SlideShare uma empresa Scribd logo
1 de 41
S. V. Cao
Kyoto University
(On behalf of the T2K collaboration )
Charged-Current Pion Production
in T2K
11/18/15 NuINT 2015, Osaka
Outline
Introduction
Charged pion production
In water, off-axis
Coherent pion production
In carbon, on-axis
In carbon, off-axis
Summary
11/18/15 NuINT 2015, Osaka 2
Needs of 𝜋-production in T2K
11/18/15 NuINT 2015, Osaka
 Needed for oscillation analysis
 Main background around oscillation dip
 Energy misreconstruction
 𝜋-production itself: FSI model ( 𝜋 absorption,
scattering, charge exchange…)
 Dominant background to charged-current
quasielastic scattering measurements
 Pion absorption
 Detector inefficiency
 Also background to other cross-section
measurements
 T2K shares same energy peak (0.6 GeV) as
MiniBooNE  Compare results
3
PhysRevD.91.072010
PhysRevC.88.017601
νμ CC candidates
at T2K far detector
6.6x1020 POT
Needs of 𝜋-production in T2K (cont’d)
11/18/15 NuINT 2015, Osaka
Outstanding issues:
 CC1𝜋+: inconsistency between MINERvA and
MiniBooNE in overall normalization and
pion kinematics
 CC1𝜋 coherent: MINERvA observed this rare
interaction above 1.5 GeV, but prediction
overestimated at low E 𝜋
T2K important keys to these issues:
 Fairly clean N-𝛥 coupling information
(narrow peak at 𝛥 resonance ); multiple
targets (12C, 16O,…) for FSI constraints
 CC1𝜋 coherence below 1.5 GeV
(~0.8 GeV for off-axis, ~1.5 GeV for on-axis)
4
arXiv:1406.6415
PhysRevLett.113.261802
MINERvA
The T2K experiment
11/18/15 NuINT 2015, Osaka 5
 High intensity, pure muon (anti) neutrino beam
 The world’s first off-axis designed neutrino experiment
 Far Detector (SK) is 2.50 off the beam’s axis
 Narrow band beam, peaked at oscillation maximum (0.6 GeV)
5
10
5
0
30
60
90
120
150
180
Angle(degrees)
Data
Best fit
Background component
Momentum (MeV/c)
0 500 1000 1500
0
0.2
0.4
0.6
0.8
1
Data
Best fit
(km/GeV)Recon.L/E
2
10 3
10
0
0.5
1
1.5
Ratiotono
oscillations
Events/0.1GeV
0
20
40
60
DATA
Best-fit MC with Oscillations
MC without Oscillations
0
Events/100MeV
2
4
6
8
10
12
14 No oscillation
Best fit spectra
Data
Energy (GeV)mnReconstructed
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Ratio
0.5
1
1.5
PRL. 112, 181801 (2014)PRL 112, 061802 (2014) Paper preparation Paper preparation
 Primary goal is to measure precisely neutrino oscillations
Stay tuned for:
 Observe
 CP phase
 Unknowns…
T2K Preliminary
T2K Preliminary
T2K on-axis detector: INGRID
11/18/15 NuINT 2015, Osaka 6
Designed for measuring 𝜈 beam intensity,
direction and profile
 16 scintillator-steel interleaved
“standard” modules formed a cross
shape (7.1 tons/each)
 Fully active scintillator Proton Module to
detect protons and pions specifically for
cross-section studies.
Key features for cross-section:
o Broad flux spectrum, mean ~1.51 GeV
o Target materials: scintillator and iron
o Large number of interactions
Upstream view Top view
Display of MC event interacted in
Proton Module and μ tracked by INGRID
T2K off-axis detector: ND280
11/18/15 NuINT 2015, Osaka
Aim to understand unoscillated 𝜈 beam: constrains flux
and cross-section parameters
 Tracker, composed of Fine-Grained Detector (FGD)
and Time Projection Chamber (TPC), is central part
o Two FGDs: active target w/ scintillator only
(FGD1) or scintillator-water interleaved (FGD2)
o Three TPCs: mainly Argon (95%) filled, for
momentum measurement and particle ID
 𝜋0 detector (POD) for water-scintillator target and 𝜋0
tagging
 Electromagnetic calorimeters (ECal) to detect gamma
rays and reconstruct 𝜋0
 Side muon range detectors (SMRD) to tag entering
cosmic muons or side-exiting muons
Key features for cross-section:
o Narrow flux spectrum , mean ~ 0.85 GeV
o Multiple targets: scintillator, water, argon, lead
o High final state ID resolution, charge separation
7
0.2 T
T2K interaction topologies
11/18/15 NuINT 2015, Osaka 8
 Final state topologies based on the true particles exiting the nucleus
(takes advantage of ND280 high final state ID resolution)
(MeV/c)m
p
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Numberofentries
0
50
100
150
200
250
Data
pCC-0
pCC-1
CC-Other
BKG
External
No truth
(MeV/c)m
p
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Numberofentries
0
50
100
150
200
250
Data
CCQE
RES
DIS
COH
NC
mnanti-
en
out FGD FV
other
no truth
(MeV/c)m
p
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Numberofentries
0
500
1000
1500
2000
2500
3000
3500
4000 Data
CCQE
RES
DIS
COH
NC
mnanti-
en
out FGD FV
other
no truth
(MeV/c)m
p
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Numberofentries
0
100
200
300
400
500 Data
pCC-0
pCC-1
CC-Other
BKG
External
No truth
(MeV/c)m
p
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Numberofentries
0
500
1000
1500
2000
2500
3000
3500
4000 Data
pCC-0
pCC-1
CC-Other
BKG
External
No truth
Topology
definition
Breakdown by
final state ID
Breakdown by ν
generator truth
T2K Preliminary T2K Preliminary T2K Preliminary
T2K Preliminary T2K Preliminary T2K Preliminary
63% CCQE 39% RES 68% DIS
72% CC0π 51% CC1π 70% CCother
T2K recent pion production
measurements
11/18/15 NuINT 2015, Osaka 9
Various activities on pion production are ongoing at T2K near detectors.
This talk highlights measurements which are official only.
① CC1𝜋+
CC1𝜋+ in water (ND280-FGD2)
② CC1𝜋+ coherent
CC1𝜋+ coherence in carbon (ND280-FGD1)
CC1𝜋+ coherence in carbon (INGRID)
11/18/15 NuINT 2015, Osaka 10
① CC1𝜋+
Signal definition
Main contribution from resonance
Simulation: Rein-Sehgal model
NEUT (“official” ν generator)
GENIE (alternative ν generator)
CC1𝜋+ in Water (ND280-FGD2)
11/18/15 NuINT 2015, Osaka
 Signal: CC w/ 1 𝜋+ in water layer of FGD2
 Event selection:
 Negative muon-like track (TPC)
 Positive pion-like track (TPC ID)
 Reject events w/ 𝜋0 (ECal)
 Muon-like track starts in x-scintillator layer
 Phase-space restriction applied to remove
areas of low detector acceptance
 Dominant backgrounds:
 CC 1𝜋+ in scintillator layers (XY)
 CC non-1𝜋+ (dominated by DIS)
11
x y
True signal
Intrinsic bkg.
for sideband
/ GeVp
p
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Numberofevents/0.05GeV
0
20
40
60
80
100
120
140
Data
XYpCC1
waterpCC1
otherpCC1
XYpCC non-1
waterpCC non-1
otherpCC non-1
CCmnnon
Out of FV
Data
XYpCC1
waterpCC1
otherpCC1
XYpCC non-1
waterpCC non-1
otherpCC non-1
CCmnnon
Out of FV
50.6% CC1pi
(30.9% from water)
T2K Preliminary
pqcos
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Numberofevents/0.01
0
20
40
60
80
100
120
140
160
Data
XYpCC1
waterpCC1
otherpCC1
XYpCC non-1
waterpCC non-1
otherpCC non-1
CCmnnon
Out of FV
Data
XYpCC1
waterpCC1
otherpCC1
XYpCC non-1
waterpCC non-1
otherpCC non-1
CCmnnon
Out of FV
P 𝜋,μ > 200 MeV,
cosθ 𝜋,μ> 0.3
T2K Preliminary
Phase-space restriction
scintillator
water
scintillator
CC1𝜋+ in Water (ND280-FGD2)(cont’d)
11/18/15 NuINT 2015, Osaka
 Two control samples to constrain background
12
CC-other water-enhancedCC1𝜋+ scintillator
/ GeVp
p
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Numberofevents/0.05GeV
0
10
20
30
40
50
60
70
80 Data
XYpCC1
waterpCC1
otherpCC1
XYpCC non-1
waterpCC non-1
otherpCC non-1
CCmnnon
Out of FV
Data
XYpCC1
waterpCC1
otherpCC1
XYpCC non-1
waterpCC non-1
otherpCC non-1
CCmnnon
Out of FV
/ GeVp
p
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Numberofevents/0.05GeV
0
10
20
30
40
50
Data
XYpCC1
waterpCC1
otherpCC1
XYpCC non-1
waterpCC non-1
otherpCC non-1
CCmnnon
Out of FV
Data
XYpCC1
waterpCC1
otherpCC1
XYpCC non-1
waterpCC non-1
otherpCC non-1
CCmnnon
Out of FV
 Flux-integrated differential cross section based on Bayesian
unfolding method
 In muon kinematics
 In pion kinematics
 In muon-pion angle
 In neutrino reconstructed energy
T2K Preliminary T2K Preliminary
38% 1𝜋+ XY
6% 1𝜋+ water
38% non-1𝜋+ water
6% 1𝜋+ water
11/18/15 NuINT 2015, Osaka 13
CC1 𝜋+ in Water (ND280-FGD2)(cont’d)
T2K PreliminaryT2K Preliminary
CC1 𝜋+ in Water (ND280-FGD2)(cont’d)
11/18/15 NuINT 2015, Osaka 14
(GeV)nTrue E
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
/Nucleon)2cm-38
)(10n
(Es
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
POT)21
/50MeV/102
flux(/cmmnT2K
0
200
400
600
800
1000
1200
1400
1600
1800
9
10´
fluxmnT2K
NEUT prediction
GENIE prediction
NEUT average
GENIE average
T2K Run II-IV data
T2K Preliminary
T2K Preliminary
T2K Preliminary
 Data lower than GENIE prediction
(same as MiniBooNE result)
 Suppression observed specifically
 P 𝜋+ > 0.3 GeV & P 𝜋+ < 0.8 GeV
 cosθ 𝜋+ > 0.9 (coherent channel
contribution is significant)
(5.56x1020 POT)
(5.56x1020 POT)
(5.56x1020 POT)
11/18/15 NuINT 2015, Osaka 15
① CC1𝜋+
CC1𝜋+ in water (ND280-FDG2)
CC1𝜋+ in carbon (ND280-FGD1) (under review -MC only)
CC1𝜋+ in water (ND280-P0D) (under review -MC only)
② CC1𝜋+ coherent
CC1𝜋+ coherence in carbon (ND280-FGD1), ~ 0.8 GeV
CC1𝜋+ coherence in carbon (INGRID), ~1.5 GeV
 Interesting features
 Pion created from off-shell W boson despite small
nucleus binding energy (~10s MeV)
 Very small four-momentum transfer, |t|~ ℏ2/R2 to
leave nucleus in its ground state
 Small angle scattering of produced lepton
 Puzzle: K2K and SciBooNE found no evidence of
CC coherent below 1.5 GeV but NC coherent
signal was clearly observed at same energy
(GeV)nE
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
/nucleus)2
(cmC
pCCcoh.
s
0
1
2
3
4
5
6
7
39-
10´
POT)21
/50MeV/102
flux(/cmmn
0
200
400
600
800
