SlideShare uma empresa Scribd logo
1 de 73
Baixar para ler offline
ECE2006
DIGITAL SIGNAL PROCESSING
FALL SEMESTER_2021
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 1
ECE2006_COURSE OBJECTIVES
■ To summarize and analyze the concepts of signals, systems in time
and frequency domain with corresponding transformations.
■ To design the analog and digital IIR, FIR filters.
■ To learn diverse structures for realizing digital filters.
■ Usage of appropriate tools for realizing signal processing modules
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 2
Course Outcomes:
1. Comprehend, classify and analyze the signals and systems, also, transform
the time domain signals and response of the system to frequency domain
2. Able to simplify Fourier transform computations using fast algorithms
3. Comprehend the various analog filter design techniques and their digitization.
4. Able to design digital filters.
5. Able to realize digital filters using delay elements, summer, etc
6. Able to realize lattice filters using delay elements, ladders, summers, etc.
7. Able to analyze and exploit the real-time signal processing
application8.Design and implement systems using the imbibed signal
processing concepts
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 3
SYLLABUS
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 4
SYLLABUS
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 5
Mode of Evaluation:
■ Continuous Assessment Test –I (CAT-I) - 15 Marks
■ Continuous Assessment Test –II (CAT-II) -15 Marks
■ Digital Assignments/ Quiz - 30 Marks
– QUIZ_1 - Module 1 and 2
– QUIZ_2 - Module 3 and 4
– DIGITAL ASSIGNMENT - Module 5 and 6
& 7
■ Final Assessment Test (FAT) - 40 Marks
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 6
Introduction
 Need for DSP: To Process real world analog signals -Analog-to-digital conversion
 Signal Processing - Operations on Signals
■ Advantages of DSP:
■ Digital circuits are less sensitive to temperature, ageing & other external parameters.
■ Digital processing is stable, reliable, flexible and repeatable.
■ Easy storage, Accuracy, Less processing cost and maintenance.
■ Covers wide range of frequencies.
■ No loading problems and Multi rate processing is possible
■ Highly suitable for processing low frequency signal also.
■ Disadvantages of DSP:
■ Pre and Post processing devices – Increases the complexity of the system
■ High power consumption
■ Frequency limitations
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 7
8
Applications of DSP
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
9
DIGITAL SIGNAL PROCESSING
Module Description
I & II Frequency Analysis of Signals and Systems-I and II
III Theory and Design of Analog Filters
IV Design of Digital IIR Filter
V Design of Digital FIR Filters
VI Realization of Digital Filters
VII Realization of Lattice filter structures
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
MODULE 1: Frequency Analysis of
Signals and Systems-I
■ Review of Discrete -Time Signals and Systems
– Classification,
– Convolution
■ z- transform: ROC stability/causality analysis,
■ DTFT: Frequency response-System analysis.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 10
Introduction to Signals
 A Detectable physical quantity by which messages or information can be
transmitted - signal
 “A signal is a function of independent variable/s that carry some information”.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 11
REPRESENTATION OF DT SIGNALS
Graphical Representation
2
)
3
(
,
1
)
2
(
,
3
)
1
(
,
0
)
0
(
,
2
)
1
(
,
3
)
2
( 







 x
x
x
x
x
x
Functional Representation
Sequence Representation
Tabular Representation
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 12
1. Unit Impulse Signal
2. Unit Step Signal
3. Unit Ramp Signal
4. Sinusoidal Signal
5. Exponential Signal
13
BASIC SIGNALS 0
0
0
1
]
[



n
for
n
for
n

0
0
0
1
]
[



n
for
n
for
n
u
0
0
0
]
[



n
for
n
for
n
n
r
)
cos(
]
[ 
 
 n
A
n
x
T
F 

 2
2 



n
a
n
x n

 ;
]
[
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
■ CT and DT signals are further classified as,
– Deterministic and Random
– Periodic and Non-periodic
– Causal and Non Causal
– Even and Odd
– Energy and Power 14
CLASSIFICATION OF SIGNALS
Basic operations on signals
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Classification of Signals
■ CT and DT signals are further classified as,
– Deterministic and Random
– Periodic and Non-periodic
– Causal and Non Causal
– Even and Odd
– Energy and Power
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 15
■ Example :
The signal is given below is energy or power signal.
Explain.
16
Power and Energy
 
x n
 
x n
3
0 1
n
2
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
• Systems process input signals to produce output signals
– Continuous/Discrete
– Linear/Non linear
– Causal/Non Causal
– Stable/Unstable
– Dynamic/Static
– Time variance/Time invariant
17
Classification of Systems
 Causal: a system is causal if the output at a time, only depends on input values up to that time.
 Linear: a system is linear if the output of the scaled sum of two input signals is the equivalent scaled
sum of outputs
 Time-invariance: a system is time invariant if the system’s output is the same, given the same input
signal, regardless of time.
 A system is called stable in the bounded-input bounded-output (BIBO) sense if every bounded input
sequence produces a bounded output sequence
 A system is called memoryless /Static if the output y[n] at every value of n depends only on the
present input values of n
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Ex. Y[n]=x[-n]
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 18
MODULE 1: Frequency Analysis of
Signals and Systems-I
■ Review of Discrete -Time Signals and Systems
– Classification,
– Convolution
■ z- transform: ROC stability/causality analysis,
■ DTFT: Frequency response-System analysis.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 19
Convolution
■ The output sequence y(n) is found as,
This is called convolution sum.
DSP_FALL 2021 Dr S KALAIVANI 20
13-08-2021
Determine the response of the system for the following input signal
and impulse response.
x(n)={1,2,1}, h(n)={1,2,3}
21
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Circular Convolution
The circular convolution of two sequences x1(n) and x2(n) is
defined as
However it is not the ordinary linear convolution that was
discussed in previous section, which relates the output sequence
y(n) of a linear system to the input sequence x(n) and the impulse
response h(n). Instead, the convolution sum involves the index
x2((m-n))N and is called circular convolution.
If the two sequences x(n) and h(n) contain L and M number of
samples respectively and that L > M, then to perform circular
convolution between the two using N=Max(L,M), the L – M
number of zero samples to be added to the sequence h(n), so
that both the sequences are periodic with N
1
3 1 2
0
( ) ( ) (( ))
N
N
n
x m x n x m n


