SlideShare uma empresa Scribd logo
1 de 72
Baixar para ler offline
(1) Area Below x axis
                        Areas
           y
                                    y = f(x)




                                x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x


 f  x dx  0
 b

a
(1) Area Below x axis
                               Areas
             y
                                           y = f(x)


                          A1


                      a        b       x


   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                               Areas
             y
                                                y = f(x)


                          A1

                                        c   x
                      a        b   A2

   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b


 A1   f  x dx
              b

             a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b

                                             A2    f  x dx
                                                         c
 A1   f  x dx
              b

             a                                           b
Area below x axis is given by;
Area below x axis is given by;

                 A    f  x dx
                        c

                        b
Area below x axis is given by;

                 A    f  x dx
                         c

                         b

                        OR

                         f  x dx
                         c
                    
                        b
Area below x axis is given by;

                 A    f  x dx
                            c

                         b

                        OR

                         f  x dx
                            c
                    
                        b


                            OR
                      f  x dx
                        b

                        c
e.g. (i)        y       y  x3




           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0




           -1       1   x
e.g. (i)        y       y  x3          0         1
                                 A    x dx   x 3 dx
                                            3
                                       1         0


                                  
                                       4
                                         x 1  4 x 0
                                       1 40 1 41

           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0


                                  
                                      4
                                        x 1  4 x 0
                                      1 40 1 41

           -1       1   x             1
                                      4
                                                 4
                                                     
                                    0   1   4  0
                                                      1
                                                      4
                                                         1

                                    1 1
                                   
                                    4 4
                                    1
                                   units 2
                                    2
e.g. (i)        y             y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
                                         units 2
                                          2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
    4  0
   1
     1
   2
   1
   units 2
   2
(ii)             y   y  x x  1 x  2 




       -2   -1         x
(ii)                           y    y  x x  1 x  2 




        -2            -1              x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                      0
                  3        2
             2                      1
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

           x 4  x3  x 2    x 4  x3  x 2 
             1                     1
           4
                            2  4
                                               0
                                                 
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

           x 4  x3  x 2    x 4  x3  x 2 
             1                        1
           4
                             2  4
                                                    0
                                                      
          2 1  14   13   12    1  2 4   2 3   2 2   0
                                                                            
              4                              4                             
           1
          units 2
           2
(2) Area On The y axis
 y
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)                        d
                               3 A   g  y dy
                                        c
                   (a,c)

                           x
(2) Area On The y axis                (1) Make x the subject
  y                                        i.e. x = g(y)
       y = f(x)                       (2) Substitute the y coordinates
             (b,d)                             d
                                      3 A   g  y dy
                                               c
                     (a,c)
                               x

e.g.        y                y  x4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                               d
                                        3 A   g  y dy
                                                 c
                     (a,c)
                               x

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                               x         A   y dy
                                                  4

                                             1

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4

                                             4  5 5
                                            16 4  14 
                                             5          
                     1   2     x             124
                                                units 2
                                              5
(3) Area Between Two Curves
 y




                              x
(3) Area Between Two Curves
 y                                y = f(x)…(1)




                              x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




                                     x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




     a          b                    x
(3) Area Between Two Curves
 y                       y = g(x)…(2)         y = f(x)…(1)




      a           b                      x

     Area = Area under (1) – Area under (2)
(3) Area Between Two Curves
 y                            y = g(x)…(2)       y = f(x)…(1)




      a              b                       x

     Area = Area under (1) – Area under (2)
            b             b
            f  x dx   g  x dx
            a             a
(3) Area Between Two Curves
 y                             y = g(x)…(2)       y = f(x)…(1)




      a               b                       x

     Area = Area under (1) – Area under (2)
            b              b
            f  x dx   g  x dx
            a              a
            b
             f  x   g  x dx
            a
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
             x x
              5
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx




                          x
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                               1    1 
             x5  x  0                        x2  x6 
                                               2    6 0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                               1    1 
             x5  x  0                        x2  x6 
                                               2    6 0
             xx 4  1  0
                                              1 1 2  1 1 6   0
                                               
             x  0 or x  1                             
                                              2       6     
                                              1
                                              unit 2
                                              3
2002 HSC Question 4d)




The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                         x2  5x  4  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
                        A is (1, 3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4
                       1 x3  5 x 2  4 x 
                    
                      3        2           1
                                            
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                      
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
     y  x  4.         4
                   A    x  4   x 2  4 x  dx
                        1
                        4
                        x 2  5 x  4 dx
                        1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                    
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
                        9
                         units 2
                        2
2005 HSC Question 8b)                                              (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola and area between circle and x axis
It is easier to subtract the area under the parabola from the quadrant.
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                    2          0
                                                