1000
1200
1400
1600
1800
2000
9
10´
SciBooNE
K2K SciBar
AnMINER
fluxmnOn-axis
NEUT
GENIE
NEUT flux average
GENIE flux average
W+
Coherent in Carbon (ND280-FGD1)
11/18/15 NuINT 2015, Osaka 16
sideband
sideband
 Phase-space restriction:
 Event pre-selection (CC1𝜋+ )
 Negative muon-like track
 Positive pion-like track
 Additional cuts to enhance coherent interaction
 Vertex activity (<300 Photon Equivalent Unit (PEU))
 t-momentum transfer (<0.15 GeV2)
 Event reduction:
 Dominant backgrounds:
48% resonance, 34% deep-inelastic
T2K Preliminary
T2K Preliminary
300 PEU = 13.8 MeV
11/18/15 NuINT 2015, Osaka
 Sidebands to constrain expected N0 of
backgrounds in the signal box
 Background estimate method
 Split sidebands into bins of reconstructed
invariant hadronic mass, W
 Normalization parameters to fit pion
momentum template for each W bin
 Background in signal box is retuned based
on fitted normalization parameters.
17
Coherent in Carbon (ND280-FGD1)
T2K Preliminary T2K Preliminary
T2K Preliminary
11/18/15 NuINT 2015, Osaka
 An excess of 45±18, with 2.2σ significance
 Two models used to estimate signal efficiency
 Rein-Seghal: PCAC model; relate with pion-nucleus elastic scattering, use “officially”
in event generators, valid for high energy neutrino, less reliable at < 2 GeV
 Alvarez-Ruso: Microscopic model; excitation of Δ resonance, full quantum mechanical
treatment, valid up to 5 GeV
18
Coherent in Carbon (ND280-FGD1) (cont’d)
T2K PreliminaryT2K Preliminary
New result
Rein-Seghal:
Alvarez-Ruso:
 Statistical power limited to distinguish between two models
Data: 5.54x1020 POT
Data: 5.54x1020 POT
CC coherent in Carbon (INGRID)
11/18/15 NuINT 2015, Osaka
 Challenging:
 Pion momentum is not well-reconstructed
 impossible to reconstruct |t|-transfer
 Unavoidable model-dependence
 Coherent interaction enhanced:
 Muon angle scattering (<150)
 Energy deposit around vertex (<37 MeV)
19
T2K PreliminaryT2K Preliminary
(NEUT 5.1.4.2)(NEUT 5.1.4.2)
CC coherent in Carbon (INGRID) (cont’d)
11/18/15 NuINT 2015, Osaka
 Flux-averaged cross section
20
(GeV)nE
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
/nucleus)2
(cmC
pCCcoh.s
0
1
2
3
4
5
6
7
39-
10´
POT)21
/50MeV/102
flux(/cmmn
0
200
400
600
800
1000
1200
1400
1600
1800
2000
9
10´
T2K ND280 (GENIE)
SciBooNE
K2K SciBar
AnMINER
T2K on-axis data
fluxmn
NEUT
GENIE
NEUT flux average
GENIE flux average
 Systematics ~60%, dominated by CC resonance
 1.7σ data excess, suppression observed at high
pion track angle
MINERvA
SciBooNE
T2K Preliminary
T2K Preliminary
(6.04x1020 POT)
(NEUT 5.1.4.2)
(NEUT generator)
CC coherent in Carbon (INGRID) (cont’d)
11/18/15 NuINT 2015, Osaka
 On-going efforts to improve analysis:
 Increase signal significance (multi-variate
approach to select candidate event)
 Use sidebands to control the dominant
background (CC resonance and CC deep-
inelastic scattering )
 More than 2.5σ excess can be achieved if data
agrees with GENIE prediction
21
True Neutrino Energy (GeV)
0 2 4 6 8 10
Signalefficiency(%)
0
20
40
60
80
100
MVA method
Nominal method
) binsqReconstructed p-cos(
0 2 4 6 8 10
Uncertaintyonsignal(%)
0
10
20
30
40
50
Signal Only
Signal + Sidebands
) binsqReconstructed p-cos(
0 2 4 6 8 10
Uncertaintyonbackground(%)
0
20
40
60
Signal Only
Signal + Sidebands
Work in progress
Work in progressWork in progress
Up-coming results & Prospects
11/18/15 NuINT 2015, Osaka
Up-coming results:
 CC1𝜋+ in Carbon (ND280-FGD1)  Under review
 CC1𝜋+ in water (ND280-P0D)  under review
 CC1𝜋+ with proton identification (ND280-FGD1)
 CC1𝜋+ coherent in water (ND280-FGD2)
Prospects:
 CC1𝜋0 in water (ND280-P0D)
 CC1𝜋+ in carbon (INGRID)
22
T2K has near detectors in two different neutrino fluxes simultaneously
 unique capacity to make comparisons, joint fit
Summary
11/18/15 NuINT 2015, Osaka
 Various cross-section measurements with fine final-state
resolution, thank to ND280 structures
 First exclusive CC1𝜋+ in water indicated suppression at
 low momentum (P 𝜋+ > 0.3 GeV & P 𝜋+ < 0.8 GeV)
 small pion scattering (cosθ 𝜋+ > 0.9)
 First experimental evidence of CC1𝜋+ coherent below 1.5 GeV
 Stay tuned for more interesting results!!!
23
Backup: dE/dx w/ TPC
11/18/15 NuINT 2015, Osaka 24
Backup: GENIE vs NEUT
11/18/15 NuINT 2015, Osaka 25
 NEUT: 5.1.4.2 vs GENIE: 2.8.0
 Differences:
Default values of model parameters
Model for off-shell scattering (Smith-Moniz vs Bodek-Ritchie )
Determine pion multiplicity (W-dependent function vs AGKY)
Coherent pion production: GENIE use a revised version of Rein-
Sehgal (include lepton mass term effect & update pion-nucleon
cross-section)
NEUT GENIE
MACCQE 1.21 GeV/c2 0.99 GeV/c2
MARes 1.21 GeV/c2 1.12 GeV/c2
Threshold for res.
meson prod.
2.0 GeV/c2 1.7 GeV/c2
Backup: Pion production
11/18/15 NuINT 2015, Osaka 26
PhysRevC.88.017601
Backup: CC1𝜋+ in Water
11/18/15 NuINT 2015, Osaka 27
p,mqcos
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
/nucleon)2cm-38
10´(p,mq/dcossd
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
NEUT
GENIE
T2K data
)D(nE
0 1 2 3 4 5 6
/nucleon)2cm-38
10´))(D(n
(Es
0
0.2
0.4
0.6
0.8
1
1.2
NEUT
GENIE
T2K data
mqcos
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
/nucleon)2cm-38
10´(mq/dcossd
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
NEUT
GENIE
T2K data
/ GeVm
p
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
/nucleon/GeV)2cm-38
10´(m
/dpsd
0
0.01
0.02
0.03
0.04
0.05
0.06
NEUT
GENIE
T2K data
CC1𝜋+ in Water: Event migration
11/18/15 NuINT 2015, Osaka 28
 Migration (both forward and backward)
 Study
 Going-through sample
 Mask some FGD layer
 Rerun reconstruction to verify that vertex
reconstructed at first non-masked layer
CC1 𝜋+ in Water (ND280-FGD2)(cont’d)
11/18/15 NuINT 2015, Osaka 29
T2K Preliminary
T2K Preliminary
 Effort to reweight NEUT with
MINERvA coherent measurement
 Suppression is smaller, but still
visible
 P 𝜋+ > 0.5 GeV & P 𝜋+ < 0.7 GeV
 cosθ 𝜋+ > 0.9
PhysRevLett.113.261802
MINERvA
CC1𝜋+ in Carbon (ND280-FGD1)
11/18/15 NuINT 2015, Osaka
 Phase space restriction
 0.18 GeV < P 𝜋< 1.6 GeV, θ 𝜋,μ<700
 Event selections
 Negative muon-like track
 𝜋+-like track
 No 𝜋- in TPC, no e± in TPC or ECAL
 Backgrounds
 Dominated by CC-other (22%)
 Detailed in table
 Three control samples are used
 CC0𝜋1P: to control CC0𝜋 bkg
 CCother1𝜋+: to control CCN𝜋 bkg
 CCother1e±: to control CCX𝜋0 bkg
30
CC1𝜋+ 61% CCres 46%
Work in progress Work in progress
CC1𝜋+ in Carbon (ND280-FGD1)
11/18/15 NuINT 2015, Osaka 31
~2300 candidates (MC), results w/
respect to several variables:
 Reconstructed ν energy
 Muon kinematics (double
differential, Q2,Q3)
 Pion kinematics
 Muon-pion angles
 Hadron invariant mass
 Angles in Adler system, to
compare to ANL data
Analysis is under review.
Work in progress Work in progress
Work in progress Work in progress
Work in progress Work in progress
Backup: CC1𝜋+ in Carbon (ND280-FGD1)
11/18/15 NuINT 2015, Osaka 32
ANL
ANL
Backup: Coherent RS vs AR
11/18/15 NuINT 2015, Osaka 33
11/18/15 NuINT 2015, Osaka
 Dominated systematics: Background model
and vertex activity model
 Vertex activity model:
 Single particle-gun protons are generated
isotropically [0-250 MeV]
 Vertex activity for protons formed
 Extra vertex activity is added randomly
25% of MC events scattering off a neutron
target
34
Wo/ vertex activity added W/ vertex activity added
T2K Preliminary T2K Preliminary
Coherent in Carbon (ND280-FGD1) (cont’d)
Backup: Vertex activity
11/18/15 NuINT 2015, Osaka 35
FGD1
Proton Module
Backup: Coherent FGD1
11/18/15 NuINT 2015, Osaka 36
Backup: Vertex activity
11/18/15 NuINT 2015, Osaka 37
 Use sand muons enhanced
 Data-MC vertex activity
difference is 2.7%
 Vary PE as function of track angle,
simultaneously vary PE in vertex region 
re-estimate cross-section. 13.6%
differences used as systematics
 Add up quenching effect based on Birk’s
law  7.17%, and sum in quadrature
15.37%
Backup: INGRID coherent systematics
11/18/15 NuINT 2015, Osaka 38
Backup: MVA for INGRID coherent
11/18/15 NuINT 2015, Osaka 39
First track angle
0 20 40 60 80
NumberofEvents
0
100
200
300
400
pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
Second track angle
0 20 40 60 80
NumberofEvents
0
50
100
150
200
pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
-like track confidence levelm
0 0.2 0.4 0.6 0.8 1
NumberofEvents
0
0.5
1
1.5
2
3
10´
0.2 0.4 0.6 0.8
0
100
200
300 pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
-like track confidence levelp
0 0.2 0.4 0.6 0.8 1
NumberofEvents
0
1
2
3
3
10´
0.2 0.4 0.6 0.8
0
100
200
300
400
500
pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
-like rangem
0 20 40 60 80 100
NumberofEvents
0
0.2
0.4
0.6
0.8
1
1.2
3
10´
pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
-like light yieldpMean of
0 100 200 300 400 500
NumberofEvents
0
100
200
300
400
pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
-like light yieldmMean of
0 50 100 150 200 250
NumberofEvents
0
200
400
600
800
pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
Coplanarity btw 2 tracks
0 50 100 150
NumberofEvents
0
50
100
150
200
250
pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
Opening angle btw 2 tracks
0 50 100 150NumberofEvents 0
50
100
150
pCC coherentmn
CCQEmn
CC 1pionmn
CC othermn
NCmn
en+mn
B.G. from outside
Backup: FGD
11/18/15 NuINT 2015, Osaka 40
Backup: INGRID
11/18/15 NuINT 2015, Osaka 41