 

22
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Circular Convolution for N=8
23
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Perform the circular convolution of the following two sequences.
x1(n)={1,2,1}, x2(n)={1,2,3}
24
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Ex.1 Find the linear and circular (7-point) convolution of the
given sequences
x[n]={1, 2, 7, -2, 3, -1, 5} and h[n]={-1, 3, 5, -3, 1}
■ Linear Convolution:
y[n]={-1, 1, 4, 30, 21, -19, 20, -1, 31, -15,5}
■ Circular Convolution:
x[n]={1, 2, 7, -2, 3, -1, 5}
h[n]={-1, 3, 5, -3, 1, 0, 0}
y[n]={-2, 32,-12,35,21,20}
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 25
MODULE 1: Frequency Analysis of
Signals and Systems-I
■ Review of Discrete -Time Signals and Systems
– Classification,
– Convolution
■ z- transform: ROC stability/causality analysis,
■ DTFT: Frequency response-System analysis.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 26
z-transform
*A generalization of Fourier transform
■ The z-transform of sequence x(n) is defined by






n
n
z
n
x
z
X )
(
)
(
Re
Im
z = ej

■ Give a sequence, the set of values of z for which the z-transform
converges, i.e., |X(z)|<, is called the region of convergence.



 









n
n
n
n
z
n
x
z
n
x
z
X |
||
)
(
|
)
(
|
)
(
|
ROC is centered on origin and consists of a set of rings.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 27
Stable Systems
■ A stable system requires that its Fourier transform is uniformly
convergent.
Re
Im
1
Fact: Fourier transform is to evaluate z-
transform on a unit circle.
A stable system requires the ROC of z-
transform to include the unit circle.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 28
Example: A right sided Sequence
)
(
)
( n
u
a
n
x n

n
n
n
z
n
u
a
z
X 




 )
(
)
(





0
n
n
n
z
a





0
1
)
(
n
n
az
For convergence of X(z), we require that






0
1
|
|
n
az 1
|
| 1


az
|
|
|
| a
z 
a
z
z
az
az
z
X
n
n




 



 1
0
1
1
1
)
(
)
(
|
|
|
| a
z 
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 29
a
a
Example: A right sided Sequence ROC
for x(n)=anu(n)
|
|
|
|
,
)
( a
z
a
z
z
z
X 


Re
Im
1
a
a
Re
Im
1
Which one is stable?
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 30
Example: A left sided Sequence
)
1
(
)
( 


 n
u
a
n
x n
n
n
n
z
n
u
a
z
X 



 


 )
1
(
)
(
For convergence of X(z), we require that






0
1
|
|
n
z
a 1
|
| 1


z
a
|
|
|
| a
z 
a
z
z
z
a
z
a
z
X
n
n






 



 1
0
1
1
1
1
)
(
1
)
(
|
|
|
| a
z 
n
n
n
z
a 






1
n
n
n
z
a






1
n
n
n
z
a






0
1
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 31
a
a
Example: A left sided Sequence ROC
for x(n)=anu( n1)
|
|
|
|
,
)
( a
z
a
z
z
z
X 


Re
Im
1
a
a
Re
Im
1
Which one is stable?
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 32
Represent z-transform as a Rational Function
)
(
)
(
)
(
z
Q
z
P
z
X 
where P(z) and Q(z) are
polynomials in z.
Zeros: The values of z’s such that X(z) = 0
Poles: The values of z’s such that X(z) = 
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 33
Example: A right sided Sequence
)
(
)
( n
u
a
n
x n
 |
|
|
|
,
)
( a
z
a
z
z
z
X 


Re
Im
a
ROC is bounded by
the pole and is the
exterior of a circle.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 34
Example: A left sided Sequence
)
1
(
)
( 


 n
u
a
n
x n
|
|
|
|
,
)
( a
z
a
z
z
z
X 


Re
Im
a
ROC is bounded by
the pole and is the
interior of a circle.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 35
Example: Sum of Two Right Sided Sequences
)
(
)
(
)
(
)
(
)
( 3
1
2
1
n
u
n
u
n
x n
n



3
1
2
1
)
(




z
z
z
z
z
X
Re
Im
1/2
)
)(
(
)
(
2
3
1
2
1
12
1




z
z
z
z
1/3
1/12
ROC is bounded by poles
and is the exterior of a
circle.
ROC does not include any pole.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 36
Example: A Two Sided Sequence
)
1
(
)
(
)
(
)
(
)
( 2
1
3
1




 n
u
n
u
n
x n
n
2
1
3
1
)
(




z
z
z
z
z
X
Re
Im
1/2
)
)(
(
)
(
2
2
1
3
1
12
1




z
z
z
z
1/3
1/12
ROC is bounded by poles
and is a ring.
ROC does not include any pole.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 37
Example: A Finite Sequence
1
0
,
)
( 


 N
n
a
n
x n
n
N
n
n
N
n
n
z
a
z
a
z
X )
(
)
( 1
1
0
1
0







 

