SlideShare uma empresa Scribd logo
1 de 10
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
1
1. A loadof 10KN is raisedbymeansof a screw jack,havinga square threadedscrew of 12mm pitchand
of meandiameter500mm.if a force of 100 N isappliedatthe endof a levertoraise the load,what
shouldbe the lengthof the leverused? Coefficientof friction=0.15. What isthe mechanical advantage
obtained?State whetherthe screwisself-lockingornot.
Givendata:
W= 10KN = 10×103
N
P=12mm
P1=100N
D=50mm
µ= tan φ = 0.15
Solution:
Lengthof lever,
tan α = p/πd = 0.0764
p= w (tan α + tan φ / 1-tan α tan φ)
T= P× d/2
T=77.25 N-m
T=P1× l
=100× l N-mm
l = 572.5 mm
Mechanical advantage,
M.A =W/p1 = 10×103
/100 = 100
Self-lockingof screw:
ɳ= tan α / tan (α + φ)
ɳ= tan α (1- tan α tan φ) / tan α + tan φ)
ɳ=0.3335; ɳ=33.35%
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
2
2. The followingdataare relatedtoa screw jack:pitch of the threadscrew = 8 mm; diameterof the
screwthread= 40 mm; co-efficientof frictionbetweenscrew andnut=0.1, load20KN; Assumingthat
the loadrotates withthe screw,determine. i,the ratio of torquesrequiredtoraise andlowerthe load.
ii,the efficiencyof the machine.
Givendata:
P= 18 mm; d= 40 mm;ɳ= tan φ=0.1; w= 20KN = 20×103
N
Solution:
Tan α = pc/πd =18/ π×40 = 0.06367
Case:1 Force requiredtoraise the load:
P1= w (tanα + tan φ/ 1-tan α tan φ)
=20×103
(0.1+0.06367/ 1 - 0.1×0.06367)
P1=3294.21N
Torque,T1= p ×(d/2) = 3294.21 × (40÷2)
T1=65884.22 N mm
Case2:
Force requiredtolowerthe load,
P2=w( tan φ – tan φ / 1+ tan φ tan α)
=20×103
( 0.1- 0.06367/ 1+0.1×0.06367)
P2= 722.16 N
Torque, T2 = p× d/2= 722.16 × 40/2
T1=14443.26 N mm
Ratioof torque, T1/T2 = 65884.22/14443.26
T1/T2=4.56
ii,Efficiencyof the machine
ɳ= tan α / tan(α+φ) = tan α(1-tanα . tan φ)/tan α+tan φ
=0.06367 × (1 - 0.1 × 0.06367)/ 0.1+ 0.06367 = 0.3865 ; ɳ= 38.65 %
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
3
3. A single dryplate clutchtransmits7.5Kw at 900 rpm. The axial pressure islimitedto0.07 N/mm2
.If
coefficientof frictionis0.25, find(i) Meanradiusandface widthof the frictionliningassumingthe ratio
of meanradiusto face widthas4 and 2, (ii) Outerandinnerradii of clutch plate.
Givendata:
P= 7.5 Kw = 7.5 × 103
w; N= 900 rpm ; P =0.03 N/mm2
; µ=0.25
Solution:
Mean Radiusand face width
Ratioof meanradiusto face width,
R/w= 4
A = 2π R . w. P
T = n . µ . wR
= n.µ (2π R. w .P) R
= n.µ(2πR × R/4 ×P) R
=π/2 ×n . µ PR3
T=0.055 R3
N-mm
P= T Ѡ
w- 2πN/60 = 94.26 rad/s
T=7.5×103
/94.26
= 79.56 × 103
N-mm
R3
= 79.56 × 103
/ 0.055
R=113 mm
W= R/4 = 28.25 mm
Outerand InnerRadii
W= r1 - r2 = 28.25 mm (i)
Alsoforuniformwear,the men radiusof clutch plate is
R= r1 + r2/2 → r1 + r2 = 2R→ r1 + r2 = 226 mm (ii)
Solving(i) and(ii) r1=127.125 mm; r2= 98.875 mm
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
4
4, A single plate clutch,withbothsideseffective,has outerandinnerdiameters300mm and 200 mm
respectively.The maximumintensityof pressure atanypointincontact surface isnot to exceed0.1
N/mm2
.If coefficientof frictionis0.3,determine the powertransmittedbyaclutch at speed2500 rpm.
Givendata:
d1 =300 mm(or) r1= 150 mm
d2 =200 mm(or) r2 = 100 mm
p= 0.1 N/mm2
; µ= 0.3; N =2500 rpm
Solution:
Ѡ= 2πN/60 =261.8 rad/s
P . r2 = C
C= 0.1 × 100 =10 N/mm
W=2πC (r1 - r2)