Mais conteúdo relacionado

Mais procurados

ISCRE 21 Philadelphia
ISCRE 21 PhiladelphiaISCRE 21 Philadelphia
ISCRE 21 Philadelphiacheng_chinkui
 
Fluid structure interaction analysis: vortex shedding induced vibrations
Fluid structure interaction analysis: vortex shedding induced vibrationsFluid structure interaction analysis: vortex shedding induced vibrations
Fluid structure interaction analysis: vortex shedding induced vibrationsMarco E. Biancolini
 
Original N-Channel Mosfet 7N65L-TF1-T UTC7N65L 7.4A 650V TO-263 New UTC
Original N-Channel Mosfet 7N65L-TF1-T UTC7N65L 7.4A 650V TO-263 New UTCOriginal N-Channel Mosfet 7N65L-TF1-T UTC7N65L 7.4A 650V TO-263 New UTC
Original N-Channel Mosfet 7N65L-TF1-T UTC7N65L 7.4A 650V TO-263 New UTCAUTHELECTRONIC
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyAntônio Arapiraca
 
Peter W. Egolf - UNIVERSITY OF APPLIED SCIENCES OF WESTERN SWITZERLAND - REFR...
Peter W. Egolf - UNIVERSITY OF APPLIED SCIENCES OF WESTERN SWITZERLAND - REFR...Peter W. Egolf - UNIVERSITY OF APPLIED SCIENCES OF WESTERN SWITZERLAND - REFR...
Peter W. Egolf - UNIVERSITY OF APPLIED SCIENCES OF WESTERN SWITZERLAND - REFR...Centro Studi Galileo
 
