SlideShare uma empresa Scribd logo
1 de 103
Bioq. Raúl Horacio Lucero
Jefe de Area Biología Molecular
Instituto de Medicina Regional
   Exámenes generales:              Diagnóstico de especie.
    datos fisonómicos, sexo,         Datación de los restos.
    peso, talla, cabello, color      Exámenes generales.
    de ojos y piel, marcas.
                                     Elementos extrínsecos.
   Registro de voz.
                                     Caracteres patológicos,
   Trazado caligráfico.              naturales o traumáticos.
   Huellas dactilares.              Identidad radiográfica y
   Huellas genéticas.                dental.
                                     Métodos bioquímicos.
   Grupos sanguíneos: ABO,          Minisatélites: sondeos de
    RH, MNS, Duffy, Lewis.            locus múltiple y locus
   Proteínas plasmáticas:            único.
    haptoglobina, α1-                Microsatélites: métodos de
    antitripsina, transferrina.       PCR.
   Enzimas eritrocitarias:          Variantes de secuencia:
    fosfatasa ácida                   HLA-DQα, Polymarker,
    eritrocitaria, adenilato          genoma mitocondrial.
    kinasa, PGM, ADA.
   HLA: Antígenos de
    histocompatibilidad.
   Existen regiones
    codificantes -que
    contienen la información
    para la síntesis proteica-, y
    regiones no codificantes.
   Dentro de las no
    codificantes existen
    regiones polimórficas.
   Existen alrededor de 3 x
    106 sitios polimóficos en
    nuestro genoma.
Sitio de adhesión de                  Sitio de adhesión de
los primers                           los primers

                                                         Alelo 1

                                                       Alelo 2




               Unidad de Repetición

   Herramienta
    indispensable para la
    investigación forense.
   Gran número de STRs
    disponibles.
   Alta sensibilidad.
   Evaluación manual o
    automatizada.
Analizando el Caso.

Material Indubitado
de la Víctima.


Material Subungueal
Tomado de la Víctima


 Tejido Dactilar de
 la Víctima.                   Match    Match   Match

Sangre del
Sospechoso1.


  Sangre del
  Sospechoso 2
2006:
                                                                            www.dna.gov
                                 DNA is an important part of the
                                    criminal justice system
                                                                          Justice for All Act ($1B    2006
                                                                               over 5 years)
                                                            Identifiler 5-dye kit
                                                               and ABI 3100
                    UK National Database                                  2002                  2004 Y-STRs
                     launched (April 10,       CODIS loci
                           1995)                defined                        PowerPlex® 16 (16
Gill et al. (1985) Forensic                                                     loci in single amp)
application of DNA 'fingerprints‘.                 1998              2000
Nature 318:577-9FSS Quadruplex                                             STR typing with CE is
                                                                              fairly routine

                               1994            1996         First commercial
       First STRs
                                                            fluorescent STR               mtDNA
       developed
                                                               multiplexes
              1990          1992        Capillary electrophoresis of
                                           STRs first described


     1985            PCR developed       DQA1 & PM
                                          (dot blot)                       Multiplex STRs
                  RFLP
http://www.fbi.gov/hq/lab/codis/index1.htm




Combined DNA Index System (CODIS)

Launched in October 1998 and now links all 50 states
Used for linking serial crimes and unsolved cases with repeat offenders
Convicted offender and forensic case samples along with a missing persons
   index
Requires 13 core STR markers
>27,000 investigations aided nationwide as of Sept 2005
Contains more than 2.8 million DNA profiles
   Small product sizes are generally compatible with
    degraded DNA and PCR enables recovery of information
    from small amounts of material

   Multiplex amplification with fluorescence detection
    enables high power of discrimination in a single test

   Commercially available in an easy to use kit format

   Uniform set of core STR loci provide capability for
    national and international sharing of criminal DNA
    profiles
An accordion-like DNA sequence that occurs between genes

TCCCAAGCTCTTCCTCTTCCCTAGATCAATACAGACAGAAGACAGGTGGATAGA
TAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATATCATTGAAAGA
CAAAACAGAGATGGATGATAGATACATGCTTACAGATGCACAC


        = 12 GATA repeats (“12” is all that is reported)
  7 repeats                               The number of consecutive repeat units
  8 repeats                               can vary between people
  9 repeats
 10 repeats
 11 repeats
                                                   The FBI has selected 13
 12 repeats                                        core STR loci that must be
 13 repeats                                        run in all DNA tests in
                                                   order to provide a
                 Target region                     common currency with
               (short tandem repeat)
                                                   DNA profiles
The polymerase chain reaction (PCR) is used to amplify
               STR regions and label the amplicons with fluorescent
                         dyes using locus-specific primers
                                               8 repeats
                  Locus 1
                                              10 repeats



                                                8 repeats

                  Locus 2
                                                9 repeats




Scanned Gel
   Image                      Capillary Electropherogram
YCAII



 ~45%
                         Requires size based DNA separation to
                       resolve different alleles from one another

High stutter      Dinucleotide       (CA)(CA)(CA)(CA)
                  Trinucleotide      (GCC)(GCC)(GCC)
                  Tetranucleotide    (AATG)(AATG)(AATG)
                  Pentanucleotide    (AGAAA)(AGAAA)
Low stutter
                  Hexanucleotide     (AGTACA)(AGTACA)
  DYS448



                     Short tandem repeat (STR) = microsatellite =
  <2%
                             simple sequence repeat (SSR)
Category                   Example Repeat                      13 CODIS Loci
                                      Structure
Simple repeats – contain         (GATA)(GATA)(GATA)                TPOX, CSF1PO,
units of identical length and                                      D5S818, D13S317,
sequence                                                           D16S539
Simple repeats with              (GATA)(GAT-)(GATA)                TH01, D18S51, D7S820
non-consensus alleles
(e.g., TH01 9.3)
Compound repeats –               (GATA)(GATA)(GACA)                VWA, FGA, D3S1358,
comprise two or more                                               D8S1179
adjacent simple repeats
Complex repeats –                (GATA)(GACA)(CA)(CATA)            D21S11
contain several repeat
blocks of variable unit length



   These categories were first described by Urquhart et al. (1994) Int. J. Legal Med. 107:13-20
     The efforts of the Human Genome Project have increased
        knowledge regarding the human genome, and hence there are
        many more STR loci available now than there were 10 years ago
        when the 13 CODIS core loci were selected.

       More than 20,000 tetranucleotide STR loci have been
        characterized in the human genome (Collins et al. An exhaustive DNA
        micro-satellite map of the human genome using high performance computing. Genomics
        2003;82:10-19)

       There may be more than a million STR loci present depending on
        how they are counted (Ellegren H. Microsatellites: simple sequences with complex
        evolution. Nature Rev Genet 2004;5:435-445).

       STR sequences account for approximately 3% of the total human
        genome (Lander et al. Initial sequencing and analysis of the human genome. Nature
        2001;409:860-921).




Butler, J.M. (2006) Genetics and genomics of core STR loci used in human identity testing. J. Forensic Sci., in press.
    Compatible primers are the
                                                  key to successful multiplex
                                                  PCR

                                                 STR kits are commercially
                                                  available

                                                 15 or more STR loci can be
                                                  simultaneously amplified
                                                 Challenges to Multiplexing
                                                      primer design to find compatible
                                                      primers (no program exists)
                                                      reaction optimization is highly
                                                      empirical often taking months
Advantages of Multiplex PCR
    –Increases information obtained per unit time (increases power of discrimination)
    –Reduces labor to obtain results
    –Reduces template required (smaller sample consumed)
    Most are rape cases (>2 out of 3)
    Looking for match between evidence
     and suspect
    Must compare victim’s DNA profile

    Challenges
•Mixtures must be resolved
•DNA is often degraded
•Inhibitors to PCR are often present
   Forensic cases -- matching suspect with
    evidence
   Paternity testing -- identifying father
   Historical investigations
   Missing persons investigations
   Mass disasters -- putting pieces back together
   Military DNA “dog tag”
   Convicted felon DNA databases
Steps in DNA Sample Processing
 Sample Obtained from
Crime Scene or Paternity
     Investigation
                                     Biology

             DNA
              DNA                 DNA
                                   DNA                  PCR Amplification
                                                         PCR Amplification
          Extraction
           Extraction          Quantitation
                               Quantitation         of Multiple STR markers
                                                     of Multiple STR markers


                                  Technology

       Separation and Detection of                Sample Genotype
              PCR Products                         Determination
              (STR Alleles)