Re
Im
ROC: 0 < z < 
ROC does not include any pole.
1
1
1
)
(
1





az
az N
a
z
a
z
z
N
N
N


 1
1
N-1 poles
N-1 zeros
Always Stable
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 38
Properties of ROC
■ A ring or disk in the z-plane centered at the origin.
■ The Fourier Transform of x(n) is converge absolutely if the ROC
includes the unit circle.
■ The ROC cannot include any poles
■ Finite Duration Sequences: The ROC is the entire z-plane except
possibly z=0 or z=.
■ Right sided sequences: The ROC extends outward from the outermost
finite pole in X(z) to z=.
■ Left sided sequences: The ROC extends inward from the innermost
nonzero pole in X(z) to z=0.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 39
Properties of z-Transform
Ex.1 Find the z-transform and ROC of the given sequence
INVERSE Z-TRANSFORM
Partial Fraction Method
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 43
Example: 2nd Order Z-Transform
44
 
2
1
z
:
ROC
z
2
1
1
z
4
1
1
1
z
X
1
1


















 

















 1
2
1
1
z
2
1
1
A
z
4
1
1
A
z
X
  1
4
1
2
1
1
1
z
X
z
4
1
1
A 1
4
1
z
1
1 
























 


  2
2
1
4
1
1
1
z
X
z
2
1
1
A 1
2
1
z
1
2 























 


13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Example Continued
■ ROC extends to infinity
– Indicates right sided sequence
45
 
2
1
z
z
2
1
1
2
z
4
1
1
1
z
X
1
1




















     
n
u
4
1
-
n
u
2
1
2
n
x
n
n













a
z
az
n
u
an
|
|
|
,
1
1
)
( 1


 
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Example #2
*Long division to obtain Bo
46
   
 
1
z
z
1
z
2
1
1
z
1
z
2
1
z
2
3
1
z
z
2
1
z
X
1
1
2
1
2
1
2
1























1
z
5
2
z
3
z
2
1
z
2
z
1
z
2
3
z
2
1
1
1
2
1
2
1
2














 
 
1
1
1
z
1
z
2
1
1
z
5
1
2
z
X















  1
2
1
1
z
1
A
z
2
1
1
A
2
z
X 
 




  9
z
X
z
2
1
1
A
2
1
z
1
1 











    8
z
X
z
1
A
1
z
1
2 




13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Example #2 Continued
*ROC extends to infinity
Indicates right-sides sequence
47
  1
z
z
1
8
z
2
1
1
9
2
z
X 1
1





 

       
n
8u
2
1
9
2 







 n
u
n
n
x
n

  1
2
1
1
z
1
A
z
2
1
1
A
2
z
X 
 




13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Example 3: Find the signal corresponding to the z-transform
48
2
1
3
z
z
3
2
z
)
z
(
X 





Solution:   
5
.
0
z
1
z
z
5
.
0
z
5
.
0
z
5
.
1
z
5
.
0
z
z
3
2
z
)
z
(
X 2
3
2
1
3








 


   5
.
0
z
4
1
z
1
z
1
z
3
5
.
0
z
1
z
z
5
.
0
z
)
z
(
X
2
2










5
.
0
z
z
)
4
(
1
z
z
z
1
3
)
z
(
X







or 1
1
1
z
5
.
0
1
1
4
z
1
1
z
3
)
z
(
X 








  ]
n
[
u
5
.
0
4
]
n
[
u
]
1
n
[
]
n
[
3
]
n
[
x
n








13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Partial Fraction Method:
Example 4: Find the signal corresponding to the z-transform
49
  2
1
1
z
2
.
0
1
z
2
.
0
1
1
)
z
(
Y





Solution:
  2
3
2
.
0
z
2
.
0
z
z
)
z
(
Y



    2
2
2
2
.
0
z
1
.
0
2
.
0
z
75
.
0
2
.
0
z
25
.
0
2
.
0
z
2
.
0
z
z
z
)
z
(
Y









 2
2
.
0
z
z
1
.
0
2
.
0
z
z
75
.
0
1
z
z
25
.
0
)
z
(
Y






 2
1
1
2
.
0
1
.
0
1
1
z
2
.
0
1
z
2
.
0
z
2
.
0
1
1
75
.
0
z
2
.
0
1
1
25
.
0










      ]
n
[
u
2
.
0
n
5
.
0
]
n
[
u
2
.
0
75
.
0
]
n
[
u
2
.
0
25
.
0
]
n
[
y
n
n
n





13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
INVERSE Z-TRANSFORM
Power Series Expansion Method
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 50
Inverse Z-Transform by Power Series Expansion
■ The z-transform is power series
■ In expanded form
■ Causal/Right sided sequence:
■ Non-Causal/Left sided sequence:
51
   






n
n
z
n
x
z
X
            
 







 
 2
1
1
2
z
2
x
z
1
x
0
x
z
1
x
z
2
x
z
X
        



 
 2
1
2
1
0 z
x
z
x
x
z
X
      1
2
1
2 z
x
z
x
z
X 



 




x[n] ->co-eff of NEGATIVE powers of ‘z’
x[n] ->co-eff of POSITIVE powers of ‘z’
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Inverse Z-Transform by Power Series Expansion
■ The z-transform is power series
■ In expanded form
■ Example
52
   






n
n
z
n
x
z
X
            
 







 
 2
1
1
2
z
2
x
z
1
x
0
x
z
1
x
z
2
x
z
X
    
1
2
1
1
1
2
z
2
1
1
z
2
1
z
z
1
z
1
z
2
1
1
z
z
X


















         
1
n
2
1
n
1
n
2
1
2
n
n
x 










 



















2
n
0
1
n
2
1
0
n
1
1
n
2
1
2
n
1
n
x
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Power Series Method
Example 1: Determine the z-transform of RSS
53
2
1
z
5
.
0
z
5
.
1
1
1
)
z
(
X 