=3142 N
R= r1+r2/2 = 125 mm
= 0.125 mm
Torque transmitted,T= n . µ. W R
= 2×0.3×3142×0.125
=235.65 N-mm
Powertransmitted,P=T. Ѡ
= 235.65 × 261.8
=61693 w
=61.693 Kw
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
5
5. Two pulleys,one 450 mmin diameterandthe other200 mm indiameterare on parallel shafts2.1m
apart and are connectedbya belt,asa cross beltdrive.The largerpulleyrotatesat225rpm. The
maximumpermissible tensioninthe beltandthe pulleyis0.25. findthe powerthatcan be transmitted.
Givendata:
d1= 450 mm=0.45 m => r1 = 0.225 m; d2 = 200 mm = 0.2m => r2 = 0.1 m
C= 2.1 m; N= 225 rpm ; T1 =1KN =1000N ; µ=0.25
To find:
Powertransmitted.
Solution:
For a crossedbeltdrive
Sinα = r1 + r2/C = 0.225+0.1 / 2.1
Α = 9.732 ̊
Ɵ= 180 ̊+ 2 α
=180 + 2 × 9.732 ̊
=3.4813 rad
Speedof belt V =πd1N1 /60
=π×0.45×225/60
= 5.3014 m/s
We knowthat,
T1/T2 = eµƟ
T1/T2= e0.25×3.4813
T1/T2=2.3876
T2= T1/2.3876 =1000/2.3876
T2=418.8154 n
Power Transmitted
P = (T1 – T2) V = (1000-418.8154) × 5.3014 = 3081.09 W → P=3.081 kW
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
6
6. A leatherbeltisrequiredtotransmit7.5 KW froma pulley1.2m indiameterrunningat250 rpm.The
angle embracedis165 ̊ and coefficient of friction between the belt and pulley is0.3. if safe working
stressfor leatherbeltis1.5 MPa, densityof leather1Mg/m3
and thicknessof belt10mm, determine the
widthof the belttakingcentrifugal tensionintoaccount.
Givendata:
P 7.5 KW = 7500 W; d= 1.2 mm; N= 250 rpm
Ɵ = 165 ̊= 2.88 rad; µ=0.3; σ =1.5 MPa
Ρ = 1mg/m3
= 1 × 106
g/m3
; t = 10 mm = 0.01 m
Solution:
v=πdN/60
v= 15.71 m/s
P= (T1 – T2) V
T1 – T2=477.4 N
2.3log e(T1/T2) = µƟ
T1/T2 = 2.375
T1= 824.6 N & T2 =347.2 N
m= Area × length× density
= b.t.l.p
m = 10 b kg
Centrifugal tension, Tc= mv2
=10 b (15.71)2
Tc =2468 B n
Maximumtension, T=αbt
T=15000 b N
T= T1 + Tc (or)
15000 b = 824.6 + 2468 b
b = 0.0658 m → b = 65.8 mm
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
7
7. A screwjackhas a square threadof meandiameter60 mm and pitch8 mm.coefficientof frictionat
the screwthread is0.09. A loadof 3KN is to be liftedthrough120 mm. Determine the torque required
and the workdone in liftinginliftingthe load120 mm.Findthe efficiencyof jackalso.
Givendata:
d= 60 mm= 0.06 m; p=8 mm = 0.008 m; µ = 0.09
W= 3KN = 3×103
N
Solution:
Helix angle,α =tan-1
(p/πd)
= tan-1
(0.008/π×0.06)
= 2.43 ̊
Frictionangle,φ= tan-1
µ
=tan-1
0.09 =5.14 ̊
(i) Torque requiredtoraise the load:
T1 = W tan (α+φ).d/2
= (3×103
) [tan (2.43 ̊+5.14 ̊)] (0.06/2)
= 11.96 N.m
(ii) Workdone inliftingthe loadthrough12 cm:
In one complete revolutionof the screwedrod,the loadisliftedthroughadistance equal to
pitch.
Numberof turnsrequiredtoliftthe loadthrougha distance of 12cm = 12/0.8 =15
Work done inliftingthe load,W= 2 π N T
= 2 π × 15 × 11.96 =1127 NM
(iii) Efficiencyof the screwjack:
ɳ screw jack = tan α / tan (α+φ) = tan 2.43 ̊ / tan (2.43 ̊+5.14 ̊)
=0.3193 (or) =31.93%
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
8
8, Two pulleys,one 450 mm diameterandthe other200 mm diameterare onparallel shaft2.1 m apart
and are connectedbya crossedbeltis1 KN andthe coefficientof frictionbetweenthe beltandthe
pulleyis0.25. Find:(i) the lengthof the beltrequired,and(ii) the powerthatcanbe transmitted.
Givendata:
