑛𝜓
8
− 2Ω𝑞 𝑠𝑖𝑛𝜓 + 2Ω𝑝 𝑐𝑜𝑠𝜓
𝜷̈ +
𝜸Ω
𝟖
𝜷̇ + Ω 𝟐
𝜷 =
𝜸Ω 𝟐
𝟖
(𝜽 𝟎 −
𝟒𝝀 𝒊
𝟑
) + Ω (
𝜸 𝒒
𝟖
+ 𝟐𝒑) 𝒄𝒐𝒔Ω𝒕 + Ω (
𝜸 𝒑
𝟖
− 𝟐𝒒 ) 𝒔𝒊𝒏Ω𝒕 eq. 04 (using 𝜓 = Ω𝑡)
Assuming solution for the above eq. 04 of the form
𝛽 = 𝑎0 − 𝑎1 𝑐𝑜𝑠Ω𝑡 − 𝑏1 𝑠𝑖𝑛Ω𝑡
𝛽̇ = 𝑎1Ω 𝑠𝑖𝑛Ω𝑡 − 𝑏1Ω 𝑐𝑜𝑠Ω𝑡
𝛽̈ = 𝑎1Ω2
𝑐𝑜𝑠Ω𝑡 + 𝑏1Ω2
𝑠𝑖𝑛Ω𝑡
Now substituting the values of 𝛽, 𝛽̇, 𝛽̈ on the LHS of eq. 04
LHS of eq.04
≡ 𝑎1Ω2
𝑐𝑜𝑠Ω𝑡 + 𝑏1Ω2
𝑠𝑖𝑛Ω𝑡 +
𝜸
𝟖
𝑎1Ω2
𝑠𝑖𝑛Ω𝑡 −
𝜸
𝟖
𝑏1Ω2
𝑐𝑜𝑠Ω𝑡 + Ω2
𝑎0 − 𝑎1Ω2
𝑐𝑜𝑠Ω𝑡 − 𝑏1Ω2
𝑠𝑖𝑛Ω𝑡
≡ Ω2
𝑎0 + (𝑎1Ω2
−
𝜸
𝟖
𝑏1Ω2
− 𝑎1Ω2
) 𝑐𝑜𝑠Ω𝑡 + (𝑏1Ω2
+
𝜸
𝟖
𝑎1Ω2
− 𝑏1Ω2
) 𝑠𝑖𝑛Ω𝑡
≡ Ω2
𝑎0 −
𝜸
𝟖
𝑏1Ω2
𝑐𝑜𝑠Ω𝑡 +
𝜸
𝟖
𝑎1Ω2
𝑠𝑖𝑛Ω𝑡
Equating the above expression with the RHS of eq. 04 and comparing constant, sine and cosine terms
Constant term
Ω2
𝑎0 =
𝛾Ω2
8
(𝜃0 −
4𝜆 𝑖
3
) or 𝒂 𝟎 =
𝜸
𝟖
(𝜽 𝟎 −
𝟒𝝀 𝒊
𝟑
)
HELICOPTER PERFORMANCE STABILITY AND CONTROL
COURSE CODE: AE4314
Name: DEEPAK PAUL TIRKEY
ASSIGNMENT NUMBER 04 Student number: 4590929
Sine term
𝛾
8
𝑎1Ω2
= Ω (
𝛾 𝑝
8
− 2𝑞 ) or 𝒂 𝟏 = (
𝒑
Ω
−
𝟏𝟔𝒒
𝜸Ω
)
Cosine term
−
𝛾
8
𝑏1Ω2
= Ω (
𝛾 𝑞
8
+ 2𝑝) or 𝒃 𝟏 = (
− 𝒒
Ω
−
𝟏𝟔𝒑
𝜸Ω
)
Assume that the helicopter is in forward flight and has body rate q
Question 7. Perform analytically the integral of blade aerodynamic moment and compare with given
expression
Aerodynamic moment is given as:
𝑀 𝑎 = ∫ 𝐶𝑙𝛼 𝛼
1
2
𝜌(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)2𝑅
0
𝑐 𝑑𝑟. 𝑟 Where 𝛼 = 𝜃 −
𝑉 𝑠𝑖𝑛𝛼 𝑐+𝜈 𝑖+𝛽̇ 𝑟−𝑞𝑟 𝑐𝑜𝑠𝜓+𝛽𝑉 𝑐𝑜𝑠𝛼 𝑐 𝑐𝑜𝑠𝜓
Ω𝑟+𝑉 𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓
Performing integration with the 𝜽 part
𝑀 𝑎1 = 𝜌𝐶𝑙𝛼 𝑐
1
2
∫ 𝜃(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)2𝑅
0
𝑑𝑟. 𝑟
= 𝜌𝐶𝑙𝛼 𝑐
1
2
𝜃 ∫ (Ω2
𝑟3
+ 𝑉2
𝑟 cos 𝛼 𝑐
2
𝑠𝑖𝑛𝜓2
+ 2Ω𝑉 𝑟2
𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)
𝑅
0
𝑑𝑟
= 𝜌𝐶𝑙𝛼 𝑐
1
2
𝜃 [
Ω2 𝑅4
4
+
Ω2 𝑅4
2
(
𝑉𝑐𝑜𝑠𝛼 𝑐
Ω𝑅
)
2
𝑠𝑖𝑛𝜓2
+
2 Ω2 𝑅4
3
(
𝑉𝑐𝑜𝑠𝛼 𝑐
Ω𝑅
) 𝑠𝑖𝑛𝜓] Where
𝑉𝑐𝑜𝑠𝛼 𝑐
Ω𝑅
= 𝜇
= 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒
Ω 𝟐 𝟏
𝟐
𝜽 [
𝟏
𝟒
+
𝟏
𝟐
𝝁 𝟐
𝒔𝒊𝒏𝝍 𝟐
+
𝟐
𝟑
𝝁 𝒔𝒊𝒏𝝍]
Performing integration with
𝑽 𝒔𝒊𝒏𝜶 𝒄+𝝂 𝒊+𝜷̇ 𝒓−𝒒𝒓 𝒄𝒐𝒔𝝍+𝜷𝑽 𝒄𝒐𝒔𝜶 𝒄 𝒄𝒐𝒔𝝍
Ω𝒓+𝑽 𝒄𝒐𝒔𝜶 𝒄 𝒔𝒊𝒏𝝍
part
𝑀 𝑎2 = 𝜌𝐶𝑙𝛼 𝑐
1
2
∫ (𝑉 𝑠𝑖𝑛𝛼 𝑐 + 𝜈𝑖 + 𝛽̇ 𝑟 − 𝑞𝑟 𝑐𝑜𝑠𝜓 + 𝛽𝑉 𝑐𝑜𝑠𝛼 𝑐 𝑐𝑜𝑠𝜓)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)
𝑅
0
𝑑𝑟. 𝑟
Now integrating each term:
𝑀 𝑎3 = 𝜌𝐶𝑙𝛼 𝑐
1
2
∫ (𝑉 𝑠𝑖𝑛𝛼 𝑐)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)
𝑅
0
𝑑𝑟. 𝑟 = 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒
Ω 𝟐 𝟏
𝟐
[
𝝀 𝒄
𝟑
+
𝝀 𝒄 𝝁
𝟐
𝒔𝒊𝒏𝝍]
𝑀 𝑎4 = 𝜌𝐶𝑙𝛼 𝑐
1
2
∫ (𝜈𝑖)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)
𝑅
0
𝑑𝑟. 𝑟 = 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒
Ω 𝟐 𝟏
𝟐
[
𝝀 𝒊
𝟑
+
𝝀 𝒊 𝝁
𝟐
𝒔𝒊𝒏𝝍]
𝑀 𝑎5 = 𝜌𝐶𝑙𝛼 𝑐
1
2
∫ (𝛽𝑟̇ )(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)
𝑅
0
𝑑𝑟. 𝑟= 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒
Ω 𝟐 𝟏
𝟐
[
𝜷̇
𝟒Ω
+
𝜷̇ 𝝁
𝟑Ω
𝒔𝒊𝒏𝝍]
𝑀 𝑎6 = 𝜌𝐶𝑙𝛼 𝑐
1
2
∫ (−𝑞𝑟 𝑐𝑜𝑠𝜓)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)
𝑅
0
𝑑𝑟. 𝑟= 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒
Ω 𝟐 𝟏
𝟐
[
−𝒒
𝟒Ω
𝑐𝑜𝑠𝜓 +
−𝒒 𝝁
𝟑Ω
𝒔𝒊𝒏𝝍𝑐𝑜𝑠𝜓]
𝑀 𝑎7 = 𝜌𝐶𝑙𝛼 𝑐
1
2
∫ (𝛽𝑉 𝑐𝑜𝑠𝛼 𝑐 𝑐𝑜𝑠𝜓)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)
𝑅
0
𝑑𝑟. 𝑟= 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒
Ω 𝟐 𝟏
𝟐
[
𝜷𝝁
𝟑
𝑐𝑜𝑠𝜓 +
𝜷𝝁 𝟐
𝟐
𝒔𝒊𝒏𝝍𝑐𝑜𝑠𝜓]
Now 𝑀 𝑎/𝐼𝑏𝑙={𝑀 𝑎1- (𝑀 𝑎3 + 𝑀 𝑎4 + 𝑀 𝑎5 + 𝑀 𝑎6 + 𝑀 𝑎7)} /𝐼𝑏𝑙
= 𝛾Ω2 1
2
𝜃 [
1
4
+
