Anúncio

# Let T-V rightarrow W be a linear transformation- and let v1- v2- ----.docx

darlened3
4 de Feb de 2023
Próximos SlideShares
Let V and W be vector spaces and T- V rightarrow a one-to-one linear t.docx
Carregando em ... 3
1 de 1
Anúncio

### Let T-V rightarrow W be a linear transformation- and let v1- v2- ----.docx

1. Let T:V rightarrow W be a linear transformation, and let v1, v2, ..., vk denote vectors in V. If {T(v1), ..., T(vk)} is independent, show that {v1, ..., vk} is independent. If {v1, v2, ... ,vk} spans V, show that {T(v1), T(v2), ... ,T(vk)} spans im T. Solution a) Suppose the v i 's were dependent. Then there are some (not all zero constants) such that c 1 v 1 +c 2 v 2 +...+c k v k =0 But since T is a linear transformation T(0)=0 hence 0 = T(c 1 v 1 +c 2 v 2 +...+c k v k ) = c 1 T(v 1 )+c 2 T(v 2 )+...+c k T(v k ) . But since the c i 's are not all zero, this means that T(v i ) are linearly dependent. (contradiction) Su the vi's must all be independent. b) let w be any vector in im T. Then there must be some vector v such that w=Tv. But since v i spans V, there are some constants such that c 1 v 1 +c 2 v 2 +...+c k v k =v. therefore w=Tv=c 1 T(v 1 )+c 2 T(v 2 )+...+c k T(v k ). Therefore T(v i ) span im T.
Anúncio