By dividing the numerator of X(z) by its
denominator, we obtain the power series
...
z
z
z
z
1
z
z
1
1 4
16
31
3
8
15
2
4
7
1
2
3
2
2
1
1
2
3














 x[n] = [1, 3/2, 7/2, 15/8, 31/16,…. ]
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
Power Series Method
Example 2:Determine the z-transform of
54
2
1
1
z
z
2
2
z
4
)
z
(
X 






By dividing the numerator of X(z) by its
denominator, we obtain the power series
 x[n] = [2, 1.5, 0.5, 0.25, …..]
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
MODULE 1: Frequency Analysis of
Signals and Systems-I
■ Review of Discrete -Time Signals and Systems
– Classification,
– Convolution
■ z- transform: ROC stability/causality analysis,
■ DTFT: Frequency response-System analysis.
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 55
Fourier Analysis
56
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
■ We have seen that periodic signals can be represented
with the Fourier series
■ Can aperiodic signals be analyzed in terms of frequency
components?
■ Yes, and the Fourier transform provides the tool for this
analysis
■ The major difference w.r.t. the line spectra of periodic
signals is that the spectra of aperiodic signals are defined
for all real values of the frequency variable not just for a
discrete set of values
Fourier Transform

13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 57
The Discrete-Time Fourier Transform
■ The discrete-time Fourier transform (DTFT) or, simply, the Fourier
transform of a discrete–time sequence x[n] is a representation of
the sequence in terms of the complex exponential sequence
where is the real frequency variable.
■ The discrete-time Fourier transform of a sequence x[n] is
defined by
 
j x
e 


 
j
X e 
  [ ]
j j n
n
X e x n e
 



 
 
j x
e 

 
j
X e 
DSP_FALL 2021 Dr S KALAIVANI Discrete-Time Signals in the Transform-Domain 58
The Discrete-Time Fourier Transform
■ Convergence Condition:
If x[n] is an absolutely summable sequence, i.e.,
Thus the equation is a sufficient condition for the existence of
the DTFT.
 
     
n
j j n
n n
if x n
then X e x n e x n
 


 

 
 
   

 
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 59
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 60
MODULE 1: Frequency Analysis of
Signals and Systems-I
■ Review of Discrete -Time Signals and Systems
– Classification,
– Convolution
■ z- transform: ROC stability/causality analysis,
■ DTFT: Frequency response-System analysis.
61
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
DTFT in System Analysis
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 62
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 63
DTFT in System Analysis
Contd.,
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 64
Ex. A discrete-time LTI system has impulse response h[n],Find
the output y[n] due to input x[n].
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 65
LTI System Analysis using z-Transform
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 66
Interconnection of LTI system
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 67
Ex.2
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 68
Ex.3
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 69
Ex.4 Find the impulse response, Frequency response, Magnitude response
and phase response of a system characterized by the given LCCDE
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 70
Contd.,
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 71
Ex.4
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 72
Ex.5
13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 73

Mais conteúdo relacionado

Semelhante a Module 1 (1).pdf

A novel architecture of rns based
A novel architecture of rns basedA novel architecture of rns based
A novel architecture of rns basedVLSICS Design
 
IRJET- Performance Estimation of FIR Filter using Null Convention Logic
IRJET-  	  Performance Estimation of FIR Filter using Null Convention LogicIRJET-  	  Performance Estimation of FIR Filter using Null Convention Logic
IRJET- Performance Estimation of FIR Filter using Null Convention LogicIRJET Journal
 
A novel approach for high speed convolution of finite
A novel approach for high speed convolution of finiteA novel approach for high speed convolution of finite
A novel approach for high speed convolution of finiteeSAT Publishing House
 
Lecture 1 (ADSP).pptx
Lecture 1 (ADSP).pptxLecture 1 (ADSP).pptx
Lecture 1 (ADSP).pptxHarisMasood20
 
A novel approach for high speed convolution of finite and infinite length seq...
A novel approach for high speed convolution of finite and infinite length seq...A novel approach for high speed convolution of finite and infinite length seq...
A novel approach for high speed convolution of finite and infinite length seq...eSAT Journals
 
Detection of Power Line Disturbances using DSP Techniques
Detection of Power Line Disturbances using DSP TechniquesDetection of Power Line Disturbances using DSP Techniques
Detection of Power Line Disturbances using DSP TechniquesKashishVerma18
 
Multidimensional wave digital filtering network
Multidimensional wave digital filtering networkMultidimensional wave digital filtering network
Multidimensional wave digital filtering networkjason Tseng
 
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...ijcnac
 
DSP unit1,2,3 VSQs-vrc.pdf important question
DSP unit1,2,3 VSQs-vrc.pdf important questionDSP unit1,2,3 VSQs-vrc.pdf important question
DSP unit1,2,3 VSQs-vrc.pdf important questionSahithikairamkonda
 
Discrete time control systems
Discrete time control systemsDiscrete time control systems
Discrete time control systemsphannahty
 
Discrete time control systems
Discrete time control systemsDiscrete time control systems
Discrete time control systemsadd0103
 
A novel modified distributed
A novel modified distributedA novel modified distributed
A novel modified distributedprj_publication
 
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)Ravikiran A
 
H0255065070
H0255065070H0255065070
H0255065070theijes
 
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...ijwmn
 
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...CSCJournals
 

Semelhante a Module 1 (1).pdf (20)

A novel architecture of rns based
A novel architecture of rns basedA novel architecture of rns based
A novel architecture of rns based
 
IRJET- Performance Estimation of FIR Filter using Null Convention Logic
IRJET-  	  Performance Estimation of FIR Filter using Null Convention LogicIRJET-  	  Performance Estimation of FIR Filter using Null Convention Logic
IRJET- Performance Estimation of FIR Filter using Null Convention Logic
 
Gene's law
Gene's lawGene's law
Gene's law
 
digital filter design
digital filter designdigital filter design
digital filter design
 
A novel approach for high speed convolution of finite
A novel approach for high speed convolution of finiteA novel approach for high speed convolution of finite
A novel approach for high speed convolution of finite
 
Lecture 1 (ADSP).pptx
Lecture 1 (ADSP).pptxLecture 1 (ADSP).pptx
Lecture 1 (ADSP).pptx
 
A novel approach for high speed convolution of finite and infinite length seq...
A novel approach for high speed convolution of finite and infinite length seq...A novel approach for high speed convolution of finite and infinite length seq...
A novel approach for high speed convolution of finite and infinite length seq...
 
