SlideShare uma empresa Scribd logo
1 de 19
Unless otherwise noted, the content of this course material is
licensed under a Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/
© 2009, Peter Von Buelow
You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in
accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions,
corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content
posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their
compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an
endorsement by the University of Michigan. For more information about how to cite these materials visit
https://open.umich.edu/education/about/terms-of-use.
Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical
evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if
you have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images
that may be disturbing to some viewers.
Architecture 324
Structures II

Column Analysis and Design

•
•
•
•
•
•

Failure Modes
End Conditions and Lateral Bracing
Analysis of Wood Columns
Design of Wood Columns
Analysis of Steel Columns
Design of Steel Columns

University of Michigan, TCAUP

Structures II

Slide 2/19
Leonhard Euler (1707 – 1783)
Euler Buckling (elastic buckling)

Pcr =

–
–
–
–
–

π 2 AE
 KL 


 r 

2

r=

I
A

A = Cross sectional area (in2)
E = Modulus of elasticity of the material (lb/in2)
K = Stiffness (curvature mode) factor
L = Column length between pinned ends (in.)
r = radius of gyration (in.)

f cr =

π 2E
 KL 


 r 

University of Michigan, TCAUP

2

Source: Emanuel Handmann (wikimedia commons)

≤ Fcr

Structures II

Slide 3/19
Failure Modes
•

Short Columns – fail by crushing
(“compression blocks or piers” Engel)

fc =
–
–
–
–

•

P
≤ Fc
A

fc = Actual compressive stress
A = Cross-sectional area of column (in2)
P = Load on the column
Fc = Allowable compressive stress per codes

Intermediate Columns – crush and buckle
(“columns” Engel)

•

Long Columns – fail by buckling
(“long columns” Engel)

f cr =

–
–
–
–

π 2E
 KL 


 r 

2

≤ Fcr

E = Modulus of elasticity of the column material
K = Stiffness (curvature mode) factor
L = Column length between pinned ends (in.)
r = radius of gyration = (I/A)1/2

University of Michigan, TCAUP

Structures II

Slide 4/19
Slenderness Ratio
•

Radius of Gyration: a geometric
property of a cross section

r=
–
–
–

•

I
A

I = Ar 2

r = Radius of Gyration
I = Moment of Inertia
A = Cross-sectional Area

rx = 0.999

Slenderness Ratios:

Lx
rx

Ly
ry

The larger ratio will govern.
Try to balance for efficiency
University of Michigan, TCAUP

ry = 0.433

Structures II

Slide 5/19
End Support Conditions
K= 1.0
K is a constant based on the end conditions
l is the actual length
Both ends pinned.
l e is the effective length
l e = Kl

K= 0.7
One end free, one end fixed.
K= 2.0

K= 0.5
Both ends fixed.
One end pinned, one end fixed.
University of Michigan, TCAUP

Structures II

Slide 6/19
Analysis of Wood Columns
Data:
•
•
•

Column – size, length
Support conditions
Material properties – Fc , E

Required:
•

Pcrit for buckling and crushing

•

Calculate slenderness ratio; largest ratio
governs.
Check slenderness against upper limit.
Calculate Pcrit for buckling using Euler’s
equation:
Calculate Pmax for crushing:
Pmax = Fc A
Smaller of Pcrit or Pmax will fail first.

•
•
•
•

University of Michigan, TCAUP

Structures II

Slide 7/19
Example Problem :
Analysis
Data: section 3”x7” Full Dimension
Fc = 1000 psi
E = 1,400,000 psi
Find: Pcritical for buckling and crushing.
Determine the mode of failure
for the wood column.

University of Michigan, TCAUP

Structures II

Slide 8/19
Example Problem : Analysis (cont.)
1.

Calculate slenderness ratios
for each axis.

The larger (more slender) controls.

2.

Upper limits are usually given by codes.

University of Michigan, TCAUP

Structures II

Slide 9/19
Example Problem : Analysis (cont.)
3.

Calculate critical Euler buckling load.

4.

