SlideShare uma empresa Scribd logo
1 de 11
Baixar para ler offline
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
63
FUSION TECHNOLOGY FOR ROBUST HUMAN SKIN DETECTION
Vasudha M P1
, Ramesha K2
1
(Dept. of Electronics and Communications, SET, Jain University, Bangalore, India)
2
(Professor and HOD, Dept. of Electronics and Communications, SET, Jain University,
Bangalore-562112, India)
ABSTRACT
Human skin color is an important cue to infer variety of aspects including, culture, race,
health, age and beauty etc. Detecting human skin color is of utmost importance in numerous
applications including steganography and recognizing human by human and/or machine. Detection
of skin color pixels and non skin color pixels and its classification is quite challenging task. The
human visual system incorporates color opponency. In addition, the skin color in an image is
sensitive to various factors such as: illumination, camera characteristics, ethnicity and other factors.
The factors such as makeup, hairstyle, glasses, background colors, shadows and motion also
influence skin-color appearance. Moreover, existing methods require high computational cost. Our
paper aimed at providing a technique which provides more robust and accurate results with minimum
computational cost. The proposed fusion technique (i) Reduces computational costs as no training is
required, (ii) Reduces the false positive rates and improves the accuracy of skin detection despite
wide variation in ethnicity, illumination and background, (iii) The fusion technique adopted found to
be the most appropriate technique compared to existing techniques.
Keywords: Face localization, Color space, Online dynamic threshold, Fusion technique, Skin
detection.
I. INTRODUCTION
Human skin color detection plays an important role in infer variety of cultural aspects, race,
health, age, wealth, beauty, etc. [1]. Detecting human skin color is of utmost importance in numerous
applications such as, steganography [2], recognizing human by human and/or machine, and to
various human computer interaction domains. The existing skin detection methods using HS, SV,
HV, YCb, YCr, CrCb and I Rg By color space(s), are prone to false skin detection and are not able to
cope with the variety of human skin colors across different ethnic, illumination, camera condition,
background condition, individual characteristics. Even the fusion approach method still exhibits
comparatively more false score and less accuracy. We are in need of an accurate, robust, skin
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN
ENGINEERING AND TECHNOLOGY (IJARET)
ISSN 0976 - 6480 (Print)
ISSN 0976 - 6499 (Online)
Volume 4, Issue 5, July – August 2013, pp. 63-73
© IAEME: www.iaeme.com/ijaret.asp
Journal Impact Factor (2013): 5.8376 (Calculated by GISI)
www.jifactor.com
IJARET
© I A E M E
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
64
detection technique with minimum computational cost irrespective of variation in ethnicity,
illumination, background etc. As a solution to the various problems of skin segmentation and skin
color detection method and as an alternative to the fusion approach [3], proposed fusion technology,
increases accuracy in skin color information extraction in face region [4] and true positive rate. It
reduces false score, dependency on eye detector algorithms and variation caused by background on
color image(s). The other sections of this paper are structured as follows. Section II gives a brief
description of related work. Section III describes our proposed skin pixel color detection technique.
Section IV briefly narrates the algorithm adopted by us. Section V presents the experimental results
and performance analysis followed by conclusions in Section VI.
II. RELATED WORK
Skin detection methodologies are classified into two categories namely: Texture based [5]
and Color based [6] classification. Skin detection method based on skin-color information is
computationally effective and more robust in performance. The color of human skin is formed by a
combination of blood (red) and melanin (yellow and brown). The human skin color clusters at a
small area in the color space and has a restricted range of hues. But it is not the same for all the color
spaces [7]. Further face and body of a person always shares the same colors by using the skin color
property of the detected face region, the remainder of skin pixels in the image can be detected. The
face detection task is challenging because of the difficulty in characterizing prototypical “non-face”
images [6]. Similarly in detection of skin-colored pixels and non skin color pixels, the human visual
system incorporates color-opponency and so there is a strong perceptual relevance of this color
space(s) in skin color detection [9]. The skin color in an image is sensitive to various factors such as
illumination, ethnicity, individual characteristics such as age, sex and body parts also affect the skin-
color appearance. The factors like subject appearances, background colors, shadows and motion also
influence skin-color appearance [10]. For the purpose of scaling the skin pixels generally multi-scale
search process has been followed [11]. Regarding edge detection and elliptical masking or
localization of face region, oval-shaped elliptical masking is done [12]. The term color defined as a
mixture of three other colors (red, green and blue) or “Tristimuli” [13]. The various color spaces
used for skin detection are grouped as (i) Basic RGB color space, (ii) The normalized RGB color
space [14], (iii) Perceptual color spaces (HSI, HSV, HSL, TSL) [2], (iv) Orthogonal color spaces
(YCbCr, YIQ, YUV) [18], (v) The log opponent color space [15] and (v) Colorimetric color spaces
(CIE-Lab, CIE-XYZ) [16]. Thresholding values can be derived by adopting, static threshold method
[2], random forest technique [8], dynamic threshold method [17], Online dynamic threshold method
[5], among all random forest technique is comparatively more expensive, (i) The Expectation
Maximization (EM) algorithm [18 and 19], (ii) The Error-back propagation algorithm [20] and (iii)
Newton Raphson iteration step were used as mathematical tool for skin color pixel detection [21].
Experiments can be conducted by using collected from public databases. For classification of skin
color pixels classic smoothened 2-D histogram and/or gaussian model were used.
III. PROPOSED SKIN COLOR PIXEL DETECTION TECHNIQUE
The simple procedure adopted for skin color pixel detection begins with obtaining RGB color
image(s) with face regions. These input image(s) are preprocessed in 5 stages followed by
transformation of color space, classification of skin color pixels as shown in Fig. 1. For classification
purpose fusion technique is adopted.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
65
A. Input Image(s)
From and out of the images collected from data base, only RGB color images with and
without face image(s) obtained under varied illumination, camera condition, race and background
conditions are taken as input image(s) for skin color detection.
Fig.1 Skin Color Pixel Detection Technique
B. Preprocessing
Firstly RGB color images obtained under varied conditions including face region(s) are taken
as database images. In the input image frequency variation of RGB color is removed to obtain input
image. Secondly eye detection and localaization of eye region is performed by skin segmentation,
scaling, cropping followed by eye localization is shown in Fig. 2. For this Newton–Raphson
optimization algorithm and iteration step are adopted. The inference algorithm and log likelihood