                                   Genetics
     Comparison of Sample
     Comparison of Sample                                   Generation of Case
                                                            Generation of Case
      Genotype to Other
       Genotype to Other                                  Report with Probability
                                                          Report with Probability
        Sample Results
        Sample Results                                       of Random Match
                                                             of Random Match

                           If match occurs, comparison
                           If match occurs, comparison
                           of DNA profile to population
                           of DNA profile to population
                                   databases
                                    databases
Sources of Biological Evidence
•   Blood
•   Semen
•   Saliva
•   Urine
•   Hair
•   Teeth
•   Bone
•   Tissue
AATG




                                     7 repeats



                                      8 repeats

    the repeat region is variable between samples while the flanking regions
    where PCR primers bind are constant

Homozygote = both alleles are the same length
Heterozygote = alleles differ and can be resolved from one another
Multiplex PCR
   Over 10 Markers Can Be
    Copied at Once
   Sensitivities to levels less
    than 1 ng of DNA
   Ability to Handle Mixtures
    and Degraded Samples
   Different Fluorescent Dyes
    Used to Distinguish STR
    Alleles with Overlapping Size
    Ranges
AmpFlSTR® Profiler Plus™
                                          Kit available from PE Biosystems (Foster City, CA)


                       100 bp                      200 bp                   300 bp                  400 bp
                                                       Size Separation

                                D3          vWA                 FGA                  5-FAM (blue)
    Color Separation




                           A         D8              D21              D18            JOE (green)

                                 D5                 D13                D7            NED (yellow)


                                                                                                        ROX (red)
                                          GS500-internal lane standard
9 STRs amplified along with sex-typing marker amelogenin in a single PCR reaction
ABI Prism 310 Genetic Analyzer

                                capillary




Syringe with polymer
      solution


                                                     Injection
                                                     electrode


            Outlet     Autosampler tray
            buffer
                                             Inlet
                                            buffer
Close-up of ABI Prism 310 Sample Loading Area




  Electrode

                             Capillary



                                            Sample Vials




     Autosampler Tray

          See Technology section for more information on CE
Human Identity Testing with Multiplex STRs
                                                                                AmpFlSTR® SGM Plus™ kit


                                                                                 DNA Size (base pairs)
                                          D3
                            amelogenin         D8 TH01
                                    D19               VWA D21                   D16
                                                                                          D18
Two different individuals




                                                                                                    D2
                                                                     FGA

                               probability of a random match: ~1
                                           in 3 trillion            Results obtained in less than 5 hours
                                                                    with a spot of blood the size of a pinhead
                             amelogenin D3

                                     D19
                                               D8      VWA                D16
                                                                   D21                      D18       D2
                                                                      FGA
                                                    TH01


                                           Simultaneous Analysis of 10 STRs and Gender ID
STR genotyping is performed by comparison of
        sample data to allelic ladders



                           Microvariant
                              allele
45
            40
                                                             TH01 Marker
            35
            30
            25                                               Caucasians (N=427)
Frequency




            20                                               Blacks (N=414)
            15                                               Hispanics (N=414)
            10
            5                                           *Proc. Int. Sym. Hum. ID
                                                        (Promega) 1997, p. 34
            0
                 6   7       8      9        9.3   10
                         Number of repeats
13 CODIS Core STR Loci with
                 Chromosomal Positions
     TPOX

          D3S1358

                                               TH01
                                 D8S1179
                    D5S818                            VWA
               FGA           D7S820
                 CSF1PO



                                               AMEL


D13S317
             D16S539    D18S51        D21S11          AMEL
   Applications
       forensic investigations (98% of violent crime by men)
       genealogical purposes
       evolutionar y studies
   Advantages to Human Identity Testing
       male component isolated without differential extraction
       paternal lineages
   Needs
       population studies to evaluate diversity of haplotypes
       robust assay for accurate characterization of Y markers
Y Chromosome Structure
                          SRY         ~60 Mb total DNA sequence (only
                                      chromosome 22 is smaller)
   p                    AMEL

                                      ~2.5 Mb on tips recombine with X
                                      (pseudoautosomal regions)

   q                                  35-36 Mb euchromatin 9.5 Mb
                                      sequenced (27%)



                       heterochromatin
                                                Genetic variation at
                                                 Genetic variation at
                                                multiple points along the Y
                                                 multiple points along the Y
                                                chromosome is combined
                                                 chromosome is combined
                                                to form a Y haplotype for a
                                                 to form a Y haplotype for a
Nucleic Acids Res. 28(2), e8 (2000)             sample
                                                 sample
   STRs (microsatellites)
       DYS19, DYS385, etc.
       mostly tetranucleotide repeats
   Bi-allelic markers (unique event polymorphisms--UEP)
       SNPs (single nucleotide polymorphisms)
       Y Alu polymorphism (YAP) or other insertions/deletions (“indels”)
   Minisatellite
       MSY1 (DYF155S1) composed of 48-114 copies of a 25 bp repeat
      unit with 5 sequence variant repeat types
     typed by MVR-PCR (minisatellite variant repeat)
Map of Y Chromosome STR Markers



 p



 q




        Nucleic Acids Res. 28(2), e8 (2000)
Profiler Plus™
100 bp                   200 bp               300 bp   400 bp


         D3        vWA            FGA

    A         D8          D21           D18

          D5              D13           D7
PowerPlex™ 16
100 bp             200 bp                300 bp           400 bp


         D3     TH01        D21            D18           Penta E

         D5      D13        D7           D16      CSF    Penta D

   A      vWA          D8         TPOX             FGA
Located in cell nucleus
                                                                                   Autosomes           2 copies
                                                                                                                     Located in
                                                                                                       per cell     mitochondria
          http://www.ncbi.nlm.nih.gov/genome/guide/




                                                                                                                  (multiple copies in
                                                                                                                   cell cytoplasm)

                                                                                                                        mtDNA
                                                      1   2   3 4    5     6   7   8   9 10 11 12                   16,569 bp



                                                                                                                   Mitochondrial
                                                      13 14 15 16 17 18 19 20 21 22 X              Y                   DNA
                                                                                                   Sex-
                                                                    Nuclear DNA
                                                                                               chromosomes
                                                               3.2 billion bp                                       100s of copies per
                                                                                                                           cell
Butler, J.M. (2005) Forensic DNA Typing, 2nd Edition, Figure 2.3, ©Elsevier Science/Academic Press
   Autosomal STRs provide a higher power of
    discrimination and are the preferred method
    whenever possible

   Due to capabilities for male-specific
    amplification, Y-chromosome STRs (Y-STRs) can be
    useful in extreme female-male mixtures (e.g., when
    differential extraction is not possible such as fingernail
    scrapings)

   Due to high copy number , mitochondrial DNA
    (mtDNA) may be the only source of surviving DNA in
    highly degraded specimens or low quantity samples such
    as hair shafts
Lineage Markers
            CODIS STR Loci




            Autosomal                                   Y-Chromosome                                  Mitochondrial
         (passed on in part,                         (passed on complete, but                        (passed on complete,
         from all ancestors)                               only by sons)                             but only by daughters)




Butler, J.M. (2005) Forensic DNA Typing, 2nd Edition, Figure 9.1, ©Elsevier Science/Academic Press
Advantages                           Disadvantages

   Extend possible reference           Lower power of discrimination due
    samples beyond a single              to no genetic shuffling with
    generation (benefits missing         recombination
    persons cases and genetic
    genealogy)                          Family members have
                                         indistinguishable haplotypes unless
   Family members have                  mutations have occurred
    indistinguishable haplotypes
    unless mutations have occurred
Historical Investigation of Jefferson-Hemings DNA
                                        Thomas Jefferson II




                  Field Jefferson                                    Peter Jefferson


   Genetic Genealogy Companies                                      President
                                                                 Thomas Jefferson

                                                                     ?
                                                                   Eston Hemings              Thomas Woodson




                                                                        Same Y
                                                                       Haplotype
                                     Jefferson
                                    Y Haplotype
                                                                                             Different Y Haplotype
 Jefferson
Y Haplotype                                     SOURCE: Foster et al. (1998) Nature 396:27-28
         Figure 9.10, J.M. Butler (2005) Forensic DNA Typing, 2nd Edition © 2005 Elsevier Academic Press
   All sources of DNA are extracted when biological evidence from a crime
    scene is processed to isolate the DNA present.

   Thus, non-human DNA such as bacterial, fungal, plant, or animal
    material may also be present in the total DNA recovered from the
    sample along with the relevant human DNA of interest.

   For this reason, the DNA Advisory Board (DAB) Standard 9.3
    requires human-specific DNA quantitation so that appropriate
    levels of human DNA can be included in the subsequent PCR
    amplification.