1
2
𝜇2
𝑠𝑖𝑛𝜓2
+
2
3
𝜇 𝑠𝑖𝑛𝜓] −𝛾Ω2 1
2
[
𝜆 𝑐
3
+
𝜆 𝑐 𝜇
2
𝑠𝑖𝑛𝜓] − 𝛾Ω2 1
2
[
𝜆 𝑖
3
+
𝜆 𝑖 𝜇
2
𝑠𝑖𝑛𝜓]
−𝛾Ω2 1
2
[
𝛽̇
4Ω
+
𝛽̇ 𝜇
3Ω
𝑠𝑖𝑛𝜓] +𝛾Ω2 1
2
[
𝑞
4Ω
𝑐𝑜𝑠𝜓 +
𝑞 𝝁
3Ω
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓] −𝛾Ω2 1
2
[
𝛽𝜇
3
𝑐𝑜𝑠𝜓 +
𝛽𝜇2
2
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓]
Now flapping equation is given as: 𝛽̈ + Ω2
𝛽 = −2𝑞Ω 𝑠𝑖𝑛𝜓 + 𝑀 𝑎/𝐼𝑏𝑙
𝜷̈ +
𝜸
𝟖
Ω𝜷̇ [𝟏 +
𝟒𝝁
𝟑
𝒔𝒊𝒏𝝍]+Ω 𝟐
𝜷 [𝟏 +
𝜸 𝝁
𝟔
𝒄𝒐𝒔𝝍 +
𝜸 𝝁 𝟐
𝟖
𝒔𝒊𝒏𝟐𝝍] = 𝜸Ω 𝟐 𝟏
𝟖
𝜽(𝟏 + 𝝁 𝟐) − 𝜸Ω 𝟐 𝟏
𝟔
(𝝀 𝒄 + 𝝀𝒊)
+𝜸Ω 𝟐 𝟏
𝟖
𝒔𝒊𝒏𝝍 (
𝟖
𝟑
𝜽𝝁 − 𝟐𝝁 (𝝀 𝒄 + 𝝀𝒊))
+𝜸Ω
𝟏
𝟖
𝒒 𝒄𝒐𝒔𝝍+𝜸Ω
𝟏
𝟏𝟐
𝝁 𝒒 𝒔𝒊𝒏𝟐𝝍
−𝜸Ω 𝟐 𝟏
𝟖
𝜽𝝁 𝟐
𝒄𝒐𝒔𝟐𝝍 − 𝟐𝒒Ω 𝒔𝒊𝒏𝝍 eq. 05
Question 8. Deduce disc tilt angles
Assuming solution for the above eq. 05 of the form
𝛽 = 𝑎0 − 𝑎1 𝑐𝑜𝑠𝜓 − 𝑏1 𝑠𝑖𝑛𝜓
𝛽̇ = 𝑎1Ω 𝑠𝑖𝑛𝜓 − 𝑏1Ω 𝑐𝑜𝑠𝜓 by using 𝜓 = Ω𝑡
𝛽̈ = 𝑎1Ω2
𝑐𝑜𝑠𝜓 + 𝑏1Ω2
𝑠𝑖𝑛𝜓
HELICOPTER PERFORMANCE STABILITY AND CONTROL
COURSE CODE: AE4314
Name: DEEPAK PAUL TIRKEY
ASSIGNMENT NUMBER 04 Student number: 4590929
Now substituting the values of 𝛽, 𝛽̇, 𝛽̈ on the LHS of eq. 05
LHS of eq.05
≡ 𝑎1Ω2
𝑐𝑜𝑠𝜓 + 𝑏1Ω2
𝑠𝑖𝑛𝜓 +
𝛾
8
Ω (𝑎1Ω 𝑠𝑖𝑛𝜓 − 𝑏1Ω 𝑐𝑜𝑠𝜓 +
4𝜇
3
𝑎1Ω 𝑠𝑖𝑛2
𝜓 −
4𝜇
3
𝑏1Ω𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓)
+Ω2
(𝑎0 − 𝑎1 𝑐𝑜𝑠𝜓 − 𝑏1 𝑠𝑖𝑛𝜓 +
𝛾 𝜇
6
𝑎0 𝑐𝑜𝑠𝜓 −
𝛾 𝜇
6
𝑎1 𝑐𝑜𝑠2
𝜓 −
𝛾 𝜇
6
𝑏1 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓 +
𝛾 𝜇2
8
𝑎0 𝑠𝑖𝑛2𝜓 −
𝜸 𝝁 𝟐
𝟖
𝒂 𝟏 𝒄𝒐𝒔 𝝍𝒔𝒊𝒏𝟐𝝍 −
𝜸 𝝁 𝟐
𝟖
𝒃 𝟏 𝒔𝒊𝒏𝝍 𝒔𝒊𝒏𝟐𝝍) eq. 06
Simplifying the last two terms of eq. 06 :
−
𝜸 𝝁 𝟐
𝟖
𝒂 𝟏 𝒄𝒐𝒔 𝝍𝒔𝒊𝒏𝟐𝝍 ≡ −
𝛾 𝜇2
4
𝑎1 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 ≡ −
𝛾 𝜇2
4
𝑎1 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠2
𝜓
≡ −
𝛾 𝜇2
4
𝑎1 (
1
4
𝑠𝑖𝑛𝜓 +
1
4
𝑠𝑖𝑛3𝜓 )
≡ −
𝛾 𝜇2
16
𝑎1 𝑠𝑖𝑛𝜓 −
𝛾 𝜇2
16
𝑎1 𝑠𝑖𝑛3𝜓
−
𝜸 𝝁 𝟐
𝟖
𝒃 𝟏 𝒔𝒊𝒏𝝍 𝒔𝒊𝒏𝟐𝝍 ≡ −
𝛾 𝜇2
4
𝑏1 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 ≡ −
𝛾 𝜇2
4
𝑏1 𝑠𝑖𝑛2
𝜓 𝑐𝑜𝑠𝜓
≡ −
𝛾 𝜇2
4
𝑏1 (
1
4
𝑐𝑜𝑠𝜓 −
1
4
𝑐𝑜𝑠3𝜓 )
≡ −
𝛾 𝜇2
16
𝑏1 𝑐𝑜𝑠𝜓 +
𝛾 𝜇2
16
𝑏1 𝑐𝑜𝑠3𝜓
Rewriting eq. 06
≡ 𝑎1Ω2
𝑐𝑜𝑠𝜓 + 𝑏1Ω2
𝑠𝑖𝑛𝜓 +
𝛾
8
Ω2
𝑎1 𝑠𝑖𝑛𝜓 −
𝛾
8
Ω2
𝑏1 𝑐𝑜𝑠𝜓 +
𝛾
8
Ω2 2𝜇
3
𝑎1 (1 − 𝑐𝑜𝑠2𝜓) −
𝛾
8
Ω2 2𝜇
3
𝑏1Ω𝑠𝑖𝑛2𝜓
+Ω2
𝑎0 − Ω2
𝑎1 𝑐𝑜𝑠𝜓 − Ω2
𝑏1 𝑠𝑖𝑛𝜓 + Ω2 𝛾 𝜇
6
𝑎0 𝑐𝑜𝑠𝜓 − Ω2 𝛾 𝜇
12
𝑎1 (1 + 𝑐𝑜𝑠2𝜓) − Ω2 𝛾 𝜇
12
𝑏1 𝑠𝑖𝑛2𝜓 +
Ω2 𝛾 𝜇2
8
𝑎0 𝑠𝑖𝑛2𝜓 − Ω2 𝛾 𝜇2
16
𝑎1 𝑠𝑖𝑛𝜓 − Ω2 𝛾 𝜇2
16
𝑎1 𝑠𝑖𝑛3𝜓 − Ω2 𝛾 𝜇2
16
𝑏1 𝑐𝑜𝑠𝜓 + Ω2 𝛾 𝜇2
16
𝑏1 𝑐𝑜𝑠3𝜓
Rearranging the above expression in terms of free, sine, cosine terms etc..
≡ (
𝛾
8
Ω2 2𝜇
3
𝑎1 + Ω2
𝑎0 − Ω2 𝛾 𝜇
12
𝑎1) + (𝑏1Ω2
+
𝛾
8
Ω2
𝑎1 − Ω2
𝑏1 − Ω2 𝛾 𝜇2
16
𝑎1) 𝑠𝑖𝑛𝜓
+ (𝑎1Ω2
−
𝛾
8
Ω2
𝑏1 − Ω2
𝑎1 + Ω2 𝛾 𝜇
6
𝑎0 − Ω2 𝛾 𝜇2
16
𝑏1) 𝑐𝑜𝑠𝜓 + ⋯ 𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 ℎ𝑖𝑔ℎ𝑒𝑟 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠
Comparing free terms with the RHS free term of eq.05
(
𝛾
8
Ω2 2𝜇
3
𝑎1 + Ω2
𝑎0 − Ω2 𝛾 𝜇
12
𝑎1) = 𝜸Ω 𝟐 𝟏
𝟖
𝜽(𝟏 + 𝝁 𝟐) − 𝜸Ω 𝟐 𝟏
𝟔
(𝝀 𝒄 + 𝝀𝒊)
Or 𝒂 𝟎 = 𝜸
𝟏
𝟖
[𝜽(𝟏 + 𝝁 𝟐) −
𝟒
𝟑
(𝝀 𝒄 + 𝝀𝒊)]
Comparing sine terms with the RHS sine term of eq.05
(𝑏1Ω2
+
𝛾
8
Ω2
𝑎1 − Ω2
𝑏1 − Ω2 𝛾 𝜇2
16
𝑎1) = 𝛾Ω2 1
8
(
8
3
𝜃𝜇 − 2𝜇 (𝜆 𝑐 + 𝜆𝑖)) − 2𝑞Ω
𝛾
8
Ω2
𝑎1 (1 −
𝜇2
2
) = 𝛾Ω2 1
8
(
8
3
𝜃𝜇 − 2𝜇 (𝜆 𝑐 + 𝜆𝑖)) − 2𝑞Ω
Or 𝒂 𝟏 =
(
𝟖
𝟑
𝜽𝝁− 𝟐𝝁 (𝝀 𝒄+𝝀 𝒊))−
𝟏𝟔𝒒
𝜸Ω
(𝟏−
𝝁 𝟐
𝟐
)
Comparing cosine terms with the RHS cosine term of eq.05
(𝑎1Ω2
−
𝛾
8
Ω2
𝑏1 − Ω2
𝑎1 + Ω2 𝛾 𝜇
6
𝑎0 − Ω2 𝛾 𝜇2
16
𝑏1) = 𝛾Ω
1
8
𝑞
(
1
8
𝑏1 +
𝜇2
16
𝑏1) = −
𝑞
Ω
1
8
+
𝜇
6
𝑎0
Or 𝒃 𝟏 =
−
𝒒
Ω
+
𝟒 𝝁
𝟑
𝒂 𝟎
(𝟏+
𝝁 𝟐
𝟐
)