ratios are determined by adopting Equation (1) and Equation (2).
… (2)
Thirdly oval shaped elliptical masking of the face(s) region is performed by using Equation
(3). Fourthly, Edge detection is performed by obtaining discrete (DC) image and calculating the
gradient of DC image by using sobel edge-detector and the algorithms developed by sobel and
fifthly, morphological image processing called Dilation is performed. Sixthly, the output results of
Edge detection and dilation operations are shown in Fig. 4 and 5.
where … (3)
The orientation of the ellipse is computed by determining the least moment of inertia by applying
Equation (4).
Where denotes the central moments of the connected component.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
66
The length a of the major axis and the length b of the minor axis as shown in Fig. 3 are given in
Equation (5).
Fig.2 Eye
Location
Fig.3 Elliptical
Mask
Fig.4 Edge Detected Fig.5 Dilation Process
C. Color Space Transformation
Skin color pixel detection is based on identification of skin color. In our paper, Color values
of image pixels in face region are viewed as an ensemble of skin color samples shown in Equation
(6) below.
… (6)
The log-opponent (LO) uses the base 10 logarithm to convert RGB matrices into I, Rg and By,
(ii) the algorithm for conversion of RGB matrices into I Rg By is represented as in Equation (7) and
output are shown in Fig. 6 to Fig.8.
L(x) = 105 * log10(x+1)
I = L (G) where
Rg = L(R) – L (G)
… (7)
LO Color Space Output
Fig. 6. “I” Channel Fig. 7. “Rg” Channel Fig. 8. “By” Channel
The green channel is used to represent intensity and two channels of color space (I and By)
are used for deriving thresholding values. Coding color distributions: log-opponent chromaticity
distributions by the distribution mean and the lowest k means statistical moments (where the moment
functions is discovered using Principle Component Analysis).
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
67
Online dynamic thresholding function is used for Extracting color information. The threshold
values are coded and indexed by using logarithmic coding. Thresholding values are calculated by
using iterative algorithm stated in Equation (8) below
The unique feature of this paper is thresholding function is performed only in smooth regions
of the face and the normal distribution with 95% confidential interval is considered for coding and
indexing threshold values. A graphical representation of frequency and normal distribution is as
shown in Fig. 9 below.
Fig.9 Graph- (a) and (b) represent the frequency and Normal distribution with 95% confidence
interval respectively
D. Skin Detection
Skin detection is performed by skin segmentation and classification by using classifiers. In
our experiment we have introduced smoothed and normalized 2D histogram modeled through
elliptical gaussian model followed by fusion strategy performed by combining results of both
models. (i) The fusion rule has been explained in Equation (9), (ii) The elliptical boundary model has
been explained in Equation (9) and (iii) The products of Elliptical GMM have been explained in
Equation (10).
Where
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
68
E. Fusion or Combined Single Representation
Fusion strategy, involves integration of two incoming single features into a combined single
representation by using product rule. The combining of results is done by Equation (9) and
(10). The fusion rule is given in Equation (11):
Where in: (i) represents threshold value(s), (ii) Z represents feature vector on the face
images, (iii) Represents the Results of smoothed 2D histogram, (iii)
Represents the result of Gaussian model, (iv) represents the center of the Gaussian model, (v)
Represents the diagonal covariance matrix, (vi) represents the product and (vii) represents the
selected fusion rule. In order to make the fusion issue tractable, the individual features are assumed
to be independent of each other.
IV. ALGORITHM
Problem definition: To localize and extract skin color pixel information of face region(s) in
given color images. There after by using the information of face region(s) and appropriate
mathematical tool, skin color pixel and non-skin color pixels are classified by trained classifiers.In
brief, our proposed algorithm means and includes: preprocessing stage, color transformation,
threshold function and classification of pixels by using fusion technology as detailed here under:
(i). RGB color face image(s) are normalized to obtain binary face image(s), (ii). Face region(s) of
given image is detected and localized by using oval shape elliptical mask, (iii). RGB color of face
image(s) are transformed into I Rg By color space by using base 10 logarithms. The green channel is
used to represent intensity. IBy color space is used for experimental purpose, (iv). Color information
of face region is derived by adopting online dynamic threshold function, (v). Coding and indexing of
color information is done by using logarithm function, (vi). Smoothed 2D histogram modeled
through elliptical gaussian joint probability distribution function is used for classification purpose,
(vii). The two incoming single features are integrated into a combined single representation by using
the fusion rules, (viii). The then-output values are applied for pixels classification and (ix). For
classification purpose we are using EM algorithm of render and walker, newton-raphson iteration
process and error back proportion algorithm as mathematical tools.
V. RESULTS AND PERFORMANCE ANALYSIS
For experimental purpose and performance analysis dataset (single and/or group images)
from databases and/or downloaded randomly from google are used. When there is no face detected
on the image, it will return a blank image (black) therefore, for testing purposes; we assumed that
true face(s) are detected in the image. Conclusions are drawn as follows. In this section, we analyze
seven different combinations of feature vectors: IBy, HS, HV, SV, YCb, YCr and CbCr. The results
for each feature vector are presented in Fig. 10 using images from pratheepan and ETHZ datasets.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
69
Fig. 10. Comparison between results from different Color Space
TABLE I. Comparison between Different Colorspace in Stottinger Datasets
Color Space Accuracy F - score TPR FPR
IBy 0.9039 0.6490 0.6580 0.3420
HS 0.9057 0.6512 0.6521 0.3479
HV 0.7977 0.4549 0.6251 0.3749
SV 0.8898 0.6285 0.6905 0.3995
YCb 0.8985 0.6143 0.6277 0.3723
YCr 0.8985 0.6392 0.6656 0.3344
CbCr 0.9150 0.6241 0.5223 0.4777
It is experimentally proved that (i) human visual system uses opponent color coding IBy
shows better true positive rate. A comparison between different color spaces with reference to F-
score, false positive rate (FPR) is shown in Table I.
TABLE II. The detailed Comparison with previous model
Image no. 1) 2) 3) 4) 5)
SGM FPR 0.2502 0.1984 0.1524 0.0790 0.0313
TPR 0.8803 0.8708 0.8077 0.7736 0.5874
GMM FPR 0.2506 0.1998 0.1506 0.0802 0.0300
TPR 0.8836 0.8521 0.7936 0.6466 0.4165
EGMM FPR 0.2510 0.1985 0.1526 0.0803 0.0310
TPR 0.9235 0.9187 0.8828 0.7321 0.3156
Table II, shows comparison between single gaussian model (SGM), gaussian mixture model
(GMM) and elliptical gaussian model (EGMM) with special reference to true positive rate (TPR) and
false positive rate (FPR). This proves EGMM is more preferable.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
70
Fig.11. 2D Histogram Fig. 12 Elliptical GMM Fig.13 EGMM for Multiple faces
Figure 11-13 shows the graphical representation of performance of 2D Histogram, Elliptical
GMM (Single face) and EGMM for Multiple faces.