Calculate crushing load.

5.

Smaller of the two will fail first and control.

University of Michigan, TCAUP

Structures II

Slide 10/19
Analysis of Steel Columns
by Engel
Data:
•
•
•
•

Column – size, length
Support conditions
Material properties – Fy
Applied load - Pactual

Required:
•

Pactual < Pallowable

•

Calculate slenderness ratios.
The largest ratio governs.

•

Check slenderness ratio against upper limit of 200

•

Use the controlling slenderness ratio to find the
critical Euler buckling stress, fcr.

•

Apply some Factor of Safety (like 3) to fcr.

•

Determine yield stress limit, Fy.

•

Fallowable is the lesser stress: (fcr / F.S.) or Fy

•

Compute allowable capacity: Pallowable = Fallow A.

•

Check column adequacy:
Pactual < Pallowable
University of Michigan, TCAUP

Structures II

π 2E
f cr =
2
 KL 


 r 

Slide 11/19
Design of Steel Columns
by Engel
Data:
•
•
•
•

Column – length
Support conditions
Material properties – Fy
Applied load - Pactual

Required:
•

Column – section

•

Use the Euler equation to solve for Ar2 which is
equal to I for both x and y axis.

•

Enter the section tables and find the least weight
section that satisfies BOTH Ix and Iy.

•

Check the slenderness ratios are both < 200.

•

Calculate the actual Euler stress fcr for the final
section.

•

Fallowable is the lesser stress: fcr / F.S. or Fy

•

Compute allowable capacity: Pallowable = Fallow A.
University of Michigan, TCAUP

Structures II

P( K xl x ) 2
Ix =
× F .S .
2
π E
Iy =

P( K y l y ) 2

π E
2

× F .S .

Slide 12/19
Example Problem : Design
Select a steel section that can carry the given load.

University of Michigan, TCAUP

Structures II

Slide 13/19
Example Problem : Design (cont.)

University of Michigan, TCAUP

Structures II

Slide 14/19
Example Problem : Design (cont.)
• Determine the controlling
slenderness (larger controls)
• Find the actual buckling stress,
fcr
• Compare to allowable stress,
Fallowable is lesser of :
fcr/F.S. or Fy
• Determine safe allowable load,
Pallowable = Fallowable A

University of Michigan, TCAUP

Structures II

Slide 15/19
Determining K factors
by AISC
Sidesway Inhibited:
Braced frame
1.0 > K > 0.5
Sidesway Uninhibited:
Un-braced frame
unstable > K > 1.0
If Ic/Lc is large
and Ig/Lg is small
The connection is more pinned
If Ic/Lc is small
and Ig/Lg is large
The connection is more fixed

Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980

University of Michigan, TCAUP

Structures II

Slide 16/19
Steel Frame Construction

University of Michigan, TCAUP

Structures II

Slide 17/19
Analysis of Steel Columns
by AISC-ASD
Data:
•
•
•
•

Column – size, length
Support conditions
Material properties – Fy
Applied load - Pactual

Required:
•

Pactual < Pallowable

•

Calculate slenderness ratios.
largest ratio governs.
In AISC Table look up Fa for given
slenderness ratio.
Compute: Pallowable = Fa A.
Check column adequacy:
Pactual < Pallowable

•
•
•

Source: American Institute of Steel Construction, Manual of
Steel Construction, AISC 1980
University of Michigan, TCAUP

Structures II

Slide 18/19
Design of Steel Columns
with AISC-ASD Tables
Data:
•
•
•
•

Column – length
Support conditions
Material properties – Fy
Applied load - Pactual

Required:
•

Column Size

1.
2.

Enter table with height.
Read allowable load for each section to
find the smallest adequate size.
Tables assume weak axis buckling. If
the strong axis controls the length must
be divide by the ratio rx/ry
Values stop in table (black line) at
slenderness limit, KL/r = 200

3.
4.

University of Michigan, TCAUP

Source: American Institute of Steel Construction, Manual of Steel
Construction, AISC 1980
Structures II
Slide 19/19

Mais conteúdo relacionado

Mais procurados

Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Make Mannan
 
Footing design
Footing designFooting design
Footing designShubham .
 