   Multiplex STR typing works best with a fairly narrow range
    of human DNA – typically 0.5 to 2.0 ng of input DNA works best with
    commercial STR kits.
1. Molecular Weight of a DNA Basepair = 618g/mol                        A =:
313 g/mol; T: 304 g/mol;       A-T base pairs = 617 g/mol
         G = 329 g/mol; C: 289 g/mol;         G-C base pairs = 618 g/mol

    2. Molecular Weight of DNA = 1.85 x1012 g/mol
         There are 3 billion base pairs in a haploid cell ~3 x 109 bp
         (~3 x 109 bp) x (618 g/mol/bp) = 1.85 x 1012 g/mol

    3. Quantity of DNA in a Haploid Cell = 3 picograms
         1 mole = 6.02 x 1023 molecules
         (1.85 x 1012 g/mol) x (1 mole/6.02 x 1023 molecules)
          = 3.08 x 10-12 g = 3.08 picograms (pg)
         A diploid human cell contains ~6 pg genomic DNA

    4. One ng of DNA contains the DNA from 167
diploid cells
     1 ng genomic DNA (1000 pg)/6pg/cell = ~333 copies of each locus
                                              (2 per 167 diploid genomes)
We generally shoot for 0.5-2 ng
                               DNA Size (bp)



                                         -A                                           DNA Size (bp)
Relative Fluorescence (RFUs)




                                               +A
                                                                       100 pg
                                         10 ng template
                                               (overloaded)
                                                                      template

                                D3S1358


                                                                     5 pg
                                         2 ng template
                                          (suggested level)
                                                                   template
   What is rtPCR or qPCR?
   How does it work?
   How does it compare to traditional
    methods of Human DNA quantitation?
   What techniques are available?
   What systems are available?
   RtPCR is a very recently developed technique
       Developed by Higuchi in 1993
       Used a modified thermal cycler with a UV detector and a CCD
        camera
       Ethidium bromide was used as intercalating reporter As [dsDNA]
        increased fluorescence increased

   First paper on qPCR:
       Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. “Kinetic PCR
        analysis: real-time monitoring of DNA amplification reactions”
        Biotechnology (N Y). 1993 Sep;11(9):1026-30


   Warning: RT-PCR also means reverse transcriptase PCR
    which is used when working with RNA
During the exponential expansion of the PCR
                                                     the amount of product produced is
                                                     proportional to the amount of template. Here
                                Exponential PCR      we show the total amount of product
                                                     following 32 cycles.
             1.00E+10
             9.00E+09
             8.00E+09
             7.00E+09
ng product




             6.00E+09
             5.00E+09                              2ng template
             4.00E+09
             3.00E+09
                                                   1ng template
             2.00E+09                        0.5ng template
             1.00E+09
             0.00E+00

                        0   5     10    15    20        25        30      35
                                        # Cycles
   To use PCR as a quantitative technique, the reaction must be
    clearly defined
   In fact there are several stages to a PCR reaction
       Baseline stage
       Exponential stage                                   plateau
       Plateau stage



                                                    exponential

                                         baseline
   PCR product can not double forever
       Limited by
        Amount of primer
        Taq polymerase activity
        Reannealing of product strands
   Reach plateau
       No more increase in product
   End point detection
       Run for fixed # cycles and then quantify on agarose
        gels
Even if same amount of template, different tubes will reach different PCR plateaus


                   25
                            Equal template in all tubes
                   20
     PCR product




                   15


                   10


                    5


                    0
                        0               10                20                  30                  40
                                                Cycle
                                                          Karen Carleton
                                                          Hubbard Center for Genome Studies and Department of
                                                          Zoology
Different wells reach plateau at different cycle numbers. When you look
changes what you see.
                   16

                   14

                   12
     PCR product




                   10

                    8

                    6

                    4

                    2

                    0
                        0   10           20                30                 40
                                 Cycle
                                         Karen Carleton
                                         Hubbard Center for Genome Studies and Department of
                                         Zoology
   Use data when still in exponential phase
        PCR product proportional to initial template
   Need to look at PCR product each cycle
        Use fluorescent detection, where fluorescence is
        proportional to PCR product
   Use real time PCR machine which records
    fluorescence for each well at each cycle


                              Karen Carleton
                              Hubbard Center for Genome Studies and Department of
                              Zoology
   Ec is a function of:
    •   Hybridization
        efficiency
    •   Quantity of
        reactants/target
        DNA
    •   Temperature


                 http://www.med.sc.edu:85/pcr/realtime-home.htm
   Quantitation of DNA is a based on the number of cycles required
    to reach a threshold intensity, Ct.
   The greater the amount of starting DNA, the sooner this
    threshold value is reached.




                                                                Ct


               http://www.med.sc.edu:85/pcr/realtime-home.htm
   The log of DNA template concentration vs Ct is
    plotted using a series of stds yielding a
    calibration curve

   The unknown is then run and the number of
    cycles required to reach threshold, Ct is
    compared to the calibration curve.
Development of a standard curve




           5.0 ng
             1.3 ng
                0.31 ng         0.0 ng
                    0.078 ng   (reagent blank)


Ct
Cycle #




                          nanograms
          Concentration = 10^(-0.297*CT+ 4.528)
   Fluorescent intercalating dye - SYBR Green
       Fluorescence increases with concentration of
        dsDNA

   Taqman probes
       Fluorescence increases as quenched probe is
        digested

   Molecular beacons
       Fluorescence increases as quenched probe
        hybridizes to template
   Easy
       Fluorescence only with dsDNA
       Use with existing PCR primers

   Generic,
       Detects all double stranded products,
        including primer dimers
       However, can be very specific with
        proper primer design

   Singleplexed
       Multiple probes cannot be used


                                                        dsDNA Intercalation
                                                http://www.probes.com/handbook/figures/1557.html
    Consist of ssDNA with an internal
     complementary sequence that keeps reporter
     and quencher dyes close → No fluorescence
                                   Reporter
    Molecular beacon
                                    Quencher

    Following denaturation, beacon anneals to
     template, separating both dyes and yielding
     fluorescence proportional to PCR product
     concentration
   Improved specificity and multiplexing
        Non-specific amplification will not produce a signal
        Can multiplex several probes (quantify nuclear, Y, int std.)
    Can be tricky to design
         Loop portion – binds to DNA template
         Stem portion – must be complementary to other stem
         Probe must denature from template below 72º so Taq polymerase
         does not chew it up during extension step

                         Tanneal< Tm < Text




Above Tm loop structure reforms and probe leaves template
Probe also binds to PCR product during
  extension but is always quenched
     5’-3’ exonuclease activity of Taq polymerase
      digests probe and frees reporter dye from
      quencher
     Free dye accumulates with PCR product
                    R   Q
         Taq


                             Taq
   Constituye el punto crítico para la resolución de
    una causa judicial.
   Cada Servicio de Investigación Forense deberá
    establecer claros protocolos para la
    manipulación, transporte y conservación de las
    evidencias.
   Cualquier manipulación inadecuada permitirá a
    la defensa invalidar los resultados del análisis.
Lugar del Hecho = Quirófano !
   Fue históricamente la fuente de ADN más
    común y eficiente.
   Los criterios de conservación han cambiado,
    simplificándose: pequeñas cantidades a
    temperatura ambiente, en papeles de filtro,
    bastan para un estudio completo si el
    Laboratorio cuenta con equipamiento de última
    generación.
   Soportes
    adsorbentes.
   Conservación a
    temperatura
    ambiente.
   Largo tiempo de
    conservación.
   Permite generar un
    banco de muestras.
Otras evidencias
   Sangre de sospechoso/ s.
   Evidencias: hisopados, prendas,
    pelos, uñas, etc.
   Sangre de la víctima.
   Material cadavérico fresco: congelado -20C.
    Material cadavérico descompuesto: en mezcla de sales
    (hasta 2 meses), congelado si el periodo es mayor.
    Material Cadavérico esqueletizado: conservar a
    temperatura ambiente, en sobres limpios, luego de
    lavados.