Detection of Power Line Disturbances using DSP Techniques
Detection of Power Line Disturbances using DSP TechniquesDetection of Power Line Disturbances using DSP Techniques
Detection of Power Line Disturbances using DSP Techniques
 
Unit-1.pptx
Unit-1.pptxUnit-1.pptx
Unit-1.pptx
 
Multidimensional wave digital filtering network
Multidimensional wave digital filtering networkMultidimensional wave digital filtering network
Multidimensional wave digital filtering network
 
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
 
DSP unit1,2,3 VSQs-vrc.pdf important question
DSP unit1,2,3 VSQs-vrc.pdf important questionDSP unit1,2,3 VSQs-vrc.pdf important question
DSP unit1,2,3 VSQs-vrc.pdf important question
 
Discrete time control systems
Discrete time control systemsDiscrete time control systems
Discrete time control systems
 
Discrete time control systems
Discrete time control systemsDiscrete time control systems
Discrete time control systems
 
A novel modified distributed
A novel modified distributedA novel modified distributed
A novel modified distributed
 
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
 
H0255065070
H0255065070H0255065070
H0255065070
 
40520130101002
4052013010100240520130101002
40520130101002
 
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...
CHANNEL ESTIMATION AND MULTIUSER DETECTION IN ASYNCHRONOUS SATELLITE COMMUNIC...
 
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
 

Mais de Mohamedshabana38

1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdfMohamedshabana38
 
dsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdfdsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdfMohamedshabana38
 
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdfMohamedshabana38
 
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfCable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfMohamedshabana38
 
exfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdfexfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdfMohamedshabana38
 
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdfMohamedshabana38
 
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdfMohamedshabana38
 
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...Mohamedshabana38
 
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdfExfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdfMohamedshabana38
 
101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdfMohamedshabana38
 
424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdfMohamedshabana38
 
exfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdfexfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdfMohamedshabana38
 
388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdfMohamedshabana38
 
exfo_reference-guide_resistive-fault-location-methods_en.pdf
exfo_reference-guide_resistive-fault-location-methods_en.pdfexfo_reference-guide_resistive-fault-location-methods_en.pdf
exfo_reference-guide_resistive-fault-location-methods_en.pdfMohamedshabana38
 

Mais de Mohamedshabana38 (20)

1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf
 
2 Aliasing (1).pdf
2 Aliasing (1).pdf2 Aliasing (1).pdf
2 Aliasing (1).pdf
 
1.pdf
1.pdf1.pdf
1.pdf
 
dsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdfdsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdf
 
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
 
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfCable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
 
exfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdfexfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdf
 
mod_2.pdf
mod_2.pdfmod_2.pdf
mod_2.pdf
 
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
 
mod_3.pdf
mod_3.pdfmod_3.pdf
mod_3.pdf
 
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
 
mod_4.pdf
mod_4.pdfmod_4.pdf
mod_4.pdf
 
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
 
408375669-XDSL.pdf
408375669-XDSL.pdf408375669-XDSL.pdf
408375669-XDSL.pdf
 
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdfExfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
 
101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf
 
424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf
 
exfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdfexfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdf
 
388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf
 
exfo_reference-guide_resistive-fault-location-methods_en.pdf
exfo_reference-guide_resistive-fault-location-methods_en.pdfexfo_reference-guide_resistive-fault-location-methods_en.pdf
exfo_reference-guide_resistive-fault-location-methods_en.pdf
 

Último

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Último (20)