Portal and cantilever method
Portal and cantilever methodPortal and cantilever method
Portal and cantilever methodPrionath Roy
 
Revited and welded connection
Revited and welded connectionRevited and welded connection
Revited and welded connectionAnkush Goyal
 
Basement wall design
Basement wall designBasement wall design
Basement wall designCETCBIM
 
SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM Pavan Kumar
 
Steel connections
Steel connectionsSteel connections
Steel connectionsbabunaveen
 
Analysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingAnalysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingTarun kumar
 
REINFORCEMENT CONCRETE chapter 1
REINFORCEMENT CONCRETE chapter 1REINFORCEMENT CONCRETE chapter 1
REINFORCEMENT CONCRETE chapter 1Natalie Ulza
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C BeamAr. Aakansha
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression membersSabna Thilakan
 
Precast pretensioned concrete girders
Precast pretensioned concrete girdersPrecast pretensioned concrete girders
Precast pretensioned concrete girdersMD.Yeasin Mostafiz
 

Mais procurados (20)

Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
 
Footing design
Footing designFooting design
Footing design
 
Portal and cantilever method
Portal and cantilever methodPortal and cantilever method
Portal and cantilever method
 
Singly reinforced beam design
Singly reinforced beam   designSingly reinforced beam   design
Singly reinforced beam design
 
Revited and welded connection
Revited and welded connectionRevited and welded connection
Revited and welded connection
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
Sp16 latest
Sp16 latestSp16 latest
Sp16 latest
 
SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM
 
Steel connections
Steel connectionsSteel connections
Steel connections
 
Ch 7 design of rcc footing
Ch 7 design of rcc footingCh 7 design of rcc footing
Ch 7 design of rcc footing
 
Analysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingAnalysis of g+3 rcc storied building
Analysis of g+3 rcc storied building
 
Design of columns as per IS 456-2000
Design of columns as per IS 456-2000Design of columns as per IS 456-2000
Design of columns as per IS 456-2000
 
Framed structures
Framed structures Framed structures
Framed structures
 
Design of One-Way Slab
Design of One-Way SlabDesign of One-Way Slab
Design of One-Way Slab
 
REINFORCEMENT CONCRETE chapter 1
REINFORCEMENT CONCRETE chapter 1REINFORCEMENT CONCRETE chapter 1
REINFORCEMENT CONCRETE chapter 1
 
T beam TYPES
T beam TYPEST beam TYPES
T beam TYPES
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C Beam
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression members
 
Precast pretensioned concrete girders
Precast pretensioned concrete girdersPrecast pretensioned concrete girders
Precast pretensioned concrete girders
 
Retaining walls
Retaining walls Retaining walls
Retaining walls
 

Destaque

Columns lecture#4
Columns lecture#4Columns lecture#4
Columns lecture#4Irfan Malik
 
Building Structures: Column & Beam analysis
Building Structures: Column & Beam analysisBuilding Structures: Column & Beam analysis
Building Structures: Column & Beam analysisEuxuan Ong
 
Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)mbrsalman
 
structural analysis of a bungalow
structural analysis of a bungalowstructural analysis of a bungalow
structural analysis of a bungalowWC Yan
 
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSISBUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSISYaseen Syed
 
Building Structure - Structural Analysis of a bungalow
Building Structure - Structural Analysis of a bungalowBuilding Structure - Structural Analysis of a bungalow
Building Structure - Structural Analysis of a bungalowLovie Tey
 
Structural Analysis of a Bungalow Report
Structural Analysis of a Bungalow ReportStructural Analysis of a Bungalow Report
Structural Analysis of a Bungalow Reportdouglasloon
 
Theories of columns
Theories of columnsTheories of columns
Theories of columnsJISHNU V
 
Moment distribution method
Moment distribution methodMoment distribution method
Moment distribution methodSaad Ullah
 