Top quark physics at the LHC
Top quark physics at the LHCTop quark physics at the LHC
Top quark physics at the LHCAkira Shibata
 
Ch5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICCh5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICChenming Hu
 
T2K status in 2017
T2K status in 2017T2K status in 2017
T2K status in 2017Son Cao
 
The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.ABDERRAHMANE REGGAD
 
LAM_TOMMY_PRESENTATION_FIN
LAM_TOMMY_PRESENTATION_FINLAM_TOMMY_PRESENTATION_FIN
LAM_TOMMY_PRESENTATION_FINTommy Lam
 
Ch6 lecture slides Chenming Hu Device for IC
Ch6 lecture slides Chenming Hu Device for ICCh6 lecture slides Chenming Hu Device for IC
Ch6 lecture slides Chenming Hu Device for ICChenming Hu
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Ch4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICCh4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICChenming Hu
 
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F Magnachip
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F MagnachipOriginal N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F Magnachip
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F MagnachipAUTHELECTRONIC
 
HDR Vincent Agache Defense
HDR Vincent Agache DefenseHDR Vincent Agache Defense
HDR Vincent Agache Defensevince3859
 
Original NPN Transistor MJD44H11T4G 4H11G TO-252 New ON Semiconductor
Original NPN Transistor MJD44H11T4G 4H11G TO-252 New ON SemiconductorOriginal NPN Transistor MJD44H11T4G 4H11G TO-252 New ON Semiconductor
Original NPN Transistor MJD44H11T4G 4H11G TO-252 New ON Semiconductorauthelectroniccom
 
LinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentationLinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentationPetr Polovodov
 

Mais procurados (19)

ISCRE 21 Philadelphia
ISCRE 21 PhiladelphiaISCRE 21 Philadelphia
ISCRE 21 Philadelphia
 
Fluid structure interaction analysis: vortex shedding induced vibrations
Fluid structure interaction analysis: vortex shedding induced vibrationsFluid structure interaction analysis: vortex shedding induced vibrations
Fluid structure interaction analysis: vortex shedding induced vibrations
 
Original N-Channel Mosfet 7N65L-TF1-T UTC7N65L 7.4A 650V TO-263 New UTC
Original N-Channel Mosfet 7N65L-TF1-T UTC7N65L 7.4A 650V TO-263 New UTCOriginal N-Channel Mosfet 7N65L-TF1-T UTC7N65L 7.4A 650V TO-263 New UTC
Original N-Channel Mosfet 7N65L-TF1-T UTC7N65L 7.4A 650V TO-263 New UTC
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracy
 
Localized Electrons with Wien2k
Localized Electrons with Wien2kLocalized Electrons with Wien2k
Localized Electrons with Wien2k
 
Peter W. Egolf - UNIVERSITY OF APPLIED SCIENCES OF WESTERN SWITZERLAND - REFR...
Peter W. Egolf - UNIVERSITY OF APPLIED SCIENCES OF WESTERN SWITZERLAND - REFR...Peter W. Egolf - UNIVERSITY OF APPLIED SCIENCES OF WESTERN SWITZERLAND - REFR...
Peter W. Egolf - UNIVERSITY OF APPLIED SCIENCES OF WESTERN SWITZERLAND - REFR...
 
Top quark physics at the LHC
Top quark physics at the LHCTop quark physics at the LHC
Top quark physics at the LHC
 
Ch5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICCh5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for IC
 
T2K status in 2017
T2K status in 2017T2K status in 2017
T2K status in 2017
 
The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.
 
LAM_TOMMY_PRESENTATION_FIN
LAM_TOMMY_PRESENTATION_FINLAM_TOMMY_PRESENTATION_FIN
LAM_TOMMY_PRESENTATION_FIN
 
Ch6 lecture slides Chenming Hu Device for IC
Ch6 lecture slides Chenming Hu Device for ICCh6 lecture slides Chenming Hu Device for IC
Ch6 lecture slides Chenming Hu Device for IC
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Ch4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICCh4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for IC
 
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F Magnachip
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F MagnachipOriginal N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F Magnachip
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F Magnachip
 
HDR Vincent Agache Defense
HDR Vincent Agache DefenseHDR Vincent Agache Defense
HDR Vincent Agache Defense
 
Poster
PosterPoster
Poster
 
Original NPN Transistor MJD44H11T4G 4H11G TO-252 New ON Semiconductor
Original NPN Transistor MJD44H11T4G 4H11G TO-252 New ON SemiconductorOriginal NPN Transistor MJD44H11T4G 4H11G TO-252 New ON Semiconductor
Original NPN Transistor MJD44H11T4G 4H11G TO-252 New ON Semiconductor
 
LinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentationLinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentation
 

Destaque

ASK AN EXPERT: Are Your Paid Search Campaigns Prepared for Thanksgiving Weekend?
ASK AN EXPERT: Are Your Paid Search Campaigns Prepared for Thanksgiving Weekend?ASK AN EXPERT: Are Your Paid Search Campaigns Prepared for Thanksgiving Weekend?
ASK AN EXPERT: Are Your Paid Search Campaigns Prepared for Thanksgiving Weekend?Tinuiti
 
Final report on RoRP project evaluation - Islamic Relief
Final report on RoRP project evaluation - Islamic ReliefFinal report on RoRP project evaluation - Islamic Relief
Final report on RoRP project evaluation - Islamic ReliefRissalwan Lubis
 
Edita Kaye - How to Reduce Writer's Stress
Edita Kaye - How to Reduce Writer's StressEdita Kaye - How to Reduce Writer's Stress
Edita Kaye - How to Reduce Writer's StressEdita Kaye
 
Socialmediamarketingplan 140520165154-phpapp01
Socialmediamarketingplan 140520165154-phpapp01Socialmediamarketingplan 140520165154-phpapp01
Socialmediamarketingplan 140520165154-phpapp01DrGLawson
 
Page rank optimization to push successful URLs or products for e-commerce
Page rank optimization to push successful URLs or products for e-commercePage rank optimization to push successful URLs or products for e-commerce
Page rank optimization to push successful URLs or products for e-commerceStefan Duprey
 
Ученый совет 22 мая 2014 - Выборы заведующих кафедрами
Ученый совет 22 мая 2014 -  Выборы заведующих кафедрамиУченый совет 22 мая 2014 -  Выборы заведующих кафедрами
Ученый совет 22 мая 2014 - Выборы заведующих кафедрамиuch_sovet_RGPU
 
Nscu 302 wk 5 1
Nscu 302 wk 5 1Nscu 302 wk 5 1
Nscu 302 wk 5 1jfazaker
 
Accompany Project
Accompany ProjectAccompany Project
Accompany Projectpintailfp7
 
What civil society cannot do
What civil society cannot doWhat civil society cannot do
What civil society cannot dodavebrady72
 
Vt419 v granskning biltvätt
Vt419 v granskning biltvättVt419 v granskning biltvätt
Vt419 v granskning biltvättEmilJorgensen
 

Destaque (15)

Week12
Week12Week12
Week12
 
ASK AN EXPERT: Are Your Paid Search Campaigns Prepared for Thanksgiving Weekend?
ASK AN EXPERT: Are Your Paid Search Campaigns Prepared for Thanksgiving Weekend?ASK AN EXPERT: Are Your Paid Search Campaigns Prepared for Thanksgiving Weekend?
ASK AN EXPERT: Are Your Paid Search Campaigns Prepared for Thanksgiving Weekend?
 
