SlideShare uma empresa Scribd logo
1 de 53
Baixar para ler offline
Mathematics
Sixth grade
2021 - 2022
By
Dr. Anas Dheyab Khalaf
August 2021
Complex numbers Dr. Anas D. Khalaf
2
Chapter one
Complex numbers
Complex numbers Dr. Anas D. Khalaf
3
Contents
Preface 4
1. Introduction ………………………………....... 5
2. Mathematical Operations on complex numbers …………………..……. 8
2.1 The addition and subtraction operations ………………………..... 8
2.2 The multiplication operation ………………………….... 9
3. The conjugate of a complex number (complex conjugate) ……….… 11
4. The square root of complex number ……………………………. 22
5. Solving the equation in ℂ …………………….. 25
6. The cube roots number of integer one ……………….……... 41
7. Geometric Representation of Complex Numbers …………….….……. 39
8. Polar form of complex number ………….……….. 43
9. De Moivre’s Theorem ………………….. 46
Complex numbers Dr. Anas D. Khalaf
4
preface
These lecture notes form the material to the elementary course on chapter one of
mathematics book: Complex numbers for students in sixth grade oh high school. The
purpose of these lecture notes is to introduce and analyse the complex numbers in
an easiest way, and to make it more clear we provide lots of examples, remarks,
tables, and figures, and explain the solutions in details, moreover we give several
exercises for the readers as a homework.
Finally, I wish to express my thank to high-school students for the efforts that
they do to understand mathematics well.
Anas Dheyab Khalaf
General Directorate of Education in Saladin, Ministry of education, Saladin,34011, Iraq
August 2021
Complex numbers Dr. Anas D. Khalaf
5
1. Introduction
If we want to solve the equation 𝑥2
+ 1 = 0, then its solution will be:
𝑥2
+ 1 = 0 ⇒ 𝑥2
= −1,
⇒ 𝑥 = ∓√−1,
It is clearly that we cannot find a real number that its square is -1, therefore there is
an impressing need to introduce new type of numbers which is Complex numbers,
we will introduce the symbol (𝒊 = √−𝟏), which we call the imaginary part of the
complex number.
Thus, we have
𝑖2
= 𝑖. 𝑖 = √−1. √−1 = −1,
𝑖3
= 𝑖2
. 𝑖 = −1. 𝑖 = −𝑖,
𝑖4
= 𝑖2
. 𝑖2
= −1. −1 = 1,
𝑖5
= 𝑖3
. 𝑖2
= −𝑖. −1 = 𝑖,
Example 1.1: write the following expression in a simpler way;
1) 𝑖6
= 𝑖2
. 𝑖2
. 𝑖2
= −1. −1. −1 = −1, 𝒐𝒓 𝒊𝟔
= 𝒊𝟐
. 𝒊𝟒
= −𝟏(𝟏) = −𝟏
2) 𝑖8
= 𝑖2
. 𝑖2
. 𝑖2
. 𝑖2
= −1. −1. −1. −1 = 1, 𝒐𝒓 𝒊𝟖
= 𝒊𝟒
. 𝒊𝟒
= 𝟏. 𝟏 = 𝟏
3) 𝑖16
= (𝑖4
)4
= (1)4
= 1
4) 𝑖17
= (𝑖4
)4
. 𝑖 = (1)4
. 𝑖 = 𝑖
5) 𝑖58
= (𝑖4
)14
. 𝑖2
= (1)14
. (−1) = −1
6) 𝑖12𝑛+93
= (𝑖4
)3𝑛
. 𝑖93
= (1)3𝑛
. (𝑖4)32
. 𝑖 = 𝑖
7) 𝑖−13
= 𝑖−13
. 1 = 𝑖−13
. (𝑖4)4
= 𝑖16−13
= 𝑖3
= −𝑖
8) 𝑖−26
= 𝑖−26
. 1 = 𝑖−26
. (𝑖4)7
= 𝑖28−26
= 𝑖2
= −1
Remark 1.1: we can use (i) to describe the square root for any real number. In
general, we have
6=4+2
58=56+2
= 4(14)+2
Complex numbers Dr. Anas D. Khalaf
6
√−𝑏2 = √𝑏2. √−1 = 𝑏𝑖, ∀𝑏 ≥ 0 .
Example 1.2: Use (i) to write the following square roots:
1) √−16 = √16. √−1 = 4𝑖
2) √−25 = √25. √−1 = 5𝑖
3) √−12 = √12. √−1 = 2√3 𝑖
 The (standard) formula of complex number
The complex number represents a compensation of real part and imaginary part, such
that
𝑪 = 𝒂 + 𝒃𝒊,
Where a stands for the real part of C, while b is the imaginary part of C. Moreover,
C can be written as (a,b).
Example 1.3: Use the standard formula of complex number to write the
following numbers:
a) −5 = −5 + 0𝑖
b) √−100 = √100. √−1 = 10𝑖 = 0 + 10𝑖
c) – 1 − √−3 = −1 − √3𝑖
d)
1+√−25
4
=
1
4
+
5
4
𝑖
e) 𝑖999
= (𝑖4
)249
. 𝑖2
. 𝑖 = 1. −1. 𝑖 = 0 − 𝑖
f) 𝑖4𝑛+1
= (𝑖4
)𝑛
. 𝑖 = 1. 𝑖 = 0 + 𝑖
Definition 1.1: we say that two complex numbers 𝑐1 = 𝑎1 + 𝑏1𝑖,
𝑐2 = 𝑎2 + 𝑏2𝑖 are equal if their real and imaginary parts are equal, that
is
𝒄𝟏 = 𝒄𝟐 ⇔ 𝒂𝟏 = 𝒂𝟐, 𝒃𝟏 = 𝒃𝟐
Complex numbers Dr. Anas D. Khalaf
7
Example 1.4: Find the real values of x and y that satisfy the following
equation
a) 2𝑥 − 1 + 2𝑖 = 1 + (𝑦 + 1)𝑖
Sol/
2𝑥 − 1 = 1 ⟹ 2𝑥 = 1 + 1 ⟹ 2𝑥 = 2
∴ 𝑥 = 1
2 = 𝑦 + 1 ⟹ 𝑦 = 2 − 1
∴ 𝑦 = 1
b) (2𝑦 + 1) − (2𝑥 − 1)𝑖 = −8 + 3𝑖
Sol/
2𝑦 + 1 = −8 ⟹ 2𝑦 = −8 − 1 ⟹ 2𝑦 = −9
∴ 𝑦 =
−9
2
−2𝑥 + 1 = 3 ⟹ −2𝑥 = 3 − 1 ⟹ 2𝑥 = −2
∴ 𝑥 = −1
2. Mathematical Operations on complex numbers
2.1 The addition and subtraction operations
Definition 2.1: let 𝑐1 = 𝑎1 + 𝑏1𝑖, 𝑐2 = 𝑎2 + 𝑏2𝑖 be two complex
numbers, then
𝑐1 + 𝑐2 = (𝑎1 + 𝑎2)+(𝑏1 + 𝑏2)𝑖.
Example 2.1:
a) If we have 3+4√2𝑖 and 5-2√2𝑖, then
R R
I I
R
I
R I R I
R
I
Complex numbers Dr. Anas D. Khalaf
8
(3+4√2𝑖 )+ (5-2√2𝑖 ) = (3+5)+(4√2 −2√2)𝑖
=8+2√2𝑖
b) If we have 3 and 2-5𝑖, then
(3+2) + (0-5)𝑖 = 5-5𝑖
c) 1 − 𝑖, 3𝑖
1-𝑖 + 3𝑖 = (1 + 0) + (−1 + 3)𝑖 = 1 + 2𝑖.
Remark 2.1: for the subtraction of complex number, we can use similar
method of addition.
Example 2.2: calculate the following
(7 − 13𝑖) − (9 + 4𝑖) =7 − 13𝑖 − 9 − 4𝑖 = (7 − 9) − (13 − 4)𝑖
=−2 − 17𝑖
Example 2.3: solve the following equation (2 − 4𝑖) + 𝑥 = −5 + 𝑖
𝑥 = −5 + 𝑖 − 2 + 4𝑖 ⟹ 𝑥 = (−5 − 2) + (1 + 4)𝑖
∴ 𝑥 = −7 + 5𝑖
2.2 The multiplication operation
Definition 2.2: let 𝑐1 = 𝑎1 + 𝑏1𝑖, 𝑐2 = 𝑎2 + 𝑏2𝑖 be two complex
numbers, then
𝑐1. 𝑐2 = (𝑎1 + 𝑏1𝑖)(𝑎2 + 𝑏2𝑖)
= 𝑎1𝑎2 + 𝑎1𝑏2𝑖 + 𝑏1𝑎2𝑖 + 𝑏1𝑏2𝑖2
= (𝑎1𝑎2 − 𝑏1𝑏2) + (𝑎1𝑏2 + 𝑏1𝑎2)𝑖,
where 𝑖2
= −1.
Complex numbers Dr. Anas D. Khalaf
9
Example 2.4: find the multiplications of the following numbers
a) (2 − 3𝑖)(3 − 5𝑖)
(2 − 3𝑖)(3 − 5𝑖) = 6 − 10𝑖 − 9𝑖 + 15𝑖2
= 6 − 15 − 19𝑖
= −9 − 19𝑖
b) (2 + 𝑖)(3 + 6𝑖)
(2 + 𝑖)(3 + 6𝑖) = 6 + 12𝑖 + 3𝑖 + 6𝑖2
= 6 − 6 + 15𝑖
= 0 + 15𝑖 = 15𝑖
c) (3 + 4𝑖)2
(3 + 4𝑖)2
= 9 + 24𝑖 + 16𝑖2
= 9 − 16 + 24𝑖
= −7 + 24𝑖
d) −
5
2
(4 + 3𝑖)
−
5
2
(4 + 3𝑖) = −
5
2
4 −
5
2
3𝑖 = −10 −
15
2
𝑖
e) (1 + 𝑖)4
− (1 − 𝑖)4
(1 + 𝑖)4
− (1 − 𝑖)4
= ((1 + 𝑖)2
)2
− ((1 − 𝑖)2
)2
= (1 + 2𝑖 + 𝑖2
)2
− (1 − 2𝑖 + 𝑖2
)2
= (1 − 1 + 2𝑖)2
− (1 − 1 − 2𝑖)2
Complex numbers Dr. Anas D. Khalaf
10
= (2𝑖)2
− (2𝑖)2
= 4𝑖2
− 4𝑖2
= −4 + 4 = 0 + 0𝑖
3. The conjugate of a complex number (complex conjugate)
Definition 3.1: let 𝑐 = 𝑎 + 𝑏𝑖 be a complex number, then the complex
conjugate of 𝑐 is defined by
𝑐̅ = 𝑎 − 𝑏𝑖, ∀𝑎, 𝑏 ∈ ℝ.
Remark 3.1: The properties of complex conjugate
 
 
1 2 1 2
1 2 1 2
2 2
1 1
2
2 2
1)
2)
3)
4)
5)( ) , 0.
c c c c
c c c c
c c
if c a bi c c a b
c c
c
c c
  
  

      
 
Complex numbers Dr. Anas D. Khalaf
11
Example 3.1: if 1 2
1 , 3 2
c i c i
    , prove that
 
 
1 2 1 2
1 2 1 2
1 1
2 2
1)
2)
3)
c c c c
c c c c
c c
c c
  
  
 

 
 
Sol/
1-
 
     
1 2
1 2
1 2
. . .:
1 3 2 4 4
. . .: (1 ) (3 2 ) 1 3 2
4
. . . .
L H S c c
c c i i i i
R H S c c i i i i
i
L H S R H S

        
        
 
 
Complex numbers Dr. Anas D. Khalaf
12
2-
 
   
   
1 2
2
1 2
2
. . .:
(1 )(3 2 ) 3 2 3 2
3 2 5 5
. . .:
(1 ) (3 2 ) (1 )(3 2 )
3 2 3 2 3 2 5
. . . .
L H S c c
i i i i i
i i i
R H S c c
i i i i
i i i i i
L H S R H S

      
      

      
        
 
3-
1
2
2 2
1
2
2 2
. . .:
3 2 3 2 1 3 3 2 2
1 1 1 1 1
1 5 1 5 1 5
2 2 2 2 2
. . .:
3 2 3 2 3 2 1 3 3 2 2
1 1 1 1 1
1
1 5 1 5
2 2 2
. . . .
c
L H S
c
i i i i i
i i i
i
i i
c
R H S
c
i i i i i i
i i i
i
i
i
L H S R H S
 
 
 
     
     
   
     
   
     

   
    
   
   
      
    
   


  
 
Complex numbers Dr. Anas D. Khalaf
13
Remark 3.2: the multiplicative inverse of c is
1
c .
Example 3.2: find the multiplicative inverse of 2 2
c i
  and put it in
the standard formula of complex number.
Sol/
2 2
1 1 1 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 1 1
8 8 8 4 4
i i
c i i i
i i
i
 
   
   