Crossbeltdrive;d1= 450 mm = 0.45 m (or) r1= 0.225 m;
d2=200 mm = 0.2 m (or) r2=0.1 m;
N1=225 rpm; x=2.1 m; T1=1 KN= 1000N; µ= 0.25.
Solution:
(i),Lengthof the beltrequired(L):
L =π (r1+r2) +2x + (r1+r2)2
/x
= π (0.225+0.1) +2×2.1 + (0.225+0.1)2
/2.1
= 5.271 m
(ii),Powertransmitted(P):
We knowthatto findpowertransmitted;firstwe needtodetermine the valuesof T1,T2 and v.
T1=1000 N (given)
V= πd1N1 /60 = π ×0.45×200 / 60
=4.71 m/s
To findƟ:
Ɵ= (180 ̊+ 2α) ×π/180 ̊ rad
Sinα = r1+r2/x
=0.225+2.1
=0.1547 (or)
α =sin-1
0.1547 = 8.9 ̊
Ɵ= (180 ̊+ 2α) ×π/180 ̊
Ɵ= (180 ̊+ 2×8.9 ̊) × π/180 ̊ = 3.452 rad
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
9
To findT2:
T1/T2 =eµƟ
1000/T2 =e0.25×3.452
=2.37 (or) T2 =1000/2.37=421.94 N
To findP:
P= (T1-T2) v
= (1000-421.94) × 4.71 =2722.66 W (or) 2.723 kW
9. In a thrustbearing,the external andinternaldiametersof the contactingsurfacesare 320 mmand
200 mmrespectively.The total axial loadis80 KN and the intensityof pressure is350 KN/m2
.The shaft
rotatesat 400 rpm. Takingthe coefficientof frictionas,calculate the powerlostinovercomingthe
frictionandthe numberof collarsrequired.
Givendata:
d1 = 320 mm (or) r1 = 160 mm = 0.16 m;
d2 = 200 mm (or) r2 = 100 mm= 0.1 m;
W= 80 KN; p= 350 KN/m2
= 350×103
N/m2
;
N= 400 rpm ; µ= 0.06.
Solution:
Ѡ=2πN / 60 = 2π (400)/60 = 41.89 rad/s
Powerlostinovercomingfriction(P)
T = 2/3 µ W [r1
3
-r2
3
/r1
2
-r2
2
]
=2/3×0.06×80×103
[0.163
-0.13
/0.162
-0.12
]
PowerlostfrictionP= T.Ѡ
=635×41.89 = 26600 W = 26.6 kW
We knowthatthe intensityof pressure,
P = W/nπ (r1
2
–r2
2
)
Or = 350 ×103
= 80×103
/n×π[0.162
-0.12
] Or n=4.66, say 5
Unit 5 – Kinematics of Machinery
R.Sivakumar,IIYr ‘C’Section
10
10. A multiplediscclutchtransmits55 kW of powerat 1800 rpm.Coefficientof frictionforthe friction
Surface is0.1. Axial intensityof pressureisnottoexceed160 kN/m2
.The internal radiusis80mm
And0.7 timesthe external radius.Findthe numberof platesneededtotransmitthe requiredtorque.
Givendata: P= 55 kW = 55 × 103
W; N= 1800 rpm; π=0.1; pmax = 160kN/m2
= 160×103
N/m2
;r2 = 80mm =
0.08 m ; r2=0.7 r1
Solution:Give thatr2 = 0.7 r1 = 0.7 r1. r1 = r2/0.7 = 0.08/0.7= 0.1143 m
Assuminguniform wear,the axialforce exertedisgivenby
W = 2 πc(r1-r2) = 2π p max × r2 (r1- r2)
= 2π × 160 × 103
× 0.08 (0.1143 – 0.08) = 2758.57 N
Torque transmittedbya multi plate discclutch,foruniformwear,isgivenby
T =1/2 n µ W (r1 + r2)
= ½ × n ×0.1 × 2758.57 (0.1143 + 0.08) = 26.8 n
55 × 103
2π ×1800 × T/ 60 Or T = 291.78 N.m
Nowequations(i) and(ii),we get
26.8 n = 291.78 or n = 10.887 = 11+
Numberof frictionsurfacesrequired=11
Then,Total numberof plates= Numberof pairs of contact surface + 1
= 11 + 1 = 12 plates
Important Points
Law of belting:The centre lineof the of the belt,asit approachesthe pulley,mustlie inaplane
perpendiculartothe axisof that pulleyormustlie inthe plane of the pulley.Otherwisethe beltwill run
off the pulley.
The centrifugal tensionhasnoeffectonthe powertransmitted.
[Proof:P= (Tt1 – Tt2) v = [(T1+Tc) – (T2 + Tc)] v= = (T1 – T2) v → hence proved]
Maximumtension,T= Maximumstressx Crosssectional areaof belt= 𝑇 = 𝜎 𝑏 𝑡
Where T is maximumtensioninN, σis maximumsafe stressinN/m2
,bisbreadthof beltinm
and t isthicknessof beltinm.
Initial Tensionof belt, 𝑇0 =
𝑇1+𝑇2+2𝑇𝑐
2