Se debe evitar en todos los casos el empleo de
  fijadores con formol.
2. Protección de la muestra

2.1 Contaminación por material biológico humano
    Contaminación anterior o previa
     Se debe a la aparición de la material biológico en el lugar donde
     luego aparecerán los indicios.
                                                   INEVITABLE
    Contaminación coetánea o paralela
     El material genético de un indicio se mezcla con ADN de otro origen
     en el momento de los hechos
                                INEVITABLE, VALORABLE y UTIL
    Contaminación posterior
     Debido al depósito de material genético de diversos orígenes en el
     indicio con posterioridad al momento de los hechos
                                                        EVITABLE
TOMA DE MUESTRAS DE REFERENCIA

1. Personas vivas
  • Siempre con consentimiento informado
  • Debe existir un documento firmado con la autorización expresa para realizar el
    análisis
   En PERSONAS TRANSFUNDIDAS evitar la toma de sangre, podría detectarse
                                       • Punción venosa (5 ml con EDTA)
   SANGRE
   el ADN procedente de la sangre transfundida al menos en un corto periodo de
   tiempo después a la transfusión       • Punción dactilar (gotas depositadas en
                                           papel secante y se dejan secar a TA)

 CEL EPITELIALES BUCALES                 • 2   Hisopos   de    ambos    carrillos
                                           (importante dejarlos secar antes de
                                           enfundar para evitar la proliferación
                                           bacteriana)


 PELOS CON BULBO                         • 10-15 pelos con bulbo
TOMA DE MUESTRAS DE REFERENCIA
2. Cadáveres en buen estado de conservación

  SANGRE post-mortem               1 ml (anticoagulante tipo EDTA)

  MUSCULO ESQUELETICO              Aprox 1 gr. Se almacena en un recipiente de
                                            plástico y tapón de rosca.

   PIEZAS DENTALES                  2 (molares). Dejar en reserva con el fin de
                                             evitar la exhumación.


3. Cadáveres en avanzado estado de putrefacción o esqueletizados

  HUESO LARGO                      Fémur, húmero…


  PIEZAS DENTALES                  2 (molares). No dañados externamente ni
                                            sometidos a endodoncias.
TOMA DE MUESTRAS DE REFERENCIA


4. Cadáveres carbonizados
 • Cuando la carbonización no es total es posible analizar MÚSCULO ESQUELÉTICO
   de zonas profundas.
 • Cuando la carbonización es total recomendable contactar con el laboratorio

5. Otras muestras de referencia de personas fallecidas
 • En hospitales (muestras de sangre, biopsias en parafina, preparaciones histológicas…
   No utilizar tejidos fijados en formol.
 • Ámbito familiar (peines, maquinillas de afeitar, saliva en sellos o sobres…)
FIN
Más información sobre análisis de ADN:


• Laboratorio: www.adn.ac
• Sociedad Latinoamericana de
  Genética Forense: www.slagf.org
• Tesis doctoral:
www.secretpaternity.com

Mais conteúdo relacionado

Mais procurados

C dna and genomic libraries copy
C dna and genomic libraries   copyC dna and genomic libraries   copy
C dna and genomic libraries copychristanantony
 
Finger print(vishvanath bilagadi)
Finger print(vishvanath bilagadi)Finger print(vishvanath bilagadi)
Finger print(vishvanath bilagadi)chaya s r
 
RNA as a genetic material
RNA as a genetic materialRNA as a genetic material
RNA as a genetic materialRinaldo John
 
Genetic Engineering and Genomics Notes - MH-CET 2015
Genetic Engineering and Genomics Notes - MH-CET 2015 Genetic Engineering and Genomics Notes - MH-CET 2015
Genetic Engineering and Genomics Notes - MH-CET 2015 Ednexa
 
B.sc. agri i pog unit 1 introduction to genetics
B.sc. agri i pog unit 1 introduction to geneticsB.sc. agri i pog unit 1 introduction to genetics
B.sc. agri i pog unit 1 introduction to geneticsRai University
 
Dna profiling presentation x2
Dna profiling presentation x2Dna profiling presentation x2
Dna profiling presentation x2teamchaotex
 
Visualizing SNVs to quantify allele-specific expression in single cells
Visualizing SNVs to quantify allele-specific expression in single cellsVisualizing SNVs to quantify allele-specific expression in single cells
Visualizing SNVs to quantify allele-specific expression in single cellsArjun Raj
 
Retroviruses Compressed
Retroviruses CompressedRetroviruses Compressed
Retroviruses Compressedguestc0268e
 
Cloning and sequence analysis of banana streak virus dna. harper 1998
Cloning and sequence analysis of banana streak virus dna. harper 1998Cloning and sequence analysis of banana streak virus dna. harper 1998
Cloning and sequence analysis of banana streak virus dna. harper 1998Paloma Susan
 
Experimental evidence to Prove RNA as genetic material
Experimental evidence to Prove RNA as genetic materialExperimental evidence to Prove RNA as genetic material
Experimental evidence to Prove RNA as genetic materialKristu Jayanti College
 
Microsatellite analysis in organelle genomes of chlorophyta(論文討論)
Microsatellite analysis in organelle genomes of chlorophyta(論文討論)Microsatellite analysis in organelle genomes of chlorophyta(論文討論)
Microsatellite analysis in organelle genomes of chlorophyta(論文討論)Yi-Hung Peng
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練Abner Huang
 

Mais procurados (18)

C dna and genomic libraries copy
C dna and genomic libraries   copyC dna and genomic libraries   copy
C dna and genomic libraries copy
 
Finger print(vishvanath bilagadi)
Finger print(vishvanath bilagadi)Finger print(vishvanath bilagadi)
Finger print(vishvanath bilagadi)
 
RNA as a genetic material
RNA as a genetic materialRNA as a genetic material
RNA as a genetic material
 
Genetic Engineering and Genomics Notes - MH-CET 2015
Genetic Engineering and Genomics Notes - MH-CET 2015 Genetic Engineering and Genomics Notes - MH-CET 2015
Genetic Engineering and Genomics Notes - MH-CET 2015
 
B.sc. agri i pog unit 1 introduction to genetics
B.sc. agri i pog unit 1 introduction to geneticsB.sc. agri i pog unit 1 introduction to genetics
B.sc. agri i pog unit 1 introduction to genetics
 
Dna profiling presentation x2
Dna profiling presentation x2Dna profiling presentation x2
Dna profiling presentation x2
 
Visualizing SNVs to quantify allele-specific expression in single cells
Visualizing SNVs to quantify allele-specific expression in single cellsVisualizing SNVs to quantify allele-specific expression in single cells
Visualizing SNVs to quantify allele-specific expression in single cells
 
Retroviruses Compressed
Retroviruses CompressedRetroviruses Compressed
Retroviruses Compressed
 
Cloning and sequence analysis of banana streak virus dna. harper 1998
Cloning and sequence analysis of banana streak virus dna. harper 1998Cloning and sequence analysis of banana streak virus dna. harper 1998
Cloning and sequence analysis of banana streak virus dna. harper 1998
 
P27_BEKAERT (1)
P27_BEKAERT (1)P27_BEKAERT (1)
P27_BEKAERT (1)
 
Experimental evidence to Prove RNA as genetic material
Experimental evidence to Prove RNA as genetic materialExperimental evidence to Prove RNA as genetic material
Experimental evidence to Prove RNA as genetic material
 
Microsatellite analysis in organelle genomes of chlorophyta(論文討論)
Microsatellite analysis in organelle genomes of chlorophyta(論文討論)Microsatellite analysis in organelle genomes of chlorophyta(論文討論)
Microsatellite analysis in organelle genomes of chlorophyta(論文討論)
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練
 
Hoofdstuk 16 2008 deel 1
Hoofdstuk 16 2008 deel 1Hoofdstuk 16 2008 deel 1
Hoofdstuk 16 2008 deel 1
 
dna rekombinan
dna rekombinandna rekombinan
dna rekombinan
 
Reflection paper 2
Reflection paper 2Reflection paper 2
Reflection paper 2
 
Phi x 174 phage.
Phi x 174 phage.Phi x 174 phage.
Phi x 174 phage.
 