Final report on RoRP project evaluation - Islamic Relief
Final report on RoRP project evaluation - Islamic ReliefFinal report on RoRP project evaluation - Islamic Relief
Final report on RoRP project evaluation - Islamic Relief
 
Edita Kaye - How to Reduce Writer's Stress
Edita Kaye - How to Reduce Writer's StressEdita Kaye - How to Reduce Writer's Stress
Edita Kaye - How to Reduce Writer's Stress
 
PDHPE
PDHPEPDHPE
PDHPE
 
Socialmediamarketingplan 140520165154-phpapp01
Socialmediamarketingplan 140520165154-phpapp01Socialmediamarketingplan 140520165154-phpapp01
Socialmediamarketingplan 140520165154-phpapp01
 
Page rank optimization to push successful URLs or products for e-commerce
Page rank optimization to push successful URLs or products for e-commercePage rank optimization to push successful URLs or products for e-commerce
Page rank optimization to push successful URLs or products for e-commerce
 
Ученый совет 22 мая 2014 - Выборы заведующих кафедрами
Ученый совет 22 мая 2014 -  Выборы заведующих кафедрамиУченый совет 22 мая 2014 -  Выборы заведующих кафедрами
Ученый совет 22 мая 2014 - Выборы заведующих кафедрами
 
sectores economicos links
sectores economicos  linkssectores economicos  links
sectores economicos links
 
Nscu 302 wk 5 1
Nscu 302 wk 5 1Nscu 302 wk 5 1
Nscu 302 wk 5 1
 
The new conversation
The new conversationThe new conversation
The new conversation
 
Accompany Project
Accompany ProjectAccompany Project
Accompany Project
 
Sectores economicos oscar
Sectores economicos oscar Sectores economicos oscar
Sectores economicos oscar
 
What civil society cannot do
What civil society cannot doWhat civil society cannot do
What civil society cannot do
 
Vt419 v granskning biltvätt
Vt419 v granskning biltvättVt419 v granskning biltvätt
Vt419 v granskning biltvätt
 

Semelhante a Charged-Current Pion Production in T2K

ChemFET fabrication, device physics and sensing mechanism
ChemFET fabrication, device physics and sensing mechanismChemFET fabrication, device physics and sensing mechanism
ChemFET fabrication, device physics and sensing mechanismRichard Yang
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告Toshihiro FUJII
 
EAMTA keynote 2014
EAMTA keynote 2014EAMTA keynote 2014
EAMTA keynote 2014Ariel Cedola
 
Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Rene Kotze
 
Recent neutrino oscillation results from T2K
Recent neutrino oscillation results from T2KRecent neutrino oscillation results from T2K
Recent neutrino oscillation results from T2KSon Cao
 
Chapter 15
Chapter 15Chapter 15
Chapter 15Tha Mike
 
Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Blitzer567
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Ryan Kim
 
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...vem2001
 
DOE Hydrogen Program.pdf
DOE Hydrogen Program.pdfDOE Hydrogen Program.pdf
DOE Hydrogen Program.pdfssuser609ecd
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Fundación Ramón Areces
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
KEK PH 2017
KEK PH 2017KEK PH 2017
KEK PH 2017Son Cao
 
PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodeJoão Baltazar
 
Bianchin_PANIC2011
Bianchin_PANIC2011Bianchin_PANIC2011
Bianchin_PANIC2011sbianchin
 

Semelhante a Charged-Current Pion Production in T2K (20)

Proceeding - PANIC
Proceeding - PANICProceeding - PANIC
Proceeding - PANIC
 
ChemFET fabrication, device physics and sensing mechanism
ChemFET fabrication, device physics and sensing mechanismChemFET fabrication, device physics and sensing mechanism
ChemFET fabrication, device physics and sensing mechanism
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
EAMTA keynote 2014
EAMTA keynote 2014EAMTA keynote 2014
EAMTA keynote 2014
 
Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)
 
Recent neutrino oscillation results from T2K
Recent neutrino oscillation results from T2KRecent neutrino oscillation results from T2K
Recent neutrino oscillation results from T2K
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...
 
Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
 
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
 
DOE Hydrogen Program.pdf
DOE Hydrogen Program.pdfDOE Hydrogen Program.pdf
DOE Hydrogen Program.pdf
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
KEK PH 2017
KEK PH 2017KEK PH 2017
KEK PH 2017
 
PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel Code
 
YSchutz_PPTWin
YSchutz_PPTWinYSchutz_PPTWin
YSchutz_PPTWin
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
Clearences
ClearencesClearences
Clearences
 
Bianchin_PANIC2011
Bianchin_PANIC2011Bianchin_PANIC2011
Bianchin_PANIC2011
 

Mais de Son Cao

The Neutrino: Elusive Misfit and Evolutionary Discoveries
The Neutrino: Elusive Misfit and Evolutionary DiscoveriesThe Neutrino: Elusive Misfit and Evolutionary Discoveries
The Neutrino: Elusive Misfit and Evolutionary DiscoveriesSon Cao
 
Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Son Cao
 
Latest results from T2K
Latest results from T2K Latest results from T2K
Latest results from T2K Son Cao
 
VSoN Lab Training: A Concept for Neutrino Detector
VSoN Lab Training: A Concept for Neutrino DetectorVSoN Lab Training: A Concept for Neutrino Detector
VSoN Lab Training: A Concept for Neutrino DetectorSon Cao
 
The Light from the Invisible World of Neutrinos
The Light from the Invisible World of NeutrinosThe Light from the Invisible World of Neutrinos
The Light from the Invisible World of NeutrinosSon Cao
 
Neutrino communication for insider trading
Neutrino communication for insider tradingNeutrino communication for insider trading
Neutrino communication for insider tradingSon Cao
 
My little stories, Vietnam & Experimental High Energy Physics
My little stories, Vietnam & Experimental High Energy PhysicsMy little stories, Vietnam & Experimental High Energy Physics
My little stories, Vietnam & Experimental High Energy PhysicsSon Cao
 
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...Son Cao
 
Measuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorMeasuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorSon Cao
 
Vật chất tối.
Vật chất tối. Vật chất tối.
Vật chất tối. Son Cao
 
Bóng đá và cuộc sống
Bóng đá và cuộc sốngBóng đá và cuộc sống
Bóng đá và cuộc sốngSon Cao
 
Những đối tượng cần giúp đỡ ở Quảng Bình
Những đối tượng cần giúp đỡ ở Quảng BìnhNhững đối tượng cần giúp đỡ ở Quảng Bình
Những đối tượng cần giúp đỡ ở Quảng BìnhSon Cao
 
Người Việt phẩm chất, thói hư, tật xấu
Người Việt phẩm chất, thói hư, tật xấuNgười Việt phẩm chất, thói hư, tật xấu
Người Việt phẩm chất, thói hư, tật xấuSon Cao
 
Khuyến học - Yuichi Fukuzawa
Khuyến học - Yuichi FukuzawaKhuyến học - Yuichi Fukuzawa
Khuyến học - Yuichi FukuzawaSon Cao
 
Different cultures, same science
Different cultures, same scienceDifferent cultures, same science
Different cultures, same scienceSon Cao
 
Connecting in japanese_culture: Words an Images
Connecting in japanese_culture: Words an ImagesConnecting in japanese_culture: Words an Images
Connecting in japanese_culture: Words an ImagesSon Cao
 
Thuvien mot-so-hinh-anh
Thuvien mot-so-hinh-anhThuvien mot-so-hinh-anh
Thuvien mot-so-hinh-anhSon Cao
 
Vision Library introduction
Vision Library introductionVision Library introduction
Vision Library introductionSon Cao
 

Mais de Son Cao (18)

The Neutrino: Elusive Misfit and Evolutionary Discoveries
The Neutrino: Elusive Misfit and Evolutionary DiscoveriesThe Neutrino: Elusive Misfit and Evolutionary Discoveries
The Neutrino: Elusive Misfit and Evolutionary Discoveries
 
Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell
 
Latest results from T2K
Latest results from T2K Latest results from T2K
Latest results from T2K
 
VSoN Lab Training: A Concept for Neutrino Detector
VSoN Lab Training: A Concept for Neutrino DetectorVSoN Lab Training: A Concept for Neutrino Detector
VSoN Lab Training: A Concept for Neutrino Detector
 
The Light from the Invisible World of Neutrinos
The Light from the Invisible World of NeutrinosThe Light from the Invisible World of Neutrinos
The Light from the Invisible World of Neutrinos
 
Neutrino communication for insider trading
Neutrino communication for insider tradingNeutrino communication for insider trading
Neutrino communication for insider trading
 
My little stories, Vietnam & Experimental High Energy Physics
My little stories, Vietnam & Experimental High Energy PhysicsMy little stories, Vietnam & Experimental High Energy Physics
My little stories, Vietnam & Experimental High Energy Physics
 
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
 
Measuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorMeasuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary Detector
 
Vật chất tối.
Vật chất tối. Vật chất tối.
Vật chất tối.
 