Mais conteúdo relacionado

Mais procurados

032 aeroplane performance
032 aeroplane performance032 aeroplane performance
032 aeroplane performance
chococrispis37
 
Studi sertifikasi dudukan lengan kursi pada pesawat udara
Studi sertifikasi dudukan lengan kursi pada pesawat udaraStudi sertifikasi dudukan lengan kursi pada pesawat udara
Studi sertifikasi dudukan lengan kursi pada pesawat udara
Kevin Horasio
 
直升机飞行力学 Helicopter dynamics chapter 3
直升机飞行力学 Helicopter dynamics    chapter 3直升机飞行力学 Helicopter dynamics    chapter 3
直升机飞行力学 Helicopter dynamics chapter 3
Falevai
 

Mais procurados (20)

Primary Flight Instruments | Flight Mechanics | GATE Aerospace
Primary Flight Instruments | Flight Mechanics | GATE AerospacePrimary Flight Instruments | Flight Mechanics | GATE Aerospace
Primary Flight Instruments | Flight Mechanics | GATE Aerospace
 
Formation FI(A) : Les règles d'emport carburant et le Part-NCO (MAJ 30/10/2022)
Formation FI(A) : Les règles d'emport carburant et le Part-NCO (MAJ 30/10/2022)Formation FI(A) : Les règles d'emport carburant et le Part-NCO (MAJ 30/10/2022)
Formation FI(A) : Les règles d'emport carburant et le Part-NCO (MAJ 30/10/2022)
 
소형 무인 비행체 5장-선형 모델 설계
 소형 무인 비행체 5장-선형 모델 설계 소형 무인 비행체 5장-선형 모델 설계
소형 무인 비행체 5장-선형 모델 설계
 
Solution Manual for Mechanics of Flight – Warren Phillips
Solution Manual for Mechanics of Flight – Warren PhillipsSolution Manual for Mechanics of Flight – Warren Phillips
Solution Manual for Mechanics of Flight – Warren Phillips
 
Aerodynamics flight force
Aerodynamics flight forceAerodynamics flight force
Aerodynamics flight force
 
Performance.pdf
Performance.pdfPerformance.pdf
Performance.pdf
 
EASA PART-66 MODULE 8.4 : FLIGHT STABILITY AND DYNAMICS
EASA PART-66 MODULE 8.4 : FLIGHT STABILITY AND DYNAMICSEASA PART-66 MODULE 8.4 : FLIGHT STABILITY AND DYNAMICS
EASA PART-66 MODULE 8.4 : FLIGHT STABILITY AND DYNAMICS
 
smart port hamburg.pdf
smart port hamburg.pdfsmart port hamburg.pdf
smart port hamburg.pdf
 
032 aeroplane performance
032 aeroplane performance032 aeroplane performance
032 aeroplane performance
 
비행체-선형화모델
비행체-선형화모델비행체-선형화모델
비행체-선형화모델
 
Cours PPL(A) : Les instruments et le groupe motopropulseur
Cours PPL(A) : Les instruments et le groupe motopropulseurCours PPL(A) : Les instruments et le groupe motopropulseur
Cours PPL(A) : Les instruments et le groupe motopropulseur
 