TABLE III. Comparison of thresholding functions
Classifiers Accuracy F-Score Precision Recall
Online Dynamic
thresholding
0.9039 0.6490 0.6403 0.6580
Dynamic thresholding 0.8935 0.5922 0.6133 0.5725
Static thresholding 0.8334 0.4745 0.4133 0.5570
The comparative results of static thresholding, dynamic thresholding and online dynamic
thresholding methods is as shown in Table III and Fig. 14. Random forest approach has been
dropped because it will cause higher computational power as number trees increases and time
consuming during training.
Original Image Static
Thresholding
Dynamic
Thresholding
Online Dynamic
thresholding
Fig. 14. Comparative Evaluation of Thresholding Technique
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
71
Table IV shows the performance evaluation of Fusion Approach, (only) 2D Histogram and
(only) GMM.
TABLE IV. Comparison between Fusion and Non Fusion Approach
Classifiers Accuracy F-Score TPR FPR
Fusion Approach 0.9039 0.6490 0.6580 0.0577
2D Histogram 0.8930 0.6270 0.6662 0.0716
GMM 0.8595 0.6150 0.8314 0.1361
TABLE V Comparison between Existing Approach and Proposed Fusion Technology
Classifiers Accuracy TPR FPR
Existing Approach 0.9039 0.6864 0.3135
Proposed Approach 0.9820 0.8747 0.1252
The comparative evaluation of existing (fusion) approach and proposed method as shown in
Fig. 15 has been made by taking dataset from google. It show that our proposed method will show
0.19% more true positive rate (TPR) and 0.19% less false positive rate (FPR). In Table V the
accuracy percentage is calculate based on true positive rate and false positive rate. By observing the
comparison of performance shown in table IV and V, shows that by adopting the proposed fusion
technology, we can obtain highest accuracy and less i) false score (F-Score), ii) true positive rate
(TPR) and iii) false positive rate (FPR).
a. Original
Image
b.Existing
approach
c. Proposed
Method
a. Original
Image
b. Existing
approach
c. Proposed
Method
Fig. 15. Comparison between Existing approach and Proposed Method of Single
Image and Group Images
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
72
VI. CONCLUSIONS
As established in our experiments, the proposed method (i).Improves the accuracy level and
minimizes the false score rate, (ii). Removes all adverse effects caused by, illumination, camera
condition, ethnicity and individual characteristics, and background colors (ii). Construction of trees
and training will reduce the computational cost.
VII. REFERENCES
[1] A. M. Elgammal, C. Muang, and D. Hu, “Skin Detection,” in Encyclopedia of Biometrics,
Germany, Berlin, Springer, pp. 1218–1224, 2009.
[2] Abbas Cheddad, J.V. Condell, K. Curran, and P. McKevitt, "A New Color Space for
Skintone Detection," in proceedings of The IEEE International Conference on Image
Processing, pp. 7–11, 2009.
[3] Wei Ren Tan, Chee Seng Chan, Member, IEEE, Pratheepan Yogarajah, and Joan
Condell, “A Fusion Approach for Efficient Human Skin Detection,” IEEE Transactions on
Industrial Informatics, vol. 8, no. 1, pp. 138-147, February 2012.
[4] Ramesha. K. and KB Raja, "Dual Transform based Feature Extraction for Face
Recognition," in proceedings of International Journal of Computer Science Issues, vol. 8,
Issue. 5, no. 2, September 2011.
[5] Qing-Fang Zheng, Ming-Ji Zhang, and Wei-Qiang Wang, "A Hybrid Approach to Detect
Adult Web Images," in proceedings Advances in Multimedia Information Processing
professional Case Management (PCM) published in Springer Berlin Heidelberg, vol. 3332,
pp. 609–616, 2004.
[6] Fasel. Ian, Fortenberry. B. and Movellan. J, “A Generative Framework for Real Time Object
Detection and Classification,” in proceedings of the Archival Journal of Computer Vision
Image Understanding, vol. 98, pp. 182–210, Apr. 2005.
[7] Fleck M.M. and Forsyth D. A. and Bregler C, “Finding Naked People,” European Conference
on Computer Vision, vol. 2, pp. 593-602, Aug. 1996.
[8] Rehanullah Khan, Allan Hanbury and Julian Stottinger, "Skin Detection: A Random Forest
Approach,” in proceeding of 17th
IEEE International Conference on Image Processing, Hong
Kong, pp. 4613–4616, September 2010.
[9] Hering E, “Outlines of a Theory of the Light Sense," Cambridge, MA, Havard University
Press, 1964.
[10] P. Kakumanua, S. Makrogiannisa, and N. Bourbakis, “A Survey of Skin-Color Modeling and
Detection Methods,” in proceedings of the journal of the Pattern Recognition Society, vol.
40, no. 3, pp. 1106–1122, Published by Elseveir, 2007.
[11] H. A. Rowley, S. Bluja and T. Kanade, “Neural Network based Face Detection,” in
proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 20, Issue. 1, pp. 23-38, 1998.
[12] A. Jacquin and Alexandros Eleftheriadis, "Automatic Location Tracking of Faces and Facial
Features in Video Sequences,” in proceedings of International Workshop on Automatic Face
and Gesture Recognition, Zurich,Switzerland, June 1995
[13] Gonzalez. Rafael.C and Richard. E.W, “Digital Image Processing," 3rd Ed Pearson Education
International, ISBN 978-81-317-2695-2, 2009.
[14] M.H. Yang and N. Ahuja, “Gaussian Mixture Model for Human Skin Color and its
Application in Image and Video Databases,” in Proce. of the SPIE: conference on Storage
and Retrieval for Image and Video Data Base VII, vol.4315, 2001.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976
– 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME
73
[15] Berens J. and G. Finlayson, “ Log Opponent Chromaticity Coding of Color
Space,” in Proceedings of the IEEE International Conference on Pattern Recognition,
Barcelona, Spain, 2000, vol. 1, pp. 206–211, 2000.
[16] Margarita Bratkova, Solomon Boulos and Peter Shirley, “oRGB: A Practical Opponent Color
Space for Computer Graphics,” in proceedings of IEEE Journal on Computer Graphics and
Applications, pp. 42-45, 2009.
[17] P. Yogarajah, A. Cheddad, J. Condell, K. Curran, and P. McKevitt, “A Dynamic Threshold
Approach for Skin Segmentation in Color Images,” in Proce. of IEEE 17th
International
Conference on Image Processing, pp. 2225–2228, Sept. 2010.
[18] Dempster. A.P, N.M. Laird and D.B. Rubin, "Maximum Likelihood from Incomplete Data
via the EM Algorithm," published in Journal of the Royal Statistical Society, vol. 39, no. 1,
pp. 1–38, 1977.
[19] Render R.A. and HF Walker, "Mixture Densities, Maximum Likelihood and the EM
Algorithm," in proceedings of Society for Industrial and Applied Mathematics review, vol.
26, no. 2, pp. 195-239, April 1984.
[20] Rumelhart D.E., Hinton. G.E. and Williams R.J, "Learning Representations by Back-
Propagating Errors," in proceedings of Nature publication groups, vol. 323, Issue 6088, pp.
533-536, 1986.
[21] (On line) Independent studies “The Newton-Raphson Method,” Engineering Mathematics:
Open Learning Unit Level 1 13.3: Tangents and Normals -2013.
[22] Dr. Sudeep D. Thepade and Jyoti S.Kulkarni, “Novel Image Fusion Techniques using Global
and Local Kekre Wavelet Transforms”, International Journal of Computer Engineering &
Technology (IJCET), Volume 4, Issue 1, 2013, pp. 89 - 96, ISSN Print: 0976 – 6367, ISSN
Online: 0976 – 6375.
[23] A.Hemlata and Mahesh Motwani, “Single Frontal Face Detection by Finding Dark Pixel
Group and Comparing XY-Value of Facial Features”, International Journal of Computer
Engineering & Technology (IJCET), Volume 4, Issue 2, 2013, pp. 471 - 481, ISSN Print:
0976 – 6367, ISSN Online: 0976 – 6375.
[24] Jyoti Verma, Vineet Richariya, “Face Detection and Recognition Model Based on Skin
Colour and Edge Information for Frontal Face Images”, International Journal of Computer
Engineering & Technology (IJCET), Volume 3, Issue 3, 2012, pp. 384 - 393, ISSN Print:
0976 – 6367, ISSN Online: 0976 – 6375.