Bóng đá và cuộc sống
Bóng đá và cuộc sốngBóng đá và cuộc sống
Bóng đá và cuộc sống
 
Những đối tượng cần giúp đỡ ở Quảng Bình
Những đối tượng cần giúp đỡ ở Quảng BìnhNhững đối tượng cần giúp đỡ ở Quảng Bình
Những đối tượng cần giúp đỡ ở Quảng Bình
 
Người Việt phẩm chất, thói hư, tật xấu
Người Việt phẩm chất, thói hư, tật xấuNgười Việt phẩm chất, thói hư, tật xấu
Người Việt phẩm chất, thói hư, tật xấu
 
Khuyến học - Yuichi Fukuzawa
Khuyến học - Yuichi FukuzawaKhuyến học - Yuichi Fukuzawa
Khuyến học - Yuichi Fukuzawa
 
Different cultures, same science
Different cultures, same scienceDifferent cultures, same science
Different cultures, same science
 
Connecting in japanese_culture: Words an Images
Connecting in japanese_culture: Words an ImagesConnecting in japanese_culture: Words an Images
Connecting in japanese_culture: Words an Images
 
Thuvien mot-so-hinh-anh
Thuvien mot-so-hinh-anhThuvien mot-so-hinh-anh
Thuvien mot-so-hinh-anh
 
Vision Library introduction
Vision Library introductionVision Library introduction
Vision Library introduction
 

Último

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Último (20)

Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

Charged-Current Pion Production in T2K

  • 1. S. V. Cao Kyoto University (On behalf of the T2K collaboration ) Charged-Current Pion Production in T2K 11/18/15 NuINT 2015, Osaka
  • 2. Outline Introduction Charged pion production In water, off-axis Coherent pion production In carbon, on-axis In carbon, off-axis Summary 11/18/15 NuINT 2015, Osaka 2
  • 3. Needs of 𝜋-production in T2K 11/18/15 NuINT 2015, Osaka  Needed for oscillation analysis  Main background around oscillation dip  Energy misreconstruction  𝜋-production itself: FSI model ( 𝜋 absorption, scattering, charge exchange…)  Dominant background to charged-current quasielastic scattering measurements  Pion absorption  Detector inefficiency  Also background to other cross-section measurements  T2K shares same energy peak (0.6 GeV) as MiniBooNE  Compare results 3 PhysRevD.91.072010 PhysRevC.88.017601 νμ CC candidates at T2K far detector 6.6x1020 POT
  • 4. Needs of 𝜋-production in T2K (cont’d) 11/18/15 NuINT 2015, Osaka Outstanding issues:  CC1𝜋+: inconsistency between MINERvA and MiniBooNE in overall normalization and pion kinematics  CC1𝜋 coherent: MINERvA observed this rare interaction above 1.5 GeV, but prediction overestimated at low E 𝜋 T2K important keys to these issues:  Fairly clean N-𝛥 coupling information (narrow peak at 𝛥 resonance ); multiple targets (12C, 16O,…) for FSI constraints  CC1𝜋 coherence below 1.5 GeV (~0.8 GeV for off-axis, ~1.5 GeV for on-axis) 4 arXiv:1406.6415 PhysRevLett.113.261802 MINERvA
  • 5. The T2K experiment 11/18/15 NuINT 2015, Osaka 5  High intensity, pure muon (anti) neutrino beam  The world’s first off-axis designed neutrino experiment  Far Detector (SK) is 2.50 off the beam’s axis  Narrow band beam, peaked at oscillation maximum (0.6 GeV) 5 10 5 0 30 60 90 120 150 180 Angle(degrees) Data Best fit Background component Momentum (MeV/c) 0 500 1000 1500 0 0.2 0.4 0.6 0.8 1 Data Best fit (km/GeV)Recon.L/E 2 10 3 10 0 0.5 1 1.5 Ratiotono oscillations Events/0.1GeV 0 20 40 60 DATA Best-fit MC with Oscillations MC without Oscillations 0 Events/100MeV 2 4 6 8 10 12 14 No oscillation Best fit spectra Data Energy (GeV)mnReconstructed 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Ratio 0.5 1 1.5 PRL. 112, 181801 (2014)PRL 112, 061802 (2014) Paper preparation Paper preparation  Primary goal is to measure precisely neutrino oscillations Stay tuned for:  Observe  CP phase  Unknowns… T2K Preliminary T2K Preliminary
  • 6. T2K on-axis detector: INGRID 11/18/15 NuINT 2015, Osaka 6 Designed for measuring 𝜈 beam intensity, direction and profile  16 scintillator-steel interleaved “standard” modules formed a cross shape (7.1 tons/each)  Fully active scintillator Proton Module to detect protons and pions specifically for cross-section studies. Key features for cross-section: o Broad flux spectrum, mean ~1.51 GeV o Target materials: scintillator and iron o Large number of interactions Upstream view Top view Display of MC event interacted in Proton Module and μ tracked by INGRID
  • 7. T2K off-axis detector: ND280 11/18/15 NuINT 2015, Osaka Aim to understand unoscillated 𝜈 beam: constrains flux and cross-section parameters  Tracker, composed of Fine-Grained Detector (FGD) and Time Projection Chamber (TPC), is central part o Two FGDs: active target w/ scintillator only (FGD1) or scintillator-water interleaved (FGD2) o Three TPCs: mainly Argon (95%) filled, for momentum measurement and particle ID  𝜋0 detector (POD) for water-scintillator target and 𝜋0 tagging  Electromagnetic calorimeters (ECal) to detect gamma rays and reconstruct 𝜋0  Side muon range detectors (SMRD) to tag entering cosmic muons or side-exiting muons Key features for cross-section: o Narrow flux spectrum , mean ~ 0.85 GeV o Multiple targets: scintillator, water, argon, lead o High final state ID resolution, charge separation 7 0.2 T
  • 8. T2K interaction topologies 11/18/15 NuINT 2015, Osaka 8  Final state topologies based on the true particles exiting the nucleus (takes advantage of ND280 high final state ID resolution) (MeV/c)m p 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Numberofentries 0 50 100 150 200 250 Data pCC-0 pCC-1 CC-Other BKG External No truth (MeV/c)m p 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Numberofentries 0 50 100 150 200 250 Data CCQE RES DIS COH NC mnanti- en out FGD FV other no truth (MeV/c)m p 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Numberofentries 0 500 1000 1500 2000 2500 3000 3500 4000 Data CCQE RES DIS COH NC mnanti- en out FGD FV other no truth (MeV/c)m p 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Numberofentries 0 100 200 300 400 500 Data pCC-0 pCC-1 CC-Other BKG External No truth (MeV/c)m p 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Numberofentries 0 500 1000 1500 2000 2500 3000 3500 4000 Data pCC-0 pCC-1 CC-Other BKG External No truth Topology definition Breakdown by final state ID Breakdown by ν generator truth T2K Preliminary T2K Preliminary T2K Preliminary T2K Preliminary T2K Preliminary T2K Preliminary 63% CCQE 39% RES 68% DIS 72% CC0π 51% CC1π 70% CCother
  • 9. T2K recent pion production measurements 11/18/15 NuINT 2015, Osaka 9 Various activities on pion production are ongoing at T2K near detectors. This talk highlights measurements which are official only. ① CC1𝜋+ CC1𝜋+ in water (ND280-FGD2) ② CC1𝜋+ coherent CC1𝜋+ coherence in carbon (ND280-FGD1) CC1𝜋+ coherence in carbon (INGRID)
  • 10. 11/18/15 NuINT 2015, Osaka 10 ① CC1𝜋+ Signal definition Main contribution from resonance Simulation: Rein-Sehgal model NEUT (“official” ν generator) GENIE (alternative ν generator)
  • 11. CC1𝜋+ in Water (ND280-FGD2) 11/18/15 NuINT 2015, Osaka  Signal: CC w/ 1 𝜋+ in water layer of FGD2  Event selection:  Negative muon-like track (TPC)  Positive pion-like track (TPC ID)  Reject events w/ 𝜋0 (ECal)  Muon-like track starts in x-scintillator layer  Phase-space restriction applied to remove areas of low detector acceptance  Dominant backgrounds:  CC 1𝜋+ in scintillator layers (XY)  CC non-1𝜋+ (dominated by DIS) 11 x y True signal Intrinsic bkg. for sideband / GeVp p 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Numberofevents/0.05GeV 0 20 40 60 80 100 120 140 Data XYpCC1 waterpCC1 otherpCC1 XYpCC non-1 waterpCC non-1 otherpCC non-1 CCmnnon Out of FV Data XYpCC1 waterpCC1 otherpCC1 XYpCC non-1 waterpCC non-1 otherpCC non-1 CCmnnon Out of FV 50.6% CC1pi (30.9% from water) T2K Preliminary pqcos 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Numberofevents/0.01 0 20 40 60 80 100 120 140 160 Data XYpCC1 waterpCC1 otherpCC1 XYpCC non-1 waterpCC non-1 otherpCC non-1 CCmnnon Out of FV Data XYpCC1 waterpCC1 otherpCC1 XYpCC non-1 waterpCC non-1 otherpCC non-1 CCmnnon Out of FV P 𝜋,μ > 200 MeV, cosθ 𝜋,μ> 0.3 T2K Preliminary Phase-space restriction scintillator water scintillator
  • 12. CC1𝜋+ in Water (ND280-FGD2)(cont’d) 11/18/15 NuINT 2015, Osaka  Two control samples to constrain background 12 CC-other water-enhancedCC1𝜋+ scintillator / GeVp p 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Numberofevents/0.05GeV 0 10 20 30 40 50 60 70 80 Data XYpCC1 waterpCC1 otherpCC1 XYpCC non-1 waterpCC non-1 otherpCC non-1 CCmnnon Out of FV Data XYpCC1 waterpCC1 otherpCC1 XYpCC non-1 waterpCC non-1 otherpCC non-1 CCmnnon Out of FV / GeVp p 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Numberofevents/0.05GeV 0 10 20 30 40 50 Data XYpCC1 waterpCC1 otherpCC1 XYpCC non-1 waterpCC non-1 otherpCC non-1 CCmnnon Out of FV Data XYpCC1 waterpCC1 otherpCC1 XYpCC non-1 waterpCC non-1 otherpCC non-1 CCmnnon Out of FV  Flux-integrated differential cross section based on Bayesian unfolding method  In muon kinematics  In pion kinematics  In muon-pion angle  In neutrino reconstructed energy T2K Preliminary T2K Preliminary 38% 1𝜋+ XY 6% 1𝜋+ water 38% non-1𝜋+ water 6% 1𝜋+ water
  • 13. 11/18/15 NuINT 2015, Osaka 13 CC1 𝜋+ in Water (ND280-FGD2)(cont’d) T2K PreliminaryT2K Preliminary
  • 14. CC1 𝜋+ in Water (ND280-FGD2)(cont’d) 11/18/15 NuINT 2015, Osaka 14 (GeV)nTrue E 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 /Nucleon)2cm-38 )(10n (Es 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 POT)21 /50MeV/102 flux(/cmmnT2K 0 200 400 600 800 1000 1200 1400 1600 1800 9 10´ fluxmnT2K NEUT prediction GENIE prediction NEUT average GENIE average T2K Run II-IV data T2K Preliminary T2K Preliminary T2K Preliminary  Data lower than GENIE prediction (same as MiniBooNE result)  Suppression observed specifically  P 𝜋+ > 0.3 GeV & P 𝜋+ < 0.8 GeV  cosθ 𝜋+ > 0.9 (coherent channel contribution is significant) (5.56x1020 POT) (5.56x1020 POT) (5.56x1020 POT)
  • 15. 11/18/15 NuINT 2015, Osaka 15 ① CC1𝜋+ CC1𝜋+ in water (ND280-FDG2) CC1𝜋+ in carbon (ND280-FGD1) (under review -MC only) CC1𝜋+ in water (ND280-P0D) (under review -MC only) ② CC1𝜋+ coherent CC1𝜋+ coherence in carbon (ND280-FGD1), ~ 0.8 GeV CC1𝜋+ coherence in carbon (INGRID), ~1.5 GeV  Interesting features  Pion created from off-shell W boson despite small nucleus binding energy (~10s MeV)  Very small four-momentum transfer, |t|~ ℏ2/R2 to leave nucleus in its ground state  Small angle scattering of produced lepton  Puzzle: K2K and SciBooNE found no evidence of CC coherent below 1.5 GeV but NC coherent signal was clearly observed at same energy (GeV)nE 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 /nucleus)2 (cmC pCCcoh. s 0 1 2 3 4 5 6 7 39- 10´ POT)21 /50MeV/102 flux(/cmmn 0 200 400 600 800 1000 1200 1400 1600 1800 2000 9 10´ SciBooNE K2K SciBar AnMINER fluxmnOn-axis NEUT GENIE NEUT flux average GENIE flux average W+
  • 16. Coherent in Carbon (ND280-FGD1) 11/18/15 NuINT 2015, Osaka 16 sideband sideband  Phase-space restriction:  Event pre-selection (CC1𝜋+ )  Negative muon-like track  Positive pion-like track  Additional cuts to enhance coherent interaction  Vertex activity (<300 Photon Equivalent Unit (PEU))  t-momentum transfer (<0.15 GeV2)  Event reduction:  Dominant backgrounds: 48% resonance, 34% deep-inelastic T2K Preliminary T2K Preliminary 300 PEU = 13.8 MeV
  • 17. 11/18/15 NuINT 2015, Osaka  Sidebands to constrain expected N0 of backgrounds in the signal box  Background estimate method  Split sidebands into bins of reconstructed invariant hadronic mass, W  Normalization parameters to fit pion momentum template for each W bin  Background in signal box is retuned based on fitted normalization parameters. 17 Coherent in Carbon (ND280-FGD1) T2K Preliminary T2K Preliminary T2K Preliminary