    
Example 3.3: put the following numbers in the standard formula of
complex number:
1)
2−𝑖
3+4𝑖
=
2 − 𝑖
3 + 4𝑖
.
3 − 4𝑖
3 − 4𝑖
=
6 − 8𝑖 − 3𝑖 − 4
9 + 16
=
2 − 11𝑖
25
=
2
25
−
11
25
𝑖
2)
12+𝑖
𝑖
=
12 + 𝑖
𝑖
.
−𝑖
−𝑖
=
−12𝑖 − 𝑖2
1
=
1 − 12𝑖
1
= 1 − 12𝑖
3)
𝑖
2+3𝑖
=
𝑖
2 + 3𝑖
×
2 − 3𝑖
2 − 3𝑖
=
2𝑖 + 3
4 + 9
=
3 + 2𝑖
13
=
3
13
+
2
13
𝑖
4) (
3+𝑖
1+𝑖
)
3
Complex numbers Dr. Anas D. Khalaf
14
= (
3 + 𝑖
1 + 𝑖
×
1 − 𝑖
1 − 𝑖
)
3
= (
3 − 3𝑖 + 𝑖 − 𝑖2
1 + 1
)
3
= (
4 − 2𝑖
2
)
3
= (
4
2
−
2𝑖
2
)
3
= (2 − 𝑖)3
= (2 − 𝑖)2
. (2 − 𝑖) = (4 − 4𝑖 − 1)(2 − 𝑖)
= (3 − 4𝑖)(2 − 𝑖) = 6 − 3𝑖 − 8𝑖 − 4 = 2 − 11𝑖
5)
2+3𝑖
1−𝑖
×
1+4𝑖
4+𝑖
=
2 + 8𝑖 + 3𝑖 − 12
4 + 𝑖 − 4𝑖 + 1
=
−10 + 11𝑖
5 − 3𝑖
=
−10 + 11𝑖
5 − 3𝑖
×
5 + 3𝑖
5 + 3𝑖
=
−50 − 30𝑖 + 55𝑖 − 33
52 + 32
==
−83 + 25𝑖
34
=
−83
34
+
25
34
𝑖
6) (1 + 𝑖)3
+ (1 − 𝑖)3
= (1 + 𝑖)2(1 + 𝑖) + (1 − 𝑖)2(1 − 𝑖)
= (1 + 2𝑖 − 1)(1 + 𝑖) + (1 − 2𝑖 + 1)(1 − 𝑖)
= (1 + 2𝑖 − 1 + 𝑖 − 2 − 𝑖) + (1 − 2𝑖 + 1 − 𝑖 − 2 − 𝑖)
= 2𝑖 − 2 − 2𝑖 − 2 = −4 + 0𝑖
Example 3.4: prove that:
1)
1
(2−𝑖)2 −
1
(2+𝑖)2 =
8
25
𝑖.
Complex numbers Dr. Anas D. Khalaf
15
L.H.S:
1
(2−𝑖)2 −
1
(2+𝑖)2 =
1
4−4𝑖−1
−
1
4+4𝑖−1
=
1
3−4𝑖
×
3+4𝑖
3+4𝑖
−
1
3+4𝑖
×
3−4𝑖
3−4𝑖
=
3 + 4𝑖
9 + 16
−
3 − 4𝑖
9 + 16
=
3 + 4𝑖 − 3 + 4𝑖
25
=
8
25
𝑖
Hence, proved.
2) (1 − 𝑖)(1 − 𝑖2)(1 − 𝑖3) = 4
L.H.S: (1 − 𝑖)(1 − 𝑖2)(1 − 𝑖3) = (1 − 𝑖)(1 − (−1))(1 − 𝑖2
. 𝑖)
= 2(1 − 𝑖)(1 + 𝑖) = 2(1 + 𝑖 − 𝑖 − 𝑖2)
= 2(1 − (−1)) = 2.2 = 4 = R.H.S
Remark 3.3: the expression 𝑥2
+ 𝑦2
can be analyzed into product of two
factors as follows:
𝑥2
+ 𝑦2
= 𝑥2
− 𝑦2
𝑖2
= (𝑥 − 𝑦𝑖)(𝑥 + 𝑦𝑖)
Example 3.5: rewrite each of the following as product of two factors of
the form 𝑎 + 𝑏𝑖
a) 𝑥2
+ 𝑦2
= 𝑥2
− 𝑦2
𝑖2
= (𝑥 − 𝑦𝑖)(𝑥 + 𝑦𝑖)
b) 9𝑥2
+ 49𝑦2
= 9𝑥2
− 49𝑦2
𝑖2
= (3𝑥 − 7𝑦𝑖)(3𝑥 + 7𝑦𝑖)
c) 85 = 81 + 4 = 81 − 4𝑖2
= (9 − 2𝑖)(9 + 2𝑖)
d) 125 = 100 + 25 = 100 − 25𝑖2
= (10 − 5𝑖)(10 + 5𝑖)
Complex numbers Dr. Anas D. Khalaf
16
Example 3.6: find the real values of 𝑥, 𝑦 that satisfy
1) 𝑦 + 5𝑖 = (2𝑥 + 𝑖)(𝑥 + 2𝑖).
Sol/
𝑦 + 5𝑖 = 2𝑥2
+ 4𝑥𝑖 + 𝑥𝑖 − 2 ⇒ 𝑦 + 5𝑖 = 2𝑥2
− 2 + 5𝑥𝑖
𝑦 = 2𝑥2
− 2 … (1) and 5 = 5𝑥 …. (2),
From equation (2), we have
𝑥 =
5
5
= 1, then using (1), we get
𝑦 = 2(1)2
− 2 = 0.
2) 𝟖𝒊 = (𝒙 + 𝟐𝒊)(𝒚 + 𝟐𝒊) + 𝟏
8𝑖 = 𝑥𝑦 + 2𝑥𝑖 + 2𝑦𝑖 − 4 + 1 ⇒ 8𝑖 = 𝑥𝑦 − 3 + 2(𝑥 + 𝑦)𝑖
⇒ 𝑥𝑦 − 3 = 0 … (1), (𝑥 + 𝑦) = 4 … (2)
From Eq. (1), we have
𝑥 =
3
𝑦
, and by Eq. (2), yields
[(
3
𝑦
+ 𝑦) = 4] × 𝑦 ⇒ 3 + 𝑦2
= 4𝑦 ⇒ 𝑦2
− 4𝑦 + 3 = 0
(𝑦 − 3)(𝑦 − 1) = 0
Then, either 𝑦 = 3 ⇒ 𝑥 =
3
3
= 1, or 𝑦 = 1 ⇒ 𝑥 =
3
1
= 3.
Complex numbers Dr. Anas D. Khalaf
17
3) (
𝟏−𝒊
𝟏+𝒊
) + (𝒙 + 𝒚𝒊) = (𝟏 + 𝟐𝒊)𝟐
.
⇒ (
1 − 𝑖
1 + 𝑖
×
1 − 𝑖
1 − 𝑖
) + (𝑥 + 𝑦𝑖) = 1 + 4𝑖 − 4
⇒ (
1 − 𝑖 − 𝑖 + 𝑖2
12 + 𝑖2
) + (𝑥 + 𝑦𝑖) = −3 + 4𝑖
⇒ (
−2𝑖
2
) + (𝑥 + 𝑦𝑖) = −3 + 4𝑖 ⇒ 𝑥 + 𝑦𝑖 − 𝑖 = −3 + 4𝑖
⇒ 𝑥 = −3, and 𝑦 − 1 = 4 ⇒ 𝑦 = 5.
4)
𝟐−𝒊
𝟏+𝒊
𝒙 +
𝟑−𝒊
𝟐+𝒊
𝒚 =
𝟏
𝒊
.
(
2 − 𝑖
1 + 𝑖
×
1 − 𝑖
1 − 𝑖
) 𝑥 + (
3 − 𝑖
2 + 𝑖
×
2 − 𝑖
2 − 𝑖
) 𝑦 =
1
𝑖
×
−𝑖
−𝑖
⇒ (
2 − 2𝑖 − 𝑖 − 1
1 + 1
) 𝑥 + (
6 − 3𝑖 − 2𝑖 − 1
4 + 1
) 𝑦 =
−𝑖
1
⇒ (
1 − 3𝑖
2
) 𝑥 + (
5 − 5𝑖
5
) 𝑦 = −𝑖 ⇒ (
1 − 3𝑖
2
) 𝑥 + (1 − 𝑖)𝑦 = −𝑖
⇒
1
2
𝑥 −
3
2
𝑥𝑖 + 𝑦 − 𝑦𝑖 = −𝑖
Thus,
1
2
𝑥 + 𝑦 = 0 … (1) and −
3
2
𝑥 − 𝑦 = −1 … (2), it follows
1
2
𝑥 + 𝑦 = 0 … (1)
−
3
2
𝑥 − 𝑦 = −1 … (2)
−
2
2
𝑥 = −1 ⇒ −𝑥 = −1 ⇒ 𝑥 = 1, and using Eq. (1), we get
Complex numbers Dr. Anas D. Khalaf
18
1
2
(1) + 𝑦 = 0 ⇒ 𝑦 = −
1
2
.
Example 3.7: let
𝑥−𝑦𝑖
1+5𝑖
,
3−2𝑖
𝑖
be conjugate numbers, then find the values of
𝑥, 𝑦 ∈ ℝ.
Sol/ since the numbers are conjugate to each other, then
(
𝑥 − 𝑦𝑖
1 + 5𝑖
)
̅̅̅̅̅̅̅̅̅̅̅
=
3 − 2𝑖
𝑖
⇒
𝑥 + 𝑦𝑖
1 − 5𝑖
=
3 − 2𝑖
𝑖
because we have (
𝑐1
𝑐2
̅) =
𝑐1
𝑐2
̅̅̅
̅.
⇒ (𝑥 + 𝑦𝑖)𝑖 = (1 − 5𝑖)(3 − 2𝑖) ⇒ 𝑥𝑖 − 𝑦 = 3 − 2𝑖 − 15𝑖 − 10
⇒ 𝑥𝑖 − 𝑦 = −7 − 17𝑖
⇒ 𝑥 = −17, 𝑦 = 7
Example 3.8: find the values of 𝑥, 𝑦 ∈ ℝ that satisfy
𝑦
1+𝑖
=
𝑥2+4
𝑥+2𝑖
.
Sol/
𝑦
1 + 𝑖
=
𝑥2
+ 4
𝑥 + 2𝑖
⇒
𝑦
1 + 𝑖
=
𝑥2
− 4𝑖2
𝑥 + 2𝑖
⇒
𝑦
1 + 𝑖
=
(𝑥 − 2𝑖)(𝑥 + 2𝑖)
𝑥 + 2𝑖
⇒
𝑦
1 + 𝑖
= 𝑥 − 2𝑖 ⇒ 𝑦 = (𝑥 − 2𝑖)(1 + 𝑖)
R R
I I
Complex numbers Dr. Anas D. Khalaf
19
⇒ 𝑦 = 𝑥 + 𝑥𝑖 − 2𝑖 + 2 ⇒ 𝑦 = 𝑥 + 2, and
𝑥 − 2 = 0 ⇒ 𝑥 = 2, thus
𝑦 = 2 + 2 = 4.
R
R I
I
R
Complex numbers Dr. Anas D. Khalaf
20
Exercises (1-1)
1) Rewrite the following numbers and expressions in a simplest way, use
the standard formula for complex number:
a) 𝑖5
b) 𝑖124
c) 𝑖−7
d) 𝑖−15
e) √−25 f) 𝑖(1 + 𝑖)
g) (2 + 3𝑖)2
+ (12 + 2𝑖) h) (1 + 𝑖)2
+ (1 − 𝑖)2
i)
1+𝑖
1−𝑖
j)
1+2𝑖
−2+𝑖
k)
3+4𝑖
3−4𝑖
2) Rewrite each of the following as product of two factors of the
form 𝑎 + 𝑏𝑖
a) 41 b) 29
3) Find the values of 𝑥, 𝑦 ∈ ℝ that satisfy (
1−𝑖
1+𝑖
) + (𝑥 + 𝑦𝑖) = (1 + 2𝑖)2
.
4) If
3+𝑖
2−𝑖
,
6
𝑥+𝑦𝑖
are complex conjugate, then find the values of 𝑥, 𝑦 ∈ ℝ .
Complex numbers Dr. Anas D. Khalaf
21
4. The square root of complex number
To find the square-roots of complex number c we should first rewrite it in the
standard formula i.e. 𝑐 = 𝑎 + 𝑏𝑖, then suppose that (𝑥 + 𝑦𝑖)2
= 𝑎 + 𝑏𝑖, and then
solve the equation by taking the real (complex) part of left hand with the real
(complex) part of right hand.
Example 4.1: find the square roots of
1) 𝑐 = 8 + 6𝑖
Sol/
(𝑥 + 𝑦𝑖)2
= 8 + 6𝑖 ⇒ 𝑥2
+ 2𝑥𝑦𝑖 − 𝑦2
= 8 + 6𝑖
⇒ 𝑥2
− 𝑦2
= 8 … (1), and
2𝑥𝑦 = 6 ⇒ 𝑦 =
6
2𝑥
=
3
𝑥
… (2)
By (1) and (2), we have
𝑥2
− (
3
𝑥
)
2
= 8 ⇒ [𝑥2
−
9
𝑥2
= 8] × 𝑥2
𝑥4
− 9 = 8𝑥2
⇒ 𝑥4
− 8𝑥2
− 9 = 0 ⇒ (𝑥2
− 9)(𝑥2
+ 1) = 0, either
(𝑥2
− 9) = 0 ⇒ 𝑥2
= 9 ⇒ 𝑥 = ∓3 or (𝑥2
+ 1) = 0 ⇒ 𝑥2
= −1 we ignore this
value because 𝑥 is real number.
Complex numbers Dr. Anas D. Khalaf
22
Now , by substituting the values of 𝑥 into Eq. (2), we get
𝑦 =
3
3
= 1 or 𝑦 =
3
−3
= −1
∴ 𝑐1 = 3 + 𝑖, 𝑐2 = −3 − 𝑖
Hence, the square roots of c are 3 + 𝑖 and −3 − 𝑖 .
2) 𝒄 = −𝟔𝒊
Sol/
(𝑥 + 𝑦𝑖)2
= 0 − 6𝑖 ⇒ 𝑥2
+ 2𝑥𝑦𝑖 − 𝑦2
= 0 − 6𝑖
⇒ 𝑥2
− 𝑦2
= 0 … (1), and
2𝑥𝑦 = −6 ⇒ 𝑦 =
−6
2𝑥
=
−3
𝑥
… (2)
By (1) and (2), we have
𝑥2
− (
−3
𝑥
)
2
= 0 ⇒ [𝑥2
−
9
𝑥2
= 0] × 𝑥2
𝑥4
− 9 = 0 ⇒ (𝑥2
− 3)(𝑥2
+ 3) = 0, either (𝑥2
− 3) = 0 ⇒ 𝑥2
= 3 ⇒
𝑥 = ∓√3 or (𝑥2
+ 3) = 0 ⇒ 𝑥2
= −3 we ignore this value because 𝑥 is real
number.
Now , by substituting the values of 𝑥 into Eq. (2), we get
Complex numbers Dr. Anas D. Khalaf
23
𝑦 =
3
√3
= √3 or 𝑦 =
3
−√3
= −√3
∴ 𝑐1 = √3 + √3𝑖, 𝑐2 = −√3 − √3𝑖
Hence, the square roots of c are √3 + √3𝑖 and −√3 − √3𝑖.
3)
𝟒
𝟏−√𝟑𝒊
Sol/
4
1 − √3𝑖
×
1 + √3𝑖
1 + √3𝑖
=
4 + 4√3𝑖
12 + (√3)
2 =
4 + 4√3𝑖
4
= 1 + √3𝑖
(𝑥 + 𝑦𝑖)2
= 1 + √3𝑖 ⇒ 𝑥2
+ 2𝑥𝑦𝑖 − 𝑦2
= 1 + √3𝑖
⇒ 𝑥2
− 𝑦2
= 1 … (1), and
2𝑥𝑦 = √3 ⇒ 𝑦 =
√3
2𝑥
… (2)
By (1) and (2), we have
𝑥2
− (
√3
2𝑥
)
2
= 1 ⇒ [𝑥2
−
3
4𝑥2
= 1] × 4𝑥2
Complex numbers Dr. Anas D. Khalaf
24
4𝑥4
− 3 = 4𝑥2
⇒ 4𝑥4
− 4𝑥2
− 3 = 0 ⇒ (2𝑥2
− 3)(2𝑥2
+ 1) = 0, either
(2𝑥2
− 3) = 0 ⇒ 2𝑥2
= 3 ⇒ 𝑥 = ∓√
3
2
or (𝑥2
+ 1) = 0 ⇒ 𝑥2
= −1 we ignore
this value because 𝑥 is real number.
Now , by substituting the values of 𝑥 into Eq. (2), we get
𝑦 =
√3
√2 . √2(−
√3
√2
)
=
1
√2
or 𝑦 =
√3
√2 . √2(
−√3
√2
)
=
−1
√2
Hence, the square roots of c are ±(√
3
2
+
1
√2
𝑖).
5. Solving the equation in ℂ
We know that the equation 𝑎𝑥2
+ 𝑏𝑥 + 𝑐 = 0, where 𝑎 ≠ 0; 𝑎, 𝑏, 𝑐 ∈ ℝ, has two
solutions that can be found by using the Law: 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐
2𝑎
, and we also know
that if the charecrstic expression 𝑏2
− 4𝑎𝑐 is negative then the equation 𝑎𝑥2
+
𝑏𝑥 + 𝑐 = 0 dose not have real solutions, but it has two solutions in ℂ.
Example 5.1: solve the following equations in ℂ:
1) 𝑥2
+ 4𝑥 + 5 = 0
Sol/
Complex numbers Dr. Anas D. Khalaf
25
𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎
=
−4 ± √42 − 4(1)(5)
2
⇒ 𝑥 =
−4±√16−20
2
=
−4±√−4
2
=
−4±2𝑖
2
= −2 ± 𝑖
∴ 𝑆 = {−2 − 𝑖, −2 + 𝑖}
2) 𝑧2
= −12
Sol/
𝑧 = ±√−12 = ±√3 × 4𝑖 = ±2√3𝑖
∴ 𝑆 = {−2√3𝑖, 2√3𝑖}, which are conjugate roots.
3) 𝑧2
− 3𝑧 + 3 + 𝑖 = 0
𝑧 =
−𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎
=
3 ± √32 − 4(1)(3 + 𝑖)
2
=
3 ± √9 − 12 − 4𝑖
2
=
3 ± √−3 − 4𝑖
2
to solve this equation, we need to find the roots of −3 − 4𝑖 as follows
(𝑥 + 𝑦𝑖)2
= −3 − 4𝑖 ⇒ 𝑥2
+ 2𝑥𝑦𝑖 − 𝑦2
= −3 − 4𝑖
⇒ 𝑥2
− 𝑦2
= −3 … (1)
⇒ 𝑦 =
−4
2𝑥
=
−2
𝑥
… . . (2)
Complex numbers Dr. Anas D. Khalaf
26
By (1) and (2), we obtain
𝑥2
− (
−2
𝑥
)
2
= −3 ⇒ [𝑥2
−
4
𝑥2
= −3] × 𝑥2
⇒ 𝑥4
− 4 = −3𝑥2
⇒ 𝑥4
+ 3𝑥2
− 4 = 0
⇒ (𝑥2
+ 4)(𝑥2
− 1) = 0
𝑥2
= 1 ⇒ 𝑥 = ±1, then from Eq. (2), we have
𝑦 =
−2
±1
= ±2
Now, going back to the roots of −3 − 4𝑖, we have found that
√−3 − 4𝑖 = ±(1 − 2𝑖)
Thus,
𝑧 =
3 ± (1 − 2𝑖)
2
Neither 𝑧 =
3
2
−
1+2𝑖
2
= 1 + 𝑖 or 𝑧 =
3
2
+
1−2𝑖
2
= 2 − 𝑖.
The roots are not conjugate.
4 ) 𝑧2
+ 2𝑧 + 𝑖(2 − 𝑖) = 0
𝑧2
+ 2𝑧 + 𝑖(2 − 𝑖) = 0 ⇒ 𝑧2
+ 2𝑧 + 2𝑖 + 1 = 0
Complex numbers Dr. Anas D. Khalaf
27
𝑧 =
−𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎
=
−2 ± √22 − 4(1)(2𝑖 + 1)
2
=
−2 ± √4 − 8𝑖 − 4
2
=
−2 ± √−8𝑖
2
To solve this equation, we need to find the roots of −8𝑖 as follows
(𝑥 + 𝑦𝑖)2
= −8𝑖 ⇒ 𝑥2
+ 2𝑥𝑦𝑖 − 𝑦2
= −8𝑖
⇒ 𝑥2
− 𝑦2
= 0 … (1)
⇒ 𝑦 =
−8
2𝑥
=
−4
𝑥
… . . (2)
Using (1) and (2), we obtain
𝑥2
− (
−4
𝑥
)
2
= 0 ⇒ [𝑥2
−
16
𝑥2
= 0] × 𝑥2
⇒ 𝑥4
− 16 = 0
⇒ (𝑥2
− 4)(𝑥2
+ 4) = 0
Hence, 𝑥2
− 4 = 0 ⇒ 𝑥 = ±2, then from Eq. (2), we have
𝑦 =
−4
±2
= ±2
Now, going back to the roots of −8𝑖, we have found that
√−8𝑖 = ±(2 − 2𝑖)
Complex numbers Dr. Anas D. Khalaf
28
Thus,
𝑧 =
−2 ± (2 − 2𝑖)
2
Neither 𝑧 =
−2
2
−
2+2𝑖
2
= −2 + 𝑖 or 𝑧 =
−2
2
+
2−2𝑖
2
= 0 − 𝑖.
Consequently, the roots are not conjugate.
Remark 5.1: we can reformulate the quadratic equation from its roots as follows:
 Write the roots in standard form of complex number.
 Find the sum of roots (𝑐1 + 𝑐2).
 Find the multiplication of the roots (𝑐1 × 𝑐2).
 Apply the following formula 𝑥2
− (𝑐1 + 𝑐2)𝑥 + (𝑐1 × 𝑐2) = 0.
Note that if the factors of an equation are real and one of them is known, then the
other one is its complex conjugate.
Example 5.2: find the quadratic equations that their roots are:
 ±(2 + 2𝑖)
𝑐1 + 𝑐2 = (2 + 2𝑖) + (−2 − 2𝑖) = 2 − 2 + (2 − 2)𝑖 = 0
𝑐1 × 𝑐2 = (2 + 2𝑖) × (−2 − 2𝑖) = −4 − 4𝑖 − 4𝑖 + 4 = −8𝑖
Then the quadratic equation can be given by
𝑥2
− −8𝑖 = 0
Complex numbers Dr. Anas D. Khalaf
29
 𝑀 =
3−𝑖
1+𝑖
, 𝐿 = (3 − 2𝑖)2
𝑀 =
3 − 𝑖
1 + 𝑖
=
3 − 𝑖
1 + 𝑖
×
1 − 𝑖
1 − 𝑖
=
3 − 3𝑖 − 𝑖 − 1
1 + 1
=
2 − 4𝑖
2
= 1 − 2𝑖
𝐿 = (3 − 2𝑖)2
= 9 − 12𝑖 − 4 = 5 − 12𝑖
𝑀 + 𝐿 = (1 − 2𝑖) + (5 − 12𝑖) = (1 + 5) + (−2 − 12)𝑖 = 6 − 14𝑖
𝑀 × 𝐿 = (1 − 2𝑖)(5 − 12𝑖) = 5 − 12𝑖 − 10𝑖 − 24 = −19 − 22𝑖
Then the quadratic equation is
𝑥2
− (6 − 14𝑖)𝑥 + (−19 − 22𝑖) = 0
Example 5.3: write the quadratic equation that has real factors and one of its roots
is 1) 𝐴 = 3 − 4𝑖.
Sol/ since the quadratic equation has real factors and one of its roots is 3 − 4𝑖, then
by remark (5.1 ), the other root is the complex conjugate of 3 − 4𝑖 namely 3 +
4𝑖 ≔ 𝐵.
𝐴 + 𝐵 = (3 − 4𝑖) + (3 + 4𝑖) = 6 + 0𝑖 = 6
𝐴 × 𝐵 = (3 − 4𝑖)(3 + 4𝑖) = 9 + 12𝑖 − 12𝑖 + 16 = 25
Then the quadratic equation is
𝑥2
− 6𝑥 + 25 = 0
Complex numbers Dr. Anas D. Khalaf
30
2 ) 𝑨 =
√𝟐+𝟑𝒊
𝟒
Sol/ since the quadratic equation has real factors and one of its roots is 𝐴 =
√2+3𝑖
4
,
then by remark (5.1), the other root is the complex conjugate of 𝐴 namely
√𝟐−𝟑𝒊
𝟒
≔
𝐵.
𝐴 + 𝐵 = (
√2
4
+
3
4
𝑖) + (
√2
4
−
3
4
𝑖) = (
√2
4
+
√2
4
) + (
3
4
𝑖 −
3
4
𝑖)
=
√2
2
+ 0𝑖 =
1
√2
𝐴 × 𝐵 = (
√2
4
+
3
4
𝑖) (
√2
4
−
3
4
𝑖) =
2
16
−
3√2
16
𝑖 +
3√2
16
𝑖 +
9
16
=
11
16
Then the quadratic equation is
𝑥2
−
1
√2
𝑥 +
11
16
= 0
Example 5.4: Let 3 + 𝑖 be one of the roots of the equation 𝑥2
− 𝑎𝑥 + (5 +
5𝑖) = 0, then what is the value of 𝑎 ?, and what is the other root ?
Sol/ suppose that the other root is denoted by 𝐿, then
𝐿 × (3 + 𝑖) = 5 + 5𝑖 ⇒ 𝐿 =
5 + 5𝑖
3 + 𝑖
⇒ 𝐿 =
5 + 5𝑖
3 + 𝑖
×
3 − 𝑖
3 − 𝑖
Complex numbers Dr. Anas D. Khalaf
31
⇒ 𝐿 =
15 − 5𝑖 + 15𝑖 + 5
9 + 1
=
20 + 10𝑖
10
= 2 + 𝑖
And the summation of the roots is
⇒ 𝑎 = 𝐿 + 𝑀
⇒ 𝒂 = (2 + 𝑖) + (3 + 𝑖) = 5 + 2𝑖
⇒ 𝑎 = 5 + 2𝑖
6. The cube roots number of integer one
Let 𝑧 be one of the cube roots of the integer one, such that
𝑧3
= 1 ⇒ 𝑧3
− 1 = 0 ⇒ (𝑧 − 1)(𝑧2
+ 𝑧 + 1) = 0
Neither 𝑧 = 1 or 𝑧2
+ 𝑧 + 1 = 0, this equation can be solved by the quadratic
formula 𝑧 =
−𝑏±√𝑏2−4𝑎𝑐
2𝑎
as follows:
𝑧 =
−𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎
=
−1 ± √12 − 4(1)(1)
2(1)
=
−1 ± √3𝑖
2
=
−1
2
±
√3
2
𝑖
Then the cube roots of the integer one are: 1, 𝜔 ≔
−1
2
+
√3
2
𝑖, 𝜔2
≔
−1
2
−
√3
2
𝑖. The
sum of these roots is
Complex numbers Dr. Anas D. Khalaf
32
1 + (
−1
2
+
√3
2
𝑖) + (
−1
2
−
√3
2
𝑖) = 0
That is 1 + 𝜔 + 𝜔2
= 0, which gives us the following relations:
 1 + 𝜔 = − 𝜔2
 1 + 𝜔2
= −𝜔
 𝜔 + 𝜔2
= −1
 1 = − 𝜔 − 𝜔2
 𝜔2
= −1 − 𝜔
 𝜔 = −1 − 𝜔2
Moreover, the multiplication of the roots is 1 . 𝜔 . 𝜔2
= 1 ⇒ 𝜔3
= 1, from this
we obtain
𝜔 =
1
𝜔2
, 𝜔2
=
1
𝜔
,
𝜔4
= 𝜔3
. 𝜔 = 1. 𝜔 = 𝜔,
𝜔6
= 𝜔3
. 𝜔3
= 1. 1 = 1,
𝜔−5
=
1
𝜔5
=
1
𝜔3. 𝜔2
=
1
𝜔2
= 𝜔,
𝜔−5
=
1
𝜔5
=
1
𝜔3. 𝜔2
=
1
𝜔2
= 𝜔,
𝜔−8
=
1
𝜔8
=
1
𝜔6. 𝜔2
=
1
𝜔2
= 𝜔.
Complex numbers Dr. Anas D. Khalaf
33
Example 6.1: find the value of the following 𝜔33
, 𝜔25
, 𝜔−58
, 𝜔−325
.
Sol/
𝜔33
= (𝜔3
)10
. 𝜔3
= (1)10
. 13
= 1
𝜔25
= (𝜔3
)8
. 𝜔 = 𝜔
𝜔−58
=
1
𝜔58
=
1
(𝜔3)19. 𝜔
=
1
𝜔
= 𝜔2
𝜔−325
=
1
𝜔325
=
1
(𝜔3)108.𝜔
=
1
𝜔
= 𝜔2
.
Example 6.2: write the following expressions in a simplest way:
1)
1
(1+ 𝜔−32)12
1
(1 + 𝜔−32)12
=
1
(1 + ( 𝜔3)−11. 𝜔)12
=
1
(−𝜔2)12
=
1
(−𝜔2)12
= −
1
(𝜔3)8
= −1
2) (1 + 𝜔2
)−4
(1 + 𝜔2
)−4
= (−𝜔)−4
=
1
(−𝜔)4
=
1
𝜔3.𝜔
= 𝜔2
.
3) 𝜔9𝑛+5
= (𝜔3)3𝑛
. 𝜔5
= (1)3𝑛
. 𝜔3
. 𝜔2
= 𝜔2
Complex numbers Dr. Anas D. Khalaf
34
4) (3𝜔9𝑛
+
5
𝜔5
+
4
𝜔4)
6
(3𝜔9𝑛
+
5
𝜔3
+
4
𝜔4
)
6
= (3𝜔9𝑛
+
5𝜔4
+ 4𝜔5
𝜔5𝜔4
)
6
= (3(𝜔3
)3𝑛
+
5𝜔4
+ 4𝜔5
(𝜔3)3
)
6
= (3 + 5𝜔3
. 𝜔 + 4𝜔3
. 𝜔2)6
= (3(−𝜔 − 𝜔2) + 5𝜔 + 4 𝜔2)6
= (−3𝜔 − 3𝜔2
+ 5𝜔 + 4 𝜔2)6
= (2𝜔 − 3𝜔2
+ 5𝜔 + 4 𝜔2)6
Example 6.3: Prove that:
a) (5 + 3𝜔 + 3𝜔2)2
= −4(2 + 𝜔 + 2𝜔2)3
= 4
Sol/
L.H.S: (5 + 3𝜔 + 3𝜔2)2
= (5 + 3(𝜔 + 𝜔2
))2
= (5 + 3(−1))2
= 22
= 4
R.H.S: −4(2 + 𝜔 + 2𝜔2)3
= −4(2(1 + 𝜔2) + 𝜔)3
= −4(2(−𝜔) + 𝜔)3
= −4(−2𝜔 + 𝜔)3
= −4(−𝜔)3
= −4 . −1(𝜔)3
= 4
b) (
1
2+𝜔
−
1
2+𝜔2)
2
= −
1
3
L.H.S: (
1
2+𝜔
−
1
2+𝜔2)
2
= (
(2+𝜔2)−(2+𝜔)
(2+𝜔2)(2+𝜔)
)
2
= (
2−2+𝜔2−𝜔
4+2𝜔+2𝜔2+𝜔3)
2
= (
𝜔2−𝜔
4+2(𝜔+𝜔2)+1
)
2
= (
−
1
2
−
√3
2
𝑖+
1
2
−
√3
2
𝑖
4−2+1
)
2
= (
