SlideShare uma empresa Scribd logo
1 de 27
Baixar para ler offline
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 

z  12   1

2

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n

this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5



z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
2  cis


 4 

4
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

1
1 
 4 2 

i

2
2 

 4  4i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

e.g .i  z 2  4i

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 





k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 




5

z  2cis ,2cis
4
4

k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y

x

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y
2cis



x

z  2  2i, 2  2i

4
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

k  0,1,, n  1

e.g .i  z 2  4i

OR
2
y
z  4cis

2
2cis
4
 2k   

2  k  0,1
z  2cis 
2 
x




3
2cis 
5

z  2cis ,2cis
4
4
4
 1  1 i ,2  1  1 i 
z  2
z  2  2i, 2  2i

 
2  
2
2 
 2
 ii 

x 4  16  0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 




k  0,1, 2,3

3
x  2cis 0, 2cis , 2cis , 2cis
2
2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis 0
x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis


2

2cis

2cis 0
x
2cis 


2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis

Patel: Exercise 4E;
1 to 4 ac


2

2cis

2cis 0
x
2cis 

Cambridge: Exercise 7A;
1, 2, 3 abef, 5, 6, 7,
9 to 14, 16 to 18


2

Mais conteúdo relacionado

Mais procurados

Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
JelaiAujero
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
itutor
 

Mais procurados (20)

Partial Differentiation
Partial DifferentiationPartial Differentiation
Partial Differentiation
 
Limit of Function And Its Types
Limit of Function And Its TypesLimit of Function And Its Types
Limit of Function And Its Types
 
Fundamental Theorem of Calculus
Fundamental Theorem of CalculusFundamental Theorem of Calculus
Fundamental Theorem of Calculus
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.ppt
 
Chapter 4 Integration
Chapter 4  IntegrationChapter 4  Integration
Chapter 4 Integration
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
Continuity of a Function
Continuity of a Function Continuity of a Function
Continuity of a Function
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital Rule
 
Applied Calculus Chapter 3 partial derivatives
Applied Calculus Chapter  3 partial derivativesApplied Calculus Chapter  3 partial derivatives
Applied Calculus Chapter 3 partial derivatives
 
Applications of derivative
Applications of derivativeApplications of derivative
Applications of derivative
 
Second Order Derivative | Mathematics
Second Order Derivative | MathematicsSecond Order Derivative | Mathematics
Second Order Derivative | Mathematics
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
complex numbers
complex numberscomplex numbers
complex numbers
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
 
Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)
 

Destaque

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
Nigel Simmons
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
Nigel Simmons
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
Leo Crisologo
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
swartzje
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
HernanFula
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
itutor
 

Destaque (20)

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
Unit 6.6
Unit 6.6Unit 6.6
Unit 6.6
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Chap4
Chap4Chap4
Chap4
 
Power Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesPower Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's Series
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

Mais de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 

X2 t01 09 de moivres theorem

  • 1. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n
  • 2. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n  r n cos n  i sin n 
  • 3. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n 
  • 4. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n  z  12   1 2  2   1 arg z  tan    1  1   4
  • 5. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan    1  1   4
  • 6. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5  2  cis    4   4 1
  • 7. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1
  • 8. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4  
  • 9. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4   1 1   4 2   i  2 2    4  4i
  • 10. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n k  0,1,, n  1
  • 11. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n e.g .i  z 2  4i k  0,1,, n  1
  • 12. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2 k  0,1,, n  1
  • 13. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      k  0,1 k  0,1,, n  1
  • 14. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      5  z  2cis ,2cis 4 4 k  0,1 k  0,1,, n  1
  • 15. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 z  2  2i, 2  2i
  • 16. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y x z  2  2i, 2  2i
  • 17. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y 2cis  x z  2  2i, 2  2i 4
  • 18. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n k  0,1,, n  1 e.g .i  z 2  4i  OR 2 y z  4cis  2 2cis 4  2k     2  k  0,1 z  2cis  2  x     3 2cis  5  z  2cis ,2cis 4 4 4  1  1 i ,2  1  1 i  z  2 z  2  2i, 2  2i    2   2 2   2
  • 19.  ii  x 4  16  0
  • 20.  ii  x 4  16  0 x 4  16 x 4  16cis 0
  • 21.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3
  • 22.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4    k  0,1, 2,3 3 x  2cis 0, 2cis , 2cis , 2cis 2 2
  • 23.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i
  • 24.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y x
  • 25.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis 0 x
  • 26.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis  2 2cis 2cis 0 x 2cis   2
  • 27.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis Patel: Exercise 4E; 1 to 4 ac  2 2cis 2cis 0 x 2cis  Cambridge: Exercise 7A; 1, 2, 3 abef, 5, 6, 7, 9 to 14, 16 to 18  2