Mais conteúdo relacionado

Mais procurados

Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical SystemsLecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Naushad Ahamed
 
Mechanical Vibrations all slides
Mechanical Vibrations all slidesMechanical Vibrations all slides
Mechanical Vibrations all slides
Ebrahim Hanash
 

Mais procurados (20)

Dynamics of Machinery Unit III
Dynamics of Machinery Unit IIIDynamics of Machinery Unit III
Dynamics of Machinery Unit III
 
SOIL DYNAMICS - THEORY OF VIBRATIONS
SOIL DYNAMICS - THEORY OF VIBRATIONSSOIL DYNAMICS - THEORY OF VIBRATIONS
SOIL DYNAMICS - THEORY OF VIBRATIONS
 
4 forced vibration of damped
4 forced vibration of damped4 forced vibration of damped
4 forced vibration of damped
 
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical SystemsLecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
 
mechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical Vibrationsmechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical Vibrations
 
Mechanical Vibrations all slides
Mechanical Vibrations all slidesMechanical Vibrations all slides
Mechanical Vibrations all slides
 
two degree of freddom system
two degree of freddom systemtwo degree of freddom system
two degree of freddom system
 
D03202018036
D03202018036D03202018036
D03202018036
 
Earthquake engineering mcq
Earthquake engineering mcqEarthquake engineering mcq
Earthquake engineering mcq
 
Theory of vibration
Theory of vibrationTheory of vibration
Theory of vibration
 
Chapter 2 lecture 1 mechanical vibration
Chapter 2  lecture 1 mechanical vibrationChapter 2  lecture 1 mechanical vibration
Chapter 2 lecture 1 mechanical vibration
 
Damped Vibration In harmonic oscilation
Damped Vibration In harmonic oscilationDamped Vibration In harmonic oscilation
Damped Vibration In harmonic oscilation
 
Vibtraion notes
Vibtraion notesVibtraion notes
Vibtraion notes
 
Mechanical vibration note
Mechanical vibration note Mechanical vibration note
Mechanical vibration note
 
Mechanical Vibration
Mechanical VibrationMechanical Vibration
Mechanical Vibration
 
Undamped Free Vibration
Undamped Free VibrationUndamped Free Vibration
Undamped Free Vibration
 
J3010 Unit 3
J3010   Unit 3J3010   Unit 3
J3010 Unit 3
 
ME 010 702 Dynamics of Machines
ME 010 702 Dynamics of MachinesME 010 702 Dynamics of Machines
ME 010 702 Dynamics of Machines
 
Undamped free Vibration
Undamped free VibrationUndamped free Vibration
Undamped free Vibration
 
Single degree freedom free vibration
Single degree freedom free vibrationSingle degree freedom free vibration
Single degree freedom free vibration
 

Destaque

Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswers
Vaidyanathan Ramakrishnan
 

Destaque (14)

Human population
Human populationHuman population
Human population
 
Unit1 lectbyvrk dynofmachinery
Unit1 lectbyvrk dynofmachineryUnit1 lectbyvrk dynofmachinery
Unit1 lectbyvrk dynofmachinery
 
Unit5 lectbyvrk dynofmachinery
Unit5 lectbyvrk dynofmachineryUnit5 lectbyvrk dynofmachinery
Unit5 lectbyvrk dynofmachinery
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswers
 