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 

Module 1 (1).pdf

  • 1. ECE2006 DIGITAL SIGNAL PROCESSING FALL SEMESTER_2021 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 1
  • 2. ECE2006_COURSE OBJECTIVES ■ To summarize and analyze the concepts of signals, systems in time and frequency domain with corresponding transformations. ■ To design the analog and digital IIR, FIR filters. ■ To learn diverse structures for realizing digital filters. ■ Usage of appropriate tools for realizing signal processing modules 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 2
  • 3. Course Outcomes: 1. Comprehend, classify and analyze the signals and systems, also, transform the time domain signals and response of the system to frequency domain 2. Able to simplify Fourier transform computations using fast algorithms 3. Comprehend the various analog filter design techniques and their digitization. 4. Able to design digital filters. 5. Able to realize digital filters using delay elements, summer, etc 6. Able to realize lattice filters using delay elements, ladders, summers, etc. 7. Able to analyze and exploit the real-time signal processing application8.Design and implement systems using the imbibed signal processing concepts 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 3
  • 6. Mode of Evaluation: ■ Continuous Assessment Test –I (CAT-I) - 15 Marks ■ Continuous Assessment Test –II (CAT-II) -15 Marks ■ Digital Assignments/ Quiz - 30 Marks – QUIZ_1 - Module 1 and 2 – QUIZ_2 - Module 3 and 4 – DIGITAL ASSIGNMENT - Module 5 and 6 & 7 ■ Final Assessment Test (FAT) - 40 Marks 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 6
  • 7. Introduction  Need for DSP: To Process real world analog signals -Analog-to-digital conversion  Signal Processing - Operations on Signals ■ Advantages of DSP: ■ Digital circuits are less sensitive to temperature, ageing & other external parameters. ■ Digital processing is stable, reliable, flexible and repeatable. ■ Easy storage, Accuracy, Less processing cost and maintenance. ■ Covers wide range of frequencies. ■ No loading problems and Multi rate processing is possible ■ Highly suitable for processing low frequency signal also. ■ Disadvantages of DSP: ■ Pre and Post processing devices – Increases the complexity of the system ■ High power consumption ■ Frequency limitations 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 7
  • 8. 8 Applications of DSP 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 9. 9 DIGITAL SIGNAL PROCESSING Module Description I & II Frequency Analysis of Signals and Systems-I and II III Theory and Design of Analog Filters IV Design of Digital IIR Filter V Design of Digital FIR Filters VI Realization of Digital Filters VII Realization of Lattice filter structures 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 10. MODULE 1: Frequency Analysis of Signals and Systems-I ■ Review of Discrete -Time Signals and Systems – Classification, – Convolution ■ z- transform: ROC stability/causality analysis, ■ DTFT: Frequency response-System analysis. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 10
  • 11. Introduction to Signals  A Detectable physical quantity by which messages or information can be transmitted - signal  “A signal is a function of independent variable/s that carry some information”. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 11
  • 12. REPRESENTATION OF DT SIGNALS Graphical Representation 2 ) 3 ( , 1 ) 2 ( , 3 ) 1 ( , 0 ) 0 ( , 2 ) 1 ( , 3 ) 2 (          x x x x x x Functional Representation Sequence Representation Tabular Representation 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 12
  • 13. 1. Unit Impulse Signal 2. Unit Step Signal 3. Unit Ramp Signal 4. Sinusoidal Signal 5. Exponential Signal 13 BASIC SIGNALS 0 0 0 1 ] [    n for n for n  0 0 0 1 ] [    n for n for n u 0 0 0 ] [    n for n for n n r ) cos( ] [     n A n x T F    2 2     n a n x n   ; ] [ 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 14. ■ CT and DT signals are further classified as, – Deterministic and Random – Periodic and Non-periodic – Causal and Non Causal – Even and Odd – Energy and Power 14 CLASSIFICATION OF SIGNALS Basic operations on signals 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 15. Classification of Signals ■ CT and DT signals are further classified as, – Deterministic and Random – Periodic and Non-periodic – Causal and Non Causal – Even and Odd – Energy and Power 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 15
  • 16. ■ Example : The signal is given below is energy or power signal. Explain. 16 Power and Energy   x n   x n 3 0 1 n 2 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 17. • Systems process input signals to produce output signals – Continuous/Discrete – Linear/Non linear – Causal/Non Causal – Stable/Unstable – Dynamic/Static – Time variance/Time invariant 17 Classification of Systems  Causal: a system is causal if the output at a time, only depends on input values up to that time.  Linear: a system is linear if the output of the scaled sum of two input signals is the equivalent scaled sum of outputs  Time-invariance: a system is time invariant if the system’s output is the same, given the same input signal, regardless of time.  A system is called stable in the bounded-input bounded-output (BIBO) sense if every bounded input sequence produces a bounded output sequence  A system is called memoryless /Static if the output y[n] at every value of n depends only on the present input values of n 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 18. Ex. Y[n]=x[-n] 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 18
  • 19. MODULE 1: Frequency Analysis of Signals and Systems-I ■ Review of Discrete -Time Signals and Systems – Classification, – Convolution ■ z- transform: ROC stability/causality analysis, ■ DTFT: Frequency response-System analysis. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 19
  • 20. Convolution ■ The output sequence y(n) is found as, This is called convolution sum. DSP_FALL 2021 Dr S KALAIVANI 20 13-08-2021