  • 18. 11/18/15 NuINT 2015, Osaka  An excess of 45±18, with 2.2σ significance  Two models used to estimate signal efficiency  Rein-Seghal: PCAC model; relate with pion-nucleus elastic scattering, use “officially” in event generators, valid for high energy neutrino, less reliable at < 2 GeV  Alvarez-Ruso: Microscopic model; excitation of Δ resonance, full quantum mechanical treatment, valid up to 5 GeV 18 Coherent in Carbon (ND280-FGD1) (cont’d) T2K PreliminaryT2K Preliminary New result Rein-Seghal: Alvarez-Ruso:  Statistical power limited to distinguish between two models Data: 5.54x1020 POT Data: 5.54x1020 POT
  • 19. CC coherent in Carbon (INGRID) 11/18/15 NuINT 2015, Osaka  Challenging:  Pion momentum is not well-reconstructed  impossible to reconstruct |t|-transfer  Unavoidable model-dependence  Coherent interaction enhanced:  Muon angle scattering (<150)  Energy deposit around vertex (<37 MeV) 19 T2K PreliminaryT2K Preliminary (NEUT 5.1.4.2)(NEUT 5.1.4.2)
  • 20. CC coherent in Carbon (INGRID) (cont’d) 11/18/15 NuINT 2015, Osaka  Flux-averaged cross section 20 (GeV)nE 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 /nucleus)2 (cmC pCCcoh.s 0 1 2 3 4 5 6 7 39- 10´ POT)21 /50MeV/102 flux(/cmmn 0 200 400 600 800 1000 1200 1400 1600 1800 2000 9 10´ T2K ND280 (GENIE) SciBooNE K2K SciBar AnMINER T2K on-axis data fluxmn NEUT GENIE NEUT flux average GENIE flux average  Systematics ~60%, dominated by CC resonance  1.7σ data excess, suppression observed at high pion track angle MINERvA SciBooNE T2K Preliminary T2K Preliminary (6.04x1020 POT) (NEUT 5.1.4.2) (NEUT generator)
  • 21. CC coherent in Carbon (INGRID) (cont’d) 11/18/15 NuINT 2015, Osaka  On-going efforts to improve analysis:  Increase signal significance (multi-variate approach to select candidate event)  Use sidebands to control the dominant background (CC resonance and CC deep- inelastic scattering )  More than 2.5σ excess can be achieved if data agrees with GENIE prediction 21 True Neutrino Energy (GeV) 0 2 4 6 8 10 Signalefficiency(%) 0 20 40 60 80 100 MVA method Nominal method ) binsqReconstructed p-cos( 0 2 4 6 8 10 Uncertaintyonsignal(%) 0 10 20 30 40 50 Signal Only Signal + Sidebands ) binsqReconstructed p-cos( 0 2 4 6 8 10 Uncertaintyonbackground(%) 0 20 40 60 Signal Only Signal + Sidebands Work in progress Work in progressWork in progress
  • 22. Up-coming results & Prospects 11/18/15 NuINT 2015, Osaka Up-coming results:  CC1𝜋+ in Carbon (ND280-FGD1)  Under review  CC1𝜋+ in water (ND280-P0D)  under review  CC1𝜋+ with proton identification (ND280-FGD1)  CC1𝜋+ coherent in water (ND280-FGD2) Prospects:  CC1𝜋0 in water (ND280-P0D)  CC1𝜋+ in carbon (INGRID) 22 T2K has near detectors in two different neutrino fluxes simultaneously  unique capacity to make comparisons, joint fit
  • 23. Summary 11/18/15 NuINT 2015, Osaka  Various cross-section measurements with fine final-state resolution, thank to ND280 structures  First exclusive CC1𝜋+ in water indicated suppression at  low momentum (P 𝜋+ > 0.3 GeV & P 𝜋+ < 0.8 GeV)  small pion scattering (cosθ 𝜋+ > 0.9)  First experimental evidence of CC1𝜋+ coherent below 1.5 GeV  Stay tuned for more interesting results!!! 23
  • 24. Backup: dE/dx w/ TPC 11/18/15 NuINT 2015, Osaka 24
  • 25. Backup: GENIE vs NEUT 11/18/15 NuINT 2015, Osaka 25  NEUT: 5.1.4.2 vs GENIE: 2.8.0  Differences: Default values of model parameters Model for off-shell scattering (Smith-Moniz vs Bodek-Ritchie ) Determine pion multiplicity (W-dependent function vs AGKY) Coherent pion production: GENIE use a revised version of Rein- Sehgal (include lepton mass term effect & update pion-nucleon cross-section) NEUT GENIE MACCQE 1.21 GeV/c2 0.99 GeV/c2 MARes 1.21 GeV/c2 1.12 GeV/c2 Threshold for res. meson prod. 2.0 GeV/c2 1.7 GeV/c2
  • 26. Backup: Pion production 11/18/15 NuINT 2015, Osaka 26 PhysRevC.88.017601
  • 27. Backup: CC1𝜋+ in Water 11/18/15 NuINT 2015, Osaka 27 p,mqcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 /nucleon)2cm-38 10´(p,mq/dcossd 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 NEUT GENIE T2K data )D(nE 0 1 2 3 4 5 6 /nucleon)2cm-38 10´))(D(n (Es 0 0.2 0.4 0.6 0.8 1 1.2 NEUT GENIE T2K data mqcos 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 /nucleon)2cm-38 10´(mq/dcossd 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 NEUT GENIE T2K data / GeVm p 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 /nucleon/GeV)2cm-38 10´(m /dpsd 0 0.01 0.02 0.03 0.04 0.05 0.06 NEUT GENIE T2K data
  • 28. CC1𝜋+ in Water: Event migration 11/18/15 NuINT 2015, Osaka 28  Migration (both forward and backward)  Study  Going-through sample  Mask some FGD layer  Rerun reconstruction to verify that vertex reconstructed at first non-masked layer
  • 29. CC1 𝜋+ in Water (ND280-FGD2)(cont’d) 11/18/15 NuINT 2015, Osaka 29 T2K Preliminary T2K Preliminary  Effort to reweight NEUT with MINERvA coherent measurement  Suppression is smaller, but still visible  P 𝜋+ > 0.5 GeV & P 𝜋+ < 0.7 GeV  cosθ 𝜋+ > 0.9 PhysRevLett.113.261802 MINERvA
  • 30. CC1𝜋+ in Carbon (ND280-FGD1) 11/18/15 NuINT 2015, Osaka  Phase space restriction  0.18 GeV < P 𝜋< 1.6 GeV, θ 𝜋,μ<700  Event selections  Negative muon-like track  𝜋+-like track  No 𝜋- in TPC, no e± in TPC or ECAL  Backgrounds  Dominated by CC-other (22%)  Detailed in table  Three control samples are used  CC0𝜋1P: to control CC0𝜋 bkg  CCother1𝜋+: to control CCN𝜋 bkg  CCother1e±: to control CCX𝜋0 bkg 30 CC1𝜋+ 61% CCres 46% Work in progress Work in progress
  • 31. CC1𝜋+ in Carbon (ND280-FGD1) 11/18/15 NuINT 2015, Osaka 31 ~2300 candidates (MC), results w/ respect to several variables:  Reconstructed ν energy  Muon kinematics (double differential, Q2,Q3)  Pion kinematics  Muon-pion angles  Hadron invariant mass  Angles in Adler system, to compare to ANL data Analysis is under review. Work in progress Work in progress Work in progress Work in progress Work in progress Work in progress
  • 32. Backup: CC1𝜋+ in Carbon (ND280-FGD1) 11/18/15 NuINT 2015, Osaka 32 ANL ANL
  • 33. Backup: Coherent RS vs AR 11/18/15 NuINT 2015, Osaka 33
  • 34. 11/18/15 NuINT 2015, Osaka  Dominated systematics: Background model and vertex activity model  Vertex activity model:  Single particle-gun protons are generated isotropically [0-250 MeV]  Vertex activity for protons formed  Extra vertex activity is added randomly 25% of MC events scattering off a neutron target 34 Wo/ vertex activity added W/ vertex activity added T2K Preliminary T2K Preliminary Coherent in Carbon (ND280-FGD1) (cont’d)
  • 35. Backup: Vertex activity 11/18/15 NuINT 2015, Osaka 35 FGD1 Proton Module
  • 36. Backup: Coherent FGD1 11/18/15 NuINT 2015, Osaka 36
  • 37. Backup: Vertex activity 11/18/15 NuINT 2015, Osaka 37  Use sand muons enhanced  Data-MC vertex activity difference is 2.7%  Vary PE as function of track angle, simultaneously vary PE in vertex region  re-estimate cross-section. 13.6% differences used as systematics  Add up quenching effect based on Birk’s law  7.17%, and sum in quadrature 15.37%
  • 38. Backup: INGRID coherent systematics 11/18/15 NuINT 2015, Osaka 38
  • 39. Backup: MVA for INGRID coherent 11/18/15 NuINT 2015, Osaka 39 First track angle 0 20 40 60 80 NumberofEvents 0 100 200 300 400 pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside Second track angle 0 20 40 60 80 NumberofEvents 0 50 100 150 200 pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside -like track confidence levelm 0 0.2 0.4 0.6 0.8 1 NumberofEvents 0 0.5 1 1.5 2 3 10´ 0.2 0.4 0.6 0.8 0 100 200 300 pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside -like track confidence levelp 0 0.2 0.4 0.6 0.8 1 NumberofEvents 0 1 2 3 3 10´ 0.2 0.4 0.6 0.8 0 100 200 300 400 500 pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside -like rangem 0 20 40 60 80 100 NumberofEvents 0 0.2 0.4 0.6 0.8 1 1.2 3 10´ pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside -like light yieldpMean of 0 100 200 300 400 500 NumberofEvents 0 100 200 300 400 pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside -like light yieldmMean of 0 50 100 150 200 250 NumberofEvents 0 200 400 600 800 pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside Coplanarity btw 2 tracks 0 50 100 150 NumberofEvents 0 50 100 150 200 250 pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside Opening angle btw 2 tracks 0 50 100 150NumberofEvents 0 50 100 150 pCC coherentmn CCQEmn CC 1pionmn CC othermn NCmn en+mn B.G. from outside
  • 40. Backup: FGD 11/18/15 NuINT 2015, Osaka 40

Notas do Editor

  1. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  2. Oscillation effect
  3. Discrepancy
  4. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  5. (~8x1029 CH, 2.2x1028 H20)
  6. CO2 as electrical insulator
  7. (~8x1029 CH, 2.2x1028 H20)
  8. (~8x1029 CH, 2.2x1028 H20)
  9. (~8x1029 CH, 2.2x1028 H20)
  10. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  11. (~8x1029 CH, 2.2x1028 H20)
  12. PEU = photon equivalent unit
  13. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  14. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  15. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  16. Specific NEUT/GENIE
  17. Need backgup
  18. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  19. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  20. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  21. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  22. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  23. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  24. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  25. TN199
  26. TN199, run 2, 3,4 data ~5.56e20 POT
  27. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  28. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  29. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  30. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  31. Track momentum 10% resolution
  32. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  33. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  34. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  35. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)
  36. U_{\text{PMNS}}= \left( \begin{matrix} 1 & 0 & 0\\ 0 &c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{matrix} \right) \left( \begin{matrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}}\\ 0 &1 & 0\\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{matrix} \right) \left( \begin{matrix} c_{12} & s_{12} & 0\\ -s_{12} &c_{12} & 0\\ 0 & 0 & 1 \end{matrix} \right)