Mais conteúdo relacionado

Mais procurados

Content based indexing and retrieval from vehicle surveillance videos
Content based indexing and retrieval from vehicle surveillance videosContent based indexing and retrieval from vehicle surveillance videos
Content based indexing and retrieval from vehicle surveillance videos
IAEME Publication
 

Mais procurados (17)

Yawning analysis for driver drowsiness detection
Yawning analysis for driver drowsiness detectionYawning analysis for driver drowsiness detection
Yawning analysis for driver drowsiness detection
 
F ACIAL E XPRESSION R ECOGNITION B ASED ON E DGE D ETECTION
F ACIAL  E XPRESSION  R ECOGNITION  B ASED ON  E DGE  D ETECTIONF ACIAL  E XPRESSION  R ECOGNITION  B ASED ON  E DGE  D ETECTION
F ACIAL E XPRESSION R ECOGNITION B ASED ON E DGE D ETECTION
 
50120130405026
5012013040502650120130405026
50120130405026
 
Leaf identification based on fuzzy c means and naïve bayesian classification
Leaf identification based on fuzzy c means and naïve bayesian classificationLeaf identification based on fuzzy c means and naïve bayesian classification
Leaf identification based on fuzzy c means and naïve bayesian classification
 
10.1.1.33.4990
10.1.1.33.499010.1.1.33.4990
10.1.1.33.4990
 
Human’s facial parts extraction to recognize facial expression
Human’s facial parts extraction to recognize facial expressionHuman’s facial parts extraction to recognize facial expression
Human’s facial parts extraction to recognize facial expression
 
A brawny multicolor lane detection method to indian scenarios
A brawny multicolor lane detection method to indian scenariosA brawny multicolor lane detection method to indian scenarios
A brawny multicolor lane detection method to indian scenarios
 
Robust 3 d face recognition in presence of
Robust 3 d face recognition in presence ofRobust 3 d face recognition in presence of
Robust 3 d face recognition in presence of
 
human face counting
human face countinghuman face counting
human face counting
 
Content based indexing and retrieval from vehicle surveillance videos
Content based indexing and retrieval from vehicle surveillance videosContent based indexing and retrieval from vehicle surveillance videos
Content based indexing and retrieval from vehicle surveillance videos
 
FACIAL EXPRESSION RECOGNITION USING DIGITALISED FACIAL FEATURES BASED ON ACTI...
FACIAL EXPRESSION RECOGNITION USING DIGITALISED FACIAL FEATURES BASED ON ACTI...FACIAL EXPRESSION RECOGNITION USING DIGITALISED FACIAL FEATURES BASED ON ACTI...
FACIAL EXPRESSION RECOGNITION USING DIGITALISED FACIAL FEATURES BASED ON ACTI...
 
A04430105
A04430105A04430105
A04430105
 
Building extraction from remote sensing imageries by data fusion techniques
Building extraction from remote sensing imageries by data fusion techniquesBuilding extraction from remote sensing imageries by data fusion techniques
Building extraction from remote sensing imageries by data fusion techniques
 
3D Surface Characterisation of Precision Finished Surfaces
3D Surface Characterisation of Precision Finished Surfaces3D Surface Characterisation of Precision Finished Surfaces
3D Surface Characterisation of Precision Finished Surfaces
 
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...
Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Lo...
 
Face Alignment Using Active Shape Model And Support Vector Machine
Face Alignment Using Active Shape Model And Support Vector MachineFace Alignment Using Active Shape Model And Support Vector Machine
Face Alignment Using Active Shape Model And Support Vector Machine
 
Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expres...
Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expres...Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expres...
Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expres...
 

Destaque

Effect of modeling of infill walls on performance of multi story rc building
Effect of modeling of infill walls on performance of multi story rc buildingEffect of modeling of infill walls on performance of multi story rc building
Effect of modeling of infill walls on performance of multi story rc building
IAEME Publication
 
Topology estimation of a digital subscriber line
Topology estimation of a digital subscriber lineTopology estimation of a digital subscriber line
Topology estimation of a digital subscriber line
IAEME Publication
 
Investigations on tensile and flexural strength of wood dust and glass fibre
Investigations on tensile and flexural strength of wood dust and glass fibreInvestigations on tensile and flexural strength of wood dust and glass fibre
Investigations on tensile and flexural strength of wood dust and glass fibre
IAEME Publication
 
Enhancing energy efficiency in industries by reducing mechanical losses of elec
Enhancing energy efficiency in industries by reducing mechanical losses of elecEnhancing energy efficiency in industries by reducing mechanical losses of elec
Enhancing energy efficiency in industries by reducing mechanical losses of elec
IAEME Publication
 
Linear programming of basic economic parameters used at reengineering in small
Linear programming of basic economic parameters used at reengineering in smallLinear programming of basic economic parameters used at reengineering in small
Linear programming of basic economic parameters used at reengineering in small
IAEME Publication
 
Relative loss analysis in small scale industries within the proposed
Relative loss analysis in small scale industries within the proposedRelative loss analysis in small scale industries within the proposed
Relative loss analysis in small scale industries within the proposed
IAEME Publication
 
Intelligent Skin Color Model Selection for Face Detection
Intelligent Skin Color Model Selection for Face DetectionIntelligent Skin Color Model Selection for Face Detection
Intelligent Skin Color Model Selection for Face Detection
Setiawan Hadi
 
Mathematical Model of Skin Color for Face Detection
Mathematical Model of Skin Color for Face DetectionMathematical Model of Skin Color for Face Detection
Mathematical Model of Skin Color for Face Detection
Setiawan Hadi
 
Face detection ppt by Batyrbek
Face detection ppt by Batyrbek Face detection ppt by Batyrbek
Face detection ppt by Batyrbek
Batyrbek Ryskhan
 
Prediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systemsPrediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systems
IAEME Publication
 
Impedance spectroscopic studies on pani ceo2 composites
Impedance spectroscopic studies on pani ceo2 compositesImpedance spectroscopic studies on pani ceo2 composites
Impedance spectroscopic studies on pani ceo2 composites
IAEME Publication
 
Physico chemical studies on the adsorption of atrazin on locally mined montmo...
Physico chemical studies on the adsorption of atrazin on locally mined montmo...Physico chemical studies on the adsorption of atrazin on locally mined montmo...
Physico chemical studies on the adsorption of atrazin on locally mined montmo...
IAEME Publication
 
Dynamic modeling and control of vehicle using fuzzy logic controller 2
Dynamic modeling and control of vehicle using fuzzy logic controller 2Dynamic modeling and control of vehicle using fuzzy logic controller 2
Dynamic modeling and control of vehicle using fuzzy logic controller 2
IAEME Publication
 
Comparative study of sae 1045 carbon steel and aluminium alloy
Comparative study of sae 1045 carbon steel and aluminium alloyComparative study of sae 1045 carbon steel and aluminium alloy
Comparative study of sae 1045 carbon steel and aluminium alloy
IAEME Publication
 
Fpga implementation of scalable queue manager
Fpga implementation of scalable queue managerFpga implementation of scalable queue manager
Fpga implementation of scalable queue manager
IAEME Publication
 
Bayesian network based modeling and reliability analysis of quantum cellular
Bayesian network based modeling and reliability analysis of quantum cellularBayesian network based modeling and reliability analysis of quantum cellular
Bayesian network based modeling and reliability analysis of quantum cellular
IAEME Publication
 

Destaque (20)

Effect of modeling of infill walls on performance of multi story rc building
Effect of modeling of infill walls on performance of multi story rc buildingEffect of modeling of infill walls on performance of multi story rc building
Effect of modeling of infill walls on performance of multi story rc building
 
Topology estimation of a digital subscriber line
Topology estimation of a digital subscriber lineTopology estimation of a digital subscriber line
Topology estimation of a digital subscriber line
 
Investigations on tensile and flexural strength of wood dust and glass fibre
Investigations on tensile and flexural strength of wood dust and glass fibreInvestigations on tensile and flexural strength of wood dust and glass fibre
Investigations on tensile and flexural strength of wood dust and glass fibre
 
Enhancing energy efficiency in industries by reducing mechanical losses of elec
Enhancing energy efficiency in industries by reducing mechanical losses of elecEnhancing energy efficiency in industries by reducing mechanical losses of elec
Enhancing energy efficiency in industries by reducing mechanical losses of elec
 