Aerodynamic design of aeroplane
Aerodynamic design of aeroplaneAerodynamic design of aeroplane
Aerodynamic design of aeroplane
 
Formation FI(A) : La navigation (Briefing long AéroPyrénées)
Formation FI(A) : La navigation (Briefing long AéroPyrénées)Formation FI(A) : La navigation (Briefing long AéroPyrénées)
Formation FI(A) : La navigation (Briefing long AéroPyrénées)
 
Studi sertifikasi dudukan lengan kursi pada pesawat udara
Studi sertifikasi dudukan lengan kursi pada pesawat udaraStudi sertifikasi dudukan lengan kursi pada pesawat udara
Studi sertifikasi dudukan lengan kursi pada pesawat udara
 
Aircraft Ground Handling
Aircraft Ground HandlingAircraft Ground Handling
Aircraft Ground Handling
 
Aircraft performance 2
Aircraft performance 2Aircraft performance 2
Aircraft performance 2
 
Cours PPL(A) : Connaissances générales, comment vole l'avion ?
Cours PPL(A) : Connaissances générales, comment vole l'avion ?Cours PPL(A) : Connaissances générales, comment vole l'avion ?
Cours PPL(A) : Connaissances générales, comment vole l'avion ?
 
Principles of flight
Principles of flightPrinciples of flight
Principles of flight
 
直升机飞行力学 Helicopter dynamics chapter 3
直升机飞行力学 Helicopter dynamics    chapter 3直升机飞行力学 Helicopter dynamics    chapter 3
直升机飞行力学 Helicopter dynamics chapter 3
 
KLIA v.02 presentation aznan
KLIA v.02 presentation aznanKLIA v.02 presentation aznan
KLIA v.02 presentation aznan
 

Destaque

Aircraft intake aerodynamics
Aircraft intake aerodynamicsAircraft intake aerodynamics
Aircraft intake aerodynamics
Prabhat Kumar
 
286541 633956506764058750
286541 633956506764058750286541 633956506764058750
286541 633956506764058750
guestc757a4e
 
直升机飞行力学 Helicopter dynamics chapter 6
直升机飞行力学 Helicopter dynamics   chapter 6直升机飞行力学 Helicopter dynamics   chapter 6
直升机飞行力学 Helicopter dynamics chapter 6
Falevai
 
Calculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidosCalculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidos
Higinio Flores
 
Automatic control of aircraft and missiles 2nd ed john h. blakelock
Automatic control of aircraft and missiles 2nd ed   john h. blakelockAutomatic control of aircraft and missiles 2nd ed   john h. blakelock
Automatic control of aircraft and missiles 2nd ed john h. blakelock
MaRwa Hamed
 
Turbine engine 1
Turbine engine 1Turbine engine 1
Turbine engine 1
Zaib Amjad
 
Aircraft Gas Turbine Engines
Aircraft Gas Turbine EnginesAircraft Gas Turbine Engines
Aircraft Gas Turbine Engines
Zafar Jami
 

Destaque (13)

Aerodynamic Data of Space Vehicles
Aerodynamic Data of Space VehiclesAerodynamic Data of Space Vehicles
Aerodynamic Data of Space Vehicles
 
Aircraft intake aerodynamics
Aircraft intake aerodynamicsAircraft intake aerodynamics
Aircraft intake aerodynamics
 
Designing geometric parameters of axisymmetrical cassegrain antenna and corru...
Designing geometric parameters of axisymmetrical cassegrain antenna and corru...Designing geometric parameters of axisymmetrical cassegrain antenna and corru...
Designing geometric parameters of axisymmetrical cassegrain antenna and corru...
 
286541 633956506764058750
286541 633956506764058750286541 633956506764058750
286541 633956506764058750
 
直升机飞行力学 Helicopter dynamics chapter 6
直升机飞行力学 Helicopter dynamics   chapter 6直升机飞行力学 Helicopter dynamics   chapter 6
直升机飞行力学 Helicopter dynamics chapter 6
 
Calculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidosCalculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidos
 
Automatic control of aircraft and missiles 2nd ed john h. blakelock
Automatic control of aircraft and missiles 2nd ed   john h. blakelockAutomatic control of aircraft and missiles 2nd ed   john h. blakelock
Automatic control of aircraft and missiles 2nd ed john h. blakelock
 
Turbine engine 1
Turbine engine 1Turbine engine 1
Turbine engine 1
 
turbine engine intake
 turbine engine intake turbine engine intake
turbine engine intake
 
Aircraft Gas Turbine Engines
Aircraft Gas Turbine EnginesAircraft Gas Turbine Engines
Aircraft Gas Turbine Engines
 
best ppt on jet engines
best ppt on jet enginesbest ppt on jet engines
best ppt on jet engines
 
Introduction to flight anderson manual solution pdf
Introduction to flight anderson manual solution pdfIntroduction to flight anderson manual solution pdf
Introduction to flight anderson manual solution pdf
 
Subsonic and supersonic air intakes
Subsonic and supersonic air intakesSubsonic and supersonic air intakes
Subsonic and supersonic air intakes
 

Semelhante a Helicopter rotor dynamics

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdHawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrd
foxtrot jp R
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
foxtrot jp R
 

Semelhante a Helicopter rotor dynamics (20)

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cw
 
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfRADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
 
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdHawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrd
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
Hawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrdHawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrd
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
 
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving beltAnalysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
 
The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
 
Lecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdfLecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdf
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d
 
Sbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-convertedSbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-converted
 

Último

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Último (20)

Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 

Helicopter rotor dynamics

  • 1. HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314 Name: DEEPAK PAUL TIRKEY ASSIGNMENT NUMBER 04 Student number: 4590929 Question 1. Flapping blade angle variation for the advancing blade for one complete revolution Answer : My chosen helicopter is MBB Bo105 Locks inertia number 𝛾 = 𝜌𝑎𝑐𝑅4 𝐼 𝛽 = 5.07 where ρ = 1.225 𝑘𝑔 𝑚3 [sea level condition] ; a = lift curve slope = 6.113 /rad ; c = chord = 0.27 m ; R = radius = 4.91 m ; 𝐼𝛽= 231.7 𝑘𝑔 𝑚2 [ data source : Helicopter Flight Dynamics –Padfield] Induced Velocity in hover 𝜈𝑖 = √ 𝑊 2𝜌𝜋𝑅2 = 10.8 m/sec ; where W = 2200 x 9.81 = 21582 N Induced inflow ratio 𝜆𝑖 = 𝜈 𝑖 Ω𝑅 = 10.8 218 = 0.05 Flapping solution in hover β (t) = 𝜷 𝒉𝒐𝒎(t) + 𝜷 𝒑𝒂𝒓𝒕(t) Particular solution 𝛽 𝑝𝑎𝑟𝑡(t) = 𝛾 8 ( θ - 4 3 𝜆𝑖 ) = 5.07 8 (8 - 4 3 0.05) = 5.03 degree; where θ = 8 degree(given) [𝛽 𝑝𝑎𝑟𝑡(t) = 5.03 degree is constant coning angle ] Homogenous solution 𝛽ℎ𝑜𝑚(t) = 𝛽0 𝑒 −𝛾Ω𝑡 16 [cos(Ω√1 − ( 𝛾 16 ) 2 . 𝑡) + 𝛾 16 √1−( 𝛾 16 ) 2 sin(Ω√1 − ( 𝛾 16 ) 2 . 𝑡)] MS Excel was used to calculate and plot β (t) = 𝛽ℎ𝑜𝑚(t) + 𝛽 𝑝𝑎𝑟𝑡(t) , were azimuth angle ψ =Ω t , 𝛽0 = 𝛽 𝑝𝑎𝑟𝑡 𝑤𝑎𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 Fig. 01 Flapping blade angle β (ψ) = βhom(ψ) + βpart(ψ) variation for one revolution 0 2 4 6 8 10 12 0 5 10 15 20 25 30 beta(degree) PSI ( x 15 degree) Beta_hom + Beta_parti coning angle (Beta_parti)
  • 2. HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314 Name: DEEPAK PAUL TIRKEY ASSIGNMENT NUMBER 04 Student number: 4590929 Question 2. Angle of attack variation for the advancing blade for one complete revolution at different radii positions on the blade varying from 0 to R Answer : Angle of attack of blade element located at a distance r from the rotation axis 𝜶 𝒓 = θ - 𝝂 𝒊+𝜷𝒓̇ Ω𝒓 Now to calculate 𝛽̇ from the relation 𝛽 (𝑡̇ ) = 𝛽ℎ𝑜𝑚 ̇ (t) + 𝛽 𝑝𝑎𝑟𝑡 ̇ (t) = 𝛽ℎ𝑜𝑚 ̇ (t) [as 𝛽 𝑝𝑎𝑟𝑡(t) is a constant term] Writing 𝛽 (𝑡̇ ) = 𝛽0[A+B] Were A = ( −𝛾Ω 16 ) 𝑒 −𝛾Ω𝑡 16 [cos (Ω√1 − ( 𝛾 16 ) 2 . 𝑡) + 𝛾 16 √1−( 𝛾 16 ) 2 sin (Ω√1 − ( 𝛾 16 ) 2 . 𝑡)] And B = 𝑒 −𝛾Ω𝑡 16 [– (Ω√1 − ( 𝛾 16 ) 2 )sin (Ω√1 − ( 𝛾 16 ) 2 . 𝑡) + 𝛾Ω 16 cos (Ω√1 − ( 𝛾 16 ) 2 . 𝑡)] Simplifying [A+B] , cosine terms from both A and B cancel each other [A+B] = (−)𝑒 −𝛾Ω𝑡 16 sin (Ω√1 − ( 𝛾 16 ) 2 . 𝑡) [ ( 𝛾 16 ) 2 Ω √1−( 𝛾 16 ) 2 + Ω√1 − ( 𝛾 16 ) 2 ] Simplifying the [ ] term further [A+B] = (−)𝑒 −𝛾Ω𝑡 16 sin (Ω√1 − ( 𝛾 16 ) 2 . 𝑡) [ Ω √1−( 𝛾 16 ) 2 ] or 𝛃 (𝐭̇ ) = (−)𝛃 𝟎Ω 𝐞 −𝛄Ω𝐭 𝟏𝟔 √ 𝟏−( 𝛄 𝟏𝟔 ) 𝟐 𝐬𝐢𝐧 (Ω√ 𝟏 − ( 𝛄 𝟏𝟔 ) 𝟐 . 𝐭) using the β (ṫ ) value , 𝛼 𝑟 at each radial location was calculated using MS EXCEL and are plotted below. Fig. 0.2 Angle of attack variation with radial and azimuth 5 5.5 6 6.5 7 7.5 8 0 10 20 30 40 50 Angleofattack(degree) PSI (x 15) r 0.1 r 0.2 r 0.3 r 0.4 r 0.5 r 0.6 r 0.7 r 0.8 r 0.9 r 1