Columns lecture#1
Columns lecture#1Columns lecture#1
Columns lecture#1Irfan Malik
 
Princípios de liderança biblica em elias 2
Princípios de liderança biblica em elias 2Princípios de liderança biblica em elias 2
Princípios de liderança biblica em elias 2Vilmar Nascimento
 
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013Leonardo Naressi
 

Destaque (20)

Columns
ColumnsColumns
Columns
 
Columns lecture#4
Columns lecture#4Columns lecture#4
Columns lecture#4
 
Evolution of the columns
Evolution of the columnsEvolution of the columns
Evolution of the columns
 
Building Structures: Column & Beam analysis
Building Structures: Column & Beam analysisBuilding Structures: Column & Beam analysis
Building Structures: Column & Beam analysis
 
Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)
 
structural analysis of a bungalow
structural analysis of a bungalowstructural analysis of a bungalow
structural analysis of a bungalow
 
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSISBUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
 
Building Structure - Structural Analysis of a bungalow
Building Structure - Structural Analysis of a bungalowBuilding Structure - Structural Analysis of a bungalow
Building Structure - Structural Analysis of a bungalow
 
Structural Analysis of a Bungalow Report
Structural Analysis of a Bungalow ReportStructural Analysis of a Bungalow Report
Structural Analysis of a Bungalow Report
 
Theories of columns
Theories of columnsTheories of columns
Theories of columns
 
Placing column layout
Placing  column layoutPlacing  column layout
Placing column layout
 
BUCKLING ANALYSIS
BUCKLING ANALYSISBUCKLING ANALYSIS
BUCKLING ANALYSIS
 
Moment distribution method
Moment distribution methodMoment distribution method
Moment distribution method
 
Columns lecture#1
Columns lecture#1Columns lecture#1
Columns lecture#1
 
Beam design
Beam designBeam design
Beam design
 
Princípios de liderança biblica em elias 2
Princípios de liderança biblica em elias 2Princípios de liderança biblica em elias 2
Princípios de liderança biblica em elias 2
 
Univ 100 research presentation
Univ 100 research presentationUniv 100 research presentation
Univ 100 research presentation
 
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013
 
Sesiónes 3ra unidad dcl
Sesiónes 3ra unidad dclSesiónes 3ra unidad dcl
Sesiónes 3ra unidad dcl
 
Machine response
Machine responseMachine response
Machine response
 

Semelhante a Column Analysis and Design

Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USDSadia Mahjabeen
 
Structural Integrity Analysis: Chapter 2 Fracture Mechanics
Structural Integrity Analysis: Chapter  2 Fracture MechanicsStructural Integrity Analysis: Chapter  2 Fracture Mechanics
Structural Integrity Analysis: Chapter 2 Fracture MechanicsIgor Kokcharov
 
4_calculo_plastico-include gable frame.pdf
4_calculo_plastico-include gable frame.pdf4_calculo_plastico-include gable frame.pdf
4_calculo_plastico-include gable frame.pdfcesarrodriguez782237
 
New workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docxNew workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docxcurwenmichaela
 
Mechanical properties of materials 1 ppt
Mechanical properties of materials 1 pptMechanical properties of materials 1 ppt
Mechanical properties of materials 1 pptAdeoluAdediran1
 
ABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docxABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docxransayo
 
Structural Integrity Analysis: Chapter 3 Mechanical Properties of Materials
Structural Integrity Analysis: Chapter 3 Mechanical Properties of MaterialsStructural Integrity Analysis: Chapter 3 Mechanical Properties of Materials
Structural Integrity Analysis: Chapter 3 Mechanical Properties of MaterialsIgor Kokcharov
 
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...“Comparison of Maximum Stress distribution of Long & Short Side Column due to...
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...IJMER
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Lecture on Basic Material Classification
Lecture on Basic Material ClassificationLecture on Basic Material Classification
Lecture on Basic Material ClassificationPranjal Mandhaniya
 
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSINTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSIjripublishers Ijri
 
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSINTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSIjripublishers Ijri
 

Semelhante a Column Analysis and Design (20)