Dna Fingerprinting
Dna FingerprintingDna Fingerprinting
Dna Fingerprinting
 

Destaque

Seminário genética forense
Seminário  genética forense Seminário  genética forense
Seminário genética forense Nínive Calazans
 
Genética Forense Víctor Alejos y Sergio Mateos
Genética Forense   Víctor Alejos y Sergio MateosGenética Forense   Víctor Alejos y Sergio Mateos
Genética Forense Víctor Alejos y Sergio MateosMaría José Morales
 
Analisis Forense en ADN
Analisis Forense en ADNAnalisis Forense en ADN
Analisis Forense en ADNpachecok
 
Química Forense
Química ForenseQuímica Forense
Química Forenseoari9
 
Principales Técnicas de Investigación Genética de los Indicios
Principales Técnicas de Investigación Genética de los IndiciosPrincipales Técnicas de Investigación Genética de los Indicios
Principales Técnicas de Investigación Genética de los IndiciosGilberto Cabrera Molina
 
Química forense
Química forenseQuímica forense
Química forenseadriely_sm
 
As 5 MegaTrends e as 18 Timelines de Negócio. Ciclo de Palestras Cubo: Sessão...
As 5 MegaTrends e as 18 Timelines de Negócio. Ciclo de Palestras Cubo: Sessão...As 5 MegaTrends e as 18 Timelines de Negócio. Ciclo de Palestras Cubo: Sessão...
As 5 MegaTrends e as 18 Timelines de Negócio. Ciclo de Palestras Cubo: Sessão...Luis Rasquilha
 
Discriminacion genetica de_individuos
Discriminacion genetica de_individuosDiscriminacion genetica de_individuos
Discriminacion genetica de_individuosadn estela martin
 
Resumen unidad 4 genes y manipulación genética
Resumen unidad 4  genes y manipulación genéticaResumen unidad 4  genes y manipulación genética
Resumen unidad 4 genes y manipulación genéticaPablo Díaz
 
Cromosomas Genetica y herencia
Cromosomas Genetica y herenciaCromosomas Genetica y herencia
Cromosomas Genetica y herenciaOmar Parada
 
El adn y la herencia
El adn y la herenciaEl adn y la herencia
El adn y la herenciaAntonio P Lu
 

Destaque (20)

Genetica forense
Genetica forense Genetica forense
Genetica forense
 
Genetica forense
Genetica forenseGenetica forense
Genetica forense
 
Seminário genética forense
Seminário  genética forense Seminário  genética forense
Seminário genética forense
 
Dna forense
Dna forenseDna forense
Dna forense
 
Genética Forense Víctor Alejos y Sergio Mateos
Genética Forense   Víctor Alejos y Sergio MateosGenética Forense   Víctor Alejos y Sergio Mateos
Genética Forense Víctor Alejos y Sergio Mateos
 
Genética Forense
Genética ForenseGenética Forense
Genética Forense
 
Analisis Forense en ADN
Analisis Forense en ADNAnalisis Forense en ADN
Analisis Forense en ADN
 
Slides quimica forense
Slides quimica forenseSlides quimica forense
Slides quimica forense
 
Química Forense
Química ForenseQuímica Forense
Química Forense
 
Principales Técnicas de Investigación Genética de los Indicios
Principales Técnicas de Investigación Genética de los IndiciosPrincipales Técnicas de Investigación Genética de los Indicios
Principales Técnicas de Investigación Genética de los Indicios
 
Química forense
Química forenseQuímica forense
Química forense
 
INVESTIGACION DE LA PATERNIDAD
INVESTIGACION DE LA PATERNIDADINVESTIGACION DE LA PATERNIDAD
INVESTIGACION DE LA PATERNIDAD
 
Linea de tiempo ADN
Linea de tiempo ADNLinea de tiempo ADN
Linea de tiempo ADN
 
As 5 MegaTrends e as 18 Timelines de Negócio. Ciclo de Palestras Cubo: Sessão...
As 5 MegaTrends e as 18 Timelines de Negócio. Ciclo de Palestras Cubo: Sessão...As 5 MegaTrends e as 18 Timelines de Negócio. Ciclo de Palestras Cubo: Sessão...
As 5 MegaTrends e as 18 Timelines de Negócio. Ciclo de Palestras Cubo: Sessão...
 
Discriminacion genetica de_individuos
Discriminacion genetica de_individuosDiscriminacion genetica de_individuos
Discriminacion genetica de_individuos
 
3S_ extenso_ Biologia Forense
3S_ extenso_ Biologia Forense3S_ extenso_ Biologia Forense
3S_ extenso_ Biologia Forense
 
Informatica Forense
Informatica ForenseInformatica Forense
Informatica Forense
 
Resumen unidad 4 genes y manipulación genética
Resumen unidad 4  genes y manipulación genéticaResumen unidad 4  genes y manipulación genética
Resumen unidad 4 genes y manipulación genética
 
Cromosomas Genetica y herencia
Cromosomas Genetica y herenciaCromosomas Genetica y herencia
Cromosomas Genetica y herencia
 
El adn y la herencia
El adn y la herenciaEl adn y la herencia
El adn y la herencia
 

Semelhante a Genetica forense curso 2012

Semelhante a Genetica forense curso 2012 (20)

Microarrays;application
Microarrays;applicationMicroarrays;application
Microarrays;application
 
DNA Profiling_HMD_2020.pptx
DNA Profiling_HMD_2020.pptxDNA Profiling_HMD_2020.pptx
DNA Profiling_HMD_2020.pptx
 
STR IMP.pptx
STR IMP.pptxSTR IMP.pptx
STR IMP.pptx
 
Rnaseq forgenefinding
Rnaseq forgenefindingRnaseq forgenefinding
Rnaseq forgenefinding
 
DNA FORENSIC ANALYSIS
DNA FORENSIC ANALYSISDNA FORENSIC ANALYSIS
DNA FORENSIC ANALYSIS
 
Dna forensic
Dna forensicDna forensic
Dna forensic
 
155 dna microarray
155 dna microarray155 dna microarray
155 dna microarray
 
155 dna microarray
155 dna microarray155 dna microarray
155 dna microarray
 
Dna microarray mehran
Dna microarray  mehranDna microarray  mehran
Dna microarray mehran
 
Microsatellite
MicrosatelliteMicrosatellite
Microsatellite
 
Kennesaw 4 10-16
Kennesaw 4 10-16Kennesaw 4 10-16
Kennesaw 4 10-16
 
bio project.pptx
bio project.pptxbio project.pptx
bio project.pptx
 
bio project.pdf
bio project.pdfbio project.pdf
bio project.pdf
 
Molecular marker
Molecular markerMolecular marker
Molecular marker
 
FORENSIC DNA PROFILING: Strengths and Limitations
FORENSIC DNA PROFILING: Strengths and LimitationsFORENSIC DNA PROFILING: Strengths and Limitations
FORENSIC DNA PROFILING: Strengths and Limitations
 
Dna fingerprinting
Dna fingerprintingDna fingerprinting
Dna fingerprinting
 
Human encodeproject
Human encodeprojectHuman encodeproject
Human encodeproject
 
Databases used in forensic sciences and current status of this science in pak...
Databases used in forensic sciences and current status of this science in pak...Databases used in forensic sciences and current status of this science in pak...
Databases used in forensic sciences and current status of this science in pak...
 
Use of Thermostable Group II Intron Reverse Transcriptases (TGIRTs) for Singl...
Use of Thermostable Group II Intron Reverse Transcriptases (TGIRTs) for Singl...Use of Thermostable Group II Intron Reverse Transcriptases (TGIRTs) for Singl...
Use of Thermostable Group II Intron Reverse Transcriptases (TGIRTs) for Singl...
 
Molecular markers
Molecular markersMolecular markers
Molecular markers
 

Mais de braguetin

Pcr secuenciacion
Pcr secuenciacionPcr secuenciacion
Pcr secuenciacionbraguetin
 
Fibrosis qistica y ausencia de vasos deferentes clase basica
Fibrosis qistica y ausencia de vasos deferentes clase basicaFibrosis qistica y ausencia de vasos deferentes clase basica
Fibrosis qistica y ausencia de vasos deferentes clase basicabraguetin
 
Mecanismos genéticos moleculares básicos 2
Mecanismos genéticos moleculares básicos 2Mecanismos genéticos moleculares básicos 2
Mecanismos genéticos moleculares básicos 2braguetin
 
Curso gen..[1]
Curso gen..[1]Curso gen..[1]
Curso gen..[1]braguetin
 
Introducción a la genética
Introducción a la genéticaIntroducción a la genética
Introducción a la genéticabraguetin
 

Mais de braguetin (10)

Teorico 1 1
Teorico 1 1Teorico 1 1
Teorico 1 1
 
Hpv
HpvHpv
Hpv
 
Her 2
Her 2Her 2
Her 2
 
Fish
FishFish
Fish
 
Hpv
HpvHpv
Hpv
 
Pcr secuenciacion
Pcr secuenciacionPcr secuenciacion
Pcr secuenciacion
 
Fibrosis qistica y ausencia de vasos deferentes clase basica
Fibrosis qistica y ausencia de vasos deferentes clase basicaFibrosis qistica y ausencia de vasos deferentes clase basica
Fibrosis qistica y ausencia de vasos deferentes clase basica
 
Mecanismos genéticos moleculares básicos 2
Mecanismos genéticos moleculares básicos 2Mecanismos genéticos moleculares básicos 2
Mecanismos genéticos moleculares básicos 2
 
Curso gen..[1]
Curso gen..[1]Curso gen..[1]
Curso gen..[1]
 