  • 3. HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314 Name: DEEPAK PAUL TIRKEY ASSIGNMENT NUMBER 04 Student number: 4590929 Question 3. Coning angle , longitudinal and lateral disc tilt angles. Answer : Coning angle a0 = βpart(t) = 5.03 degree Longitudinal disc tilt angle a1 = 0 degree Lateral disc tilt angle b1 = 0 degree Assume that the helicopter is fixed to the ground but has a body pitch rate q and roll rate p. Question 4. Advancing blade angular velocities Blade angular velocities: i Ω sinβ + q sinψ cosβ – p cosψ cosβ j q cosψ + p sinψ - 𝛽̇ k Ω cosβ + p cosψ sinβ – q sinψ sinβ Question 5. Flapping equation when the helicopter is having body rates p and q and is fixed to the ground Kinetic Energy: T = 1 2 𝐼 [(𝑞 𝑐𝑜𝑠𝜓 + 𝑝 𝑠𝑖𝑛𝜓 − 𝛽̇) 2 + (Ω 𝑐𝑜𝑠𝛽 + 𝑝 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝛽 − 𝑞 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝛽)2 ] eq. 01 [Note: neglecting the i axis contribution of blade angular velocities towards Kinetic Energy calculation] Writing the above eq. 01 for simplicity T = 1 2 𝐼[𝐴 + 𝐵] Lagrange equation of motion: 𝑑 𝑑𝑡 ( 𝜕𝑇 𝜕𝛽̇ ) − 𝜕𝑇 𝜕𝛽 + 𝜕𝑉 𝜕𝛽 = 𝑄 𝛽 were 𝑄 𝛽 is the aerodynamic moment about the flapping hinge 𝑀 𝑎(𝑡) Evaluating the first term Lagrange EoM Now 𝜕𝑇 𝜕𝛽̇ = 1 2 𝐼 [2𝛽̇-2(𝑞 𝑐𝑜𝑠Ω𝑡 + 𝑝 𝑠𝑖𝑛Ω𝑡)] and 𝑑 𝑑𝑡 ( 𝜕𝑇 𝜕𝛽̇ ) = 𝐼[𝛽̈ + 𝑞Ω 𝑠𝑖𝑛𝜓 − 𝑝Ω 𝑐𝑜𝑠𝜓] with ψ = Ωt Now expand the B term of eq. 01 B = [(Ω 𝑐𝑜𝑠𝛽)2 + (𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )2 𝑠𝑖𝑛2 𝛽 + 2Ω 𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛽(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )] = [(Ω 𝑐𝑜𝑠𝛽)2 + (𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )2 𝑠𝑖𝑛2 𝛽 + Ω 𝑠𝑖𝑛2𝛽(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )] = [(Ω 𝑐𝑜𝑠𝛽)2 + 0 + Ω 𝑠𝑖𝑛2𝛽(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 )] Middle term became 0 as 𝛽 is small and neglecting 𝑝2 , 𝑞2 , 𝑝. 𝑞 terms Now evaluating the second term of Lagrange EoM 𝜕𝑇 𝜕𝛽 = 1 2 𝐼[−2Ω2 𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛽 + 2Ω𝑐𝑜𝑠2𝛽(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 ) ] = 𝐼[−Ω2 𝛽 + Ω(𝑝 𝑐𝑜𝑠𝜓 − 𝑞 𝑠𝑖𝑛𝜓 ) ] assuming 𝛽 is small Third term of the Lagrange EoM is zero
  • 4. HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314 Name: DEEPAK PAUL TIRKEY ASSIGNMENT NUMBER 04 Student number: 4590929 Now evaluating the complete Lagrange EoM: 𝐼𝛽̈ + 𝐼𝑞Ω 𝑠𝑖𝑛𝜓 − 𝐼𝑝Ω 𝑐𝑜𝑠𝜓 + 𝐼Ω2 𝛽 − 𝐼Ω𝑝 𝑐𝑜𝑠𝜓 + 𝐼Ω𝑞 𝑠𝑖𝑛𝜓 = 𝑀 𝑎(𝑡) Retaining the 𝛽 terms on LHS and dividing throughout by 𝐼 𝜷̈ + Ω 𝟐 𝜷 = −𝟐Ω𝒒 𝒔𝒊𝒏𝝍 + 𝟐Ω𝒑 𝒄𝒐𝒔𝝍 + 𝑴 𝒂(𝒕) 𝑰 eq. 02 Question 6. Disc tilt angles a0 , a1 and b1 Angle of attack of a blade element 𝛼 = 𝜃 − 𝜈 𝑖+𝛽̇ 𝑟−𝑞 𝑟 𝑐𝑜𝑠𝜓−𝑝𝑟𝑠𝑖𝑛𝜓 Ω𝑟 Evaluate aerodynamic moment about flapping hinge: 𝑴 𝒂 𝑰 = 1 𝐼 ∫ 𝑎 (𝜃 − 𝜈 𝑖+𝛽̇ 𝑟−𝑞 𝑟 𝑐𝑜𝑠𝜓−𝑝𝑟𝑠𝑖𝑛𝜓 Ω𝑟 ) 1 2 𝜌(Ω𝑟)2 𝑐𝑟 𝑑𝑟 𝑅 0 = 𝜌𝑎𝑐 𝐼 . Ω2 2 ∫ (𝜃0 − 𝜈 𝑖 Ω𝑅𝑥 − 𝛽̇ Ω + 𝑞 𝑐𝑜𝑠𝜓 Ω + 𝑝𝑠𝑖𝑛𝜓 Ω ) 𝑥3 𝑅4 𝑑𝑥 1 0 taking 𝑥 = 𝑟 𝑅 ; 𝑟 = 𝑥𝑅 ; 𝑑𝑟 = 𝑅 𝑑𝑥 = 𝜌𝑎𝑐𝑅4 𝐼 . Ω2 2 ∫ (𝜃0 𝑥3 − 𝜆𝑖 𝑥2 − 𝛽̇ Ω 𝑥3 + 𝑞 𝑐𝑜𝑠𝜓 Ω 𝑥3 + 𝑝𝑠𝑖𝑛𝜓 Ω 𝑥3 ) 𝑑𝑥 1 0 = 𝛾. Ω2 2 [ 𝜃0 4 − 𝜆 𝑖 3 − 𝛽̇ 4Ω + 𝑞 𝑐𝑜𝑠𝜓 4Ω + 𝑝𝑠𝑖𝑛𝜓 4Ω ] 𝑴 𝒂 𝑰 = 𝛾Ω2 8 (𝜃0 − 4𝜆 𝑖 3 ) − 𝛾𝛽 Ω̇ 8 + 𝛾 𝑞Ω 𝑐𝑜𝑠𝜓 8 + 𝛾 𝑝Ω 𝑠𝑖𝑛𝜓 8 eq. 03 Now rewriting eq. 02 using eq. 03 𝛽̈ + Ω2 𝛽 = −2Ω𝑞 𝑠𝑖𝑛𝜓 + 2Ω𝑝 𝑐𝑜𝑠𝜓 + 𝛾Ω2 8 (𝜃0 − 4𝜆 𝑖 3 ) − 𝛾𝛽 Ω̇ 8 + 𝛾 𝑞Ω 𝑐𝑜𝑠𝜓 8 + 𝛾 𝑝Ω 𝑠𝑖𝑛𝜓 8 𝛽̈ + 𝛾𝛽 Ω̇ 8 + Ω2 𝛽 = 𝛾Ω2 8 (𝜃0 − 4𝜆 𝑖 3 ) + 𝛾 𝑞Ω 𝑐𝑜𝑠𝜓 8 + 𝛾 𝑝Ω 𝑠𝑖𝑛𝜓 8 − 2Ω𝑞 𝑠𝑖𝑛𝜓 + 2Ω𝑝 𝑐𝑜𝑠𝜓 𝜷̈ + 𝜸Ω 𝟖 𝜷̇ + Ω 𝟐 𝜷 = 𝜸Ω 𝟐 