Clutches
ClutchesClutches
Clutches
 
Ppe unit 1
Ppe unit 1Ppe unit 1
Ppe unit 1
 
Clutches - Working and Application
Clutches - Working and ApplicationClutches - Working and Application
Clutches - Working and Application
 
Gear train
Gear trainGear train
Gear train
 
Kinematics of machines,rotating rigid body about axis,
Kinematics of machines,rotating rigid body about axis,Kinematics of machines,rotating rigid body about axis,
Kinematics of machines,rotating rigid body about axis,
 
Introduction to Mechanisms
Introduction to MechanismsIntroduction to Mechanisms
Introduction to Mechanisms
 
Gear trains
Gear trainsGear trains
Gear trains
 
Population ppt
Population ppt Population ppt
Population ppt
 
Population
PopulationPopulation
Population
 
POPULATION GROWTH, VARIATION OF POPULATION AMONG NATIONS & POPULATION EXPLOSION.
POPULATION GROWTH, VARIATION OF POPULATION AMONG NATIONS & POPULATION EXPLOSION.POPULATION GROWTH, VARIATION OF POPULATION AMONG NATIONS & POPULATION EXPLOSION.
POPULATION GROWTH, VARIATION OF POPULATION AMONG NATIONS & POPULATION EXPLOSION.
 

Semelhante a Unit5-KOM

237082910 235794741-check-purlin-z-04-08-14
237082910 235794741-check-purlin-z-04-08-14237082910 235794741-check-purlin-z-04-08-14
237082910 235794741-check-purlin-z-04-08-14
ngoctung5687
 

Semelhante a Unit5-KOM (20)

flywheel
 flywheel flywheel
flywheel
 
flywheel
flywheelflywheel
flywheel
 
Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11
 
Theory of machines solution ch 11
Theory of machines solution ch 11 Theory of machines solution ch 11
Theory of machines solution ch 11
 
TORSION,BENDING SHEAR ..pdf
TORSION,BENDING SHEAR  ..pdfTORSION,BENDING SHEAR  ..pdf
TORSION,BENDING SHEAR ..pdf
 
TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)
 
Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
 
material handling in mines numerical problems
material handling in mines numerical problems material handling in mines numerical problems
material handling in mines numerical problems
 
fdocuments.us_turning-moment-diagram-flywheel.ppt
fdocuments.us_turning-moment-diagram-flywheel.pptfdocuments.us_turning-moment-diagram-flywheel.ppt
fdocuments.us_turning-moment-diagram-flywheel.ppt
 
Torsion-mmmmm-84739392727363638393999909
Torsion-mmmmm-84739392727363638393999909Torsion-mmmmm-84739392727363638393999909
Torsion-mmmmm-84739392727363638393999909
 
Turning moment-diagram-flywheel
Turning moment-diagram-flywheelTurning moment-diagram-flywheel
Turning moment-diagram-flywheel
 
Transmission and distribution system design
Transmission and distribution system designTransmission and distribution system design
Transmission and distribution system design
 
Stress analysis
Stress analysisStress analysis
Stress analysis
 
Stress analysis
Stress analysisStress analysis
Stress analysis
 
T1
T1T1
T1
 
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
 
Capstone project planning PPT presentation
Capstone project planning PPT presentationCapstone project planning PPT presentation
Capstone project planning PPT presentation
 
Electrical Machine design
Electrical Machine designElectrical Machine design
Electrical Machine design
 
Numerical Problem.pptx
Numerical Problem.pptxNumerical Problem.pptx
Numerical Problem.pptx
 
237082910 235794741-check-purlin-z-04-08-14
237082910 235794741-check-purlin-z-04-08-14237082910 235794741-check-purlin-z-04-08-14
237082910 235794741-check-purlin-z-04-08-14
 