Introducción a la genética
Introducción a la genéticaIntroducción a la genética
Introducción a la genética
 

Genetica forense curso 2012

  • 1. Bioq. Raúl Horacio Lucero Jefe de Area Biología Molecular Instituto de Medicina Regional
  • 2. Exámenes generales:  Diagnóstico de especie. datos fisonómicos, sexo,  Datación de los restos. peso, talla, cabello, color  Exámenes generales. de ojos y piel, marcas.  Elementos extrínsecos.  Registro de voz.  Caracteres patológicos,  Trazado caligráfico. naturales o traumáticos.  Huellas dactilares.  Identidad radiográfica y  Huellas genéticas. dental.  Métodos bioquímicos.
  • 3. Grupos sanguíneos: ABO,  Minisatélites: sondeos de RH, MNS, Duffy, Lewis. locus múltiple y locus  Proteínas plasmáticas: único. haptoglobina, α1-  Microsatélites: métodos de antitripsina, transferrina. PCR.  Enzimas eritrocitarias:  Variantes de secuencia: fosfatasa ácida HLA-DQα, Polymarker, eritrocitaria, adenilato genoma mitocondrial. kinasa, PGM, ADA.  HLA: Antígenos de histocompatibilidad.
  • 4. Existen regiones codificantes -que contienen la información para la síntesis proteica-, y regiones no codificantes.  Dentro de las no codificantes existen regiones polimórficas.  Existen alrededor de 3 x 106 sitios polimóficos en nuestro genoma.
  • 5. Sitio de adhesión de Sitio de adhesión de los primers los primers Alelo 1 Alelo 2 Unidad de Repetición
  • 6.
  • 7. Herramienta indispensable para la investigación forense.  Gran número de STRs disponibles.  Alta sensibilidad.  Evaluación manual o automatizada.
  • 8.
  • 9.
  • 10. Analizando el Caso. Material Indubitado de la Víctima. Material Subungueal Tomado de la Víctima Tejido Dactilar de la Víctima. Match Match Match Sangre del Sospechoso1. Sangre del Sospechoso 2
  • 11.
  • 12. 2006: www.dna.gov DNA is an important part of the criminal justice system Justice for All Act ($1B 2006 over 5 years) Identifiler 5-dye kit and ABI 3100 UK National Database 2002 2004 Y-STRs launched (April 10, CODIS loci 1995) defined PowerPlex® 16 (16 Gill et al. (1985) Forensic loci in single amp) application of DNA 'fingerprints‘. 1998 2000 Nature 318:577-9FSS Quadruplex STR typing with CE is fairly routine 1994 1996 First commercial First STRs fluorescent STR mtDNA developed multiplexes 1990 1992 Capillary electrophoresis of STRs first described 1985 PCR developed DQA1 & PM (dot blot) Multiplex STRs RFLP
  • 13. http://www.fbi.gov/hq/lab/codis/index1.htm Combined DNA Index System (CODIS) Launched in October 1998 and now links all 50 states Used for linking serial crimes and unsolved cases with repeat offenders Convicted offender and forensic case samples along with a missing persons index Requires 13 core STR markers >27,000 investigations aided nationwide as of Sept 2005 Contains more than 2.8 million DNA profiles
  • 14. Small product sizes are generally compatible with degraded DNA and PCR enables recovery of information from small amounts of material  Multiplex amplification with fluorescence detection enables high power of discrimination in a single test  Commercially available in an easy to use kit format  Uniform set of core STR loci provide capability for national and international sharing of criminal DNA profiles
  • 15. An accordion-like DNA sequence that occurs between genes TCCCAAGCTCTTCCTCTTCCCTAGATCAATACAGACAGAAGACAGGTGGATAGA TAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATATCATTGAAAGA CAAAACAGAGATGGATGATAGATACATGCTTACAGATGCACAC = 12 GATA repeats (“12” is all that is reported) 7 repeats The number of consecutive repeat units 8 repeats can vary between people 9 repeats 10 repeats 11 repeats The FBI has selected 13 12 repeats core STR loci that must be 13 repeats run in all DNA tests in order to provide a Target region common currency with (short tandem repeat) DNA profiles
  • 16. The polymerase chain reaction (PCR) is used to amplify STR regions and label the amplicons with fluorescent dyes using locus-specific primers 8 repeats Locus 1 10 repeats 8 repeats Locus 2 9 repeats Scanned Gel Image Capillary Electropherogram
  • 17. YCAII ~45% Requires size based DNA separation to resolve different alleles from one another High stutter  Dinucleotide (CA)(CA)(CA)(CA)  Trinucleotide (GCC)(GCC)(GCC)  Tetranucleotide (AATG)(AATG)(AATG)  Pentanucleotide (AGAAA)(AGAAA) Low stutter  Hexanucleotide (AGTACA)(AGTACA) DYS448 Short tandem repeat (STR) = microsatellite = <2% simple sequence repeat (SSR)
  • 18. Category Example Repeat 13 CODIS Loci Structure Simple repeats – contain (GATA)(GATA)(GATA) TPOX, CSF1PO, units of identical length and D5S818, D13S317, sequence D16S539 Simple repeats with (GATA)(GAT-)(GATA) TH01, D18S51, D7S820 non-consensus alleles (e.g., TH01 9.3) Compound repeats – (GATA)(GATA)(GACA) VWA, FGA, D3S1358, comprise two or more D8S1179 adjacent simple repeats Complex repeats – (GATA)(GACA)(CA)(CATA) D21S11 contain several repeat blocks of variable unit length These categories were first described by Urquhart et al. (1994) Int. J. Legal Med. 107:13-20
  • 19. The efforts of the Human Genome Project have increased knowledge regarding the human genome, and hence there are many more STR loci available now than there were 10 years ago when the 13 CODIS core loci were selected.  More than 20,000 tetranucleotide STR loci have been characterized in the human genome (Collins et al. An exhaustive DNA micro-satellite map of the human genome using high performance computing. Genomics 2003;82:10-19)  There may be more than a million STR loci present depending on how they are counted (Ellegren H. Microsatellites: simple sequences with complex evolution. Nature Rev Genet 2004;5:435-445).  STR sequences account for approximately 3% of the total human genome (Lander et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921). Butler, J.M. (2006) Genetics and genomics of core STR loci used in human identity testing. J. Forensic Sci., in press.
  • 20. Compatible primers are the key to successful multiplex PCR  STR kits are commercially available  15 or more STR loci can be simultaneously amplified Challenges to Multiplexing primer design to find compatible primers (no program exists) reaction optimization is highly empirical often taking months Advantages of Multiplex PCR –Increases information obtained per unit time (increases power of discrimination) –Reduces labor to obtain results –Reduces template required (smaller sample consumed)
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37. Most are rape cases (>2 out of 3)  Looking for match between evidence and suspect  Must compare victim’s DNA profile Challenges •Mixtures must be resolved •DNA is often degraded •Inhibitors to PCR are often present
  • 38. Forensic cases -- matching suspect with evidence  Paternity testing -- identifying father  Historical investigations  Missing persons investigations  Mass disasters -- putting pieces back together  Military DNA “dog tag”  Convicted felon DNA databases
  • 39. Steps in DNA Sample Processing Sample Obtained from Crime Scene or Paternity Investigation Biology DNA DNA DNA DNA PCR Amplification PCR Amplification Extraction Extraction Quantitation Quantitation of Multiple STR markers of Multiple STR markers Technology Separation and Detection of Sample Genotype PCR Products Determination (STR Alleles) Genetics Comparison of Sample Comparison of Sample Generation of Case Generation of Case Genotype to Other Genotype to Other Report with Probability Report with Probability Sample Results Sample Results of Random Match of Random Match If match occurs, comparison If match occurs, comparison of DNA profile to population of DNA profile to population databases databases
  • 40. Sources of Biological Evidence • Blood • Semen • Saliva • Urine • Hair • Teeth • Bone • Tissue
  • 41. AATG 7 repeats 8 repeats the repeat region is variable between samples while the flanking regions where PCR primers bind are constant Homozygote = both alleles are the same length Heterozygote = alleles differ and can be resolved from one another
  • 42. Multiplex PCR  Over 10 Markers Can Be Copied at Once  Sensitivities to levels less than 1 ng of DNA  Ability to Handle Mixtures and Degraded Samples  Different Fluorescent Dyes Used to Distinguish STR Alleles with Overlapping Size Ranges
  • 43. AmpFlSTR® Profiler Plus™ Kit available from PE Biosystems (Foster City, CA) 100 bp 200 bp 300 bp 400 bp Size Separation D3 vWA FGA 5-FAM (blue) Color Separation A D8 D21 D18 JOE (green) D5 D13 D7 NED (yellow) ROX (red) GS500-internal lane standard 9 STRs amplified along with sex-typing marker amelogenin in a single PCR reaction
  • 44. ABI Prism 310 Genetic Analyzer capillary Syringe with polymer solution Injection electrode Outlet Autosampler tray buffer Inlet buffer
  • 45. Close-up of ABI Prism 310 Sample Loading Area Electrode Capillary Sample Vials Autosampler Tray See Technology section for more information on CE
  • 46. Human Identity Testing with Multiplex STRs AmpFlSTR® SGM Plus™ kit DNA Size (base pairs) D3 amelogenin D8 TH01 D19 VWA D21 D16 D18 Two different individuals D2 FGA probability of a random match: ~1 in 3 trillion Results obtained in less than 5 hours with a spot of blood the size of a pinhead amelogenin D3 D19 D8 VWA D16 D21 D18 D2 FGA TH01 Simultaneous Analysis of 10 STRs and Gender ID
  • 47. STR genotyping is performed by comparison of sample data to allelic ladders Microvariant allele
  • 48. 45 40 TH01 Marker 35 30 25 Caucasians (N=427) Frequency 20 Blacks (N=414) 15 Hispanics (N=414) 10 5 *Proc. Int. Sym. Hum. ID (Promega) 1997, p. 34 0 6 7 8 9 9.3 10 Number of repeats
  • 49. 13 CODIS Core STR Loci with Chromosomal Positions TPOX D3S1358 TH01 D8S1179 D5S818 VWA FGA D7S820 CSF1PO AMEL D13S317 D16S539 D18S51 D21S11 AMEL
  • 50. Applications  forensic investigations (98% of violent crime by men)  genealogical purposes  evolutionar y studies  Advantages to Human Identity Testing  male component isolated without differential extraction  paternal lineages  Needs  population studies to evaluate diversity of haplotypes  robust assay for accurate characterization of Y markers
  • 51. Y Chromosome Structure SRY ~60 Mb total DNA sequence (only chromosome 22 is smaller) p AMEL ~2.5 Mb on tips recombine with X (pseudoautosomal regions) q 35-36 Mb euchromatin 9.5 Mb sequenced (27%) heterochromatin Genetic variation at Genetic variation at multiple points along the Y multiple points along the Y chromosome is combined chromosome is combined to form a Y haplotype for a to form a Y haplotype for a Nucleic Acids Res. 28(2), e8 (2000) sample sample
  • 52. STRs (microsatellites)  DYS19, DYS385, etc.  mostly tetranucleotide repeats  Bi-allelic markers (unique event polymorphisms--UEP)  SNPs (single nucleotide polymorphisms)  Y Alu polymorphism (YAP) or other insertions/deletions (“indels”)  Minisatellite  MSY1 (DYF155S1) composed of 48-114 copies of a 25 bp repeat unit with 5 sequence variant repeat types  typed by MVR-PCR (minisatellite variant repeat)
  • 53. Map of Y Chromosome STR Markers p q Nucleic Acids Res. 28(2), e8 (2000)
  • 54. Profiler Plus™ 100 bp 200 bp 300 bp 400 bp D3 vWA FGA A D8 D21 D18 D5 D13 D7
  • 55. PowerPlex™ 16 100 bp 200 bp 300 bp 400 bp D3 TH01 D21 D18 Penta E D5 D13 D7 D16 CSF Penta D A vWA D8 TPOX FGA
  • 56. Located in cell nucleus Autosomes 2 copies Located in per cell mitochondria http://www.ncbi.nlm.nih.gov/genome/guide/ (multiple copies in cell cytoplasm) mtDNA 1 2 3 4 5 6 7 8 9 10 11 12 16,569 bp Mitochondrial 13 14 15 16 17 18 19 20 21 22 X Y DNA Sex- Nuclear DNA chromosomes 3.2 billion bp 100s of copies per cell Butler, J.M. (2005) Forensic DNA Typing, 2nd Edition, Figure 2.3, ©Elsevier Science/Academic Press