  • 21. Determine the response of the system for the following input signal and impulse response. x(n)={1,2,1}, h(n)={1,2,3} 21 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 22. Circular Convolution The circular convolution of two sequences x1(n) and x2(n) is defined as However it is not the ordinary linear convolution that was discussed in previous section, which relates the output sequence y(n) of a linear system to the input sequence x(n) and the impulse response h(n). Instead, the convolution sum involves the index x2((m-n))N and is called circular convolution. If the two sequences x(n) and h(n) contain L and M number of samples respectively and that L > M, then to perform circular convolution between the two using N=Max(L,M), the L – M number of zero samples to be added to the sequence h(n), so that both the sequences are periodic with N 1 3 1 2 0 ( ) ( ) (( )) N N n x m x n x m n      22 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 23. Circular Convolution for N=8 23 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 24. Perform the circular convolution of the following two sequences. x1(n)={1,2,1}, x2(n)={1,2,3} 24 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 25. Ex.1 Find the linear and circular (7-point) convolution of the given sequences x[n]={1, 2, 7, -2, 3, -1, 5} and h[n]={-1, 3, 5, -3, 1} ■ Linear Convolution: y[n]={-1, 1, 4, 30, 21, -19, 20, -1, 31, -15,5} ■ Circular Convolution: x[n]={1, 2, 7, -2, 3, -1, 5} h[n]={-1, 3, 5, -3, 1, 0, 0} y[n]={-2, 32,-12,35,21,20} 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 25
  • 26. MODULE 1: Frequency Analysis of Signals and Systems-I ■ Review of Discrete -Time Signals and Systems – Classification, – Convolution ■ z- transform: ROC stability/causality analysis, ■ DTFT: Frequency response-System analysis. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 26
  • 27. z-transform *A generalization of Fourier transform ■ The z-transform of sequence x(n) is defined by       n n z n x z X ) ( ) ( Re Im z = ej  ■ Give a sequence, the set of values of z for which the z-transform converges, i.e., |X(z)|<, is called the region of convergence.               n n n n z n x z n x z X | || ) ( | ) ( | ) ( | ROC is centered on origin and consists of a set of rings. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 27
  • 28. Stable Systems ■ A stable system requires that its Fourier transform is uniformly convergent. Re Im 1 Fact: Fourier transform is to evaluate z- transform on a unit circle. A stable system requires the ROC of z- transform to include the unit circle. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 28
  • 29. Example: A right sided Sequence ) ( ) ( n u a n x n  n n n z n u a z X       ) ( ) (      0 n n n z a      0 1 ) ( n n az For convergence of X(z), we require that       0 1 | | n az 1 | | 1   az | | | | a z  a z z az az z X n n           1 0 1 1 1 ) ( ) ( | | | | a z  13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 29
  • 30. a a Example: A right sided Sequence ROC for x(n)=anu(n) | | | | , ) ( a z a z z z X    Re Im 1 a a Re Im 1 Which one is stable? 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 30
  • 31. Example: A left sided Sequence ) 1 ( ) (     n u a n x n n n n z n u a z X          ) 1 ( ) ( For convergence of X(z), we require that       0 1 | | n z a 1 | | 1   z a | | | | a z  a z z z a z a z X n n             1 0 1 1 1 1 ) ( 1 ) ( | | | | a z  n n n z a        1 n n n z a       1 n n n z a       0 1 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 31
  • 32. a a Example: A left sided Sequence ROC for x(n)=anu( n1) | | | | , ) ( a z a z z z X    Re Im 1 a a Re Im 1 Which one is stable? 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 32
  • 33. Represent z-transform as a Rational Function ) ( ) ( ) ( z Q z P z X  where P(z) and Q(z) are polynomials in z. Zeros: The values of z’s such that X(z) = 0 Poles: The values of z’s such that X(z) =  13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 33
  • 34. Example: A right sided Sequence ) ( ) ( n u a n x n  | | | | , ) ( a z a z z z X    Re Im a ROC is bounded by the pole and is the exterior of a circle. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 34
  • 35. Example: A left sided Sequence ) 1 ( ) (     n u a n x n | | | | , ) ( a z a z z z X    Re Im a ROC is bounded by the pole and is the interior of a circle. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 35
  • 36. Example: Sum of Two Right Sided Sequences ) ( ) ( ) ( ) ( ) ( 3 1 2 1 n u n u n x n n    3 1 2 1 ) (     z z z z z X Re Im 1/2 ) )( ( ) ( 2 3 1 2 1 12 1     z z z z 1/3 1/12 ROC is bounded by poles and is the exterior of a circle. ROC does not include any pole. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 36
  • 37. Example: A Two Sided Sequence ) 1 ( ) ( ) ( ) ( ) ( 2 1 3 1      n u n u n x n n 2 1 3 1 ) (     z z z z z X Re Im 1/2 ) )( ( ) ( 2 2 1 3 1 12 1     z z z z 1/3 1/12 ROC is bounded by poles and is a ring. ROC does not include any pole. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 37
  • 38. Example: A Finite Sequence 1 0 , ) (     N n a n x n n N n n N n n z a z a z X ) ( ) ( 1 1 0 1 0           Re Im ROC: 0 < z <  ROC does not include any pole. 1 1 1 ) ( 1      az az N a z a z z N N N    1 1 N-1 poles N-1 zeros Always Stable 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 38
  • 39. Properties of ROC ■ A ring or disk in the z-plane centered at the origin. ■ The Fourier Transform of x(n) is converge absolutely if the ROC includes the unit circle. ■ The ROC cannot include any poles ■ Finite Duration Sequences: The ROC is the entire z-plane except possibly z=0 or z=. ■ Right sided sequences: The ROC extends outward from the outermost finite pole in X(z) to z=. ■ Left sided sequences: The ROC extends inward from the innermost nonzero pole in X(z) to z=0. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 39
  • 41.
  • 42. Ex.1 Find the z-transform and ROC of the given sequence
  • 43. INVERSE Z-TRANSFORM Partial Fraction Method 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 43