−2√3
2
𝑖
3
)
2
= (
−√3𝑖
3
)
2
=
−3
9
= −
1
3
Complex numbers Dr. Anas D. Khalaf
35
c)
𝜔14+𝜔7−1
𝜔10+𝜔5−2
=
2
3
L.H.S:
𝜔14+𝜔7−1
𝜔10+𝜔5−2
=
(𝜔3)4. 𝜔2+(𝜔3)2. 𝜔−1
(𝜔3)3. 𝜔+ 𝜔3. 𝜔2−2
=
𝜔2+ 𝜔−1
𝜔+ 𝜔2−2
=
−1−1
−1−2
=
−2
−3
=
2
3
= L.H.S
d) (1 + 𝜔2
)3
+ (1 + 𝜔)3
= −2
L.H.S: (−𝜔)3
+ (−𝜔2
)3
= −𝜔3
−𝜔6
= −1 − (𝜔3
)2
= −1 − 1 = −2 = R.H.S
Example 6.4: write the quadratic equation that its roots are:
1) 𝑨 = 𝟏 − 𝒊𝝎𝟐
, 𝑩 = 𝟏 − 𝒊𝝎
𝐴 + 𝐵 = (1 − 𝑖𝜔2) + (1 − 𝑖𝜔) = 2 − (𝜔 + 𝜔2)𝑖 = 2 + 𝑖
𝐴 . 𝐵 = (1 − 𝑖𝜔2)(1 − 𝑖𝜔) = 1 − 𝑖𝜔 −𝑖𝜔2
+ 𝜔3
𝑖2
= 1 − 𝑖𝜔 −𝑖𝜔2
− 1
= −(𝜔 + 𝜔2)𝑖 = 𝑖
Then the quadratic equation is
𝑥2
− (2 + 𝑖)𝑥 + 𝑖 = 0
2) 𝑨 =
𝟐
𝟏−𝝎
, 𝑩 =
𝟐
𝟏−𝝎𝟐
𝐴 + 𝐵 =
2
1 − 𝜔
+
2
1 − 𝜔2
=
2(1 − 𝜔2) + 2(1 − 𝜔)
1 − 𝜔2 − 𝜔 + 𝜔3
=
2−2𝜔2
+ 2 − 2𝜔
1 − 𝜔2 − 𝜔 + 1
=
4−2(𝜔2
+ 𝜔)
2 − (𝜔2 + 𝜔)
=
6
2 − (−1)
=
6
3
= 2
Complex numbers Dr. Anas D. Khalaf
36
𝐴 . 𝐵 = (
2
1 − 𝜔
) (
2
1 − 𝜔2
) =
4
1 − 𝜔2 − 𝜔 + 𝜔3
=
4
3
Then, the quadratic equation is
𝑥2
− 2𝑥 +
4
3
= 0
3) 𝑨 =
𝝎
𝟐−𝝎𝟐
, 𝑩 =
𝝎𝟐
𝟐−𝝎
𝐴 + 𝐵 =
𝜔
2 − 𝜔2
+
𝜔2
2 − 𝜔
=
𝜔(2 − 𝜔) + 𝜔2
(2 − 𝜔)
(2 − 𝜔2)(2 − 𝜔)
=
2𝜔 − 𝜔2
+ 2𝜔2
− 𝜔4
4 − 2𝜔 − 2𝜔2 + 𝜔3
=
𝜔2
+ 2𝜔 − 𝜔3
. 𝜔
5 − 2(𝜔2 + 𝜔)
=
𝜔2
+ 2𝜔 − 𝜔
5 − 2(−1)
=
𝜔2
+ 𝜔
7
= −
1
7
𝐴 . 𝐵 = (
𝜔
2 − 𝜔2
) (
𝜔2
2 − 𝜔
) =
𝜔3
5 − 2(𝜔2 + 𝜔)
=
1
7
Then, the quadratic equation is
𝑥2
+
1
7
𝑥 +
1
7
= 0
Example 6.5: let 𝑧2
+ 𝑧 + 1 = 0, then find the value of
1+3𝑧10+3𝑧11
1−3𝑧7−3𝑧8
.
Sol/ first, we need to find the value of 𝑧 by the quadratic formula
𝑎 = 1, b = 1 , c = 1,
Complex numbers Dr. Anas D. Khalaf
37
𝑧 =
−𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎
=
−1 ± √12 − 4(1)(1)
2(1)
=
−1 ± √−3
2
=
−1 ± √3𝑖
2
Then 𝑧 =
−1+√3𝑖
2
= 𝜔 or 𝑧 =
−1−√3𝑖
2
= 𝜔2
.
Now, let 𝑧 = 𝜔, we obtain
1+3𝑧10+3𝑧11
1−3𝑧7−3𝑧8 =
1+3𝜔10+3𝜔11
1−3𝜔7−3𝜔8
=
1+3(𝜔3)3 . 𝜔 +3(𝜔3)3 . 𝜔2
1−3(𝜔3)2 . 𝜔−3(𝜔3)2 . 𝜔2 =
1+3 𝜔 +3 𝜔2
1−3𝜔−3𝜔2
=
1+3 (𝜔 +𝜔2)
1−3(𝜔+𝜔2)
=
−2
4
= −
1
2
Now, let 𝑧 = 𝜔2
, we obtain
1 + 3z10
+ 3z11
1 − 3z7 − 3z8
=
1 + 3(ω2
)10
+ 3(ω2
)11
1 − 3(ω2)7 − 3(ω2)8
=
1+3(ω3
)
6
. ω2
+3(ω3
)
7
. ω
1−3(ω3
)
4
. ω2−3(ω3
)
5
. ω
=
1+3 (ω2+ω )
1−3(ω2+ω)
=
−2
4
= −
1
2
Complex numbers Dr. Anas D. Khalaf
38
7. Geometric Representation of Complex Numbers
In the beginning of this chapter, we have said that a complex number 𝑧 can
be represented as an ordered bear of real numbers (𝑥, 𝑦) and denoted by 𝑧(𝑥, 𝑦).
Example 7.1: represent the following
Numbers geometrically
1)(3 + 4 𝑖) + (5 + 2𝑖)
(3 + 4 𝑖) + (5 + 2𝑖)
= (3 + 5) + (4 + 2)𝑖 = 8 + 6𝑖
2)(6 − 2 𝑖) − (2 − 5𝑖)
(6 − 2 𝑖) − (2 − 5𝑖)
= (6 − 2 𝑖) + (−2 + 5𝑖)
= 4 + 3𝑖
Figure 1: Geometric Representation (𝟑 + 𝟒 𝒊) + (𝟓 + 𝟐𝒊)
Figure 2: Geometric Representation (𝟔 − 𝟐𝒊) − (𝟐 − 𝟓𝒊)
Complex numbers Dr. Anas D. Khalaf
39
Example 7.2: write the additive counterpart of the following numbers, then
represent the numbers and their additive
Counterparts on Argand plane.
a) 𝑧1 = 2 + 3𝑖
𝑧1 = 2 + 3𝑖 ⇒ 𝑝1(2, 3)
−𝑧1 = −2 − 3𝑖 ⇒ 𝑝2(−2, − 3)
b) 𝑧1 = −1 + 3𝑖
𝑧1 = −1 + 3𝑖 ⇒ 𝑝1(−1, 3)
−𝑧1 = 1 − 3𝑖 ⇒ 𝑝2(1, − 3)
Example 7.3: give the complex conjugate for the following numbers then provide
the geometric representation for each of them:
a) 𝑧1 = 5 + 3𝑖
𝑧1 = 5 + 3𝑖 ⇒ 𝑝1(5, 3)
𝑧̅1 = 5 − 3𝑖 ⇒ 𝑝2(5, −3)
Figure 3: the geometric Representation for example a
Figure 4: the geometric Representation for example b
Figure 5: the geometric Representation for example a
Complex numbers Dr. Anas D. Khalaf
40
b ) 𝑧 = −2𝑖
𝑧 = 0 − 2𝑖 ⇒ 𝑝1(0, −2)
𝑧̅ = 0 + 2𝑖 ⇒ 𝑝2(0, 2)
a) Example 7.4: let 𝑧1 = 4 − 2𝑖 and 𝑧2 = 1 + 2𝑖 then represent the following on
Argand:
a) −3𝑧2 = −3(1 + 2𝑖) = −3 − 6𝑖 ⇒ 𝑝1(−3, −6)
b) 2𝑧1 = 2(4 − 2𝑖) = 8 − 4𝑖 ⇒ 𝑝2(8, −4)
c) 𝑧1 − 𝑧2 = (4 − 2𝑖) − (1 + 2𝑖) = 3 − 4𝑖 ⇒ 𝑝3(3, −4)
d) 𝑧1 + 𝑧2 = (4 − 2𝑖) + (1 + 2𝑖) = 5 + 0𝑖 ⇒ 𝑝4(5, 0)
Figure 6: the geometric Representation for example b
(a) (b) (c) (d)
Figure 6: the geometric Representation for example
Complex numbers Dr. Anas D. Khalaf
41
Exercises (2-2)
1) Find the value of the following:
𝜔14
, 𝜔64
, 𝜔−6
, 𝜔−8
2) Write the following expressions in a simplest way: 𝜔12𝑛+5
3) Prove that:
a) 𝜔7
+ 𝜔5
+ 1 = 0
b) (1 −
2
𝜔2
+ 𝜔2
) (1 + 𝜔 −
5
𝜔
) = 18
4) Write the quadratic equation that its roots are:
a) 𝐴 = 1 + 𝜔2
, 𝐵 = 1 + 𝜔 𝒃)
3𝑖
𝜔2
,
−3𝜔2
𝑖
5) Write the additive counterpart of the following numbers, then represent the
numbers and their additive Counterparts on Argand plane:
a) 𝑧 = 𝑖 b) 𝑧 = 3 − 2𝑖
6) Give the complex conjugate for the following numbers then provide the
geometric representation for each of them:
a) 𝑧1 = −3 + 2𝑖 b ) 𝑧2 = 1 − 𝑖
7) Let 𝑧 = 4 + 2𝑖 then represent the following on Argand:
a) 𝑧 b) 𝑧̅ c) – 𝑧
Complex numbers Dr. Anas D. Khalaf
42
8. Polar form of complex number
If we have a complex number 𝑧 and we geometrically represent it by the point
𝑝(𝑥, 𝑦), then (𝑟, 𝜃) are the polar coordinates for 𝑝 such that 𝑂 represent the polar
(Origin pojnt) and 𝑂𝑋
⃑⃑⃑⃑⃑ stands for the primary side. See figure 8.
Definition 8.1: let 𝑟 be a non negative real number, then we say that 𝑟 is a modulus
for the complex number 𝑧 (Mod z ) and denoted by ‖𝑧‖. Mod z is defined by
𝑟 = ‖𝑧‖ = √𝑥2 + 𝑦2
The measure of an angle 𝜃 ( known as argument of a complex number arg(𝑧)) that
made between the victor 𝑂𝑝
⃑⃑⃑⃑⃑ and the right part of 𝑋-axis can be given by
cos 𝜃 =
𝑥
𝑟
=
𝑥
‖𝑧‖
⇒ ℝ(𝑧) = 𝑥 = 𝑟 cos 𝜃
sin 𝜃 =
𝑦
𝑟
=
𝑦
‖𝑧‖
⇒ 𝐼(𝑧) = 𝑦 = 𝑟 sin 𝜃
Remark 8.1: if 𝜃 is argument of a complex number 𝑧, then 𝜃 + 2𝑛𝜋, 𝑛 ∈ ℤ, are also
is argument of the same complex number 𝑧. Whereas, if 𝜃 ∈ [0,2𝜋) then we call 𝜃
the principle value of complex number.
Figure 8: Polar form of complex number
Complex numbers Dr. Anas D. Khalaf
43
Table 1: the special angels
Example 8.1: let 𝑧 = 1 + √3𝑖, then find the modulus and principle value of 𝑧.
𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √12 + (√3)2 = √12 + 3 = √4 = 2
cos 𝜃 =
𝑥
‖𝑧‖
=
1
2
⇒ cos 𝜃 has positive value
sin 𝜃 =
𝑦
‖𝑧‖
=
√3
2
⇒ sin 𝜃 has positive value too, then 𝜃 is located in first quarter.
∴ arg(𝑧) =
𝜋
3
.
Example 8.2: if 𝑧 = −1 − 𝑖, then find the modulus and principle value of 𝑧.
𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √−12 + (−1)2 = √1 + 1 = √2
cos 𝜃 =
𝑥
‖𝑧‖
=
−1
√2
⇒ cos 𝜃 has negative value
sin 𝜃 =
𝑦
‖𝑧‖
=
−1
√2
⇒ sin 𝜃 has negative value too, then 𝜃 is located in third
quarter.
Complex numbers Dr. Anas D. Khalaf
44
∴ arg(𝑧) = 𝜋 +
𝜋
4
=
5𝜋
4
.
Example 8.3: if 𝑧 = −1 − √3𝑖, then find the modulus and principle value of 𝑧.
𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √−12 + (−√3)2 = √1 + 3 = 2
cos 𝜃 =
𝑥
‖𝑧‖
=
−1
2
⇒ cos 𝜃 has negative value
sin 𝜃 =
𝑦
‖𝑧‖
=
−√3
2
⇒ sin 𝜃 has negative value too, then 𝜃 is located in third
quarter.
∴ arg(𝑧) = 𝜋 +
𝜋
3
=
4𝜋
3
.
Remark 8.2:
1) The modulus of the complex number 𝑧 = 0 is unknown because the zero victor
has no value.
2) by the polar form of the complex number, we have 𝑥 = 𝑟 cos 𝜃 , 𝑦 = 𝑟 sin 𝜃,
then we obtain 𝑧 = 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) .
Example 8.4: find the polar form for the following:
a) 𝑧 = −2 + 2𝑖
𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √−22 + (2)2 = √8 = 2√2
cos 𝜃 =
𝑥
‖𝑧‖
=
−1
√2
⇒ cos 𝜃 has negative value
sin 𝜃 =
𝑦
‖𝑧‖
=
1
√2
⇒ sin 𝜃 has positive value, then 𝜃 is located in second quarter.
Complex numbers Dr. Anas D. Khalaf
45
∴ arg(𝑧) = 𝜋 −
𝜋
4
=
3𝜋
4
.
𝑧 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) = 2√2(cos
3𝜋
4
+ 𝑖 sin
3𝜋
4
)
b) 7i
7𝑖 = 7(𝑖) = 7 (cos
𝜋
2
+ 𝑖sin
𝜋
2
)
9. De Moivre’s Theorem
We know that the complex numbers 𝑧1 and 𝑧2 can be written in a polar form
as 𝑧1 = cos 𝜃 + 𝑖sin 𝜃 , 𝑧2 = cos 𝜗 + 𝑖sin 𝜗, then 𝑧1. 𝑧2 is
𝑧1. 𝑧2 = (cos 𝜃 + 𝑖sin 𝜃) (cos 𝜗 + 𝑖sin 𝜗)
= cos 𝜃cos 𝜗 + 𝑖 cos 𝜃 sin 𝜗 + 𝑖 cos 𝜗 sin 𝜃 − sin 𝜃 sin 𝜗
= (cos 𝜃 cos 𝜗 − sin 𝜃sin 𝜗) + 𝑖(cos 𝜃 sin 𝜗 + 𝑖 cos 𝜗 sin 𝜃)
= cos(𝜃 + 𝜗) + 𝑖(sin(𝜃 + 𝜗))
And if 𝜃 = 𝜗, then we obtain
(cos 𝜃 + 𝑖sin 𝜃)2
= cos 2𝜃 + 𝑖(sin 2𝜃)
And in general we have the following theorem.
Theorem 9.1: for all 𝒏 ∈ ℕ, 𝜽 ∈ ℝ then
(𝐜𝐨𝐬 𝜽 + 𝒊𝐬𝐢𝐧 𝜽)𝒏
= 𝐜𝐨𝐬 𝒏𝜽 + 𝒊 𝐬𝐢𝐧 𝒏𝜽
Example 9.1: calculate the following
a) (cos
3𝜋
8
+ 𝑖sin
3𝜋
8
)4
Using De Moivre’s Theorem, we can write
(cos
3𝜋
8
+ 𝑖sin
3𝜋
8
)4
= cos 4
3𝜋
8
+ 𝑖sin 4
3𝜋
8
= cos
3𝜋
2
+ 𝑖sin
3𝜋
2
= 0 + 𝑖(−1) = −𝑖
Complex numbers Dr. Anas D. Khalaf
46
b) (𝐜𝐨𝐬
𝟓𝝅
𝟐𝟒
+ 𝒊𝐬𝐢𝐧
𝟓𝝅
𝟐𝟒
)𝟒
Using De Moivre’s Theorem, we can write
(cos
5𝜋
24
+ 𝑖sin
5𝜋
24
)4
= cos 4
5𝜋
24
+ 𝑖sin 4
5𝜋
24
= cos
5𝜋
6
+ 𝑖sin
5𝜋
6
Here 𝜃 = 5(30) = 150, then 𝜃 is in the second quarter, therefore cos 𝜃 is
negative and sin 𝜃 is positive, hence
cos
5𝜋
6
+ 𝑖sin
5𝜋
6
= −
√3
2
+ 𝑖 (
1
2
)
c) (𝐜𝐨𝐬 𝜃 + 𝒊𝐬𝐢𝐧 𝜃)𝟖
(𝐜𝐨𝐬 𝜃 − 𝒊𝐬𝐢𝐧 𝜃)𝟒
Using De Moivre’s Theorem, and the fact that
cos 𝑛𝜃 − 𝑖sin 𝑛𝜃 = (cos 𝜃 + 𝑖sin 𝜃)−𝑛
we can write
(cos 𝜃 + 𝑖sin 𝜃)8 (cos 𝜃 − 𝑖sin 𝜃)4
= (cos 8𝜃 + 𝑖sin 8𝜃) (cos 4𝜃 − 𝑖sin 4𝜃)
= (cos 𝜃 + 𝑖sin 𝜃)8 (cos 𝜃 + 𝑖sin 𝜃)−4
= (cos 𝜃 + 𝑖sin 𝜃)4
= cos 4𝜃 + 𝑖sin 4𝜃
Here 𝜃 = 5(30) = 150, then 𝜃 is in the second quarter, therefore cos 𝜃 is
negative and sin 𝜃 is positive, hence
cos
5𝜋
6
+ 𝑖sin
5𝜋
6
= −
√3
2
+ 𝑖 (
1
2
)
Complex numbers Dr. Anas D. Khalaf
47
c) (1 + 𝑖)11
𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √12 + (1)2 = √2
cos 𝜃 =
𝑥
‖𝑧‖
=
1
√2
⇒ cos 𝜃 has positive value
sin 𝜃 =
𝑦
‖𝑧‖
=
1
√2
⇒ sin 𝜃 has positive value too, then 𝜃 is located in first quarter.
∴ 𝜃 =
𝜋
4
.
𝑧11
= 𝑟11(cos 𝜃 + 𝑖sin 𝜃)11
= (√2)
11
(cos
𝜋
4
+ 𝑖 sin
𝜋
4
)11
= (√2
2
)
5
. √2 (cos
𝜋
4
+ 𝑖 sin
𝜋
4
)11
= 32√2 (cos 11
𝜋
4
+ 𝑖 sin 11
𝜋
4
)
= 32√2 (−
1
√2
+
1
√2
𝑖) = −32 − 32𝑖.
d) (1 − 𝑖)7
𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √12 + (−1)2 = √2
cos 𝜃 =
𝑥
‖𝑧‖
=
1
√2
⇒ cos 𝜃 has positive value
sin 𝜃 =
𝑦
‖𝑧‖
=
−1
√2
⇒ sin 𝜃 has negative value, then 𝜃 is located in fourth quarter.
∴ arg(𝑧) = 2𝜋 −
𝜋
4
=
7𝜋
4
.
𝑧7
= 𝑟7(cos 𝜃 + 𝑖sin 𝜃)7
= (√2)
7
(cos
7𝜋
4
+ 𝑖 sin
7𝜋
4
)7
= (√2
2
)
3
. √2 (cos
7𝜋
4
+ 𝑖 sin
7𝜋
4
)7
= 8√2 (cos 7
7𝜋
4
+ 𝑖 sin 7
7𝜋
4
)
Complex numbers Dr. Anas D. Khalaf
48
= 8√2 (
1
√2
+
1
√2
𝑖) = 8 + 8𝑖.
Proposition 9.1: let 𝑧 be a complex number. For all 𝑛 ∈ ℤ+
, 𝜃 ∈ ℝ, then
√𝑧
𝑛
= 𝑟
1
𝑛 [cos
𝜃 + 2𝜋𝑘
𝑛
+ 𝑖 sin
𝜃 + 2𝜋𝑘
𝑛
]
where 𝑘 = 0,1,2, … , 𝑛 − 1.
Example 9.2: find the square roots of (−1 + √3𝑖) by using De Moivre’s Theorem
and last proposition.
Sol/
𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √(−1)2 + (√3)2 = √4 = 2
cos 𝜃 =
𝑥
‖𝑧‖
=
−1
2
⇒ cos 𝜃 has negative value
sin 𝜃 =
𝑦
‖𝑧‖
=
√3
2
⇒ sin 𝜃 has positive value, then 𝜃 is located in second quarter.
∴ arg(𝑧) = 𝜋 −
𝜋
3
=
2𝜋
3
.
𝑧 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) = 2(cos
2𝜋
3
+ 𝑖 sin
2𝜋
3
)
𝑧
1
2 = 𝑟
1
2(cos 𝜃 + 𝑖sin 𝜃)
1
2, for 𝑧
1
2 has two values of 𝑘 = 0,1. Then
𝑧
1
2 = (2)
1
2 (cos
2𝜋
3
+ 2𝜋𝑘
2
+ 𝑖sin
2𝜋
3
+ 2𝜋𝑘
2
)
= √2 (cos
2𝜋 + 6𝜋𝑘
6
+ 𝑖sin
2𝜋 + 6𝜋𝑘
6
)
Complex numbers Dr. Anas D. Khalaf
49
For 𝑘 = 0 ⇒ 𝑧1 = √2 (cos
2𝜋
6
+ 𝑖sin
2𝜋
6
) = √2 (cos
𝜋
3
+ 𝑖sin
𝜋
3
)
= √2 (
1
2
+
√3
2
𝑖) =
1
√2
+
√3
√2
𝑖
If 𝑘 = 1 ⇒ 𝑧2 = √2 (cos
2𝜋+6𝜋
6
+ 𝑖sin
2𝜋+6𝜋
6
) = √2 (cos
4𝜋
3
+ 𝑖sin
4𝜋
3
)
= √2 (
−1
2
−
√3
2
𝑖) =
−1
√2
−
√3
√2
𝑖
Example 9.3: find the four roots for the number (-16).
Sol/
𝑧 = −16 = 16(cos 𝜋 + 𝑖sin 𝜋)
𝑧
1
4 = (16)
1
4(cos 𝜋 + 𝑖sin 𝜋)
1
4 = 2 (cos
𝜋+2𝜋𝑘
4
+ 𝑖sin
𝜋+6𝜋𝑘
4
)
𝑘 = 0 ⇒ 𝑧1 = 2 (cos
𝜋
4
+ 𝑖sin
𝜋
4
) = 2 (
1
√2
+
1
√2
𝑖) = √2 + √2𝑖
𝑘 = 1 ⇒ 𝑧2 = 2 (cos
3𝜋
4
+ 𝑖sin
3𝜋
4
) = 2 (−
1
√2
+
1
√2
𝑖) = −√2 + √2𝑖
𝑘 = 2 ⇒ 𝑧3 = 2 (cos
5𝜋
4
+ 𝑖sin
5𝜋
4
) = 2 (−
1
√2
−
1
√2
𝑖) = −√2 − √2𝑖
𝑘 = 3 ⇒ 𝑧2 = 2 (cos
7𝜋
4
+ 𝑖sin
7𝜋
4
) = 2 (
1
√2
−
1
√2
𝑖) = √2 − √2𝑖
Complex numbers Dr. Anas D. Khalaf
50
Example 9.4: find the six roots for the number (-64i).
Sol/
𝑧 = −64𝑖 = 64 (cos
3𝜋
2
+ 𝑖sin
3𝜋
2
)
𝑧
1
6 = (64)
1
6 (cos
3𝜋
2
+ 𝑖sin
3𝜋
2
)
1
6
= 2 (cos
3𝜋
2
+2𝜋𝑘
6
+ 𝑖sin
3𝜋
2
+6𝜋𝑘
6
)
= 2 (cos
3𝜋 + 4𝜋𝑘
12
+ 𝑖sin
3𝜋 + 4𝜋𝑘
12
)
𝑘 = 0 ⇒ 𝑧1 = 2 (cos
3𝜋
12
+ 𝑖sin
3𝜋
12
) = 2 (
1
√2
+
1
√2
𝑖) = √2 + √2𝑖
𝑘 = 1 ⇒ 𝑧2 = 2 (cos
7𝜋
12
+ 𝑖sin
7𝜋
12
) = 2 (−
1
√2
+
1
√2
𝑖) = −√2 + √2𝑖
𝑘 = 2 ⇒ 𝑧3 = 2 (cos
11𝜋
12
+ 𝑖sin
11𝜋
12
)
𝑘 = 3 ⇒ 𝑧4 = 2 (cos
15𝜋
12
+ 𝑖sin
15𝜋
12
) = 2 (cos
5𝜋
4
+ 𝑖sin
5𝜋
4
)
= 2 (−
1
√2
−
1
√2
𝑖) = −√2 − √2𝑖
𝑘 = 4 ⇒ 𝑧5 = 2 (cos
19𝜋
12
+ 𝑖sin
19𝜋
12
)
𝑘 = 5 ⇒ 𝑧6 = 2 (cos
25𝜋
12
+ 𝑖sin
25𝜋
12
)
Complex numbers Dr. Anas D. Khalaf
51
Example 9.5: find the polar form and the five roots of (√3 + 𝑖)2
.
Sol/
𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √(√3)2 + (1)2 = √4 = 2
cos 𝜃 =
𝑥
‖𝑧‖
=
√3
2
⇒ cos 𝜃 has positive value.
sin 𝜃 =
𝑦
‖𝑧‖
=
1
2
⇒ sin 𝜃 has positive value too, then 𝜃 is located in first quarter.
∴ 𝜃 =
𝜋
6
.
𝑧 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) = 2(cos
𝜋
6
+ 𝑖 sin
𝜋
6
)
𝑧2
= 𝑟2(cos 𝜃 + 𝑖sin 𝜃)2
= 22
(cos
2𝜋
6
+ 𝑖 sin
2𝜋
6
) = 4 (cos
𝜋
3
+ 𝑖 sin
𝜋
3
)
𝑧
2
5 = 𝑟
2
5(cos 𝜃 + 𝑖sin 𝜃)
2
5 = (2)
2
5 (cos 5.
𝜋
3
+2𝜋𝑘
2
+ 𝑖sin 5.
𝜋
3
+2𝜋𝑘
2
)
= √4
5
(cos
5𝜋 + 30𝜋𝑘
6
+ 𝑖sin
5𝜋 + 30𝜋𝑘
6
)
𝑘 = 0 ⇒ 𝑧1 = √4
5
(cos
5𝜋
6
+ 𝑖sin
5𝜋
6
) = √4
5
(−
√3
2
+
1
2
)
𝑘 = 1 ⇒ 𝑧2 = √4
5
(cos
35𝜋
6
+ 𝑖sin
35𝜋
6
)
𝑘 = 2 ⇒ 𝑧3 = √4
5
(cos
65𝜋
6
+ 𝑖sin
65𝜋
6
)
𝑘 = 3 ⇒ 𝑧4 = √4
5
(cos
95𝜋
6
+ 𝑖sin
95𝜋
6
)
Complex numbers Dr. Anas D. Khalaf
52
𝑘 = 4 ⇒ 𝑧5 = √4
5
(cos
155𝜋
6
+ 𝑖sin
155𝜋
6
)
Example 9.6: solve the equation 𝑥3
+ 1 = 0, where 𝑥 ∈ ℂ.
Sol/
𝑥3
+ 1 = 0 ⇒ 𝑥3
= −1 ⇒ 𝑥3
= −1(1) = cos 𝜋 + 𝑖sin 𝜋
⇒ 𝑥 = (cos 𝜋 + 𝑖sin 𝜋)
1
3 = cos
𝜋+2𝜋𝑘
3
+ 𝑖sin
𝜋+2𝜋𝑘
3
𝑘 = 0 ⇒ 𝑥1 = cos
𝜋
3
+ 𝑖sin
𝜋
3
=
1
2
+
√3
2
𝑖
𝑘 = 1 ⇒ 𝑧2 = cos
3𝜋
3
+ 𝑖sin
3𝜋
3
= −1 + 0 𝑖 = −1
𝑘 = 2 ⇒ 𝑧3 = cos
5𝜋
3
+ 𝑖sin
5𝜋
3
=
1
2
−
√3
2
𝑖
Hence, 𝑆 = {
1
2
+
√3
2
𝑖 , −1 ,
1
2
−
√3
2
𝑖}.
Complex numbers Dr. Anas D. Khalaf
53
Exercises (2-3)
1) Find the modulus and principle value of the following numbers:
a) 𝑧 = −1 + √3𝑖 b) 𝑧 = −1 + 𝑖 c) 𝑧 = 1 − 𝑖
2) find the polar form for the following:
a) –i b) -7i c) 3 d) 5i e) 2 f) -1
3) Calculate:
a) (cos
7𝜋
12
+ 𝑖 sin
7𝜋
12
)
−3
b)
(cos 2𝜃+𝑖 sin 2𝜃)5
(cos 3𝜃+𝑖 sin 2𝜃)3
c) Find the square roots of (27𝑖) by using De Moivre’s Theorem.