Unit5-KOM

  • 1. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 1 1. A loadof 10KN is raisedbymeansof a screw jack,havinga square threadedscrew of 12mm pitchand of meandiameter500mm.if a force of 100 N isappliedatthe endof a levertoraise the load,what shouldbe the lengthof the leverused? Coefficientof friction=0.15. What isthe mechanical advantage obtained?State whetherthe screwisself-lockingornot. Givendata: W= 10KN = 10×103 N P=12mm P1=100N D=50mm µ= tan φ = 0.15 Solution: Lengthof lever, tan α = p/πd = 0.0764 p= w (tan α + tan φ / 1-tan α tan φ) T= P× d/2 T=77.25 N-m T=P1× l =100× l N-mm l = 572.5 mm Mechanical advantage, M.A =W/p1 = 10×103 /100 = 100 Self-lockingof screw: ɳ= tan α / tan (α + φ) ɳ= tan α (1- tan α tan φ) / tan α + tan φ) ɳ=0.3335; ɳ=33.35%
  • 2. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 2 2. The followingdataare relatedtoa screw jack:pitch of the threadscrew = 8 mm; diameterof the screwthread= 40 mm; co-efficientof frictionbetweenscrew andnut=0.1, load20KN; Assumingthat the loadrotates withthe screw,determine. i,the ratio of torquesrequiredtoraise andlowerthe load. ii,the efficiencyof the machine. Givendata: P= 18 mm; d= 40 mm;ɳ= tan φ=0.1; w= 20KN = 20×103 N Solution: Tan α = pc/πd =18/ π×40 = 0.06367 Case:1 Force requiredtoraise the load: P1= w (tanα + tan φ/ 1-tan α tan φ) =20×103 (0.1+0.06367/ 1 - 0.1×0.06367) P1=3294.21N Torque,T1= p ×(d/2) = 3294.21 × (40÷2) T1=65884.22 N mm Case2: Force requiredtolowerthe load, P2=w( tan φ – tan φ / 1+ tan φ tan α) =20×103 ( 0.1- 0.06367/ 1+0.1×0.06367) P2= 722.16 N Torque, T2 = p× d/2= 722.16 × 40/2 T1=14443.26 N mm Ratioof torque, T1/T2 = 65884.22/14443.26 T1/T2=4.56 ii,Efficiencyof the machine ɳ= tan α / tan(α+φ) = tan α(1-tanα . tan φ)/tan α+tan φ =0.06367 × (1 - 0.1 × 0.06367)/ 0.1+ 0.06367 = 0.3865 ; ɳ= 38.65 %
  • 3. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 3 3. A single dryplate clutchtransmits7.5Kw at 900 rpm. The axial pressure islimitedto0.07 N/mm2 .If coefficientof frictionis0.25, find(i) Meanradiusandface widthof the frictionliningassumingthe ratio of meanradiusto face widthas4 and 2, (ii) Outerandinnerradii of clutch plate. Givendata: P= 7.5 Kw = 7.5 × 103 w; N= 900 rpm ; P =0.03 N/mm2 ; µ=0.25 Solution: Mean Radiusand face width Ratioof meanradiusto face width, R/w= 4 A = 2π R . w. P T = n . µ . wR = n.µ (2π R. w .P) R = n.µ(2πR × R/4 ×P) R =π/2 ×n . µ PR3 T=0.055 R3 N-mm P= T Ѡ w- 2πN/60 = 94.26 rad/s T=7.5×103 /94.26 = 79.56 × 103 N-mm R3 = 79.56 × 103 / 0.055 R=113 mm W= R/4 = 28.25 mm Outerand InnerRadii W= r1 - r2 = 28.25 mm (i) Alsoforuniformwear,the men radiusof clutch plate is R= r1 + r2/2 → r1 + r2 = 2R→ r1 + r2 = 226 mm (ii) Solving(i) and(ii) r1=127.125 mm; r2= 98.875 mm
  • 4. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 4 4, A single plate clutch,withbothsideseffective,has outerandinnerdiameters300mm and 200 mm respectively.The maximumintensityof pressure atanypointincontact surface isnot to exceed0.1 N/mm2 .If coefficientof frictionis0.3,determine the powertransmittedbyaclutch at speed2500 rpm. Givendata: d1 =300 mm(or) r1= 150 mm d2 =200 mm(or) r2 = 100 mm p= 0.1 N/mm2 ; µ= 0.3; N =2500 rpm Solution: Ѡ= 2πN/60 =261.8 rad/s P . r2 = C C= 0.1 × 100 =10 N/mm W=2πC (r1 - r2) =3142 N R= r1+r2/2 = 125 mm = 0.125 mm Torque transmitted,T= n . µ. W R = 2×0.3×3142×0.125 =235.65 N-mm Powertransmitted,P=T. Ѡ = 235.65 × 261.8 =61693 w =61.693 Kw