Column analysis and design
Column analysis and designColumn analysis and design
Column analysis and design
 
Structures and Materials- Section 7 Stress Concentration
Structures and Materials- Section 7 Stress ConcentrationStructures and Materials- Section 7 Stress Concentration
Structures and Materials- Section 7 Stress Concentration
 
Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USD
 
Structural Integrity Analysis: Chapter 2 Fracture Mechanics
Structural Integrity Analysis: Chapter  2 Fracture MechanicsStructural Integrity Analysis: Chapter  2 Fracture Mechanics
Structural Integrity Analysis: Chapter 2 Fracture Mechanics
 
4_calculo_plastico-include gable frame.pdf
4_calculo_plastico-include gable frame.pdf4_calculo_plastico-include gable frame.pdf
4_calculo_plastico-include gable frame.pdf
 
New workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docxNew workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docx
 
Selecting Columns And Beams
Selecting Columns And BeamsSelecting Columns And Beams
Selecting Columns And Beams
 
Mechanical properties of materials 1 ppt
Mechanical properties of materials 1 pptMechanical properties of materials 1 ppt
Mechanical properties of materials 1 ppt
 
ABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docxABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docx
 
Structures and Materials- Section 4 Behaviour of Materials
Structures and Materials- Section 4 Behaviour of MaterialsStructures and Materials- Section 4 Behaviour of Materials
Structures and Materials- Section 4 Behaviour of Materials
 
Structural Integrity Analysis: Chapter 3 Mechanical Properties of Materials
Structural Integrity Analysis: Chapter 3 Mechanical Properties of MaterialsStructural Integrity Analysis: Chapter 3 Mechanical Properties of Materials
Structural Integrity Analysis: Chapter 3 Mechanical Properties of Materials
 
Structures and Materials- Section 3 Stress-Strain Relationships
Structures and Materials- Section 3 Stress-Strain RelationshipsStructures and Materials- Section 3 Stress-Strain Relationships
Structures and Materials- Section 3 Stress-Strain Relationships
 
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...“Comparison of Maximum Stress distribution of Long & Short Side Column due to...
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...
 
Paper no. 1
Paper no. 1Paper no. 1
Paper no. 1
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Lecture on Basic Material Classification
Lecture on Basic Material ClassificationLecture on Basic Material Classification
Lecture on Basic Material Classification
 
Paper no. 3
Paper no. 3Paper no. 3
Paper no. 3
 
4 tension test
4 tension test4 tension test
4 tension test
 
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSINTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
 
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSINTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
 

Último

Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45MysoreMuleSoftMeetup
 
Graduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptxGraduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptxneillewis46
 
Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
 Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatmentsaipooja36
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismDabee Kamal
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxheathfieldcps1
 
The Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxThe Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxNehaChandwani11
 
philosophy and it's principles based on the life
philosophy and it's principles based on the lifephilosophy and it's principles based on the life
philosophy and it's principles based on the lifeNitinDeodare
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽中 央社
 
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Denish Jangid
 
demyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptxdemyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptxMohamed Rizk Khodair
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...Nguyen Thanh Tu Collection
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppCeline George
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024Borja Sotomayor
 
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...Nguyen Thanh Tu Collection
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...Gary Wood
 
An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppAn Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppCeline George
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptxPoojaSen20
 

Último (20)

Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
 
Graduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptxGraduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptx
 
Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
 Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
 
The Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxThe Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptx
 
Word Stress rules esl .pptx
Word Stress rules esl               .pptxWord Stress rules esl               .pptx
Word Stress rules esl .pptx
 
philosophy and it's principles based on the life
philosophy and it's principles based on the lifephilosophy and it's principles based on the life
philosophy and it's principles based on the life
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
“O BEIJO” EM ARTE .
“O BEIJO” EM ARTE                       .“O BEIJO” EM ARTE                       .
“O BEIJO” EM ARTE .
 