Mais conteúdo relacionado

Mais procurados

Quantum optical models in noncommutative spaces
Quantum optical models in noncommutative spacesQuantum optical models in noncommutative spaces
Quantum optical models in noncommutative spacesSanjib Dey
 
An Extension to the Zero-Inflated Generalized Power Series Distributions
An Extension to the Zero-Inflated Generalized Power Series DistributionsAn Extension to the Zero-Inflated Generalized Power Series Distributions
An Extension to the Zero-Inflated Generalized Power Series Distributionsinventionjournals
 
Adomian Decomposition Method for Certain Space-Time Fractional Partial Differ...
Adomian Decomposition Method for Certain Space-Time Fractional Partial Differ...Adomian Decomposition Method for Certain Space-Time Fractional Partial Differ...
Adomian Decomposition Method for Certain Space-Time Fractional Partial Differ...IOSR Journals
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex planeAmit Amola
 
(𝛕𝐢, 𝛕𝐣)− RGB Closed Sets in Bitopological Spaces
(𝛕𝐢, 𝛕𝐣)− RGB Closed Sets in Bitopological Spaces(𝛕𝐢, 𝛕𝐣)− RGB Closed Sets in Bitopological Spaces
(𝛕𝐢, 𝛕𝐣)− RGB Closed Sets in Bitopological SpacesIOSR Journals
 
Complex analysis book by iit
Complex analysis book by iitComplex analysis book by iit
Complex analysis book by iitJITENDRA SUWASIYA
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower boundSolo Hermelin
 
AA Section 3-5
AA Section 3-5AA Section 3-5
AA Section 3-5Jimbo Lamb
 
Duel of cosmological screening lengths
Duel of cosmological screening lengthsDuel of cosmological screening lengths
Duel of cosmological screening lengthsMaxim Eingorn
 
Unit 2 analysis of continuous time signals-mcq questions
Unit 2   analysis of continuous time signals-mcq questionsUnit 2   analysis of continuous time signals-mcq questions
Unit 2 analysis of continuous time signals-mcq questionsDr.SHANTHI K.G
 
InfEntr_EntrProd_20100618_2
InfEntr_EntrProd_20100618_2InfEntr_EntrProd_20100618_2
InfEntr_EntrProd_20100618_2Teng Li
 
M4 combinatronics hw
M4   combinatronics hwM4   combinatronics hw
M4 combinatronics hwiamkim
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesNatalia
 
Some Generalization of Eneström-Kakeya Theorem
Some Generalization of Eneström-Kakeya TheoremSome Generalization of Eneström-Kakeya Theorem
Some Generalization of Eneström-Kakeya Theoreminventionjournals
 
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...ijrap
 

Mais procurados (20)

Quantum optical models in noncommutative spaces
Quantum optical models in noncommutative spacesQuantum optical models in noncommutative spaces
Quantum optical models in noncommutative spaces
 
Face-regular two-maps
Face-regular two-mapsFace-regular two-maps
Face-regular two-maps
 
An Extension to the Zero-Inflated Generalized Power Series Distributions
An Extension to the Zero-Inflated Generalized Power Series DistributionsAn Extension to the Zero-Inflated Generalized Power Series Distributions
An Extension to the Zero-Inflated Generalized Power Series Distributions
 
Adomian Decomposition Method for Certain Space-Time Fractional Partial Differ...
Adomian Decomposition Method for Certain Space-Time Fractional Partial Differ...Adomian Decomposition Method for Certain Space-Time Fractional Partial Differ...
Adomian Decomposition Method for Certain Space-Time Fractional Partial Differ...
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex plane
 
(𝛕𝐢, 𝛕𝐣)− RGB Closed Sets in Bitopological Spaces
(𝛕𝐢, 𝛕𝐣)− RGB Closed Sets in Bitopological Spaces(𝛕𝐢, 𝛕𝐣)− RGB Closed Sets in Bitopological Spaces
(𝛕𝐢, 𝛕𝐣)− RGB Closed Sets in Bitopological Spaces
 
Complex analysis book by iit
Complex analysis book by iitComplex analysis book by iit
Complex analysis book by iit
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower bound
 
AA Section 3-5
AA Section 3-5AA Section 3-5
AA Section 3-5
 
Ao4201268273
Ao4201268273Ao4201268273
Ao4201268273
 
MMath
MMathMMath
MMath
 
Duel of cosmological screening lengths
Duel of cosmological screening lengthsDuel of cosmological screening lengths
Duel of cosmological screening lengths
 
Unit 2 analysis of continuous time signals-mcq questions
Unit 2   analysis of continuous time signals-mcq questionsUnit 2   analysis of continuous time signals-mcq questions
Unit 2 analysis of continuous time signals-mcq questions
 
Fourier series
Fourier series Fourier series
Fourier series
 
InfEntr_EntrProd_20100618_2
InfEntr_EntrProd_20100618_2InfEntr_EntrProd_20100618_2
InfEntr_EntrProd_20100618_2
 
M4 combinatronics hw
M4   combinatronics hwM4   combinatronics hw
M4 combinatronics hw
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Some Generalization of Eneström-Kakeya Theorem
Some Generalization of Eneström-Kakeya TheoremSome Generalization of Eneström-Kakeya Theorem
Some Generalization of Eneström-Kakeya Theorem
 
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
 

Semelhante a ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي

ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولanasKhalaf4
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
Successful Minds,Making Mathematics number patterns &sequences Simple.
Successful Minds,Making Mathematics number patterns &sequences Simple.Successful Minds,Making Mathematics number patterns &sequences Simple.
Successful Minds,Making Mathematics number patterns &sequences Simple.Thato Barry
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
Semana 10 numeros complejos i álgebra-uni ccesa007
Semana 10   numeros complejos i álgebra-uni ccesa007Semana 10   numeros complejos i álgebra-uni ccesa007
Semana 10 numeros complejos i álgebra-uni ccesa007Demetrio Ccesa Rayme
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007Demetrio Ccesa Rayme
 
Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Sunaina Rawat
 
Semana 30 series álgebra uni ccesa007
Semana 30 series  álgebra uni ccesa007Semana 30 series  álgebra uni ccesa007
Semana 30 series álgebra uni ccesa007Demetrio Ccesa Rayme
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesIrfaan Bahadoor
 
elemetary algebra review.pdf
elemetary algebra review.pdfelemetary algebra review.pdf
elemetary algebra review.pdfDianaOrcino2
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Vladimir Godovalov
 

Semelhante a ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي (20)

ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Annie
AnnieAnnie
Annie
 
Successful Minds,Making Mathematics number patterns &sequences Simple.
Successful Minds,Making Mathematics number patterns &sequences Simple.Successful Minds,Making Mathematics number patterns &sequences Simple.
Successful Minds,Making Mathematics number patterns &sequences Simple.
 