  • 57. Autosomal STRs provide a higher power of discrimination and are the preferred method whenever possible  Due to capabilities for male-specific amplification, Y-chromosome STRs (Y-STRs) can be useful in extreme female-male mixtures (e.g., when differential extraction is not possible such as fingernail scrapings)  Due to high copy number , mitochondrial DNA (mtDNA) may be the only source of surviving DNA in highly degraded specimens or low quantity samples such as hair shafts
  • 58. Lineage Markers CODIS STR Loci Autosomal Y-Chromosome Mitochondrial (passed on in part, (passed on complete, but (passed on complete, from all ancestors) only by sons) but only by daughters) Butler, J.M. (2005) Forensic DNA Typing, 2nd Edition, Figure 9.1, ©Elsevier Science/Academic Press
  • 59. Advantages Disadvantages  Extend possible reference  Lower power of discrimination due samples beyond a single to no genetic shuffling with generation (benefits missing recombination persons cases and genetic genealogy)  Family members have indistinguishable haplotypes unless  Family members have mutations have occurred indistinguishable haplotypes unless mutations have occurred
  • 60. Historical Investigation of Jefferson-Hemings DNA Thomas Jefferson II Field Jefferson Peter Jefferson Genetic Genealogy Companies President Thomas Jefferson ? Eston Hemings Thomas Woodson Same Y Haplotype Jefferson Y Haplotype Different Y Haplotype Jefferson Y Haplotype SOURCE: Foster et al. (1998) Nature 396:27-28 Figure 9.10, J.M. Butler (2005) Forensic DNA Typing, 2nd Edition © 2005 Elsevier Academic Press
  • 61. All sources of DNA are extracted when biological evidence from a crime scene is processed to isolate the DNA present.  Thus, non-human DNA such as bacterial, fungal, plant, or animal material may also be present in the total DNA recovered from the sample along with the relevant human DNA of interest.  For this reason, the DNA Advisory Board (DAB) Standard 9.3 requires human-specific DNA quantitation so that appropriate levels of human DNA can be included in the subsequent PCR amplification.  Multiplex STR typing works best with a fairly narrow range of human DNA – typically 0.5 to 2.0 ng of input DNA works best with commercial STR kits.
  • 62. 1. Molecular Weight of a DNA Basepair = 618g/mol A =: 313 g/mol; T: 304 g/mol; A-T base pairs = 617 g/mol G = 329 g/mol; C: 289 g/mol; G-C base pairs = 618 g/mol 2. Molecular Weight of DNA = 1.85 x1012 g/mol There are 3 billion base pairs in a haploid cell ~3 x 109 bp (~3 x 109 bp) x (618 g/mol/bp) = 1.85 x 1012 g/mol 3. Quantity of DNA in a Haploid Cell = 3 picograms 1 mole = 6.02 x 1023 molecules (1.85 x 1012 g/mol) x (1 mole/6.02 x 1023 molecules) = 3.08 x 10-12 g = 3.08 picograms (pg) A diploid human cell contains ~6 pg genomic DNA 4. One ng of DNA contains the DNA from 167 diploid cells 1 ng genomic DNA (1000 pg)/6pg/cell = ~333 copies of each locus (2 per 167 diploid genomes)
  • 63. We generally shoot for 0.5-2 ng DNA Size (bp) -A DNA Size (bp) Relative Fluorescence (RFUs) +A 100 pg 10 ng template (overloaded) template D3S1358 5 pg 2 ng template (suggested level) template
  • 64. What is rtPCR or qPCR?  How does it work?  How does it compare to traditional methods of Human DNA quantitation?  What techniques are available?  What systems are available?
  • 65. RtPCR is a very recently developed technique  Developed by Higuchi in 1993  Used a modified thermal cycler with a UV detector and a CCD camera  Ethidium bromide was used as intercalating reporter As [dsDNA] increased fluorescence increased  First paper on qPCR:  Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. “Kinetic PCR analysis: real-time monitoring of DNA amplification reactions” Biotechnology (N Y). 1993 Sep;11(9):1026-30  Warning: RT-PCR also means reverse transcriptase PCR which is used when working with RNA
  • 66. During the exponential expansion of the PCR the amount of product produced is proportional to the amount of template. Here Exponential PCR we show the total amount of product following 32 cycles. 1.00E+10 9.00E+09 8.00E+09 7.00E+09 ng product 6.00E+09 5.00E+09 2ng template 4.00E+09 3.00E+09 1ng template 2.00E+09 0.5ng template 1.00E+09 0.00E+00 0 5 10 15 20 25 30 35 # Cycles
  • 67. To use PCR as a quantitative technique, the reaction must be clearly defined  In fact there are several stages to a PCR reaction  Baseline stage  Exponential stage plateau  Plateau stage exponential baseline
  • 68. PCR product can not double forever  Limited by  Amount of primer  Taq polymerase activity  Reannealing of product strands  Reach plateau  No more increase in product  End point detection  Run for fixed # cycles and then quantify on agarose gels
  • 69. Even if same amount of template, different tubes will reach different PCR plateaus 25 Equal template in all tubes 20 PCR product 15 10 5 0 0 10 20 30 40 Cycle Karen Carleton Hubbard Center for Genome Studies and Department of Zoology
  • 70. Different wells reach plateau at different cycle numbers. When you look changes what you see. 16 14 12 PCR product 10 8 6 4 2 0 0 10 20 30 40 Cycle Karen Carleton Hubbard Center for Genome Studies and Department of Zoology
  • 71. Use data when still in exponential phase  PCR product proportional to initial template  Need to look at PCR product each cycle  Use fluorescent detection, where fluorescence is proportional to PCR product  Use real time PCR machine which records fluorescence for each well at each cycle Karen Carleton Hubbard Center for Genome Studies and Department of Zoology
  • 72. Ec is a function of: • Hybridization efficiency • Quantity of reactants/target DNA • Temperature http://www.med.sc.edu:85/pcr/realtime-home.htm
  • 73. Quantitation of DNA is a based on the number of cycles required to reach a threshold intensity, Ct.  The greater the amount of starting DNA, the sooner this threshold value is reached. Ct http://www.med.sc.edu:85/pcr/realtime-home.htm
  • 74. The log of DNA template concentration vs Ct is plotted using a series of stds yielding a calibration curve  The unknown is then run and the number of cycles required to reach threshold, Ct is compared to the calibration curve.
  • 75. Development of a standard curve 5.0 ng 1.3 ng 0.31 ng 0.0 ng 0.078 ng (reagent blank) Ct
  • 76.
  • 77. Cycle # nanograms Concentration = 10^(-0.297*CT+ 4.528)
  • 78. Fluorescent intercalating dye - SYBR Green  Fluorescence increases with concentration of dsDNA  Taqman probes  Fluorescence increases as quenched probe is digested  Molecular beacons  Fluorescence increases as quenched probe hybridizes to template
  • 79. Easy  Fluorescence only with dsDNA  Use with existing PCR primers  Generic,  Detects all double stranded products, including primer dimers  However, can be very specific with proper primer design  Singleplexed  Multiple probes cannot be used dsDNA Intercalation http://www.probes.com/handbook/figures/1557.html
  • 80. Consist of ssDNA with an internal complementary sequence that keeps reporter and quencher dyes close → No fluorescence Reporter Molecular beacon Quencher  Following denaturation, beacon anneals to template, separating both dyes and yielding fluorescence proportional to PCR product concentration
  • 81. Improved specificity and multiplexing  Non-specific amplification will not produce a signal  Can multiplex several probes (quantify nuclear, Y, int std.)  Can be tricky to design  Loop portion – binds to DNA template  Stem portion – must be complementary to other stem  Probe must denature from template below 72º so Taq polymerase does not chew it up during extension step Tanneal< Tm < Text Above Tm loop structure reforms and probe leaves template
  • 82. Probe also binds to PCR product during extension but is always quenched  5’-3’ exonuclease activity of Taq polymerase digests probe and frees reporter dye from quencher  Free dye accumulates with PCR product R Q Taq Taq
  • 83.
  • 84. Constituye el punto crítico para la resolución de una causa judicial.  Cada Servicio de Investigación Forense deberá establecer claros protocolos para la manipulación, transporte y conservación de las evidencias.  Cualquier manipulación inadecuada permitirá a la defensa invalidar los resultados del análisis.
  • 85. Lugar del Hecho = Quirófano !
  • 86. Fue históricamente la fuente de ADN más común y eficiente.  Los criterios de conservación han cambiado, simplificándose: pequeñas cantidades a temperatura ambiente, en papeles de filtro, bastan para un estudio completo si el Laboratorio cuenta con equipamiento de última generación.
  • 87. Soportes adsorbentes.  Conservación a temperatura ambiente.  Largo tiempo de conservación.  Permite generar un banco de muestras.
  • 89. Sangre de sospechoso/ s.  Evidencias: hisopados, prendas, pelos, uñas, etc.  Sangre de la víctima.
  • 90. Material cadavérico fresco: congelado -20C.  Material cadavérico descompuesto: en mezcla de sales (hasta 2 meses), congelado si el periodo es mayor. Material Cadavérico esqueletizado: conservar a temperatura ambiente, en sobres limpios, luego de lavados. Se debe evitar en todos los casos el empleo de fijadores con formol.
  • 91. 2. Protección de la muestra 2.1 Contaminación por material biológico humano  Contaminación anterior o previa Se debe a la aparición de la material biológico en el lugar donde luego aparecerán los indicios. INEVITABLE  Contaminación coetánea o paralela El material genético de un indicio se mezcla con ADN de otro origen en el momento de los hechos INEVITABLE, VALORABLE y UTIL  Contaminación posterior Debido al depósito de material genético de diversos orígenes en el indicio con posterioridad al momento de los hechos EVITABLE
  • 92. TOMA DE MUESTRAS DE REFERENCIA 1. Personas vivas • Siempre con consentimiento informado • Debe existir un documento firmado con la autorización expresa para realizar el análisis En PERSONAS TRANSFUNDIDAS evitar la toma de sangre, podría detectarse • Punción venosa (5 ml con EDTA) SANGRE el ADN procedente de la sangre transfundida al menos en un corto periodo de tiempo después a la transfusión • Punción dactilar (gotas depositadas en papel secante y se dejan secar a TA) CEL EPITELIALES BUCALES • 2 Hisopos de ambos carrillos (importante dejarlos secar antes de enfundar para evitar la proliferación bacteriana) PELOS CON BULBO • 10-15 pelos con bulbo
  • 93. TOMA DE MUESTRAS DE REFERENCIA 2. Cadáveres en buen estado de conservación SANGRE post-mortem 1 ml (anticoagulante tipo EDTA) MUSCULO ESQUELETICO Aprox 1 gr. Se almacena en un recipiente de plástico y tapón de rosca. PIEZAS DENTALES 2 (molares). Dejar en reserva con el fin de evitar la exhumación. 3. Cadáveres en avanzado estado de putrefacción o esqueletizados HUESO LARGO Fémur, húmero… PIEZAS DENTALES 2 (molares). No dañados externamente ni sometidos a endodoncias.
  • 94. TOMA DE MUESTRAS DE REFERENCIA 4. Cadáveres carbonizados • Cuando la carbonización no es total es posible analizar MÚSCULO ESQUELÉTICO de zonas profundas. • Cuando la carbonización es total recomendable contactar con el laboratorio 5. Otras muestras de referencia de personas fallecidas • En hospitales (muestras de sangre, biopsias en parafina, preparaciones histológicas… No utilizar tejidos fijados en formol. • Ámbito familiar (peines, maquinillas de afeitar, saliva en sellos o sobres…)
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103. FIN Más información sobre análisis de ADN: • Laboratorio: www.adn.ac • Sociedad Latinoamericana de Genética Forense: www.slagf.org • Tesis doctoral: www.secretpaternity.com