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
 
demyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptxdemyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptx
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio App
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppAn Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge App
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
Mattingly "AI and Prompt Design: LLMs with Text Classification and Open Source"
Mattingly "AI and Prompt Design: LLMs with Text Classification and Open Source"Mattingly "AI and Prompt Design: LLMs with Text Classification and Open Source"
Mattingly "AI and Prompt Design: LLMs with Text Classification and Open Source"
 

Column Analysis and Design

  • 1. Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/ © 2009, Peter Von Buelow You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan. For more information about how to cite these materials visit https://open.umich.edu/education/about/terms-of-use. Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that may be disturbing to some viewers.
  • 2. Architecture 324 Structures II Column Analysis and Design • • • • • • Failure Modes End Conditions and Lateral Bracing Analysis of Wood Columns Design of Wood Columns Analysis of Steel Columns Design of Steel Columns University of Michigan, TCAUP Structures II Slide 2/19
  • 3. Leonhard Euler (1707 – 1783) Euler Buckling (elastic buckling) Pcr = – – – – – π 2 AE  KL     r  2 r= I A A = Cross sectional area (in2) E = Modulus of elasticity of the material (lb/in2) K = Stiffness (curvature mode) factor L = Column length between pinned ends (in.) r = radius of gyration (in.) f cr = π 2E  KL     r  University of Michigan, TCAUP 2 Source: Emanuel Handmann (wikimedia commons) ≤ Fcr Structures II Slide 3/19
  • 4. Failure Modes • Short Columns – fail by crushing (“compression blocks or piers” Engel) fc = – – – – • P ≤ Fc A fc = Actual compressive stress A = Cross-sectional area of column (in2) P = Load on the column Fc = Allowable compressive stress per codes Intermediate Columns – crush and buckle (“columns” Engel) • Long Columns – fail by buckling (“long columns” Engel) f cr = – – – – π 2E  KL     r  2 ≤ Fcr E = Modulus of elasticity of the column material K = Stiffness (curvature mode) factor L = Column length between pinned ends (in.) r = radius of gyration = (I/A)1/2 University of Michigan, TCAUP Structures II Slide 4/19
  • 5. Slenderness Ratio • Radius of Gyration: a geometric property of a cross section r= – – – • I A I = Ar 2 r = Radius of Gyration I = Moment of Inertia A = Cross-sectional Area rx = 0.999 Slenderness Ratios: Lx rx Ly ry The larger ratio will govern. Try to balance for efficiency University of Michigan, TCAUP ry = 0.433 Structures II Slide 5/19
  • 6. End Support Conditions K= 1.0 K is a constant based on the end conditions l is the actual length Both ends pinned. l e is the effective length l e = Kl K= 0.7 One end free, one end fixed. K= 2.0 K= 0.5 Both ends fixed. One end pinned, one end fixed. University of Michigan, TCAUP Structures II Slide 6/19
  • 7. Analysis of Wood Columns Data: • • • Column – size, length Support conditions Material properties – Fc , E Required: • Pcrit for buckling and crushing • Calculate slenderness ratio; largest ratio governs. Check slenderness against upper limit. Calculate Pcrit for buckling using Euler’s equation: Calculate Pmax for crushing: Pmax = Fc A Smaller of Pcrit or Pmax will fail first. • • • • University of Michigan, TCAUP Structures II Slide 7/19
  • 8. Example Problem : Analysis Data: section 3”x7” Full Dimension Fc = 1000 psi E = 1,400,000 psi Find: Pcritical for buckling and crushing. Determine the mode of failure for the wood column. University of Michigan, TCAUP Structures II Slide 8/19
  • 9. Example Problem : Analysis (cont.) 1. Calculate slenderness ratios for each axis. The larger (more slender) controls. 2. Upper limits are usually given by codes. University of Michigan, TCAUP Structures II Slide 9/19