Linear programming of basic economic parameters used at reengineering in small
Linear programming of basic economic parameters used at reengineering in smallLinear programming of basic economic parameters used at reengineering in small
Linear programming of basic economic parameters used at reengineering in small
 
Relative loss analysis in small scale industries within the proposed
Relative loss analysis in small scale industries within the proposedRelative loss analysis in small scale industries within the proposed
Relative loss analysis in small scale industries within the proposed
 
INTELLIGENT FACE RECOGNITION TECHNIQUES
INTELLIGENT FACE RECOGNITION TECHNIQUESINTELLIGENT FACE RECOGNITION TECHNIQUES
INTELLIGENT FACE RECOGNITION TECHNIQUES
 
Region Based Skin Color Detection
Region Based Skin Color DetectionRegion Based Skin Color Detection
Region Based Skin Color Detection
 
Intelligent Skin Color Model Selection for Face Detection
Intelligent Skin Color Model Selection for Face DetectionIntelligent Skin Color Model Selection for Face Detection
Intelligent Skin Color Model Selection for Face Detection
 
Mathematical Model of Skin Color for Face Detection
Mathematical Model of Skin Color for Face DetectionMathematical Model of Skin Color for Face Detection
Mathematical Model of Skin Color for Face Detection
 
Face recognition and math
Face recognition and mathFace recognition and math
Face recognition and math
 
Face Detection
Face DetectionFace Detection
Face Detection
 
Face detection ppt by Batyrbek
Face detection ppt by Batyrbek Face detection ppt by Batyrbek
Face detection ppt by Batyrbek
 
Prediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systemsPrediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systems
 
Impedance spectroscopic studies on pani ceo2 composites
Impedance spectroscopic studies on pani ceo2 compositesImpedance spectroscopic studies on pani ceo2 composites
Impedance spectroscopic studies on pani ceo2 composites
 
Physico chemical studies on the adsorption of atrazin on locally mined montmo...
Physico chemical studies on the adsorption of atrazin on locally mined montmo...Physico chemical studies on the adsorption of atrazin on locally mined montmo...
Physico chemical studies on the adsorption of atrazin on locally mined montmo...
 
Dynamic modeling and control of vehicle using fuzzy logic controller 2
Dynamic modeling and control of vehicle using fuzzy logic controller 2Dynamic modeling and control of vehicle using fuzzy logic controller 2
Dynamic modeling and control of vehicle using fuzzy logic controller 2
 
Comparative study of sae 1045 carbon steel and aluminium alloy
Comparative study of sae 1045 carbon steel and aluminium alloyComparative study of sae 1045 carbon steel and aluminium alloy
Comparative study of sae 1045 carbon steel and aluminium alloy
 
Fpga implementation of scalable queue manager
Fpga implementation of scalable queue managerFpga implementation of scalable queue manager
Fpga implementation of scalable queue manager
 
Bayesian network based modeling and reliability analysis of quantum cellular
Bayesian network based modeling and reliability analysis of quantum cellularBayesian network based modeling and reliability analysis of quantum cellular
Bayesian network based modeling and reliability analysis of quantum cellular
 

Semelhante a Fusion technology for robust human skin detection 2

Skin Detection Based on Color Model and Low Level Features Combined with Expl...
Skin Detection Based on Color Model and Low Level Features Combined with Expl...Skin Detection Based on Color Model and Low Level Features Combined with Expl...
Skin Detection Based on Color Model and Low Level Features Combined with Expl...
IJERA Editor
 
Enhanced Skin Colour Classifier Using RGB Ratio Model
Enhanced Skin Colour Classifier Using RGB Ratio Model  Enhanced Skin Colour Classifier Using RGB Ratio Model
Enhanced Skin Colour Classifier Using RGB Ratio Model
ijsc
 
ENHANCED SKIN COLOUR CLASSIFIER USING RGB RATIO MODEL
ENHANCED SKIN COLOUR CLASSIFIER USING RGB RATIO MODELENHANCED SKIN COLOUR CLASSIFIER USING RGB RATIO MODEL
ENHANCED SKIN COLOUR CLASSIFIER USING RGB RATIO MODEL
ijsc
 
A survey on human face recognition invariant to illumination
A survey on human face recognition invariant to illuminationA survey on human face recognition invariant to illumination
A survey on human face recognition invariant to illumination
IAEME Publication
 

Semelhante a Fusion technology for robust human skin detection 2 (20)

I045034956
I045034956I045034956
I045034956
 
Data Mining Based Skin Pixel Detection Applied On Human Images: A Study Paper
Data Mining Based Skin Pixel Detection Applied On Human Images: A Study PaperData Mining Based Skin Pixel Detection Applied On Human Images: A Study Paper
Data Mining Based Skin Pixel Detection Applied On Human Images: A Study Paper
 
A New Skin Color Based Face Detection Algorithm by Combining Three Color Mode...
A New Skin Color Based Face Detection Algorithm by Combining Three Color Mode...A New Skin Color Based Face Detection Algorithm by Combining Three Color Mode...
A New Skin Color Based Face Detection Algorithm by Combining Three Color Mode...
 
B017310612
B017310612B017310612
B017310612
 
Skin Color Detection Using Region-Based Approach
Skin Color Detection Using Region-Based ApproachSkin Color Detection Using Region-Based Approach
Skin Color Detection Using Region-Based Approach
 
50Combining Color Spaces for Human Skin Detection in Color Images using Skin ...
50Combining Color Spaces for Human Skin Detection in Color Images using Skin ...50Combining Color Spaces for Human Skin Detection in Color Images using Skin ...
50Combining Color Spaces for Human Skin Detection in Color Images using Skin ...
 
IRJET- Detection of Static Body Poses using Skin Detection Techniques to Asse...
IRJET- Detection of Static Body Poses using Skin Detection Techniques to Asse...IRJET- Detection of Static Body Poses using Skin Detection Techniques to Asse...
IRJET- Detection of Static Body Poses using Skin Detection Techniques to Asse...
 
A New Algorithm for Human Face Detection Using Skin Color Tone
A New Algorithm for Human Face Detection Using Skin Color ToneA New Algorithm for Human Face Detection Using Skin Color Tone
A New Algorithm for Human Face Detection Using Skin Color Tone
 
IMPROVEMENT OF THE FINGERPRINT RECOGNITION PROCESS
IMPROVEMENT OF THE FINGERPRINT RECOGNITION PROCESSIMPROVEMENT OF THE FINGERPRINT RECOGNITION PROCESS
IMPROVEMENT OF THE FINGERPRINT RECOGNITION PROCESS
 
Skin Detection Based on Color Model and Low Level Features Combined with Expl...
Skin Detection Based on Color Model and Low Level Features Combined with Expl...Skin Detection Based on Color Model and Low Level Features Combined with Expl...
Skin Detection Based on Color Model and Low Level Features Combined with Expl...
 