Notas do Editor

  1. Figure 2.3 The human genome contained in every cell consists of 23 pairs of chromosomes and a small circular genome known as mitochondrial DNA. Chromosomes 1-22 are numbered according to their relative size and occur in single copy pairs within a cell’s nucleus with one copy being inherited from one’s mother and the other copy coming from one’s father. Sex-chromosomes are either X,Y for males or X,X for females. Mitochondrial DNA is inherited only from one’s mother and is located in the mitochondria with hundreds of copies per cell. Together the nuclear DNA material amounts to over 3 billion base pairs (bp) while mitochondrial DNA is only about 16,569 bp in length.
  2. Figure 9.1 Illustration of inheritance patterns from recombining autosomal genetic markers and the lineage markers from the Y-chromosome and mitochondrial DNA.
  3. Figure 9.10 Ancestry of Thomas Jefferson and Eston Hemings male lines. The shaded boxes represent the samples tested by Foster et al. (1998) in their Jefferson Y chromosome study. A male descendant of Eston Hemings, son of Thomas Jefferson’s slave Sally Hemings, was found to have a Y chromosome haplotype that matched male descendants of Field Jefferson, President Thomas Jefferson’s uncle. A male descendant of Thomas Woodson, claimed by some to be descended from Jefferson, had a different Y haplotype and therefore could not have been a Jefferson.