  • 10. Example Problem : Analysis (cont.) 3. Calculate critical Euler buckling load. 4. Calculate crushing load. 5. Smaller of the two will fail first and control. University of Michigan, TCAUP Structures II Slide 10/19
  • 11. Analysis of Steel Columns by Engel Data: • • • • Column – size, length Support conditions Material properties – Fy Applied load - Pactual Required: • Pactual < Pallowable • Calculate slenderness ratios. The largest ratio governs. • Check slenderness ratio against upper limit of 200 • Use the controlling slenderness ratio to find the critical Euler buckling stress, fcr. • Apply some Factor of Safety (like 3) to fcr. • Determine yield stress limit, Fy. • Fallowable is the lesser stress: (fcr / F.S.) or Fy • Compute allowable capacity: Pallowable = Fallow A. • Check column adequacy: Pactual < Pallowable University of Michigan, TCAUP Structures II π 2E f cr = 2  KL     r  Slide 11/19
  • 12. Design of Steel Columns by Engel Data: • • • • Column – length Support conditions Material properties – Fy Applied load - Pactual Required: • Column – section • Use the Euler equation to solve for Ar2 which is equal to I for both x and y axis. • Enter the section tables and find the least weight section that satisfies BOTH Ix and Iy. • Check the slenderness ratios are both < 200. • Calculate the actual Euler stress fcr for the final section. • Fallowable is the lesser stress: fcr / F.S. or Fy • Compute allowable capacity: Pallowable = Fallow A. University of Michigan, TCAUP Structures II P( K xl x ) 2 Ix = × F .S . 2 π E Iy = P( K y l y ) 2 π E 2 × F .S . Slide 12/19
  • 13. Example Problem : Design Select a steel section that can carry the given load. University of Michigan, TCAUP Structures II Slide 13/19
  • 14. Example Problem : Design (cont.) University of Michigan, TCAUP Structures II Slide 14/19
  • 15. Example Problem : Design (cont.) • Determine the controlling slenderness (larger controls) • Find the actual buckling stress, fcr • Compare to allowable stress, Fallowable is lesser of : fcr/F.S. or Fy • Determine safe allowable load, Pallowable = Fallowable A University of Michigan, TCAUP Structures II Slide 15/19
  • 16. Determining K factors by AISC Sidesway Inhibited: Braced frame 1.0 > K > 0.5 Sidesway Uninhibited: Un-braced frame unstable > K > 1.0 If Ic/Lc is large and Ig/Lg is small The connection is more pinned If Ic/Lc is small and Ig/Lg is large The connection is more fixed Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 University of Michigan, TCAUP Structures II Slide 16/19
  • 17. Steel Frame Construction University of Michigan, TCAUP Structures II Slide 17/19
  • 18. Analysis of Steel Columns by AISC-ASD Data: • • • • Column – size, length Support conditions Material properties – Fy Applied load - Pactual Required: • Pactual < Pallowable • Calculate slenderness ratios. largest ratio governs. In AISC Table look up Fa for given slenderness ratio. Compute: Pallowable = Fa A. Check column adequacy: Pactual < Pallowable • • • Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 University of Michigan, TCAUP Structures II Slide 18/19
  • 19. Design of Steel Columns with AISC-ASD Tables Data: • • • • Column – length Support conditions Material properties – Fy Applied load - Pactual Required: • Column Size 1. 2. Enter table with height. Read allowable load for each section to find the smallest adequate size. Tables assume weak axis buckling. If the strong axis controls the length must be divide by the ratio rx/ry Values stop in table (black line) at slenderness limit, KL/r = 200 3. 4. University of Michigan, TCAUP Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 Structures II Slide 19/19

Notas do Editor

  1. PvB
  2. Leonhard Euler portrait by Emanuel Handmann, 1753 http://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Handmann_.png Public domain http://en.wikipedia.org/wiki/Emanuel_Handmann
  3. PvB
  4. PvB
  5. PvB
  6. PvB
  7. PvB
  8. PvB
  9. PvB
  10. PvB
  11. This is the steel code [2] Manual of steel construction. Author American Institute of Steel Construction. Edition 8th ed. Published Chicago, Ill. : American Institute of Steel Construction, c1980. p. 3-5
  12. PvB
  13. [2] p.3-16
  14. [2] p. 3-32