  • 5. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 5 5. Two pulleys,one 450 mmin diameterandthe other200 mm indiameterare on parallel shafts2.1m apart and are connectedbya belt,asa cross beltdrive.The largerpulleyrotatesat225rpm. The maximumpermissible tensioninthe beltandthe pulleyis0.25. findthe powerthatcan be transmitted. Givendata: d1= 450 mm=0.45 m => r1 = 0.225 m; d2 = 200 mm = 0.2m => r2 = 0.1 m C= 2.1 m; N= 225 rpm ; T1 =1KN =1000N ; µ=0.25 To find: Powertransmitted. Solution: For a crossedbeltdrive Sinα = r1 + r2/C = 0.225+0.1 / 2.1 Α = 9.732 ̊ Ɵ= 180 ̊+ 2 α =180 + 2 × 9.732 ̊ =3.4813 rad Speedof belt V =πd1N1 /60 =π×0.45×225/60 = 5.3014 m/s We knowthat, T1/T2 = eµƟ T1/T2= e0.25×3.4813 T1/T2=2.3876 T2= T1/2.3876 =1000/2.3876 T2=418.8154 n Power Transmitted P = (T1 – T2) V = (1000-418.8154) × 5.3014 = 3081.09 W → P=3.081 kW
  • 6. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 6 6. A leatherbeltisrequiredtotransmit7.5 KW froma pulley1.2m indiameterrunningat250 rpm.The angle embracedis165 ̊ and coefficient of friction between the belt and pulley is0.3. if safe working stressfor leatherbeltis1.5 MPa, densityof leather1Mg/m3 and thicknessof belt10mm, determine the widthof the belttakingcentrifugal tensionintoaccount. Givendata: P 7.5 KW = 7500 W; d= 1.2 mm; N= 250 rpm Ɵ = 165 ̊= 2.88 rad; µ=0.3; σ =1.5 MPa Ρ = 1mg/m3 = 1 × 106 g/m3 ; t = 10 mm = 0.01 m Solution: v=πdN/60 v= 15.71 m/s P= (T1 – T2) V T1 – T2=477.4 N 2.3log e(T1/T2) = µƟ T1/T2 = 2.375 T1= 824.6 N & T2 =347.2 N m= Area × length× density = b.t.l.p m = 10 b kg Centrifugal tension, Tc= mv2 =10 b (15.71)2 Tc =2468 B n Maximumtension, T=αbt T=15000 b N T= T1 + Tc (or) 15000 b = 824.6 + 2468 b b = 0.0658 m → b = 65.8 mm
  • 7. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 7 7. A screwjackhas a square threadof meandiameter60 mm and pitch8 mm.coefficientof frictionat the screwthread is0.09. A loadof 3KN is to be liftedthrough120 mm. Determine the torque required and the workdone in liftinginliftingthe load120 mm.Findthe efficiencyof jackalso. Givendata: d= 60 mm= 0.06 m; p=8 mm = 0.008 m; µ = 0.09 W= 3KN = 3×103 N Solution: Helix angle,α =tan-1 (p/πd) = tan-1 (0.008/π×0.06) = 2.43 ̊ Frictionangle,φ= tan-1 µ =tan-1 0.09 =5.14 ̊ (i) Torque requiredtoraise the load: T1 = W tan (α+φ).d/2 = (3×103 ) [tan (2.43 ̊+5.14 ̊)] (0.06/2) = 11.96 N.m (ii) Workdone inliftingthe loadthrough12 cm: In one complete revolutionof the screwedrod,the loadisliftedthroughadistance equal to pitch. Numberof turnsrequiredtoliftthe loadthrougha distance of 12cm = 12/0.8 =15 Work done inliftingthe load,W= 2 π N T = 2 π × 15 × 11.96 =1127 NM (iii) Efficiencyof the screwjack: ɳ screw jack = tan α / tan (α+φ) = tan 2.43 ̊ / tan (2.43 ̊+5.14 ̊) =0.3193 (or) =31.93%