Skin colour information and Haar feature based Face Detection
Skin colour information and Haar feature based Face DetectionSkin colour information and Haar feature based Face Detection
Skin colour information and Haar feature based Face Detection
 
Enhanced Skin Colour Classifier Using RGB Ratio Model
Enhanced Skin Colour Classifier Using RGB Ratio Model  Enhanced Skin Colour Classifier Using RGB Ratio Model
Enhanced Skin Colour Classifier Using RGB Ratio Model
 
ENHANCED SKIN COLOUR CLASSIFIER USING RGB RATIO MODEL
ENHANCED SKIN COLOUR CLASSIFIER USING RGB RATIO MODELENHANCED SKIN COLOUR CLASSIFIER USING RGB RATIO MODEL
ENHANCED SKIN COLOUR CLASSIFIER USING RGB RATIO MODEL
 
Face detection for video summary using enhancement based fusion strategy
Face detection for video summary using enhancement based fusion strategyFace detection for video summary using enhancement based fusion strategy
Face detection for video summary using enhancement based fusion strategy
 
A survey on human face recognition invariant to illumination
A survey on human face recognition invariant to illuminationA survey on human face recognition invariant to illumination
A survey on human face recognition invariant to illumination
 
A Shot Boundary Detection Method for News Video Based Human Skin Region (Face...
A Shot Boundary Detection Method for News Video Based Human Skin Region (Face...A Shot Boundary Detection Method for News Video Based Human Skin Region (Face...
A Shot Boundary Detection Method for News Video Based Human Skin Region (Face...
 
Ch 2
Ch 2Ch 2
Ch 2
 
ttA sign language recognition approach for
ttA sign language recognition approach forttA sign language recognition approach for
ttA sign language recognition approach for
 
Human Skin Cancer Recognition and Classification by Unified Skin Texture and ...
Human Skin Cancer Recognition and Classification by Unified Skin Texture and ...Human Skin Cancer Recognition and Classification by Unified Skin Texture and ...
Human Skin Cancer Recognition and Classification by Unified Skin Texture and ...
 
A SIGN LANGUAGE RECOGNITION APPROACH FOR HUMAN-ROBOT SYMBIOSIS
A SIGN LANGUAGE RECOGNITION APPROACH FOR HUMAN-ROBOT SYMBIOSISA SIGN LANGUAGE RECOGNITION APPROACH FOR HUMAN-ROBOT SYMBIOSIS
A SIGN LANGUAGE RECOGNITION APPROACH FOR HUMAN-ROBOT SYMBIOSIS
 

Mais de IAEME Publication

A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
IAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
IAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
IAEME Publication
 

Mais de IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Último

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 

Último (20)

presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 

Fusion technology for robust human skin detection 2

  • 1. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 63 FUSION TECHNOLOGY FOR ROBUST HUMAN SKIN DETECTION Vasudha M P1 , Ramesha K2 1 (Dept. of Electronics and Communications, SET, Jain University, Bangalore, India) 2 (Professor and HOD, Dept. of Electronics and Communications, SET, Jain University, Bangalore-562112, India) ABSTRACT Human skin color is an important cue to infer variety of aspects including, culture, race, health, age and beauty etc. Detecting human skin color is of utmost importance in numerous applications including steganography and recognizing human by human and/or machine. Detection of skin color pixels and non skin color pixels and its classification is quite challenging task. The human visual system incorporates color opponency. In addition, the skin color in an image is sensitive to various factors such as: illumination, camera characteristics, ethnicity and other factors. The factors such as makeup, hairstyle, glasses, background colors, shadows and motion also influence skin-color appearance. Moreover, existing methods require high computational cost. Our paper aimed at providing a technique which provides more robust and accurate results with minimum computational cost. The proposed fusion technique (i) Reduces computational costs as no training is required, (ii) Reduces the false positive rates and improves the accuracy of skin detection despite wide variation in ethnicity, illumination and background, (iii) The fusion technique adopted found to be the most appropriate technique compared to existing techniques. Keywords: Face localization, Color space, Online dynamic threshold, Fusion technique, Skin detection. I. INTRODUCTION Human skin color detection plays an important role in infer variety of cultural aspects, race, health, age, wealth, beauty, etc. [1]. Detecting human skin color is of utmost importance in numerous applications such as, steganography [2], recognizing human by human and/or machine, and to various human computer interaction domains. The existing skin detection methods using HS, SV, HV, YCb, YCr, CrCb and I Rg By color space(s), are prone to false skin detection and are not able to cope with the variety of human skin colors across different ethnic, illumination, camera condition, background condition, individual characteristics. Even the fusion approach method still exhibits comparatively more false score and less accuracy. We are in need of an accurate, robust, skin INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) ISSN 0976 - 6480 (Print) ISSN 0976 - 6499 (Online) Volume 4, Issue 5, July – August 2013, pp. 63-73 © IAEME: www.iaeme.com/ijaret.asp Journal Impact Factor (2013): 5.8376 (Calculated by GISI) www.jifactor.com IJARET © I A E M E
  • 2. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 64 detection technique with minimum computational cost irrespective of variation in ethnicity, illumination, background etc. As a solution to the various problems of skin segmentation and skin color detection method and as an alternative to the fusion approach [3], proposed fusion technology, increases accuracy in skin color information extraction in face region [4] and true positive rate. It reduces false score, dependency on eye detector algorithms and variation caused by background on color image(s). The other sections of this paper are structured as follows. Section II gives a brief description of related work. Section III describes our proposed skin pixel color detection technique. Section IV briefly narrates the algorithm adopted by us. Section V presents the experimental results and performance analysis followed by conclusions in Section VI. II. RELATED WORK Skin detection methodologies are classified into two categories namely: Texture based [5] and Color based [6] classification. Skin detection method based on skin-color information is computationally effective and more robust in performance. The color of human skin is formed by a combination of blood (red) and melanin (yellow and brown). The human skin color clusters at a small area in the color space and has a restricted range of hues. But it is not the same for all the color spaces [7]. Further face and body of a person always shares the same colors by using the skin color property of the detected face region, the remainder of skin pixels in the image can be detected. The face detection task is challenging because of the difficulty in characterizing prototypical “non-face” images [6]. Similarly in detection of skin-colored pixels and non skin color pixels, the human visual system incorporates color-opponency and so there is a strong perceptual relevance of this color space(s) in skin color detection [9]. The skin color in an image is sensitive to various factors such as illumination, ethnicity, individual characteristics such as age, sex and body parts also affect the skin- color appearance. The factors like subject appearances, background colors, shadows and motion also influence skin-color appearance [10]. For the purpose of scaling the skin pixels generally multi-scale search process has been followed [11]. Regarding edge detection and elliptical masking or localization of face region, oval-shaped elliptical masking is done [12]. The term color defined as a mixture of three other colors (red, green and blue) or “Tristimuli” [13]. The various color spaces used for skin detection are grouped as (i) Basic RGB color space, (ii) The normalized RGB color space [14], (iii) Perceptual color spaces (HSI, HSV, HSL, TSL) [2], (iv) Orthogonal color spaces (YCbCr, YIQ, YUV) [18], (v) The log opponent color space [15] and (v) Colorimetric color spaces (CIE-Lab, CIE-XYZ) [16]. Thresholding values can be derived by adopting, static threshold method [2], random forest technique [8], dynamic threshold method [17], Online dynamic threshold method [5], among all random forest technique is comparatively more expensive, (i) The Expectation Maximization (EM) algorithm [18 and 19], (ii) The Error-back propagation algorithm [20] and (iii) Newton Raphson iteration step were used as mathematical tool for skin color pixel detection [21]. Experiments can be conducted by using collected from public databases. For classification of skin color pixels classic smoothened 2-D histogram and/or gaussian model were used. III. PROPOSED SKIN COLOR PIXEL DETECTION TECHNIQUE The simple procedure adopted for skin color pixel detection begins with obtaining RGB color image(s) with face regions. These input image(s) are preprocessed in 5 stages followed by transformation of color space, classification of skin color pixels as shown in Fig. 1. For classification purpose fusion technique is adopted.
  • 3. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 65 A. Input Image(s) From and out of the images collected from data base, only RGB color images with and without face image(s) obtained under varied illumination, camera condition, race and background conditions are taken as input image(s) for skin color detection. Fig.1 Skin Color Pixel Detection Technique B. Preprocessing Firstly RGB color images obtained under varied conditions including face region(s) are taken as database images. In the input image frequency variation of RGB color is removed to obtain input image. Secondly eye detection and localaization of eye region is performed by skin segmentation, scaling, cropping followed by eye localization is shown in Fig. 2. For this Newton–Raphson optimization algorithm and iteration step are adopted. The inference algorithm and log likelihood ratios are determined by adopting Equation (1) and Equation (2). … (2) Thirdly oval shaped elliptical masking of the face(s) region is performed by using Equation (3). Fourthly, Edge detection is performed by obtaining discrete (DC) image and calculating the gradient of DC image by using sobel edge-detector and the algorithms developed by sobel and fifthly, morphological image processing called Dilation is performed. Sixthly, the output results of Edge detection and dilation operations are shown in Fig. 4 and 5. where … (3) The orientation of the ellipse is computed by determining the least moment of inertia by applying Equation (4). Where denotes the central moments of the connected component.
  • 4. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 66 The length a of the major axis and the length b of the minor axis as shown in Fig. 3 are given in Equation (5). Fig.2 Eye Location Fig.3 Elliptical Mask Fig.4 Edge Detected Fig.5 Dilation Process C. Color Space Transformation Skin color pixel detection is based on identification of skin color. In our paper, Color values of image pixels in face region are viewed as an ensemble of skin color samples shown in Equation (6) below. … (6) The log-opponent (LO) uses the base 10 logarithm to convert RGB matrices into I, Rg and By, (ii) the algorithm for conversion of RGB matrices into I Rg By is represented as in Equation (7) and output are shown in Fig. 6 to Fig.8. L(x) = 105 * log10(x+1) I = L (G) where Rg = L(R) – L (G) … (7) LO Color Space Output Fig. 6. “I” Channel Fig. 7. “Rg” Channel Fig. 8. “By” Channel The green channel is used to represent intensity and two channels of color space (I and By) are used for deriving thresholding values. Coding color distributions: log-opponent chromaticity distributions by the distribution mean and the lowest k means statistical moments (where the moment functions is discovered using Principle Component Analysis).
  • 5. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 67 Online dynamic thresholding function is used for Extracting color information. The threshold values are coded and indexed by using logarithmic coding. Thresholding values are calculated by using iterative algorithm stated in Equation (8) below The unique feature of this paper is thresholding function is performed only in smooth regions of the face and the normal distribution with 95% confidential interval is considered for coding and indexing threshold values. A graphical representation of frequency and normal distribution is as shown in Fig. 9 below. Fig.9 Graph- (a) and (b) represent the frequency and Normal distribution with 95% confidence interval respectively D. Skin Detection Skin detection is performed by skin segmentation and classification by using classifiers. In our experiment we have introduced smoothed and normalized 2D histogram modeled through elliptical gaussian model followed by fusion strategy performed by combining results of both models. (i) The fusion rule has been explained in Equation (9), (ii) The elliptical boundary model has been explained in Equation (9) and (iii) The products of Elliptical GMM have been explained in Equation (10). Where