Ebook 1
Ebook 1Ebook 1
Ebook 1
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
Semana 10 numeros complejos i álgebra-uni ccesa007
Semana 10   numeros complejos i álgebra-uni ccesa007Semana 10   numeros complejos i álgebra-uni ccesa007
Semana 10 numeros complejos i álgebra-uni ccesa007
 
Algebra 6
Algebra 6Algebra 6
Algebra 6
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007
 
Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3
 
Semana 30 series álgebra uni ccesa007
Semana 30 series  álgebra uni ccesa007Semana 30 series  álgebra uni ccesa007
Semana 30 series álgebra uni ccesa007
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin series
 
elemetary algebra review.pdf
elemetary algebra review.pdfelemetary algebra review.pdf
elemetary algebra review.pdf
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
 

Mais de anasKhalaf4

‎⁨محاضرة ادارة العقل د أنس الجبوري⁩.pdf
‎⁨محاضرة ادارة العقل د أنس الجبوري⁩.pdf‎⁨محاضرة ادارة العقل د أنس الجبوري⁩.pdf
‎⁨محاضرة ادارة العقل د أنس الجبوري⁩.pdfanasKhalaf4
 
الرياضيات للثالث المتوسط - الدكتور أنس الجبوري.pdf
الرياضيات للثالث المتوسط - الدكتور أنس الجبوري.pdfالرياضيات للثالث المتوسط - الدكتور أنس الجبوري.pdf
الرياضيات للثالث المتوسط - الدكتور أنس الجبوري.pdfanasKhalaf4
 
الرياضيات للسادس الاحيائي - الدكتور أنس الجبوري.pdf
الرياضيات للسادس الاحيائي - الدكتور أنس الجبوري.pdfالرياضيات للسادس الاحيائي - الدكتور أنس الجبوري.pdf
الرياضيات للسادس الاحيائي - الدكتور أنس الجبوري.pdfanasKhalaf4
 
المراجعة المركزة رياضيات ثالث متوسط د. أنس الجبوري .pdf
المراجعة المركزة رياضيات ثالث متوسط د. أنس الجبوري .pdfالمراجعة المركزة رياضيات ثالث متوسط د. أنس الجبوري .pdf
المراجعة المركزة رياضيات ثالث متوسط د. أنس الجبوري .pdfanasKhalaf4
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022 anasKhalaf4
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الثاني القطوع المخروطية 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الثاني القطوع المخروطية 2022ملزمة الرياضيات للصف السادس التطبيقي الفصل الثاني القطوع المخروطية 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الثاني القطوع المخروطية 2022anasKhalaf4
 
2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الثالث - تطبيقات التفاضل
 2022 ملزمة الرياضيات للصف السادس التطبيقي   الفصل الثالث - تطبيقات التفاضل 2022 ملزمة الرياضيات للصف السادس التطبيقي   الفصل الثالث - تطبيقات التفاضل
2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الثالث - تطبيقات التفاضلanasKhalaf4
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الثاني القطوع المخروطية 2022
 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثاني القطوع المخروطية 2022  ملزمة الرياضيات للصف السادس الاحيائي الفصل الثاني القطوع المخروطية 2022
ملزمة الرياضيات للصف السادس الاحيائي الفصل الثاني القطوع المخروطية 2022 anasKhalaf4
 
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث تطبيقات التفاضل
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث   تطبيقات التفاضل2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث   تطبيقات التفاضل
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث تطبيقات التفاضلanasKhalaf4
 
2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية
2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية
2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضليةanasKhalaf4
 

Mais de anasKhalaf4 (10)

‎⁨محاضرة ادارة العقل د أنس الجبوري⁩.pdf
‎⁨محاضرة ادارة العقل د أنس الجبوري⁩.pdf‎⁨محاضرة ادارة العقل د أنس الجبوري⁩.pdf
‎⁨محاضرة ادارة العقل د أنس الجبوري⁩.pdf
 
الرياضيات للثالث المتوسط - الدكتور أنس الجبوري.pdf
الرياضيات للثالث المتوسط - الدكتور أنس الجبوري.pdfالرياضيات للثالث المتوسط - الدكتور أنس الجبوري.pdf
الرياضيات للثالث المتوسط - الدكتور أنس الجبوري.pdf
 
الرياضيات للسادس الاحيائي - الدكتور أنس الجبوري.pdf
الرياضيات للسادس الاحيائي - الدكتور أنس الجبوري.pdfالرياضيات للسادس الاحيائي - الدكتور أنس الجبوري.pdf
الرياضيات للسادس الاحيائي - الدكتور أنس الجبوري.pdf
 
المراجعة المركزة رياضيات ثالث متوسط د. أنس الجبوري .pdf
المراجعة المركزة رياضيات ثالث متوسط د. أنس الجبوري .pdfالمراجعة المركزة رياضيات ثالث متوسط د. أنس الجبوري .pdf
المراجعة المركزة رياضيات ثالث متوسط د. أنس الجبوري .pdf
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الثاني القطوع المخروطية 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الثاني القطوع المخروطية 2022ملزمة الرياضيات للصف السادس التطبيقي الفصل الثاني القطوع المخروطية 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الثاني القطوع المخروطية 2022
 
2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الثالث - تطبيقات التفاضل
 2022 ملزمة الرياضيات للصف السادس التطبيقي   الفصل الثالث - تطبيقات التفاضل 2022 ملزمة الرياضيات للصف السادس التطبيقي   الفصل الثالث - تطبيقات التفاضل
2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الثالث - تطبيقات التفاضل
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الثاني القطوع المخروطية 2022
 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثاني القطوع المخروطية 2022  ملزمة الرياضيات للصف السادس الاحيائي الفصل الثاني القطوع المخروطية 2022
ملزمة الرياضيات للصف السادس الاحيائي الفصل الثاني القطوع المخروطية 2022
 
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث تطبيقات التفاضل
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث   تطبيقات التفاضل2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث   تطبيقات التفاضل
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث تطبيقات التفاضل
 
2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية
2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية
2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 

Último (20)

Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 

ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي

  • 1. Mathematics Sixth grade 2021 - 2022 By Dr. Anas Dheyab Khalaf August 2021
  • 2. Complex numbers Dr. Anas D. Khalaf 2 Chapter one Complex numbers
  • 3. Complex numbers Dr. Anas D. Khalaf 3 Contents Preface 4 1. Introduction ………………………………....... 5 2. Mathematical Operations on complex numbers …………………..……. 8 2.1 The addition and subtraction operations ………………………..... 8 2.2 The multiplication operation ………………………….... 9 3. The conjugate of a complex number (complex conjugate) ……….… 11 4. The square root of complex number ……………………………. 22 5. Solving the equation in ℂ …………………….. 25 6. The cube roots number of integer one ……………….……... 41 7. Geometric Representation of Complex Numbers …………….….……. 39 8. Polar form of complex number ………….……….. 43 9. De Moivre’s Theorem ………………….. 46
  • 4. Complex numbers Dr. Anas D. Khalaf 4 preface These lecture notes form the material to the elementary course on chapter one of mathematics book: Complex numbers for students in sixth grade oh high school. The purpose of these lecture notes is to introduce and analyse the complex numbers in an easiest way, and to make it more clear we provide lots of examples, remarks, tables, and figures, and explain the solutions in details, moreover we give several exercises for the readers as a homework. Finally, I wish to express my thank to high-school students for the efforts that they do to understand mathematics well. Anas Dheyab Khalaf General Directorate of Education in Saladin, Ministry of education, Saladin,34011, Iraq August 2021
  • 5. Complex numbers Dr. Anas D. Khalaf 5 1. Introduction If we want to solve the equation 𝑥2 + 1 = 0, then its solution will be: 𝑥2 + 1 = 0 ⇒ 𝑥2 = −1, ⇒ 𝑥 = ∓√−1, It is clearly that we cannot find a real number that its square is -1, therefore there is an impressing need to introduce new type of numbers which is Complex numbers, we will introduce the symbol (𝒊 = √−𝟏), which we call the imaginary part of the complex number. Thus, we have 𝑖2 = 𝑖. 𝑖 = √−1. √−1 = −1, 𝑖3 = 𝑖2 . 𝑖 = −1. 𝑖 = −𝑖, 𝑖4 = 𝑖2 . 𝑖2 = −1. −1 = 1, 𝑖5 = 𝑖3 . 𝑖2 = −𝑖. −1 = 𝑖, Example 1.1: write the following expression in a simpler way; 1) 𝑖6 = 𝑖2 . 𝑖2 . 𝑖2 = −1. −1. −1 = −1, 𝒐𝒓 𝒊𝟔 = 𝒊𝟐 . 𝒊𝟒 = −𝟏(𝟏) = −𝟏 2) 𝑖8 = 𝑖2 . 𝑖2 . 𝑖2 . 𝑖2 = −1. −1. −1. −1 = 1, 𝒐𝒓 𝒊𝟖 = 𝒊𝟒 . 𝒊𝟒 = 𝟏. 𝟏 = 𝟏 3) 𝑖16 = (𝑖4 )4 = (1)4 = 1 4) 𝑖17 = (𝑖4 )4 . 𝑖 = (1)4 . 𝑖 = 𝑖 5) 𝑖58 = (𝑖4 )14 . 𝑖2 = (1)14 . (−1) = −1 6) 𝑖12𝑛+93 = (𝑖4 )3𝑛 . 𝑖93 = (1)3𝑛 . (𝑖4)32 . 𝑖 = 𝑖 7) 𝑖−13 = 𝑖−13 . 1 = 𝑖−13 . (𝑖4)4 = 𝑖16−13 = 𝑖3 = −𝑖 8) 𝑖−26 = 𝑖−26 . 1 = 𝑖−26 . (𝑖4)7 = 𝑖28−26 = 𝑖2 = −1 Remark 1.1: we can use (i) to describe the square root for any real number. In general, we have 6=4+2 58=56+2 = 4(14)+2
  • 6. Complex numbers Dr. Anas D. Khalaf 6 √−𝑏2 = √𝑏2. √−1 = 𝑏𝑖, ∀𝑏 ≥ 0 . Example 1.2: Use (i) to write the following square roots: 1) √−16 = √16. √−1 = 4𝑖 2) √−25 = √25. √−1 = 5𝑖 3) √−12 = √12. √−1 = 2√3 𝑖  The (standard) formula of complex number The complex number represents a compensation of real part and imaginary part, such that 𝑪 = 𝒂 + 𝒃𝒊, Where a stands for the real part of C, while b is the imaginary part of C. Moreover, C can be written as (a,b). Example 1.3: Use the standard formula of complex number to write the following numbers: a) −5 = −5 + 0𝑖 b) √−100 = √100. √−1 = 10𝑖 = 0 + 10𝑖 c) – 1 − √−3 = −1 − √3𝑖 d) 1+√−25 4 = 1 4 + 5 4 𝑖 e) 𝑖999 = (𝑖4 )249 . 𝑖2 . 𝑖 = 1. −1. 𝑖 = 0 − 𝑖 f) 𝑖4𝑛+1 = (𝑖4 )𝑛 . 𝑖 = 1. 𝑖 = 0 + 𝑖 Definition 1.1: we say that two complex numbers 𝑐1 = 𝑎1 + 𝑏1𝑖, 𝑐2 = 𝑎2 + 𝑏2𝑖 are equal if their real and imaginary parts are equal, that is 𝒄𝟏 = 𝒄𝟐 ⇔ 𝒂𝟏 = 𝒂𝟐, 𝒃𝟏 = 𝒃𝟐
  • 7. Complex numbers Dr. Anas D. Khalaf 7 Example 1.4: Find the real values of x and y that satisfy the following equation a) 2𝑥 − 1 + 2𝑖 = 1 + (𝑦 + 1)𝑖 Sol/ 2𝑥 − 1 = 1 ⟹ 2𝑥 = 1 + 1 ⟹ 2𝑥 = 2 ∴ 𝑥 = 1 2 = 𝑦 + 1 ⟹ 𝑦 = 2 − 1 ∴ 𝑦 = 1 b) (2𝑦 + 1) − (2𝑥 − 1)𝑖 = −8 + 3𝑖 Sol/ 2𝑦 + 1 = −8 ⟹ 2𝑦 = −8 − 1 ⟹ 2𝑦 = −9 ∴ 𝑦 = −9 2 −2𝑥 + 1 = 3 ⟹ −2𝑥 = 3 − 1 ⟹ 2𝑥 = −2 ∴ 𝑥 = −1 2. Mathematical Operations on complex numbers 2.1 The addition and subtraction operations Definition 2.1: let 𝑐1 = 𝑎1 + 𝑏1𝑖, 𝑐2 = 𝑎2 + 𝑏2𝑖 be two complex numbers, then 𝑐1 + 𝑐2 = (𝑎1 + 𝑎2)+(𝑏1 + 𝑏2)𝑖. Example 2.1: a) If we have 3+4√2𝑖 and 5-2√2𝑖, then R R I I R I R I R I R I
  • 8. Complex numbers Dr. Anas D. Khalaf 8 (3+4√2𝑖 )+ (5-2√2𝑖 ) = (3+5)+(4√2 −2√2)𝑖 =8+2√2𝑖 b) If we have 3 and 2-5𝑖, then (3+2) + (0-5)𝑖 = 5-5𝑖 c) 1 − 𝑖, 3𝑖 1-𝑖 + 3𝑖 = (1 + 0) + (−1 + 3)𝑖 = 1 + 2𝑖. Remark 2.1: for the subtraction of complex number, we can use similar method of addition. Example 2.2: calculate the following (7 − 13𝑖) − (9 + 4𝑖) =7 − 13𝑖 − 9 − 4𝑖 = (7 − 9) − (13 − 4)𝑖 =−2 − 17𝑖 Example 2.3: solve the following equation (2 − 4𝑖) + 𝑥 = −5 + 𝑖 𝑥 = −5 + 𝑖 − 2 + 4𝑖 ⟹ 𝑥 = (−5 − 2) + (1 + 4)𝑖 ∴ 𝑥 = −7 + 5𝑖 2.2 The multiplication operation Definition 2.2: let 𝑐1 = 𝑎1 + 𝑏1𝑖, 𝑐2 = 𝑎2 + 𝑏2𝑖 be two complex numbers, then 𝑐1. 𝑐2 = (𝑎1 + 𝑏1𝑖)(𝑎2 + 𝑏2𝑖) = 𝑎1𝑎2 + 𝑎1𝑏2𝑖 + 𝑏1𝑎2𝑖 + 𝑏1𝑏2𝑖2 = (𝑎1𝑎2 − 𝑏1𝑏2) + (𝑎1𝑏2 + 𝑏1𝑎2)𝑖, where 𝑖2 = −1.
  • 9. Complex numbers Dr. Anas D. Khalaf 9 Example 2.4: find the multiplications of the following numbers a) (2 − 3𝑖)(3 − 5𝑖) (2 − 3𝑖)(3 − 5𝑖) = 6 − 10𝑖 − 9𝑖 + 15𝑖2 = 6 − 15 − 19𝑖 = −9 − 19𝑖 b) (2 + 𝑖)(3 + 6𝑖) (2 + 𝑖)(3 + 6𝑖) = 6 + 12𝑖 + 3𝑖 + 6𝑖2 = 6 − 6 + 15𝑖 = 0 + 15𝑖 = 15𝑖 c) (3 + 4𝑖)2 (3 + 4𝑖)2 = 9 + 24𝑖 + 16𝑖2 = 9 − 16 + 24𝑖 = −7 + 24𝑖 d) − 5 2 (4 + 3𝑖) − 5 2 (4 + 3𝑖) = − 5 2 4 − 5 2 3𝑖 = −10 − 15 2 𝑖 e) (1 + 𝑖)4 − (1 − 𝑖)4 (1 + 𝑖)4 − (1 − 𝑖)4 = ((1 + 𝑖)2 )2 − ((1 − 𝑖)2 )2 = (1 + 2𝑖 + 𝑖2 )2 − (1 − 2𝑖 + 𝑖2 )2 = (1 − 1 + 2𝑖)2 − (1 − 1 − 2𝑖)2
  • 10. Complex numbers Dr. Anas D. Khalaf 10 = (2𝑖)2 − (2𝑖)2 = 4𝑖2 − 4𝑖2 = −4 + 4 = 0 + 0𝑖 3. The conjugate of a complex number (complex conjugate) Definition 3.1: let 𝑐 = 𝑎 + 𝑏𝑖 be a complex number, then the complex conjugate of 𝑐 is defined by 𝑐̅ = 𝑎 − 𝑏𝑖, ∀𝑎, 𝑏 ∈ ℝ. Remark 3.1: The properties of complex conjugate     1 2 1 2 1 2 1 2 2 2 1 1 2 2 2 1) 2) 3) 4) 5)( ) , 0. c c c c c c c c c c if c a bi c c a b c c c c c                
  • 11. Complex numbers Dr. Anas D. Khalaf 11 Example 3.1: if 1 2 1 , 3 2 c i c i     , prove that     1 2 1 2 1 2 1 2 1 1 2 2 1) 2) 3) c c c c c c c c c c c c              Sol/ 1-         1 2 1 2 1 2 . . .: 1 3 2 4 4 . . .: (1 ) (3 2 ) 1 3 2 4 . . . . L H S c c c c i i i i R H S c c i i i i i L H S R H S                       
  • 12. Complex numbers Dr. Anas D. Khalaf 12 2-           1 2 2 1 2 2 . . .: (1 )(3 2 ) 3 2 3 2 3 2 5 5 . . .: (1 ) (3 2 ) (1 )(3 2 ) 3 2 3 2 3 2 5 . . . . L H S c c i i i i i i i i R H S c c i i i i i i i i i L H S R H S                                   3- 1 2 2 2 1 2 2 2 . . .: 3 2 3 2 1 3 3 2 2 1 1 1 1 1 1 5 1 5 1 5 2 2 2 2 2 . . .: 3 2 3 2 3 2 1 3 3 2 2 1 1 1 1 1 1 1 5 1 5 2 2 2 . . . . c L H S c i i i i i i i i i i i c R H S c i i i i i i i i i i i i L H S R H S                                                                               
  • 13. Complex numbers Dr. Anas D. Khalaf 13 Remark 3.2: the multiplicative inverse of c is 1 c . Example 3.2: find the multiplicative inverse of 2 2 c i   and put it in the standard formula of complex number. Sol/ 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 8 8 8 4 4 i i c i i i i i i                 Example 3.3: put the following numbers in the standard formula of complex number: 1) 2−𝑖 3+4𝑖 = 2 − 𝑖 3 + 4𝑖 . 3 − 4𝑖 3 − 4𝑖 = 6 − 8𝑖 − 3𝑖 − 4 9 + 16 = 2 − 11𝑖 25 = 2 25 − 11 25 𝑖 2) 12+𝑖 𝑖 = 12 + 𝑖 𝑖 . −𝑖 −𝑖 = −12𝑖 − 𝑖2 1 = 1 − 12𝑖 1 = 1 − 12𝑖 3) 𝑖 2+3𝑖 = 𝑖 2 + 3𝑖 × 2 − 3𝑖 2 − 3𝑖 = 2𝑖 + 3 4 + 9 = 3 + 2𝑖 13 = 3 13 + 2 13 𝑖 4) ( 3+𝑖 1+𝑖 ) 3
  • 14. Complex numbers Dr. Anas D. Khalaf 14 = ( 3 + 𝑖 1 + 𝑖 × 1 − 𝑖 1 − 𝑖 ) 3 = ( 3 − 3𝑖 + 𝑖 − 𝑖2 1 + 1 ) 3 = ( 4 − 2𝑖 2 ) 3 = ( 4 2 − 2𝑖 2 ) 3 = (2 − 𝑖)3 = (2 − 𝑖)2 . (2 − 𝑖) = (4 − 4𝑖 − 1)(2 − 𝑖) = (3 − 4𝑖)(2 − 𝑖) = 6 − 3𝑖 − 8𝑖 − 4 = 2 − 11𝑖 5) 2+3𝑖 1−𝑖 × 1+4𝑖 4+𝑖 = 2 + 8𝑖 + 3𝑖 − 12 4 + 𝑖 − 4𝑖 + 1 = −10 + 11𝑖 5 − 3𝑖 = −10 + 11𝑖 5 − 3𝑖 × 5 + 3𝑖 5 + 3𝑖 = −50 − 30𝑖 + 55𝑖 − 33 52 + 32 == −83 + 25𝑖 34 = −83 34 + 25 34 𝑖 6) (1 + 𝑖)3 + (1 − 𝑖)3 = (1 + 𝑖)2(1 + 𝑖) + (1 − 𝑖)2(1 − 𝑖) = (1 + 2𝑖 − 1)(1 + 𝑖) + (1 − 2𝑖 + 1)(1 − 𝑖) = (1 + 2𝑖 − 1 + 𝑖 − 2 − 𝑖) + (1 − 2𝑖 + 1 − 𝑖 − 2 − 𝑖) = 2𝑖 − 2 − 2𝑖 − 2 = −4 + 0𝑖 Example 3.4: prove that: 1) 1 (2−𝑖)2 − 1 (2+𝑖)2 = 8 25 𝑖.
  • 15. Complex numbers Dr. Anas D. Khalaf 15 L.H.S: 1 (2−𝑖)2 − 1 (2+𝑖)2 = 1 4−4𝑖−1 − 1 4+4𝑖−1 = 1 3−4𝑖 × 3+4𝑖 3+4𝑖 − 1 3+4𝑖 × 3−4𝑖 3−4𝑖 = 3 + 4𝑖 9 + 16 − 3 − 4𝑖 9 + 16 = 3 + 4𝑖 − 3 + 4𝑖 25 = 8 25 𝑖 Hence, proved. 2) (1 − 𝑖)(1 − 𝑖2)(1 − 𝑖3) = 4 L.H.S: (1 − 𝑖)(1 − 𝑖2)(1 − 𝑖3) = (1 − 𝑖)(1 − (−1))(1 − 𝑖2 . 𝑖) = 2(1 − 𝑖)(1 + 𝑖) = 2(1 + 𝑖 − 𝑖 − 𝑖2) = 2(1 − (−1)) = 2.2 = 4 = R.H.S Remark 3.3: the expression 𝑥2 + 𝑦2 can be analyzed into product of two factors as follows: 𝑥2 + 𝑦2 = 𝑥2 − 𝑦2 𝑖2 = (𝑥 − 𝑦𝑖)(𝑥 + 𝑦𝑖) Example 3.5: rewrite each of the following as product of two factors of the form 𝑎 + 𝑏𝑖 a) 𝑥2 + 𝑦2 = 𝑥2 − 𝑦2 𝑖2 = (𝑥 − 𝑦𝑖)(𝑥 + 𝑦𝑖) b) 9𝑥2 + 49𝑦2 = 9𝑥2 − 49𝑦2 𝑖2 = (3𝑥 − 7𝑦𝑖)(3𝑥 + 7𝑦𝑖) c) 85 = 81 + 4 = 81 − 4𝑖2 = (9 − 2𝑖)(9 + 2𝑖) d) 125 = 100 + 25 = 100 − 25𝑖2 = (10 − 5𝑖)(10 + 5𝑖)
  • 16. Complex numbers Dr. Anas D. Khalaf 16 Example 3.6: find the real values of 𝑥, 𝑦 that satisfy 1) 𝑦 + 5𝑖 = (2𝑥 + 𝑖)(𝑥 + 2𝑖). Sol/ 𝑦 + 5𝑖 = 2𝑥2 + 4𝑥𝑖 + 𝑥𝑖 − 2 ⇒ 𝑦 + 5𝑖 = 2𝑥2 − 2 + 5𝑥𝑖 𝑦 = 2𝑥2 − 2 … (1) and 5 = 5𝑥 …. (2), From equation (2), we have 𝑥 = 5 5 = 1, then using (1), we get 𝑦 = 2(1)2 − 2 = 0. 2) 𝟖𝒊 = (𝒙 + 𝟐𝒊)(𝒚 + 𝟐𝒊) + 𝟏 8𝑖 = 𝑥𝑦 + 2𝑥𝑖 + 2𝑦𝑖 − 4 + 1 ⇒ 8𝑖 = 𝑥𝑦 − 3 + 2(𝑥 + 𝑦)𝑖 ⇒ 𝑥𝑦 − 3 = 0 … (1), (𝑥 + 𝑦) = 4 … (2) From Eq. (1), we have 𝑥 = 3 𝑦 , and by Eq. (2), yields [( 3 𝑦 + 𝑦) = 4] × 𝑦 ⇒ 3 + 𝑦2 = 4𝑦 ⇒ 𝑦2 − 4𝑦 + 3 = 0 (𝑦 − 3)(𝑦 − 1) = 0 Then, either 𝑦 = 3 ⇒ 𝑥 = 3 3 = 1, or 𝑦 = 1 ⇒ 𝑥 = 3 1 = 3.
  • 17. Complex numbers Dr. Anas D. Khalaf 17 3) ( 𝟏−𝒊 𝟏+𝒊 ) + (𝒙 + 𝒚𝒊) = (𝟏 + 𝟐𝒊)𝟐 . ⇒ ( 1 − 𝑖 1 + 𝑖 × 1 − 𝑖 1 − 𝑖 ) + (𝑥 + 𝑦𝑖) = 1 + 4𝑖 − 4 ⇒ ( 1 − 𝑖 − 𝑖 + 𝑖2 12 + 𝑖2 ) + (𝑥 + 𝑦𝑖) = −3 + 4𝑖 ⇒ ( −2𝑖 2 ) + (𝑥 + 𝑦𝑖) = −3 + 4𝑖 ⇒ 𝑥 + 𝑦𝑖 − 𝑖 = −3 + 4𝑖 ⇒ 𝑥 = −3, and 𝑦 − 1 = 4 ⇒ 𝑦 = 5. 4) 𝟐−𝒊 𝟏+𝒊 𝒙 + 𝟑−𝒊 𝟐+𝒊 𝒚 = 𝟏 𝒊 . ( 2 − 𝑖 1 + 𝑖 × 1 − 𝑖 1 − 𝑖 ) 𝑥 + ( 3 − 𝑖 2 + 𝑖 × 2 − 𝑖 2 − 𝑖 ) 𝑦 = 1 𝑖 × −𝑖 −𝑖 ⇒ ( 2 − 2𝑖 − 𝑖 − 1 1 + 1 ) 𝑥 + ( 6 − 3𝑖 − 2𝑖 − 1 4 + 1 ) 𝑦 = −𝑖 1 ⇒ ( 1 − 3𝑖 2 ) 𝑥 + ( 5 − 5𝑖 5 ) 𝑦 = −𝑖 ⇒ ( 1 − 3𝑖 2 ) 𝑥 + (1 − 𝑖)𝑦 = −𝑖 ⇒ 1 2 𝑥 − 3 2 𝑥𝑖 + 𝑦 − 𝑦𝑖 = −𝑖 Thus, 1 2 𝑥 + 𝑦 = 0 … (1) and − 3 2 𝑥 − 𝑦 = −1 … (2), it follows 1 2 𝑥 + 𝑦 = 0 … (1) − 3 2 𝑥 − 𝑦 = −1 … (2) − 2 2 𝑥 = −1 ⇒ −𝑥 = −1 ⇒ 𝑥 = 1, and using Eq. (1), we get
  • 18. Complex numbers Dr. Anas D. Khalaf 18 1 2 (1) + 𝑦 = 0 ⇒ 𝑦 = − 1 2 . Example 3.7: let 𝑥−𝑦𝑖 1+5𝑖 , 3−2𝑖 𝑖 be conjugate numbers, then find the values of 𝑥, 𝑦 ∈ ℝ. Sol/ since the numbers are conjugate to each other, then ( 𝑥 − 𝑦𝑖 1 + 5𝑖 ) ̅̅̅̅̅̅̅̅̅̅̅ = 3 − 2𝑖 𝑖 ⇒ 𝑥 + 𝑦𝑖 1 − 5𝑖 = 3 − 2𝑖 𝑖 because we have ( 𝑐1 𝑐2 ̅) = 𝑐1 𝑐2 ̅̅̅ ̅. ⇒ (𝑥 + 𝑦𝑖)𝑖 = (1 − 5𝑖)(3 − 2𝑖) ⇒ 𝑥𝑖 − 𝑦 = 3 − 2𝑖 − 15𝑖 − 10 ⇒ 𝑥𝑖 − 𝑦 = −7 − 17𝑖 ⇒ 𝑥 = −17, 𝑦 = 7 Example 3.8: find the values of 𝑥, 𝑦 ∈ ℝ that satisfy 𝑦 1+𝑖 = 𝑥2+4 𝑥+2𝑖 . Sol/ 𝑦 1 + 𝑖 = 𝑥2 + 4 𝑥 + 2𝑖 ⇒ 𝑦 1 + 𝑖 = 𝑥2 − 4𝑖2 𝑥 + 2𝑖 ⇒ 𝑦 1 + 𝑖 = (𝑥 − 2𝑖)(𝑥 + 2𝑖) 𝑥 + 2𝑖 ⇒ 𝑦 1 + 𝑖 = 𝑥 − 2𝑖 ⇒ 𝑦 = (𝑥 − 2𝑖)(1 + 𝑖) R R I I
  • 19. Complex numbers Dr. Anas D. Khalaf 19 ⇒ 𝑦 = 𝑥 + 𝑥𝑖 − 2𝑖 + 2 ⇒ 𝑦 = 𝑥 + 2, and 𝑥 − 2 = 0 ⇒ 𝑥 = 2, thus 𝑦 = 2 + 2 = 4. R R I I R