𝟖 (𝜽 𝟎 − 𝟒𝝀 𝒊 𝟑 ) + Ω ( 𝜸 𝒒 𝟖 + 𝟐𝒑) 𝒄𝒐𝒔Ω𝒕 + Ω ( 𝜸 𝒑 𝟖 − 𝟐𝒒 ) 𝒔𝒊𝒏Ω𝒕 eq. 04 (using 𝜓 = Ω𝑡) Assuming solution for the above eq. 04 of the form 𝛽 = 𝑎0 − 𝑎1 𝑐𝑜𝑠Ω𝑡 − 𝑏1 𝑠𝑖𝑛Ω𝑡 𝛽̇ = 𝑎1Ω 𝑠𝑖𝑛Ω𝑡 − 𝑏1Ω 𝑐𝑜𝑠Ω𝑡 𝛽̈ = 𝑎1Ω2 𝑐𝑜𝑠Ω𝑡 + 𝑏1Ω2 𝑠𝑖𝑛Ω𝑡 Now substituting the values of 𝛽, 𝛽̇, 𝛽̈ on the LHS of eq. 04 LHS of eq.04 ≡ 𝑎1Ω2 𝑐𝑜𝑠Ω𝑡 + 𝑏1Ω2 𝑠𝑖𝑛Ω𝑡 + 𝜸 𝟖 𝑎1Ω2 𝑠𝑖𝑛Ω𝑡 − 𝜸 𝟖 𝑏1Ω2 𝑐𝑜𝑠Ω𝑡 + Ω2 𝑎0 − 𝑎1Ω2 𝑐𝑜𝑠Ω𝑡 − 𝑏1Ω2 𝑠𝑖𝑛Ω𝑡 ≡ Ω2 𝑎0 + (𝑎1Ω2 − 𝜸 𝟖 𝑏1Ω2 − 𝑎1Ω2 ) 𝑐𝑜𝑠Ω𝑡 + (𝑏1Ω2 + 𝜸 𝟖 𝑎1Ω2 − 𝑏1Ω2 ) 𝑠𝑖𝑛Ω𝑡 ≡ Ω2 𝑎0 − 𝜸 𝟖 𝑏1Ω2 𝑐𝑜𝑠Ω𝑡 + 𝜸 𝟖 𝑎1Ω2 𝑠𝑖𝑛Ω𝑡 Equating the above expression with the RHS of eq. 04 and comparing constant, sine and cosine terms Constant term Ω2 𝑎0 = 𝛾Ω2 8 (𝜃0 − 4𝜆 𝑖 3 ) or 𝒂 𝟎 = 𝜸 𝟖 (𝜽 𝟎 − 𝟒𝝀 𝒊 𝟑 )
  • 5. HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314 Name: DEEPAK PAUL TIRKEY ASSIGNMENT NUMBER 04 Student number: 4590929 Sine term 𝛾 8 𝑎1Ω2 = Ω ( 𝛾 𝑝 8 − 2𝑞 ) or 𝒂 𝟏 = ( 𝒑 Ω − 𝟏𝟔𝒒 𝜸Ω ) Cosine term − 𝛾 8 𝑏1Ω2 = Ω ( 𝛾 𝑞 8 + 2𝑝) or 𝒃 𝟏 = ( − 𝒒 Ω − 𝟏𝟔𝒑 𝜸Ω ) Assume that the helicopter is in forward flight and has body rate q Question 7. Perform analytically the integral of blade aerodynamic moment and compare with given expression Aerodynamic moment is given as: 𝑀 𝑎 = ∫ 𝐶𝑙𝛼 𝛼 1 2 𝜌(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)2𝑅 0 𝑐 𝑑𝑟. 𝑟 Where 𝛼 = 𝜃 − 𝑉 𝑠𝑖𝑛𝛼 𝑐+𝜈 𝑖+𝛽̇ 𝑟−𝑞𝑟 𝑐𝑜𝑠𝜓+𝛽𝑉 𝑐𝑜𝑠𝛼 𝑐 𝑐𝑜𝑠𝜓 Ω𝑟+𝑉 𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓 Performing integration with the 𝜽 part 𝑀 𝑎1 = 𝜌𝐶𝑙𝛼 𝑐 1 2 ∫ 𝜃(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓)2𝑅 0 𝑑𝑟. 𝑟 = 𝜌𝐶𝑙𝛼 𝑐 1 2 𝜃 ∫ (Ω2 𝑟3 + 𝑉2 𝑟 cos 𝛼 𝑐 2 𝑠𝑖𝑛𝜓2 + 2Ω𝑉 𝑟2 𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓) 𝑅 0 𝑑𝑟 = 𝜌𝐶𝑙𝛼 𝑐 1 2 𝜃 [ Ω2 𝑅4 4 + Ω2 𝑅4 2 ( 𝑉𝑐𝑜𝑠𝛼 𝑐 Ω𝑅 ) 2 𝑠𝑖𝑛𝜓2 + 2 Ω2 𝑅4 3 ( 𝑉𝑐𝑜𝑠𝛼 𝑐 Ω𝑅 ) 𝑠𝑖𝑛𝜓] Where 𝑉𝑐𝑜𝑠𝛼 𝑐 Ω𝑅 = 𝜇 = 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒 Ω 𝟐 𝟏 𝟐 𝜽 [ 𝟏 𝟒 + 𝟏 𝟐 𝝁 𝟐 𝒔𝒊𝒏𝝍 𝟐 + 𝟐 𝟑 𝝁 𝒔𝒊𝒏𝝍] Performing integration with 𝑽 𝒔𝒊𝒏𝜶 𝒄+𝝂 𝒊+𝜷̇ 𝒓−𝒒𝒓 𝒄𝒐𝒔𝝍+𝜷𝑽 𝒄𝒐𝒔𝜶 𝒄 𝒄𝒐𝒔𝝍 Ω𝒓+𝑽 𝒄𝒐𝒔𝜶 𝒄 𝒔𝒊𝒏𝝍 part 𝑀 𝑎2 = 𝜌𝐶𝑙𝛼 𝑐 1 2 ∫ (𝑉 𝑠𝑖𝑛𝛼 𝑐 + 𝜈𝑖 + 𝛽̇ 𝑟 − 𝑞𝑟 𝑐𝑜𝑠𝜓 + 𝛽𝑉 𝑐𝑜𝑠𝛼 𝑐 𝑐𝑜𝑠𝜓)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓) 𝑅 0 𝑑𝑟. 𝑟 Now integrating each term: 𝑀 𝑎3 = 𝜌𝐶𝑙𝛼 𝑐 1 2 ∫ (𝑉 𝑠𝑖𝑛𝛼 𝑐)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓) 𝑅 0 𝑑𝑟. 𝑟 = 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒 Ω 𝟐 𝟏 𝟐 [ 𝝀 𝒄 𝟑 + 𝝀 𝒄 𝝁 𝟐 𝒔𝒊𝒏𝝍] 𝑀 𝑎4 = 𝜌𝐶𝑙𝛼 𝑐 1 2 ∫ (𝜈𝑖)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓) 𝑅 0 𝑑𝑟. 𝑟 = 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒 Ω 𝟐 𝟏 𝟐 [ 𝝀 𝒊 𝟑 + 𝝀 𝒊 𝝁 𝟐 𝒔𝒊𝒏𝝍] 𝑀 𝑎5 = 𝜌𝐶𝑙𝛼 𝑐 1 2 ∫ (𝛽𝑟̇ )(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓) 𝑅 0 𝑑𝑟. 𝑟= 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒 Ω 𝟐 𝟏 𝟐 [ 𝜷̇ 𝟒Ω + 𝜷̇ 𝝁 𝟑Ω 𝒔𝒊𝒏𝝍] 𝑀 𝑎6 = 𝜌𝐶𝑙𝛼 𝑐 1 2 ∫ (−𝑞𝑟 𝑐𝑜𝑠𝜓)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓) 𝑅 0 𝑑𝑟. 𝑟= 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒 Ω 𝟐 𝟏 𝟐 [ −𝒒 𝟒Ω 𝑐𝑜𝑠𝜓 + −𝒒 𝝁 𝟑Ω 𝒔𝒊𝒏𝝍𝑐𝑜𝑠𝜓] 𝑀 𝑎7 = 𝜌𝐶𝑙𝛼 𝑐 1 2 ∫ (𝛽𝑉 𝑐𝑜𝑠𝛼 𝑐 𝑐𝑜𝑠𝜓)(Ω𝑟 + 𝑉𝑐𝑜𝑠𝛼 𝑐 𝑠𝑖𝑛𝜓) 𝑅 0 𝑑𝑟. 