  • 44. Example: 2nd Order Z-Transform 44   2 1 z : ROC z 2 1 1 z 4 1 1 1 z X 1 1                                       1 2 1 1 z 2 1 1 A z 4 1 1 A z X   1 4 1 2 1 1 1 z X z 4 1 1 A 1 4 1 z 1 1                                2 2 1 4 1 1 1 z X z 2 1 1 A 1 2 1 z 1 2                             13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 45. Example Continued ■ ROC extends to infinity – Indicates right sided sequence 45   2 1 z z 2 1 1 2 z 4 1 1 1 z X 1 1                           n u 4 1 - n u 2 1 2 n x n n              a z az n u an | | | , 1 1 ) ( 1     13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 46. Example #2 *Long division to obtain Bo 46       1 z z 1 z 2 1 1 z 1 z 2 1 z 2 3 1 z z 2 1 z X 1 1 2 1 2 1 2 1                        1 z 5 2 z 3 z 2 1 z 2 z 1 z 2 3 z 2 1 1 1 2 1 2 1 2                   1 1 1 z 1 z 2 1 1 z 5 1 2 z X                  1 2 1 1 z 1 A z 2 1 1 A 2 z X          9 z X z 2 1 1 A 2 1 z 1 1                 8 z X z 1 A 1 z 1 2      13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 47. Example #2 Continued *ROC extends to infinity Indicates right-sides sequence 47   1 z z 1 8 z 2 1 1 9 2 z X 1 1                 n 8u 2 1 9 2          n u n n x n    1 2 1 1 z 1 A z 2 1 1 A 2 z X        13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 48. Example 3: Find the signal corresponding to the z-transform 48 2 1 3 z z 3 2 z ) z ( X       Solution:    5 . 0 z 1 z z 5 . 0 z 5 . 0 z 5 . 1 z 5 . 0 z z 3 2 z ) z ( X 2 3 2 1 3                5 . 0 z 4 1 z 1 z 1 z 3 5 . 0 z 1 z z 5 . 0 z ) z ( X 2 2           5 . 0 z z ) 4 ( 1 z z z 1 3 ) z ( X        or 1 1 1 z 5 . 0 1 1 4 z 1 1 z 3 ) z ( X            ] n [ u 5 . 0 4 ] n [ u ] 1 n [ ] n [ 3 ] n [ x n         13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 49. Partial Fraction Method: Example 4: Find the signal corresponding to the z-transform 49   2 1 1 z 2 . 0 1 z 2 . 0 1 1 ) z ( Y      Solution:   2 3 2 . 0 z 2 . 0 z z ) z ( Y        2 2 2 2 . 0 z 1 . 0 2 . 0 z 75 . 0 2 . 0 z 25 . 0 2 . 0 z 2 . 0 z z z ) z ( Y           2 2 . 0 z z 1 . 0 2 . 0 z z 75 . 0 1 z z 25 . 0 ) z ( Y        2 1 1 2 . 0 1 . 0 1 1 z 2 . 0 1 z 2 . 0 z 2 . 0 1 1 75 . 0 z 2 . 0 1 1 25 . 0                 ] n [ u 2 . 0 n 5 . 0 ] n [ u 2 . 0 75 . 0 ] n [ u 2 . 0 25 . 0 ] n [ y n n n      13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 50. INVERSE Z-TRANSFORM Power Series Expansion Method 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 50
  • 51. Inverse Z-Transform by Power Series Expansion ■ The z-transform is power series ■ In expanded form ■ Causal/Right sided sequence: ■ Non-Causal/Left sided sequence: 51           n n z n x z X                          2 1 1 2 z 2 x z 1 x 0 x z 1 x z 2 x z X                2 1 2 1 0 z x z x x z X       1 2 1 2 z x z x z X           x[n] ->co-eff of NEGATIVE powers of ‘z’ x[n] ->co-eff of POSITIVE powers of ‘z’ 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 52. Inverse Z-Transform by Power Series Expansion ■ The z-transform is power series ■ In expanded form ■ Example 52           n n z n x z X                          2 1 1 2 z 2 x z 1 x 0 x z 1 x z 2 x z X      1 2 1 1 1 2 z 2 1 1 z 2 1 z z 1 z 1 z 2 1 1 z z X                             1 n 2 1 n 1 n 2 1 2 n n x                                 2 n 0 1 n 2 1 0 n 1 1 n 2 1 2 n 1 n x 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 53. Power Series Method Example 1: Determine the z-transform of RSS 53 2 1 z 5 . 0 z 5 . 1 1 1 ) z ( X      By dividing the numerator of X(z) by its denominator, we obtain the power series ... z z z z 1 z z 1 1 4 16 31 3 8 15 2 4 7 1 2 3 2 2 1 1 2 3                x[n] = [1, 3/2, 7/2, 15/8, 31/16,…. ] 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 54. Power Series Method Example 2:Determine the z-transform of 54 2 1 1 z z 2 2 z 4 ) z ( X        By dividing the numerator of X(z) by its denominator, we obtain the power series  x[n] = [2, 1.5, 0.5, 0.25, …..] 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 55. MODULE 1: Frequency Analysis of Signals and Systems-I ■ Review of Discrete -Time Signals and Systems – Classification, – Convolution ■ z- transform: ROC stability/causality analysis, ■ DTFT: Frequency response-System analysis. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 55
  • 57. ■ We have seen that periodic signals can be represented with the Fourier series ■ Can aperiodic signals be analyzed in terms of frequency components? ■ Yes, and the Fourier transform provides the tool for this analysis ■ The major difference w.r.t. the line spectra of periodic signals is that the spectra of aperiodic signals are defined for all real values of the frequency variable not just for a discrete set of values Fourier Transform  13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 57
  • 58. The Discrete-Time Fourier Transform ■ The discrete-time Fourier transform (DTFT) or, simply, the Fourier transform of a discrete–time sequence x[n] is a representation of the sequence in terms of the complex exponential sequence where is the real frequency variable. ■ The discrete-time Fourier transform of a sequence x[n] is defined by   j x e      j X e    [ ] j j n n X e x n e          j x e     j X e  DSP_FALL 2021 Dr S KALAIVANI Discrete-Time Signals in the Transform-Domain 58
  • 59. The Discrete-Time Fourier Transform ■ Convergence Condition: If x[n] is an absolutely summable sequence, i.e., Thus the equation is a sufficient condition for the existence of the DTFT.         n j j n n n if x n then X e x n e x n                   13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 59
  • 60. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 60
  • 61. MODULE 1: Frequency Analysis of Signals and Systems-I ■ Review of Discrete -Time Signals and Systems – Classification, – Convolution ■ z- transform: ROC stability/causality analysis, ■ DTFT: Frequency response-System analysis. 61 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI
  • 62. DTFT in System Analysis 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 62
  • 63. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 63 DTFT in System Analysis
  • 64. Contd., 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 64
  • 65. Ex. A discrete-time LTI system has impulse response h[n],Find the output y[n] due to input x[n]. 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 65
  • 66. LTI System Analysis using z-Transform 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 66
  • 67. Interconnection of LTI system 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 67
  • 68. Ex.2 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 68
  • 69. Ex.3 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 69
  • 70. Ex.4 Find the impulse response, Frequency response, Magnitude response and phase response of a system characterized by the given LCCDE 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 70
  • 71. Contd., 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 71
  • 72. Ex.4 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 72
  • 73. Ex.5 13-08-2021 DSP_FALL 2021 Dr S KALAIVANI 73