  • 20. Complex numbers Dr. Anas D. Khalaf 20 Exercises (1-1) 1) Rewrite the following numbers and expressions in a simplest way, use the standard formula for complex number: a) 𝑖5 b) 𝑖124 c) 𝑖−7 d) 𝑖−15 e) √−25 f) 𝑖(1 + 𝑖) g) (2 + 3𝑖)2 + (12 + 2𝑖) h) (1 + 𝑖)2 + (1 − 𝑖)2 i) 1+𝑖 1−𝑖 j) 1+2𝑖 −2+𝑖 k) 3+4𝑖 3−4𝑖 2) Rewrite each of the following as product of two factors of the form 𝑎 + 𝑏𝑖 a) 41 b) 29 3) Find the values of 𝑥, 𝑦 ∈ ℝ that satisfy ( 1−𝑖 1+𝑖 ) + (𝑥 + 𝑦𝑖) = (1 + 2𝑖)2 . 4) If 3+𝑖 2−𝑖 , 6 𝑥+𝑦𝑖 are complex conjugate, then find the values of 𝑥, 𝑦 ∈ ℝ .
  • 21. Complex numbers Dr. Anas D. Khalaf 21 4. The square root of complex number To find the square-roots of complex number c we should first rewrite it in the standard formula i.e. 𝑐 = 𝑎 + 𝑏𝑖, then suppose that (𝑥 + 𝑦𝑖)2 = 𝑎 + 𝑏𝑖, and then solve the equation by taking the real (complex) part of left hand with the real (complex) part of right hand. Example 4.1: find the square roots of 1) 𝑐 = 8 + 6𝑖 Sol/ (𝑥 + 𝑦𝑖)2 = 8 + 6𝑖 ⇒ 𝑥2 + 2𝑥𝑦𝑖 − 𝑦2 = 8 + 6𝑖 ⇒ 𝑥2 − 𝑦2 = 8 … (1), and 2𝑥𝑦 = 6 ⇒ 𝑦 = 6 2𝑥 = 3 𝑥 … (2) By (1) and (2), we have 𝑥2 − ( 3 𝑥 ) 2 = 8 ⇒ [𝑥2 − 9 𝑥2 = 8] × 𝑥2 𝑥4 − 9 = 8𝑥2 ⇒ 𝑥4 − 8𝑥2 − 9 = 0 ⇒ (𝑥2 − 9)(𝑥2 + 1) = 0, either (𝑥2 − 9) = 0 ⇒ 𝑥2 = 9 ⇒ 𝑥 = ∓3 or (𝑥2 + 1) = 0 ⇒ 𝑥2 = −1 we ignore this value because 𝑥 is real number.
  • 22. Complex numbers Dr. Anas D. Khalaf 22 Now , by substituting the values of 𝑥 into Eq. (2), we get 𝑦 = 3 3 = 1 or 𝑦 = 3 −3 = −1 ∴ 𝑐1 = 3 + 𝑖, 𝑐2 = −3 − 𝑖 Hence, the square roots of c are 3 + 𝑖 and −3 − 𝑖 . 2) 𝒄 = −𝟔𝒊 Sol/ (𝑥 + 𝑦𝑖)2 = 0 − 6𝑖 ⇒ 𝑥2 + 2𝑥𝑦𝑖 − 𝑦2 = 0 − 6𝑖 ⇒ 𝑥2 − 𝑦2 = 0 … (1), and 2𝑥𝑦 = −6 ⇒ 𝑦 = −6 2𝑥 = −3 𝑥 … (2) By (1) and (2), we have 𝑥2 − ( −3 𝑥 ) 2 = 0 ⇒ [𝑥2 − 9 𝑥2 = 0] × 𝑥2 𝑥4 − 9 = 0 ⇒ (𝑥2 − 3)(𝑥2 + 3) = 0, either (𝑥2 − 3) = 0 ⇒ 𝑥2 = 3 ⇒ 𝑥 = ∓√3 or (𝑥2 + 3) = 0 ⇒ 𝑥2 = −3 we ignore this value because 𝑥 is real number. Now , by substituting the values of 𝑥 into Eq. (2), we get
  • 23. Complex numbers Dr. Anas D. Khalaf 23 𝑦 = 3 √3 = √3 or 𝑦 = 3 −√3 = −√3 ∴ 𝑐1 = √3 + √3𝑖, 𝑐2 = −√3 − √3𝑖 Hence, the square roots of c are √3 + √3𝑖 and −√3 − √3𝑖. 3) 𝟒 𝟏−√𝟑𝒊 Sol/ 4 1 − √3𝑖 × 1 + √3𝑖 1 + √3𝑖 = 4 + 4√3𝑖 12 + (√3) 2 = 4 + 4√3𝑖 4 = 1 + √3𝑖 (𝑥 + 𝑦𝑖)2 = 1 + √3𝑖 ⇒ 𝑥2 + 2𝑥𝑦𝑖 − 𝑦2 = 1 + √3𝑖 ⇒ 𝑥2 − 𝑦2 = 1 … (1), and 2𝑥𝑦 = √3 ⇒ 𝑦 = √3 2𝑥 … (2) By (1) and (2), we have 𝑥2 − ( √3 2𝑥 ) 2 = 1 ⇒ [𝑥2 − 3 4𝑥2 = 1] × 4𝑥2
  • 24. Complex numbers Dr. Anas D. Khalaf 24 4𝑥4 − 3 = 4𝑥2 ⇒ 4𝑥4 − 4𝑥2 − 3 = 0 ⇒ (2𝑥2 − 3)(2𝑥2 + 1) = 0, either (2𝑥2 − 3) = 0 ⇒ 2𝑥2 = 3 ⇒ 𝑥 = ∓√ 3 2 or (𝑥2 + 1) = 0 ⇒ 𝑥2 = −1 we ignore this value because 𝑥 is real number. Now , by substituting the values of 𝑥 into Eq. (2), we get 𝑦 = √3 √2 . √2(− √3 √2 ) = 1 √2 or 𝑦 = √3 √2 . √2( −√3 √2 ) = −1 √2 Hence, the square roots of c are ±(√ 3 2 + 1 √2 𝑖). 5. Solving the equation in ℂ We know that the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎 ≠ 0; 𝑎, 𝑏, 𝑐 ∈ ℝ, has two solutions that can be found by using the Law: 𝑥 = −𝑏±√𝑏2−4𝑎𝑐 2𝑎 , and we also know that if the charecrstic expression 𝑏2 − 4𝑎𝑐 is negative then the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 dose not have real solutions, but it has two solutions in ℂ. Example 5.1: solve the following equations in ℂ: 1) 𝑥2 + 4𝑥 + 5 = 0 Sol/
  • 25. Complex numbers Dr. Anas D. Khalaf 25 𝑥 = −𝑏 ± √𝑏2 − 4𝑎𝑐 2𝑎 = −4 ± √42 − 4(1)(5) 2 ⇒ 𝑥 = −4±√16−20 2 = −4±√−4 2 = −4±2𝑖 2 = −2 ± 𝑖 ∴ 𝑆 = {−2 − 𝑖, −2 + 𝑖} 2) 𝑧2 = −12 Sol/ 𝑧 = ±√−12 = ±√3 × 4𝑖 = ±2√3𝑖 ∴ 𝑆 = {−2√3𝑖, 2√3𝑖}, which are conjugate roots. 3) 𝑧2 − 3𝑧 + 3 + 𝑖 = 0 𝑧 = −𝑏 ± √𝑏2 − 4𝑎𝑐 2𝑎 = 3 ± √32 − 4(1)(3 + 𝑖) 2 = 3 ± √9 − 12 − 4𝑖 2 = 3 ± √−3 − 4𝑖 2 to solve this equation, we need to find the roots of −3 − 4𝑖 as follows (𝑥 + 𝑦𝑖)2 = −3 − 4𝑖 ⇒ 𝑥2 + 2𝑥𝑦𝑖 − 𝑦2 = −3 − 4𝑖 ⇒ 𝑥2 − 𝑦2 = −3 … (1) ⇒ 𝑦 = −4 2𝑥 = −2 𝑥 … . . (2)
  • 26. Complex numbers Dr. Anas D. Khalaf 26 By (1) and (2), we obtain 𝑥2 − ( −2 𝑥 ) 2 = −3 ⇒ [𝑥2 − 4 𝑥2 = −3] × 𝑥2 ⇒ 𝑥4 − 4 = −3𝑥2 ⇒ 𝑥4 + 3𝑥2 − 4 = 0 ⇒ (𝑥2 + 4)(𝑥2 − 1) = 0 𝑥2 = 1 ⇒ 𝑥 = ±1, then from Eq. (2), we have 𝑦 = −2 ±1 = ±2 Now, going back to the roots of −3 − 4𝑖, we have found that √−3 − 4𝑖 = ±(1 − 2𝑖) Thus, 𝑧 = 3 ± (1 − 2𝑖) 2 Neither 𝑧 = 3 2 − 1+2𝑖 2 = 1 + 𝑖 or 𝑧 = 3 2 + 1−2𝑖 2 = 2 − 𝑖. The roots are not conjugate. 4 ) 𝑧2 + 2𝑧 + 𝑖(2 − 𝑖) = 0 𝑧2 + 2𝑧 + 𝑖(2 − 𝑖) = 0 ⇒ 𝑧2 + 2𝑧 + 2𝑖 + 1 = 0
  • 27. Complex numbers Dr. Anas D. Khalaf 27 𝑧 = −𝑏 ± √𝑏2 − 4𝑎𝑐 2𝑎 = −2 ± √22 − 4(1)(2𝑖 + 1) 2 = −2 ± √4 − 8𝑖 − 4 2 = −2 ± √−8𝑖 2 To solve this equation, we need to find the roots of −8𝑖 as follows (𝑥 + 𝑦𝑖)2 = −8𝑖 ⇒ 𝑥2 + 2𝑥𝑦𝑖 − 𝑦2 = −8𝑖 ⇒ 𝑥2 − 𝑦2 = 0 … (1) ⇒ 𝑦 = −8 2𝑥 = −4 𝑥 … . . (2) Using (1) and (2), we obtain 𝑥2 − ( −4 𝑥 ) 2 = 0 ⇒ [𝑥2 − 16 𝑥2 = 0] × 𝑥2 ⇒ 𝑥4 − 16 = 0 ⇒ (𝑥2 − 4)(𝑥2 + 4) = 0 Hence, 𝑥2 − 4 = 0 ⇒ 𝑥 = ±2, then from Eq. (2), we have 𝑦 = −4 ±2 = ±2 Now, going back to the roots of −8𝑖, we have found that √−8𝑖 = ±(2 − 2𝑖)
  • 28. Complex numbers Dr. Anas D. Khalaf 28 Thus, 𝑧 = −2 ± (2 − 2𝑖) 2 Neither 𝑧 = −2 2 − 2+2𝑖 2 = −2 + 𝑖 or 𝑧 = −2 2 + 2−2𝑖 2 = 0 − 𝑖. Consequently, the roots are not conjugate. Remark 5.1: we can reformulate the quadratic equation from its roots as follows:  Write the roots in standard form of complex number.  Find the sum of roots (𝑐1 + 𝑐2).  Find the multiplication of the roots (𝑐1 × 𝑐2).  Apply the following formula 𝑥2 − (𝑐1 + 𝑐2)𝑥 + (𝑐1 × 𝑐2) = 0. Note that if the factors of an equation are real and one of them is known, then the other one is its complex conjugate. Example 5.2: find the quadratic equations that their roots are:  ±(2 + 2𝑖) 𝑐1 + 𝑐2 = (2 + 2𝑖) + (−2 − 2𝑖) = 2 − 2 + (2 − 2)𝑖 = 0 𝑐1 × 𝑐2 = (2 + 2𝑖) × (−2 − 2𝑖) = −4 − 4𝑖 − 4𝑖 + 4 = −8𝑖 Then the quadratic equation can be given by 𝑥2 − −8𝑖 = 0
  • 29. Complex numbers Dr. Anas D. Khalaf 29  𝑀 = 3−𝑖 1+𝑖 , 𝐿 = (3 − 2𝑖)2 𝑀 = 3 − 𝑖 1 + 𝑖 = 3 − 𝑖 1 + 𝑖 × 1 − 𝑖 1 − 𝑖 = 3 − 3𝑖 − 𝑖 − 1 1 + 1 = 2 − 4𝑖 2 = 1 − 2𝑖 𝐿 = (3 − 2𝑖)2 = 9 − 12𝑖 − 4 = 5 − 12𝑖 𝑀 + 𝐿 = (1 − 2𝑖) + (5 − 12𝑖) = (1 + 5) + (−2 − 12)𝑖 = 6 − 14𝑖 𝑀 × 𝐿 = (1 − 2𝑖)(5 − 12𝑖) = 5 − 12𝑖 − 10𝑖 − 24 = −19 − 22𝑖 Then the quadratic equation is 𝑥2 − (6 − 14𝑖)𝑥 + (−19 − 22𝑖) = 0 Example 5.3: write the quadratic equation that has real factors and one of its roots is 1) 𝐴 = 3 − 4𝑖. Sol/ since the quadratic equation has real factors and one of its roots is 3 − 4𝑖, then by remark (5.1 ), the other root is the complex conjugate of 3 − 4𝑖 namely 3 + 4𝑖 ≔ 𝐵. 𝐴 + 𝐵 = (3 − 4𝑖) + (3 + 4𝑖) = 6 + 0𝑖 = 6 𝐴 × 𝐵 = (3 − 4𝑖)(3 + 4𝑖) = 9 + 12𝑖 − 12𝑖 + 16 = 25 Then the quadratic equation is 𝑥2 − 6𝑥 + 25 = 0
  • 30. Complex numbers Dr. Anas D. Khalaf 30 2 ) 𝑨 = √𝟐+𝟑𝒊 𝟒 Sol/ since the quadratic equation has real factors and one of its roots is 𝐴 = √2+3𝑖 4 , then by remark (5.1), the other root is the complex conjugate of 𝐴 namely √𝟐−𝟑𝒊 𝟒 ≔ 𝐵. 𝐴 + 𝐵 = ( √2 4 + 3 4 𝑖) + ( √2 4 − 3 4 𝑖) = ( √2 4 + √2 4 ) + ( 3 4 𝑖 − 3 4 𝑖) = √2 2 + 0𝑖 = 1 √2 𝐴 × 𝐵 = ( √2 4 + 3 4 𝑖) ( √2 4 − 3 4 𝑖) = 2 16 − 3√2 16 𝑖 + 3√2 16 𝑖 + 9 16 = 11 16 Then the quadratic equation is 𝑥2 − 1 √2 𝑥 + 11 16 = 0 Example 5.4: Let 3 + 𝑖 be one of the roots of the equation 𝑥2 − 𝑎𝑥 + (5 + 5𝑖) = 0, then what is the value of 𝑎 ?, and what is the other root ? Sol/ suppose that the other root is denoted by 𝐿, then 𝐿 × (3 + 𝑖) = 5 + 5𝑖 ⇒ 𝐿 = 5 + 5𝑖 3 + 𝑖 ⇒ 𝐿 = 5 + 5𝑖 3 + 𝑖 × 3 − 𝑖 3 − 𝑖
  • 31. Complex numbers Dr. Anas D. Khalaf 31 ⇒ 𝐿 = 15 − 5𝑖 + 15𝑖 + 5 9 + 1 = 20 + 10𝑖 10 = 2 + 𝑖 And the summation of the roots is ⇒ 𝑎 = 𝐿 + 𝑀 ⇒ 𝒂 = (2 + 𝑖) + (3 + 𝑖) = 5 + 2𝑖 ⇒ 𝑎 = 5 + 2𝑖 6. The cube roots number of integer one Let 𝑧 be one of the cube roots of the integer one, such that 𝑧3 = 1 ⇒ 𝑧3 − 1 = 0 ⇒ (𝑧 − 1)(𝑧2 + 𝑧 + 1) = 0 Neither 𝑧 = 1 or 𝑧2 + 𝑧 + 1 = 0, this equation can be solved by the quadratic formula 𝑧 = −𝑏±√𝑏2−4𝑎𝑐 2𝑎 as follows: 𝑧 = −𝑏 ± √𝑏2 − 4𝑎𝑐 2𝑎 = −1 ± √12 − 4(1)(1) 2(1) = −1 ± √3𝑖 2 = −1 2 ± √3 2 𝑖 Then the cube roots of the integer one are: 1, 𝜔 ≔ −1 2 + √3 2 𝑖, 𝜔2 ≔ −1 2 − √3 2 𝑖. The sum of these roots is
  • 32. Complex numbers Dr. Anas D. Khalaf 32 1 + ( −1 2 + √3 2 𝑖) + ( −1 2 − √3 2 𝑖) = 0 That is 1 + 𝜔 + 𝜔2 = 0, which gives us the following relations:  1 + 𝜔 = − 𝜔2  1 + 𝜔2 = −𝜔  𝜔 + 𝜔2 = −1  1 = − 𝜔 − 𝜔2  𝜔2 = −1 − 𝜔  𝜔 = −1 − 𝜔2 Moreover, the multiplication of the roots is 1 . 𝜔 . 𝜔2 = 1 ⇒ 𝜔3 = 1, from this we obtain 𝜔 = 1 𝜔2 , 𝜔2 = 1 𝜔 , 𝜔4 = 𝜔3 . 𝜔 = 1. 𝜔 = 𝜔, 𝜔6 = 𝜔3 . 𝜔3 = 1. 1 = 1, 𝜔−5 = 1 𝜔5 = 1 𝜔3. 𝜔2 = 1 𝜔2 = 𝜔, 𝜔−5 = 1 𝜔5 = 1 𝜔3. 𝜔2 = 1 𝜔2 = 𝜔, 𝜔−8 = 1 𝜔8 = 1 𝜔6. 𝜔2 = 1 𝜔2 = 𝜔.
  • 33. Complex numbers Dr. Anas D. Khalaf 33 Example 6.1: find the value of the following 𝜔33 , 𝜔25 , 𝜔−58 , 𝜔−325 . Sol/ 𝜔33 = (𝜔3 )10 . 𝜔3 = (1)10 . 13 = 1 𝜔25 = (𝜔3 )8 . 𝜔 = 𝜔 𝜔−58 = 1 𝜔58 = 1 (𝜔3)19. 𝜔 = 1 𝜔 = 𝜔2 𝜔−325 = 1 𝜔325 = 1 (𝜔3)108.𝜔 = 1 𝜔 = 𝜔2 . Example 6.2: write the following expressions in a simplest way: 1) 1 (1+ 𝜔−32)12 1 (1 + 𝜔−32)12 = 1 (1 + ( 𝜔3)−11. 𝜔)12 = 1 (−𝜔2)12 = 1 (−𝜔2)12 = − 1 (𝜔3)8 = −1 2) (1 + 𝜔2 )−4 (1 + 𝜔2 )−4 = (−𝜔)−4 = 1 (−𝜔)4 = 1 𝜔3.𝜔 = 𝜔2 . 3) 𝜔9𝑛+5 = (𝜔3)3𝑛 . 𝜔5 = (1)3𝑛 . 𝜔3 . 𝜔2 = 𝜔2
  • 34. Complex numbers Dr. Anas D. Khalaf 34 4) (3𝜔9𝑛 + 5 𝜔5 + 4 𝜔4) 6 (3𝜔9𝑛 + 5 𝜔3 + 4 𝜔4 ) 6 = (3𝜔9𝑛 + 5𝜔4 + 4𝜔5 𝜔5𝜔4 ) 6 = (3(𝜔3 )3𝑛 + 5𝜔4 + 4𝜔5 (𝜔3)3 ) 6 = (3 + 5𝜔3 . 𝜔 + 4𝜔3 . 𝜔2)6 = (3(−𝜔 − 𝜔2) + 5𝜔 + 4 𝜔2)6 = (−3𝜔 − 3𝜔2 + 5𝜔 + 4 𝜔2)6 = (2𝜔 − 3𝜔2 + 5𝜔 + 4 𝜔2)6 Example 6.3: Prove that: a) (5 + 3𝜔 + 3𝜔2)2 = −4(2 + 𝜔 + 2𝜔2)3 = 4 Sol/ L.H.S: (5 + 3𝜔 + 3𝜔2)2 = (5 + 3(𝜔 + 𝜔2 ))2 = (5 + 3(−1))2 = 22 = 4 R.H.S: −4(2 + 𝜔 + 2𝜔2)3 = −4(2(1 + 𝜔2) + 𝜔)3 = −4(2(−𝜔) + 𝜔)3 = −4(−2𝜔 + 𝜔)3 = −4(−𝜔)3 = −4 . −1(𝜔)3 = 4 b) ( 1 2+𝜔 − 1 2+𝜔2) 2 = − 1 3 L.H.S: ( 1 2+𝜔 − 1 2+𝜔2) 2 = ( (2+𝜔2)−(2+𝜔) (2+𝜔2)(2+𝜔) ) 2 = ( 2−2+𝜔2−𝜔 4+2𝜔+2𝜔2+𝜔3) 2 = ( 𝜔2−𝜔 4+2(𝜔+𝜔2)+1 ) 2 = ( − 1 2 − √3 2 𝑖+ 1 2 − √3 2 𝑖 4−2+1 ) 2 = ( −2√3 2 𝑖 3 ) 2 = ( −√3𝑖 3 ) 2 = −3 9 = − 1 3
  • 35. Complex numbers Dr. Anas D. Khalaf 35 c) 𝜔14+𝜔7−1 𝜔10+𝜔5−2 = 2 3 L.H.S: 𝜔14+𝜔7−1 𝜔10+𝜔5−2 = (𝜔3)4. 𝜔2+(𝜔3)2. 𝜔−1 (𝜔3)3. 𝜔+ 𝜔3. 𝜔2−2 = 𝜔2+ 𝜔−1 𝜔+ 𝜔2−2 = −1−1 −1−2 = −2 −3 = 2 3 = L.H.S d) (1 + 𝜔2 )3 + (1 + 𝜔)3 = −2 L.H.S: (−𝜔)3 + (−𝜔2 )3 = −𝜔3 −𝜔6 = −1 − (𝜔3 )2 = −1 − 1 = −2 = R.H.S Example 6.4: write the quadratic equation that its roots are: 1) 𝑨 = 𝟏 − 𝒊𝝎𝟐 , 𝑩 = 𝟏 − 𝒊𝝎 𝐴 + 𝐵 = (1 − 𝑖𝜔2) + (1 − 𝑖𝜔) = 2 − (𝜔 + 𝜔2)𝑖 = 2 + 𝑖 𝐴 . 𝐵 = (1 − 𝑖𝜔2)(1 − 𝑖𝜔) = 1 − 𝑖𝜔 −𝑖𝜔2 + 𝜔3 𝑖2 = 1 − 𝑖𝜔 −𝑖𝜔2 − 1 = −(𝜔 + 𝜔2)𝑖 = 𝑖 Then the quadratic equation is 𝑥2 − (2 + 𝑖)𝑥 + 𝑖 = 0 2) 𝑨 = 𝟐 𝟏−𝝎 , 𝑩 = 𝟐 𝟏−𝝎𝟐 𝐴 + 𝐵 = 2 1 − 𝜔 + 2 1 − 𝜔2 = 2(1 − 𝜔2) + 2(1 − 𝜔) 1 − 𝜔2 − 𝜔 + 𝜔3 = 2−2𝜔2 + 2 − 2𝜔 1 − 𝜔2 − 𝜔 + 1 = 4−2(𝜔2 + 𝜔) 2 − (𝜔2 + 𝜔) = 6 2 − (−1) = 6 3 = 2
  • 36. Complex numbers Dr. Anas D. Khalaf 36 𝐴 . 𝐵 = ( 2 1 − 𝜔 ) ( 2 1 − 𝜔2 ) = 4 1 − 𝜔2 − 𝜔 + 𝜔3 = 4 3 Then, the quadratic equation is 𝑥2 − 2𝑥 + 4 3 = 0 3) 𝑨 = 𝝎 𝟐−𝝎𝟐 , 𝑩 = 𝝎𝟐 𝟐−𝝎 𝐴 + 𝐵 = 𝜔 2 − 𝜔2 + 𝜔2 2 − 𝜔 = 𝜔(2 − 𝜔) + 𝜔2 (2 − 𝜔) (2 − 𝜔2)(2 − 𝜔) = 2𝜔 − 𝜔2 + 2𝜔2 − 𝜔4 4 − 2𝜔 − 2𝜔2 + 𝜔3 = 𝜔2 + 2𝜔 − 𝜔3 . 𝜔 5 − 2(𝜔2 + 𝜔) = 𝜔2 + 2𝜔 − 𝜔 5 − 2(−1) = 𝜔2 + 𝜔 7 = − 1 7 𝐴 . 𝐵 = ( 𝜔 2 − 𝜔2 ) ( 𝜔2 2 − 𝜔 ) = 𝜔3 5 − 2(𝜔2 + 𝜔) = 1 7 Then, the quadratic equation is 𝑥2 + 1 7 𝑥 + 1 7 = 0 Example 6.5: let 𝑧2 + 𝑧 + 1 = 0, then find the value of 1+3𝑧10+3𝑧11 1−3𝑧7−3𝑧8 . Sol/ first, we need to find the value of 𝑧 by the quadratic formula 𝑎 = 1, b = 1 , c = 1,
  • 37. Complex numbers Dr. Anas D. Khalaf 37 𝑧 = −𝑏 ± √𝑏2 − 4𝑎𝑐 2𝑎 = −1 ± √12 − 4(1)(1) 2(1) = −1 ± √−3 2 = −1 ± √3𝑖 2 Then 𝑧 = −1+√3𝑖 2 = 𝜔 or 𝑧 = −1−√3𝑖 2 = 𝜔2 . Now, let 𝑧 = 𝜔, we obtain 1+3𝑧10+3𝑧11 1−3𝑧7−3𝑧8 = 1+3𝜔10+3𝜔11 1−3𝜔7−3𝜔8 = 1+3(𝜔3)3 . 𝜔 +3(𝜔3)3 . 𝜔2 1−3(𝜔3)2 . 𝜔−3(𝜔3)2 . 𝜔2 = 1+3 𝜔 +3 𝜔2 1−3𝜔−3𝜔2 = 1+3 (𝜔 +𝜔2) 1−3(𝜔+𝜔2) = −2 4 = − 1 2 Now, let 𝑧 = 𝜔2 , we obtain 1 + 3z10 + 3z11 1 − 3z7 − 3z8 = 1 + 3(ω2 )10 + 3(ω2 )11 1 − 3(ω2)7 − 3(ω2)8 = 1+3(ω3 ) 6 . ω2 +3(ω3 ) 7 . ω 1−3(ω3 ) 4 . ω2−3(ω3 ) 5 . ω = 1+3 (ω2+ω ) 1−3(ω2+ω) = −2 4 = − 1 2