𝑟= 𝝆𝑪𝒍𝜶 𝒄𝑹 𝟒 Ω 𝟐 𝟏 𝟐 [ 𝜷𝝁 𝟑 𝑐𝑜𝑠𝜓 + 𝜷𝝁 𝟐 𝟐 𝒔𝒊𝒏𝝍𝑐𝑜𝑠𝜓] Now 𝑀 𝑎/𝐼𝑏𝑙={𝑀 𝑎1- (𝑀 𝑎3 + 𝑀 𝑎4 + 𝑀 𝑎5 + 𝑀 𝑎6 + 𝑀 𝑎7)} /𝐼𝑏𝑙 = 𝛾Ω2 1 2 𝜃 [ 1 4 + 1 2 𝜇2 𝑠𝑖𝑛𝜓2 + 2 3 𝜇 𝑠𝑖𝑛𝜓] −𝛾Ω2 1 2 [ 𝜆 𝑐 3 + 𝜆 𝑐 𝜇 2 𝑠𝑖𝑛𝜓] − 𝛾Ω2 1 2 [ 𝜆 𝑖 3 + 𝜆 𝑖 𝜇 2 𝑠𝑖𝑛𝜓] −𝛾Ω2 1 2 [ 𝛽̇ 4Ω + 𝛽̇ 𝜇 3Ω 𝑠𝑖𝑛𝜓] +𝛾Ω2 1 2 [ 𝑞 4Ω 𝑐𝑜𝑠𝜓 + 𝑞 𝝁 3Ω 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓] −𝛾Ω2 1 2 [ 𝛽𝜇 3 𝑐𝑜𝑠𝜓 + 𝛽𝜇2 2 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓] Now flapping equation is given as: 𝛽̈ + Ω2 𝛽 = −2𝑞Ω 𝑠𝑖𝑛𝜓 + 𝑀 𝑎/𝐼𝑏𝑙 𝜷̈ + 𝜸 𝟖 Ω𝜷̇ [𝟏 + 𝟒𝝁 𝟑 𝒔𝒊𝒏𝝍]+Ω 𝟐 𝜷 [𝟏 + 𝜸 𝝁 𝟔 𝒄𝒐𝒔𝝍 + 𝜸 𝝁 𝟐 𝟖 𝒔𝒊𝒏𝟐𝝍] = 𝜸Ω 𝟐 𝟏 𝟖 𝜽(𝟏 + 𝝁 𝟐) − 𝜸Ω 𝟐 𝟏 𝟔 (𝝀 𝒄 + 𝝀𝒊) +𝜸Ω 𝟐 𝟏 𝟖 𝒔𝒊𝒏𝝍 ( 𝟖 𝟑 𝜽𝝁 − 𝟐𝝁 (𝝀 𝒄 + 𝝀𝒊)) +𝜸Ω 𝟏 𝟖 𝒒 𝒄𝒐𝒔𝝍+𝜸Ω 𝟏 𝟏𝟐 𝝁 𝒒 𝒔𝒊𝒏𝟐𝝍 −𝜸Ω 𝟐 𝟏 𝟖 𝜽𝝁 𝟐 𝒄𝒐𝒔𝟐𝝍 − 𝟐𝒒Ω 𝒔𝒊𝒏𝝍 eq. 05 Question 8. Deduce disc tilt angles Assuming solution for the above eq. 05 of the form 𝛽 = 𝑎0 − 𝑎1 𝑐𝑜𝑠𝜓 − 𝑏1 𝑠𝑖𝑛𝜓 𝛽̇ = 𝑎1Ω 𝑠𝑖𝑛𝜓 − 𝑏1Ω 𝑐𝑜𝑠𝜓 by using 𝜓 = Ω𝑡 𝛽̈ = 𝑎1Ω2 𝑐𝑜𝑠𝜓 + 𝑏1Ω2 𝑠𝑖𝑛𝜓
  • 6. HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314 Name: DEEPAK PAUL TIRKEY ASSIGNMENT NUMBER 04 Student number: 4590929 Now substituting the values of 𝛽, 𝛽̇, 𝛽̈ on the LHS of eq. 05 LHS of eq.05 ≡ 𝑎1Ω2 𝑐𝑜𝑠𝜓 + 𝑏1Ω2 𝑠𝑖𝑛𝜓 + 𝛾 8 Ω (𝑎1Ω 𝑠𝑖𝑛𝜓 − 𝑏1Ω 𝑐𝑜𝑠𝜓 + 4𝜇 3 𝑎1Ω 𝑠𝑖𝑛2 𝜓 − 4𝜇 3 𝑏1Ω𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓) +Ω2 (𝑎0 − 𝑎1 𝑐𝑜𝑠𝜓 − 𝑏1 𝑠𝑖𝑛𝜓 + 𝛾 𝜇 6 𝑎0 𝑐𝑜𝑠𝜓 − 𝛾 𝜇 6 𝑎1 𝑐𝑜𝑠2 𝜓 − 𝛾 𝜇 6 𝑏1 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓 + 𝛾 𝜇2 8 𝑎0 𝑠𝑖𝑛2𝜓 − 𝜸 𝝁 𝟐 𝟖 𝒂 𝟏 𝒄𝒐𝒔 𝝍𝒔𝒊𝒏𝟐𝝍 − 𝜸 𝝁 𝟐 𝟖 𝒃 𝟏 𝒔𝒊𝒏𝝍 𝒔𝒊𝒏𝟐𝝍) eq. 06 Simplifying the last two terms of eq. 06 : − 𝜸 𝝁 𝟐 𝟖 𝒂 𝟏 𝒄𝒐𝒔 𝝍𝒔𝒊𝒏𝟐𝝍 ≡ − 𝛾 𝜇2 4 𝑎1 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 ≡ − 𝛾 𝜇2 4 𝑎1 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠2 𝜓 ≡ − 𝛾 𝜇2 4 𝑎1 ( 1 4 𝑠𝑖𝑛𝜓 + 1 4 𝑠𝑖𝑛3𝜓 ) ≡ − 𝛾 𝜇2 16 𝑎1 𝑠𝑖𝑛𝜓 − 𝛾 𝜇2 16 𝑎1 𝑠𝑖𝑛3𝜓 − 𝜸 𝝁 𝟐 𝟖 𝒃 𝟏 𝒔𝒊𝒏𝝍 𝒔𝒊𝒏𝟐𝝍 ≡ − 𝛾 𝜇2 4 𝑏1 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 ≡ − 𝛾 𝜇2 4 𝑏1 𝑠𝑖𝑛2 𝜓 𝑐𝑜𝑠𝜓 ≡ − 𝛾 𝜇2 4 𝑏1 ( 1 4 𝑐𝑜𝑠𝜓 − 1 4 𝑐𝑜𝑠3𝜓 ) ≡ − 𝛾 𝜇2 16 𝑏1 𝑐𝑜𝑠𝜓 + 𝛾 𝜇2 16 𝑏1 𝑐𝑜𝑠3𝜓 Rewriting eq. 06 ≡ 𝑎1Ω2 𝑐𝑜𝑠𝜓 + 𝑏1Ω2 𝑠𝑖𝑛𝜓 + 𝛾 8 Ω2 𝑎1 𝑠𝑖𝑛𝜓 − 𝛾 8 Ω2 𝑏1 𝑐𝑜𝑠𝜓 + 𝛾 8 Ω2 2𝜇 3 𝑎1 (1 − 𝑐𝑜𝑠2𝜓) − 𝛾 8 Ω2 2𝜇 3 𝑏1Ω𝑠𝑖𝑛2𝜓 +Ω2 𝑎0 − Ω2 𝑎1 𝑐𝑜𝑠𝜓 − Ω2 𝑏1 𝑠𝑖𝑛𝜓 + Ω2 𝛾 𝜇 6 𝑎0 𝑐𝑜𝑠𝜓 − Ω2 𝛾 𝜇 12 𝑎1 (1 + 𝑐𝑜𝑠2𝜓) − Ω2 𝛾 𝜇 12 𝑏1 𝑠𝑖𝑛2𝜓 + Ω2 𝛾 𝜇2 8 𝑎0 𝑠𝑖𝑛2𝜓 − Ω2 𝛾 𝜇2 16 𝑎1 𝑠𝑖𝑛𝜓 − Ω2 𝛾 𝜇2 16 𝑎1 𝑠𝑖𝑛3𝜓 − Ω2 𝛾 𝜇2 16 𝑏1 𝑐𝑜𝑠𝜓 + Ω2 𝛾 𝜇2 16 𝑏1 𝑐𝑜𝑠3𝜓 Rearranging the above expression in terms of free, sine, cosine terms etc.. ≡ ( 𝛾 8 Ω2 2𝜇 3 𝑎1 + Ω2 𝑎0 − Ω2 𝛾 𝜇 12 𝑎1) + (𝑏1Ω2 + 𝛾 8 Ω2 𝑎1 − Ω2 𝑏1 − Ω2 𝛾 𝜇2 16 𝑎1) 𝑠𝑖𝑛𝜓 + (𝑎1Ω2 − 𝛾 8 Ω2 𝑏1 − Ω2 𝑎1 + Ω2 𝛾 𝜇 6 𝑎0 − Ω2 𝛾 𝜇2 16 𝑏1) 𝑐𝑜𝑠𝜓 + ⋯ 𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 ℎ𝑖𝑔ℎ𝑒𝑟 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠 Comparing free terms with the RHS free term of eq.05 ( 𝛾 8 Ω2 2𝜇 3 𝑎1 + Ω2 𝑎0 − Ω2 𝛾 𝜇 12 𝑎1) = 𝜸Ω 𝟐 𝟏 𝟖 𝜽(𝟏 + 𝝁 𝟐) − 𝜸Ω 𝟐 𝟏 𝟔 (𝝀 𝒄 + 𝝀𝒊) Or 𝒂 𝟎 = 𝜸 𝟏 𝟖 [𝜽(𝟏 + 𝝁 𝟐) − 𝟒 𝟑 (𝝀 𝒄 + 𝝀𝒊)] Comparing sine terms with the RHS sine term of eq.05 (𝑏1Ω2 + 𝛾 8 Ω2 𝑎1 − Ω2 𝑏1 − Ω2 𝛾 𝜇2 16 𝑎1) = 𝛾Ω2 1 8 ( 8 3 𝜃𝜇 − 2𝜇 (𝜆 𝑐 + 𝜆𝑖)) − 2𝑞Ω 𝛾 8 Ω2 𝑎1 (1 − 𝜇2 2 ) = 𝛾Ω2 1 8 ( 8 3 𝜃𝜇 − 2𝜇 (𝜆 𝑐 + 𝜆𝑖)) − 2𝑞Ω Or 𝒂 𝟏 = ( 𝟖 𝟑 𝜽𝝁− 𝟐𝝁 (𝝀 𝒄+𝝀 𝒊))− 𝟏𝟔𝒒 𝜸Ω (𝟏− 𝝁 𝟐 𝟐 ) Comparing cosine terms with the RHS cosine term of eq.05 (𝑎1Ω2 − 𝛾 8 Ω2 𝑏1 − Ω2 𝑎1 + Ω2 𝛾 𝜇 6 𝑎0 − Ω2 𝛾 𝜇2 16 𝑏1) = 𝛾Ω 1 8 𝑞 ( 1 8 𝑏1 + 𝜇2 16 𝑏1) = − 𝑞 Ω 1 8 + 𝜇 6 𝑎0 Or 𝒃 𝟏 = − 𝒒 Ω + 𝟒 𝝁 𝟑 𝒂 𝟎 (𝟏+ 𝝁 𝟐 𝟐 )