  • 6. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 68 E. Fusion or Combined Single Representation Fusion strategy, involves integration of two incoming single features into a combined single representation by using product rule. The combining of results is done by Equation (9) and (10). The fusion rule is given in Equation (11): Where in: (i) represents threshold value(s), (ii) Z represents feature vector on the face images, (iii) Represents the Results of smoothed 2D histogram, (iii) Represents the result of Gaussian model, (iv) represents the center of the Gaussian model, (v) Represents the diagonal covariance matrix, (vi) represents the product and (vii) represents the selected fusion rule. In order to make the fusion issue tractable, the individual features are assumed to be independent of each other. IV. ALGORITHM Problem definition: To localize and extract skin color pixel information of face region(s) in given color images. There after by using the information of face region(s) and appropriate mathematical tool, skin color pixel and non-skin color pixels are classified by trained classifiers.In brief, our proposed algorithm means and includes: preprocessing stage, color transformation, threshold function and classification of pixels by using fusion technology as detailed here under: (i). RGB color face image(s) are normalized to obtain binary face image(s), (ii). Face region(s) of given image is detected and localized by using oval shape elliptical mask, (iii). RGB color of face image(s) are transformed into I Rg By color space by using base 10 logarithms. The green channel is used to represent intensity. IBy color space is used for experimental purpose, (iv). Color information of face region is derived by adopting online dynamic threshold function, (v). Coding and indexing of color information is done by using logarithm function, (vi). Smoothed 2D histogram modeled through elliptical gaussian joint probability distribution function is used for classification purpose, (vii). The two incoming single features are integrated into a combined single representation by using the fusion rules, (viii). The then-output values are applied for pixels classification and (ix). For classification purpose we are using EM algorithm of render and walker, newton-raphson iteration process and error back proportion algorithm as mathematical tools. V. RESULTS AND PERFORMANCE ANALYSIS For experimental purpose and performance analysis dataset (single and/or group images) from databases and/or downloaded randomly from google are used. When there is no face detected on the image, it will return a blank image (black) therefore, for testing purposes; we assumed that true face(s) are detected in the image. Conclusions are drawn as follows. In this section, we analyze seven different combinations of feature vectors: IBy, HS, HV, SV, YCb, YCr and CbCr. The results for each feature vector are presented in Fig. 10 using images from pratheepan and ETHZ datasets.
  • 7. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 69 Fig. 10. Comparison between results from different Color Space TABLE I. Comparison between Different Colorspace in Stottinger Datasets Color Space Accuracy F - score TPR FPR IBy 0.9039 0.6490 0.6580 0.3420 HS 0.9057 0.6512 0.6521 0.3479 HV 0.7977 0.4549 0.6251 0.3749 SV 0.8898 0.6285 0.6905 0.3995 YCb 0.8985 0.6143 0.6277 0.3723 YCr 0.8985 0.6392 0.6656 0.3344 CbCr 0.9150 0.6241 0.5223 0.4777 It is experimentally proved that (i) human visual system uses opponent color coding IBy shows better true positive rate. A comparison between different color spaces with reference to F- score, false positive rate (FPR) is shown in Table I. TABLE II. The detailed Comparison with previous model Image no. 1) 2) 3) 4) 5) SGM FPR 0.2502 0.1984 0.1524 0.0790 0.0313 TPR 0.8803 0.8708 0.8077 0.7736 0.5874 GMM FPR 0.2506 0.1998 0.1506 0.0802 0.0300 TPR 0.8836 0.8521 0.7936 0.6466 0.4165 EGMM FPR 0.2510 0.1985 0.1526 0.0803 0.0310 TPR 0.9235 0.9187 0.8828 0.7321 0.3156 Table II, shows comparison between single gaussian model (SGM), gaussian mixture model (GMM) and elliptical gaussian model (EGMM) with special reference to true positive rate (TPR) and false positive rate (FPR). This proves EGMM is more preferable.
  • 8. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 70 Fig.11. 2D Histogram Fig. 12 Elliptical GMM Fig.13 EGMM for Multiple faces Figure 11-13 shows the graphical representation of performance of 2D Histogram, Elliptical GMM (Single face) and EGMM for Multiple faces. TABLE III. Comparison of thresholding functions Classifiers Accuracy F-Score Precision Recall Online Dynamic thresholding 0.9039 0.6490 0.6403 0.6580 Dynamic thresholding 0.8935 0.5922 0.6133 0.5725 Static thresholding 0.8334 0.4745 0.4133 0.5570 The comparative results of static thresholding, dynamic thresholding and online dynamic thresholding methods is as shown in Table III and Fig. 14. Random forest approach has been dropped because it will cause higher computational power as number trees increases and time consuming during training. Original Image Static Thresholding Dynamic Thresholding Online Dynamic thresholding Fig. 14. Comparative Evaluation of Thresholding Technique
  • 9. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 71 Table IV shows the performance evaluation of Fusion Approach, (only) 2D Histogram and (only) GMM. TABLE IV. Comparison between Fusion and Non Fusion Approach Classifiers Accuracy F-Score TPR FPR Fusion Approach 0.9039 0.6490 0.6580 0.0577 2D Histogram 0.8930 0.6270 0.6662 0.0716 GMM 0.8595 0.6150 0.8314 0.1361 TABLE V Comparison between Existing Approach and Proposed Fusion Technology Classifiers Accuracy TPR FPR Existing Approach 0.9039 0.6864 0.3135 Proposed Approach 0.9820 0.8747 0.1252 The comparative evaluation of existing (fusion) approach and proposed method as shown in Fig. 15 has been made by taking dataset from google. It show that our proposed method will show 0.19% more true positive rate (TPR) and 0.19% less false positive rate (FPR). In Table V the accuracy percentage is calculate based on true positive rate and false positive rate. By observing the comparison of performance shown in table IV and V, shows that by adopting the proposed fusion technology, we can obtain highest accuracy and less i) false score (F-Score), ii) true positive rate (TPR) and iii) false positive rate (FPR). a. Original Image b.Existing approach c. Proposed Method a. Original Image b. Existing approach c. Proposed Method Fig. 15. Comparison between Existing approach and Proposed Method of Single Image and Group Images
  • 10. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 72 VI. CONCLUSIONS As established in our experiments, the proposed method (i).Improves the accuracy level and minimizes the false score rate, (ii). Removes all adverse effects caused by, illumination, camera condition, ethnicity and individual characteristics, and background colors (ii). Construction of trees and training will reduce the computational cost. VII. REFERENCES [1] A. M. Elgammal, C. Muang, and D. Hu, “Skin Detection,” in Encyclopedia of Biometrics, Germany, Berlin, Springer, pp. 1218–1224, 2009. [2] Abbas Cheddad, J.V. Condell, K. Curran, and P. McKevitt, "A New Color Space for Skintone Detection," in proceedings of The IEEE International Conference on Image Processing, pp. 7–11, 2009. [3] Wei Ren Tan, Chee Seng Chan, Member, IEEE, Pratheepan Yogarajah, and Joan Condell, “A Fusion Approach for Efficient Human Skin Detection,” IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 138-147, February 2012. [4] Ramesha. K. and KB Raja, "Dual Transform based Feature Extraction for Face Recognition," in proceedings of International Journal of Computer Science Issues, vol. 8, Issue. 5, no. 2, September 2011. [5] Qing-Fang Zheng, Ming-Ji Zhang, and Wei-Qiang Wang, "A Hybrid Approach to Detect Adult Web Images," in proceedings Advances in Multimedia Information Processing professional Case Management (PCM) published in Springer Berlin Heidelberg, vol. 3332, pp. 609–616, 2004. [6] Fasel. Ian, Fortenberry. B. and Movellan. J, “A Generative Framework for Real Time Object Detection and Classification,” in proceedings of the Archival Journal of Computer Vision Image Understanding, vol. 98, pp. 182–210, Apr. 2005. [7] Fleck M.M. and Forsyth D. A. and Bregler C, “Finding Naked People,” European Conference on Computer Vision, vol. 2, pp. 593-602, Aug. 1996. [8] Rehanullah Khan, Allan Hanbury and Julian Stottinger, "Skin Detection: A Random Forest Approach,” in proceeding of 17th IEEE International Conference on Image Processing, Hong Kong, pp. 4613–4616, September 2010. [9] Hering E, “Outlines of a Theory of the Light Sense," Cambridge, MA, Havard University Press, 1964. [10] P. Kakumanua, S. Makrogiannisa, and N. Bourbakis, “A Survey of Skin-Color Modeling and Detection Methods,” in proceedings of the journal of the Pattern Recognition Society, vol. 40, no. 3, pp. 1106–1122, Published by Elseveir, 2007. [11] H. A. Rowley, S. Bluja and T. Kanade, “Neural Network based Face Detection,” in proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 20, Issue. 1, pp. 23-38, 1998. [12] A. Jacquin and Alexandros Eleftheriadis, "Automatic Location Tracking of Faces and Facial Features in Video Sequences,” in proceedings of International Workshop on Automatic Face and Gesture Recognition, Zurich,Switzerland, June 1995 [13] Gonzalez. Rafael.C and Richard. E.W, “Digital Image Processing," 3rd Ed Pearson Education International, ISBN 978-81-317-2695-2, 2009. [14] M.H. Yang and N. Ahuja, “Gaussian Mixture Model for Human Skin Color and its Application in Image and Video Databases,” in Proce. of the SPIE: conference on Storage and Retrieval for Image and Video Data Base VII, vol.4315, 2001.
  • 11. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 5, July – August (2013), © IAEME 73 [15] Berens J. and G. Finlayson, “ Log Opponent Chromaticity Coding of Color Space,” in Proceedings of the IEEE International Conference on Pattern Recognition, Barcelona, Spain, 2000, vol. 1, pp. 206–211, 2000. [16] Margarita Bratkova, Solomon Boulos and Peter Shirley, “oRGB: A Practical Opponent Color Space for Computer Graphics,” in proceedings of IEEE Journal on Computer Graphics and Applications, pp. 42-45, 2009. [17] P. Yogarajah, A. Cheddad, J. Condell, K. Curran, and P. McKevitt, “A Dynamic Threshold Approach for Skin Segmentation in Color Images,” in Proce. of IEEE 17th International Conference on Image Processing, pp. 2225–2228, Sept. 2010. [18] Dempster. A.P, N.M. Laird and D.B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," published in Journal of the Royal Statistical Society, vol. 39, no. 1, pp. 1–38, 1977. [19] Render R.A. and HF Walker, "Mixture Densities, Maximum Likelihood and the EM Algorithm," in proceedings of Society for Industrial and Applied Mathematics review, vol. 26, no. 2, pp. 195-239, April 1984. [20] Rumelhart D.E., Hinton. G.E. and Williams R.J, "Learning Representations by Back- Propagating Errors," in proceedings of Nature publication groups, vol. 323, Issue 6088, pp. 533-536, 1986. [21] (On line) Independent studies “The Newton-Raphson Method,” Engineering Mathematics: Open Learning Unit Level 1 13.3: Tangents and Normals -2013. [22] Dr. Sudeep D. Thepade and Jyoti S.Kulkarni, “Novel Image Fusion Techniques using Global and Local Kekre Wavelet Transforms”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 1, 2013, pp. 89 - 96, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. [23] A.Hemlata and Mahesh Motwani, “Single Frontal Face Detection by Finding Dark Pixel Group and Comparing XY-Value of Facial Features”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 2, 2013, pp. 471 - 481, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. [24] Jyoti Verma, Vineet Richariya, “Face Detection and Recognition Model Based on Skin Colour and Edge Information for Frontal Face Images”, International Journal of Computer Engineering & Technology (IJCET), Volume 3, Issue 3, 2012, pp. 384 - 393, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.