  • 8. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 8 8, Two pulleys,one 450 mm diameterandthe other200 mm diameterare onparallel shaft2.1 m apart and are connectedbya crossedbeltis1 KN andthe coefficientof frictionbetweenthe beltandthe pulleyis0.25. Find:(i) the lengthof the beltrequired,and(ii) the powerthatcanbe transmitted. Givendata: Crossbeltdrive;d1= 450 mm = 0.45 m (or) r1= 0.225 m; d2=200 mm = 0.2 m (or) r2=0.1 m; N1=225 rpm; x=2.1 m; T1=1 KN= 1000N; µ= 0.25. Solution: (i),Lengthof the beltrequired(L): L =π (r1+r2) +2x + (r1+r2)2 /x = π (0.225+0.1) +2×2.1 + (0.225+0.1)2 /2.1 = 5.271 m (ii),Powertransmitted(P): We knowthatto findpowertransmitted;firstwe needtodetermine the valuesof T1,T2 and v. T1=1000 N (given) V= πd1N1 /60 = π ×0.45×200 / 60 =4.71 m/s To findƟ: Ɵ= (180 ̊+ 2α) ×π/180 ̊ rad Sinα = r1+r2/x =0.225+2.1 =0.1547 (or) α =sin-1 0.1547 = 8.9 ̊ Ɵ= (180 ̊+ 2α) ×π/180 ̊ Ɵ= (180 ̊+ 2×8.9 ̊) × π/180 ̊ = 3.452 rad
  • 9. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 9 To findT2: T1/T2 =eµƟ 1000/T2 =e0.25×3.452 =2.37 (or) T2 =1000/2.37=421.94 N To findP: P= (T1-T2) v = (1000-421.94) × 4.71 =2722.66 W (or) 2.723 kW 9. In a thrustbearing,the external andinternaldiametersof the contactingsurfacesare 320 mmand 200 mmrespectively.The total axial loadis80 KN and the intensityof pressure is350 KN/m2 .The shaft rotatesat 400 rpm. Takingthe coefficientof frictionas,calculate the powerlostinovercomingthe frictionandthe numberof collarsrequired. Givendata: d1 = 320 mm (or) r1 = 160 mm = 0.16 m; d2 = 200 mm (or) r2 = 100 mm= 0.1 m; W= 80 KN; p= 350 KN/m2 = 350×103 N/m2 ; N= 400 rpm ; µ= 0.06. Solution: Ѡ=2πN / 60 = 2π (400)/60 = 41.89 rad/s Powerlostinovercomingfriction(P) T = 2/3 µ W [r1 3 -r2 3 /r1 2 -r2 2 ] =2/3×0.06×80×103 [0.163 -0.13 /0.162 -0.12 ] PowerlostfrictionP= T.Ѡ =635×41.89 = 26600 W = 26.6 kW We knowthatthe intensityof pressure, P = W/nπ (r1 2 –r2 2 ) Or = 350 ×103 = 80×103 /n×π[0.162 -0.12 ] Or n=4.66, say 5
  • 10. Unit 5 – Kinematics of Machinery R.Sivakumar,IIYr ‘C’Section 10 10. A multiplediscclutchtransmits55 kW of powerat 1800 rpm.Coefficientof frictionforthe friction Surface is0.1. Axial intensityof pressureisnottoexceed160 kN/m2 .The internal radiusis80mm And0.7 timesthe external radius.Findthe numberof platesneededtotransmitthe requiredtorque. Givendata: P= 55 kW = 55 × 103 W; N= 1800 rpm; π=0.1; pmax = 160kN/m2 = 160×103 N/m2 ;r2 = 80mm = 0.08 m ; r2=0.7 r1 Solution:Give thatr2 = 0.7 r1 = 0.7 r1. r1 = r2/0.7 = 0.08/0.7= 0.1143 m Assuminguniform wear,the axialforce exertedisgivenby W = 2 πc(r1-r2) = 2π p max × r2 (r1- r2) = 2π × 160 × 103 × 0.08 (0.1143 – 0.08) = 2758.57 N Torque transmittedbya multi plate discclutch,foruniformwear,isgivenby T =1/2 n µ W (r1 + r2) = ½ × n ×0.1 × 2758.57 (0.1143 + 0.08) = 26.8 n 55 × 103 2π ×1800 × T/ 60 Or T = 291.78 N.m Nowequations(i) and(ii),we get 26.8 n = 291.78 or n = 10.887 = 11+ Numberof frictionsurfacesrequired=11 Then,Total numberof plates= Numberof pairs of contact surface + 1 = 11 + 1 = 12 plates Important Points Law of belting:The centre lineof the of the belt,asit approachesthe pulley,mustlie inaplane perpendiculartothe axisof that pulleyormustlie inthe plane of the pulley.Otherwisethe beltwill run off the pulley. The centrifugal tensionhasnoeffectonthe powertransmitted. [Proof:P= (Tt1 – Tt2) v = [(T1+Tc) – (T2 + Tc)] v= = (T1 – T2) v → hence proved] Maximumtension,T= Maximumstressx Crosssectional areaof belt= 𝑇 = 𝜎 𝑏 𝑡 Where T is maximumtensioninN, σis maximumsafe stressinN/m2 ,bisbreadthof beltinm and t isthicknessof beltinm. Initial Tensionof belt, 𝑇0 = 𝑇1+𝑇2+2𝑇𝑐 2