  • 38. Complex numbers Dr. Anas D. Khalaf 38 7. Geometric Representation of Complex Numbers In the beginning of this chapter, we have said that a complex number 𝑧 can be represented as an ordered bear of real numbers (𝑥, 𝑦) and denoted by 𝑧(𝑥, 𝑦). Example 7.1: represent the following Numbers geometrically 1)(3 + 4 𝑖) + (5 + 2𝑖) (3 + 4 𝑖) + (5 + 2𝑖) = (3 + 5) + (4 + 2)𝑖 = 8 + 6𝑖 2)(6 − 2 𝑖) − (2 − 5𝑖) (6 − 2 𝑖) − (2 − 5𝑖) = (6 − 2 𝑖) + (−2 + 5𝑖) = 4 + 3𝑖 Figure 1: Geometric Representation (𝟑 + 𝟒 𝒊) + (𝟓 + 𝟐𝒊) Figure 2: Geometric Representation (𝟔 − 𝟐𝒊) − (𝟐 − 𝟓𝒊)
  • 39. Complex numbers Dr. Anas D. Khalaf 39 Example 7.2: write the additive counterpart of the following numbers, then represent the numbers and their additive Counterparts on Argand plane. a) 𝑧1 = 2 + 3𝑖 𝑧1 = 2 + 3𝑖 ⇒ 𝑝1(2, 3) −𝑧1 = −2 − 3𝑖 ⇒ 𝑝2(−2, − 3) b) 𝑧1 = −1 + 3𝑖 𝑧1 = −1 + 3𝑖 ⇒ 𝑝1(−1, 3) −𝑧1 = 1 − 3𝑖 ⇒ 𝑝2(1, − 3) Example 7.3: give the complex conjugate for the following numbers then provide the geometric representation for each of them: a) 𝑧1 = 5 + 3𝑖 𝑧1 = 5 + 3𝑖 ⇒ 𝑝1(5, 3) 𝑧̅1 = 5 − 3𝑖 ⇒ 𝑝2(5, −3) Figure 3: the geometric Representation for example a Figure 4: the geometric Representation for example b Figure 5: the geometric Representation for example a
  • 40. Complex numbers Dr. Anas D. Khalaf 40 b ) 𝑧 = −2𝑖 𝑧 = 0 − 2𝑖 ⇒ 𝑝1(0, −2) 𝑧̅ = 0 + 2𝑖 ⇒ 𝑝2(0, 2) a) Example 7.4: let 𝑧1 = 4 − 2𝑖 and 𝑧2 = 1 + 2𝑖 then represent the following on Argand: a) −3𝑧2 = −3(1 + 2𝑖) = −3 − 6𝑖 ⇒ 𝑝1(−3, −6) b) 2𝑧1 = 2(4 − 2𝑖) = 8 − 4𝑖 ⇒ 𝑝2(8, −4) c) 𝑧1 − 𝑧2 = (4 − 2𝑖) − (1 + 2𝑖) = 3 − 4𝑖 ⇒ 𝑝3(3, −4) d) 𝑧1 + 𝑧2 = (4 − 2𝑖) + (1 + 2𝑖) = 5 + 0𝑖 ⇒ 𝑝4(5, 0) Figure 6: the geometric Representation for example b (a) (b) (c) (d) Figure 6: the geometric Representation for example
  • 41. Complex numbers Dr. Anas D. Khalaf 41 Exercises (2-2) 1) Find the value of the following: 𝜔14 , 𝜔64 , 𝜔−6 , 𝜔−8 2) Write the following expressions in a simplest way: 𝜔12𝑛+5 3) Prove that: a) 𝜔7 + 𝜔5 + 1 = 0 b) (1 − 2 𝜔2 + 𝜔2 ) (1 + 𝜔 − 5 𝜔 ) = 18 4) Write the quadratic equation that its roots are: a) 𝐴 = 1 + 𝜔2 , 𝐵 = 1 + 𝜔 𝒃) 3𝑖 𝜔2 , −3𝜔2 𝑖 5) Write the additive counterpart of the following numbers, then represent the numbers and their additive Counterparts on Argand plane: a) 𝑧 = 𝑖 b) 𝑧 = 3 − 2𝑖 6) Give the complex conjugate for the following numbers then provide the geometric representation for each of them: a) 𝑧1 = −3 + 2𝑖 b ) 𝑧2 = 1 − 𝑖 7) Let 𝑧 = 4 + 2𝑖 then represent the following on Argand: a) 𝑧 b) 𝑧̅ c) – 𝑧
  • 42. Complex numbers Dr. Anas D. Khalaf 42 8. Polar form of complex number If we have a complex number 𝑧 and we geometrically represent it by the point 𝑝(𝑥, 𝑦), then (𝑟, 𝜃) are the polar coordinates for 𝑝 such that 𝑂 represent the polar (Origin pojnt) and 𝑂𝑋 ⃑⃑⃑⃑⃑ stands for the primary side. See figure 8. Definition 8.1: let 𝑟 be a non negative real number, then we say that 𝑟 is a modulus for the complex number 𝑧 (Mod z ) and denoted by ‖𝑧‖. Mod z is defined by 𝑟 = ‖𝑧‖ = √𝑥2 + 𝑦2 The measure of an angle 𝜃 ( known as argument of a complex number arg(𝑧)) that made between the victor 𝑂𝑝 ⃑⃑⃑⃑⃑ and the right part of 𝑋-axis can be given by cos 𝜃 = 𝑥 𝑟 = 𝑥 ‖𝑧‖ ⇒ ℝ(𝑧) = 𝑥 = 𝑟 cos 𝜃 sin 𝜃 = 𝑦 𝑟 = 𝑦 ‖𝑧‖ ⇒ 𝐼(𝑧) = 𝑦 = 𝑟 sin 𝜃 Remark 8.1: if 𝜃 is argument of a complex number 𝑧, then 𝜃 + 2𝑛𝜋, 𝑛 ∈ ℤ, are also is argument of the same complex number 𝑧. Whereas, if 𝜃 ∈ [0,2𝜋) then we call 𝜃 the principle value of complex number. Figure 8: Polar form of complex number
  • 43. Complex numbers Dr. Anas D. Khalaf 43 Table 1: the special angels Example 8.1: let 𝑧 = 1 + √3𝑖, then find the modulus and principle value of 𝑧. 𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √12 + (√3)2 = √12 + 3 = √4 = 2 cos 𝜃 = 𝑥 ‖𝑧‖ = 1 2 ⇒ cos 𝜃 has positive value sin 𝜃 = 𝑦 ‖𝑧‖ = √3 2 ⇒ sin 𝜃 has positive value too, then 𝜃 is located in first quarter. ∴ arg(𝑧) = 𝜋 3 . Example 8.2: if 𝑧 = −1 − 𝑖, then find the modulus and principle value of 𝑧. 𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √−12 + (−1)2 = √1 + 1 = √2 cos 𝜃 = 𝑥 ‖𝑧‖ = −1 √2 ⇒ cos 𝜃 has negative value sin 𝜃 = 𝑦 ‖𝑧‖ = −1 √2 ⇒ sin 𝜃 has negative value too, then 𝜃 is located in third quarter.
  • 44. Complex numbers Dr. Anas D. Khalaf 44 ∴ arg(𝑧) = 𝜋 + 𝜋 4 = 5𝜋 4 . Example 8.3: if 𝑧 = −1 − √3𝑖, then find the modulus and principle value of 𝑧. 𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √−12 + (−√3)2 = √1 + 3 = 2 cos 𝜃 = 𝑥 ‖𝑧‖ = −1 2 ⇒ cos 𝜃 has negative value sin 𝜃 = 𝑦 ‖𝑧‖ = −√3 2 ⇒ sin 𝜃 has negative value too, then 𝜃 is located in third quarter. ∴ arg(𝑧) = 𝜋 + 𝜋 3 = 4𝜋 3 . Remark 8.2: 1) The modulus of the complex number 𝑧 = 0 is unknown because the zero victor has no value. 2) by the polar form of the complex number, we have 𝑥 = 𝑟 cos 𝜃 , 𝑦 = 𝑟 sin 𝜃, then we obtain 𝑧 = 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) . Example 8.4: find the polar form for the following: a) 𝑧 = −2 + 2𝑖 𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √−22 + (2)2 = √8 = 2√2 cos 𝜃 = 𝑥 ‖𝑧‖ = −1 √2 ⇒ cos 𝜃 has negative value sin 𝜃 = 𝑦 ‖𝑧‖ = 1 √2 ⇒ sin 𝜃 has positive value, then 𝜃 is located in second quarter.
  • 45. Complex numbers Dr. Anas D. Khalaf 45 ∴ arg(𝑧) = 𝜋 − 𝜋 4 = 3𝜋 4 . 𝑧 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) = 2√2(cos 3𝜋 4 + 𝑖 sin 3𝜋 4 ) b) 7i 7𝑖 = 7(𝑖) = 7 (cos 𝜋 2 + 𝑖sin 𝜋 2 ) 9. De Moivre’s Theorem We know that the complex numbers 𝑧1 and 𝑧2 can be written in a polar form as 𝑧1 = cos 𝜃 + 𝑖sin 𝜃 , 𝑧2 = cos 𝜗 + 𝑖sin 𝜗, then 𝑧1. 𝑧2 is 𝑧1. 𝑧2 = (cos 𝜃 + 𝑖sin 𝜃) (cos 𝜗 + 𝑖sin 𝜗) = cos 𝜃cos 𝜗 + 𝑖 cos 𝜃 sin 𝜗 + 𝑖 cos 𝜗 sin 𝜃 − sin 𝜃 sin 𝜗 = (cos 𝜃 cos 𝜗 − sin 𝜃sin 𝜗) + 𝑖(cos 𝜃 sin 𝜗 + 𝑖 cos 𝜗 sin 𝜃) = cos(𝜃 + 𝜗) + 𝑖(sin(𝜃 + 𝜗)) And if 𝜃 = 𝜗, then we obtain (cos 𝜃 + 𝑖sin 𝜃)2 = cos 2𝜃 + 𝑖(sin 2𝜃) And in general we have the following theorem. Theorem 9.1: for all 𝒏 ∈ ℕ, 𝜽 ∈ ℝ then (𝐜𝐨𝐬 𝜽 + 𝒊𝐬𝐢𝐧 𝜽)𝒏 = 𝐜𝐨𝐬 𝒏𝜽 + 𝒊 𝐬𝐢𝐧 𝒏𝜽 Example 9.1: calculate the following a) (cos 3𝜋 8 + 𝑖sin 3𝜋 8 )4 Using De Moivre’s Theorem, we can write (cos 3𝜋 8 + 𝑖sin 3𝜋 8 )4 = cos 4 3𝜋 8 + 𝑖sin 4 3𝜋 8 = cos 3𝜋 2 + 𝑖sin 3𝜋 2 = 0 + 𝑖(−1) = −𝑖
  • 46. Complex numbers Dr. Anas D. Khalaf 46 b) (𝐜𝐨𝐬 𝟓𝝅 𝟐𝟒 + 𝒊𝐬𝐢𝐧 𝟓𝝅 𝟐𝟒 )𝟒 Using De Moivre’s Theorem, we can write (cos 5𝜋 24 + 𝑖sin 5𝜋 24 )4 = cos 4 5𝜋 24 + 𝑖sin 4 5𝜋 24 = cos 5𝜋 6 + 𝑖sin 5𝜋 6 Here 𝜃 = 5(30) = 150, then 𝜃 is in the second quarter, therefore cos 𝜃 is negative and sin 𝜃 is positive, hence cos 5𝜋 6 + 𝑖sin 5𝜋 6 = − √3 2 + 𝑖 ( 1 2 ) c) (𝐜𝐨𝐬 𝜃 + 𝒊𝐬𝐢𝐧 𝜃)𝟖 (𝐜𝐨𝐬 𝜃 − 𝒊𝐬𝐢𝐧 𝜃)𝟒 Using De Moivre’s Theorem, and the fact that cos 𝑛𝜃 − 𝑖sin 𝑛𝜃 = (cos 𝜃 + 𝑖sin 𝜃)−𝑛 we can write (cos 𝜃 + 𝑖sin 𝜃)8 (cos 𝜃 − 𝑖sin 𝜃)4 = (cos 8𝜃 + 𝑖sin 8𝜃) (cos 4𝜃 − 𝑖sin 4𝜃) = (cos 𝜃 + 𝑖sin 𝜃)8 (cos 𝜃 + 𝑖sin 𝜃)−4 = (cos 𝜃 + 𝑖sin 𝜃)4 = cos 4𝜃 + 𝑖sin 4𝜃 Here 𝜃 = 5(30) = 150, then 𝜃 is in the second quarter, therefore cos 𝜃 is negative and sin 𝜃 is positive, hence cos 5𝜋 6 + 𝑖sin 5𝜋 6 = − √3 2 + 𝑖 ( 1 2 )
  • 47. Complex numbers Dr. Anas D. Khalaf 47 c) (1 + 𝑖)11 𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √12 + (1)2 = √2 cos 𝜃 = 𝑥 ‖𝑧‖ = 1 √2 ⇒ cos 𝜃 has positive value sin 𝜃 = 𝑦 ‖𝑧‖ = 1 √2 ⇒ sin 𝜃 has positive value too, then 𝜃 is located in first quarter. ∴ 𝜃 = 𝜋 4 . 𝑧11 = 𝑟11(cos 𝜃 + 𝑖sin 𝜃)11 = (√2) 11 (cos 𝜋 4 + 𝑖 sin 𝜋 4 )11 = (√2 2 ) 5 . √2 (cos 𝜋 4 + 𝑖 sin 𝜋 4 )11 = 32√2 (cos 11 𝜋 4 + 𝑖 sin 11 𝜋 4 ) = 32√2 (− 1 √2 + 1 √2 𝑖) = −32 − 32𝑖. d) (1 − 𝑖)7 𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √12 + (−1)2 = √2 cos 𝜃 = 𝑥 ‖𝑧‖ = 1 √2 ⇒ cos 𝜃 has positive value sin 𝜃 = 𝑦 ‖𝑧‖ = −1 √2 ⇒ sin 𝜃 has negative value, then 𝜃 is located in fourth quarter. ∴ arg(𝑧) = 2𝜋 − 𝜋 4 = 7𝜋 4 . 𝑧7 = 𝑟7(cos 𝜃 + 𝑖sin 𝜃)7 = (√2) 7 (cos 7𝜋 4 + 𝑖 sin 7𝜋 4 )7 = (√2 2 ) 3 . √2 (cos 7𝜋 4 + 𝑖 sin 7𝜋 4 )7 = 8√2 (cos 7 7𝜋 4 + 𝑖 sin 7 7𝜋 4 )
  • 48. Complex numbers Dr. Anas D. Khalaf 48 = 8√2 ( 1 √2 + 1 √2 𝑖) = 8 + 8𝑖. Proposition 9.1: let 𝑧 be a complex number. For all 𝑛 ∈ ℤ+ , 𝜃 ∈ ℝ, then √𝑧 𝑛 = 𝑟 1 𝑛 [cos 𝜃 + 2𝜋𝑘 𝑛 + 𝑖 sin 𝜃 + 2𝜋𝑘 𝑛 ] where 𝑘 = 0,1,2, … , 𝑛 − 1. Example 9.2: find the square roots of (−1 + √3𝑖) by using De Moivre’s Theorem and last proposition. Sol/ 𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √(−1)2 + (√3)2 = √4 = 2 cos 𝜃 = 𝑥 ‖𝑧‖ = −1 2 ⇒ cos 𝜃 has negative value sin 𝜃 = 𝑦 ‖𝑧‖ = √3 2 ⇒ sin 𝜃 has positive value, then 𝜃 is located in second quarter. ∴ arg(𝑧) = 𝜋 − 𝜋 3 = 2𝜋 3 . 𝑧 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) = 2(cos 2𝜋 3 + 𝑖 sin 2𝜋 3 ) 𝑧 1 2 = 𝑟 1 2(cos 𝜃 + 𝑖sin 𝜃) 1 2, for 𝑧 1 2 has two values of 𝑘 = 0,1. Then 𝑧 1 2 = (2) 1 2 (cos 2𝜋 3 + 2𝜋𝑘 2 + 𝑖sin 2𝜋 3 + 2𝜋𝑘 2 ) = √2 (cos 2𝜋 + 6𝜋𝑘 6 + 𝑖sin 2𝜋 + 6𝜋𝑘 6 )
  • 49. Complex numbers Dr. Anas D. Khalaf 49 For 𝑘 = 0 ⇒ 𝑧1 = √2 (cos 2𝜋 6 + 𝑖sin 2𝜋 6 ) = √2 (cos 𝜋 3 + 𝑖sin 𝜋 3 ) = √2 ( 1 2 + √3 2 𝑖) = 1 √2 + √3 √2 𝑖 If 𝑘 = 1 ⇒ 𝑧2 = √2 (cos 2𝜋+6𝜋 6 + 𝑖sin 2𝜋+6𝜋 6 ) = √2 (cos 4𝜋 3 + 𝑖sin 4𝜋 3 ) = √2 ( −1 2 − √3 2 𝑖) = −1 √2 − √3 √2 𝑖 Example 9.3: find the four roots for the number (-16). Sol/ 𝑧 = −16 = 16(cos 𝜋 + 𝑖sin 𝜋) 𝑧 1 4 = (16) 1 4(cos 𝜋 + 𝑖sin 𝜋) 1 4 = 2 (cos 𝜋+2𝜋𝑘 4 + 𝑖sin 𝜋+6𝜋𝑘 4 ) 𝑘 = 0 ⇒ 𝑧1 = 2 (cos 𝜋 4 + 𝑖sin 𝜋 4 ) = 2 ( 1 √2 + 1 √2 𝑖) = √2 + √2𝑖 𝑘 = 1 ⇒ 𝑧2 = 2 (cos 3𝜋 4 + 𝑖sin 3𝜋 4 ) = 2 (− 1 √2 + 1 √2 𝑖) = −√2 + √2𝑖 𝑘 = 2 ⇒ 𝑧3 = 2 (cos 5𝜋 4 + 𝑖sin 5𝜋 4 ) = 2 (− 1 √2 − 1 √2 𝑖) = −√2 − √2𝑖 𝑘 = 3 ⇒ 𝑧2 = 2 (cos 7𝜋 4 + 𝑖sin 7𝜋 4 ) = 2 ( 1 √2 − 1 √2 𝑖) = √2 − √2𝑖
  • 50. Complex numbers Dr. Anas D. Khalaf 50 Example 9.4: find the six roots for the number (-64i). Sol/ 𝑧 = −64𝑖 = 64 (cos 3𝜋 2 + 𝑖sin 3𝜋 2 ) 𝑧 1 6 = (64) 1 6 (cos 3𝜋 2 + 𝑖sin 3𝜋 2 ) 1 6 = 2 (cos 3𝜋 2 +2𝜋𝑘 6 + 𝑖sin 3𝜋 2 +6𝜋𝑘 6 ) = 2 (cos 3𝜋 + 4𝜋𝑘 12 + 𝑖sin 3𝜋 + 4𝜋𝑘 12 ) 𝑘 = 0 ⇒ 𝑧1 = 2 (cos 3𝜋 12 + 𝑖sin 3𝜋 12 ) = 2 ( 1 √2 + 1 √2 𝑖) = √2 + √2𝑖 𝑘 = 1 ⇒ 𝑧2 = 2 (cos 7𝜋 12 + 𝑖sin 7𝜋 12 ) = 2 (− 1 √2 + 1 √2 𝑖) = −√2 + √2𝑖 𝑘 = 2 ⇒ 𝑧3 = 2 (cos 11𝜋 12 + 𝑖sin 11𝜋 12 ) 𝑘 = 3 ⇒ 𝑧4 = 2 (cos 15𝜋 12 + 𝑖sin 15𝜋 12 ) = 2 (cos 5𝜋 4 + 𝑖sin 5𝜋 4 ) = 2 (− 1 √2 − 1 √2 𝑖) = −√2 − √2𝑖 𝑘 = 4 ⇒ 𝑧5 = 2 (cos 19𝜋 12 + 𝑖sin 19𝜋 12 ) 𝑘 = 5 ⇒ 𝑧6 = 2 (cos 25𝜋 12 + 𝑖sin 25𝜋 12 )
  • 51. Complex numbers Dr. Anas D. Khalaf 51 Example 9.5: find the polar form and the five roots of (√3 + 𝑖)2 . Sol/ 𝑚𝑜𝑑 𝑧 = ‖𝑧‖ = √𝑥2 + 𝑦2 = √(√3)2 + (1)2 = √4 = 2 cos 𝜃 = 𝑥 ‖𝑧‖ = √3 2 ⇒ cos 𝜃 has positive value. sin 𝜃 = 𝑦 ‖𝑧‖ = 1 2 ⇒ sin 𝜃 has positive value too, then 𝜃 is located in first quarter. ∴ 𝜃 = 𝜋 6 . 𝑧 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) = 2(cos 𝜋 6 + 𝑖 sin 𝜋 6 ) 𝑧2 = 𝑟2(cos 𝜃 + 𝑖sin 𝜃)2 = 22 (cos 2𝜋 6 + 𝑖 sin 2𝜋 6 ) = 4 (cos 𝜋 3 + 𝑖 sin 𝜋 3 ) 𝑧 2 5 = 𝑟 2 5(cos 𝜃 + 𝑖sin 𝜃) 2 5 = (2) 2 5 (cos 5. 𝜋 3 +2𝜋𝑘 2 + 𝑖sin 5. 𝜋 3 +2𝜋𝑘 2 ) = √4 5 (cos 5𝜋 + 30𝜋𝑘 6 + 𝑖sin 5𝜋 + 30𝜋𝑘 6 ) 𝑘 = 0 ⇒ 𝑧1 = √4 5 (cos 5𝜋 6 + 𝑖sin 5𝜋 6 ) = √4 5 (− √3 2 + 1 2 ) 𝑘 = 1 ⇒ 𝑧2 = √4 5 (cos 35𝜋 6 + 𝑖sin 35𝜋 6 ) 𝑘 = 2 ⇒ 𝑧3 = √4 5 (cos 65𝜋 6 + 𝑖sin 65𝜋 6 ) 𝑘 = 3 ⇒ 𝑧4 = √4 5 (cos 95𝜋 6 + 𝑖sin 95𝜋 6 )
  • 52. Complex numbers Dr. Anas D. Khalaf 52 𝑘 = 4 ⇒ 𝑧5 = √4 5 (cos 155𝜋 6 + 𝑖sin 155𝜋 6 ) Example 9.6: solve the equation 𝑥3 + 1 = 0, where 𝑥 ∈ ℂ. Sol/ 𝑥3 + 1 = 0 ⇒ 𝑥3 = −1 ⇒ 𝑥3 = −1(1) = cos 𝜋 + 𝑖sin 𝜋 ⇒ 𝑥 = (cos 𝜋 + 𝑖sin 𝜋) 1 3 = cos 𝜋+2𝜋𝑘 3 + 𝑖sin 𝜋+2𝜋𝑘 3 𝑘 = 0 ⇒ 𝑥1 = cos 𝜋 3 + 𝑖sin 𝜋 3 = 1 2 + √3 2 𝑖 𝑘 = 1 ⇒ 𝑧2 = cos 3𝜋 3 + 𝑖sin 3𝜋 3 = −1 + 0 𝑖 = −1 𝑘 = 2 ⇒ 𝑧3 = cos 5𝜋 3 + 𝑖sin 5𝜋 3 = 1 2 − √3 2 𝑖 Hence, 𝑆 = { 1 2 + √3 2 𝑖 , −1 , 1 2 − √3 2 𝑖}.
  • 53. Complex numbers Dr. Anas D. Khalaf 53 Exercises (2-3) 1) Find the modulus and principle value of the following numbers: a) 𝑧 = −1 + √3𝑖 b) 𝑧 = −1 + 𝑖 c) 𝑧 = 1 − 𝑖 2) find the polar form for the following: a) –i b) -7i c) 3 d) 5i e) 2 f) -1 3) Calculate: a) (cos 7𝜋 12 + 𝑖 sin 7𝜋 12 ) −3 b) (cos 2𝜃+𝑖 sin 2𝜃)5 (cos 3𝜃+𝑖 sin 2𝜃)3 c) Find the square roots of (27𝑖) by using De Moivre’s Theorem.