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                    2          0
                                                

                             1 3 3 2
                         1  1  2 1  0
                              3       2            
It is easier to subtract the area under the parabola from the quadrant.
                                     1
                    A    2     x 2  3 x  2 dx
                         1       2

                         4           0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                      2        0
                                                

                             1 3 3 2
                         1  1  2 1  0
                              3         2          
                          5  units 2
                                 
                              6
Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18*


     Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*

Mais conteúdo relacionado

Mais procurados

X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)Nigel Simmons
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230samhui48
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsNigel Simmons
 

Mais procurados (9)

Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Mat 128 11 3
Mat 128 11 3Mat 128 11 3
Mat 128 11 3
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
Figures
FiguresFigures
Figures
 
Cg
CgCg
Cg
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 

Semelhante a 11X1 T14 04 areas

11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integralsUrbanX4
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)Nigel Simmons
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt projectcea0001
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systemstaha25
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 
[4] num integration
[4] num integration[4] num integration
[4] num integrationikhulsys
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Mohd Paub
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)Nigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)Nigel Simmons
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regionsHimani Asija
 

Semelhante a 11X1 T14 04 areas (20)

11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
Integration. area undera curve
Integration. area undera curveIntegration. area undera curve
Integration. area undera curve
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)
 
Business math
Business mathBusiness math
Business math
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
 
Derivadas
DerivadasDerivadas
Derivadas
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
Cs 601
Cs 601Cs 601
Cs 601
 
Exercise #11 notes
Exercise #11 notesExercise #11 notes
Exercise #11 notes
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 

Mais de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 

Último (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 

11X1 T14 04 areas

  • 1. (1) Area Below x axis Areas y y = f(x) x
  • 2. (1) Area Below x axis Areas y y = f(x) A1 a b x
  • 3. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a
  • 4. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a  A1   f  x dx b a
  • 5. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 b a  A1   f  x dx b a
  • 6. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A1   f  x dx b a
  • 7. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A2    f  x dx c  A1   f  x dx b a b
  • 8. Area below x axis is given by;
  • 9. Area below x axis is given by; A    f  x dx c b
  • 10. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b
  • 11. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b OR   f  x dx b c
  • 12. e.g. (i) y y  x3 -1 1 x
  • 13. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0 -1 1 x
  • 14. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x
  • 15. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   4 4 1  units 2 2
  • 16. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1  units 2 2
  • 17. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2
  • 18. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2
  • 19. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2   4  0 1 1 2 1  units 2 2
  • 20. (ii) y y  x x  1 x  2  -2 -1 x
  • 21. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1
  • 22. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1   x 4  x3  x 2    x 4  x3  x 2  1 1 4   2  4   0 
  • 23. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1   x 4  x3  x 2    x 4  x3  x 2  1 1 4   2  4   0   2 1  14   13   12    1  2 4   2 3   2 2   0     4   4  1  units 2 2
  • 24. (2) Area On The y axis y y = f(x) (b,d) (a,c) x
  • 25. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (b,d) (a,c) x
  • 26. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) (a,c) x
  • 27. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x
  • 28. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 2 x
  • 29. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 x y 4 1 2 x
  • 30. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 e.g. y y  x4 1 x y 4 1 2 x
  • 31. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 1 2 x
  • 32. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 4  5 5  16 4  14  5  1 2 x 124  units 2 5
  • 33. (3) Area Between Two Curves y x
  • 34. (3) Area Between Two Curves y y = f(x)…(1) x
  • 35. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) x
  • 36. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x
  • 37. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2)
  • 38. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a
  • 39. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a b    f  x   g  x dx a
  • 40. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant.
  • 41. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x
  • 42. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5
  • 43. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 44. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 45. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 1  x5  x  0   x2  x6  2 6 0 xx 4  1  0 x  0 or x  1
  • 46. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 1  x5  x  0   x2  x6  2 6 0 xx 4  1  0 1 1 2  1 1 6   0    x  0 or x  1  2 6  1  unit 2 3
  • 47. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
  • 48. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2)
  • 49. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously
  • 50. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x
  • 51. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0
  • 52. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0
  • 53. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4
  • 54. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4  A is (1, 3)
  • 55. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4.
  • 56. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1
  • 57. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1
  • 58. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x    3 2 1 
  • 59. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2 
  • 60. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2  9  units 2 2
  • 61. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region.
  • 62. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 63. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 64. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola
  • 65. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola and area between circle and x axis
  • 66.
  • 67. It is easier to subtract the area under the parabola from the quadrant.
  • 68. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0
  • 69. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0 
  • 70. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0   1 3 3 2    1  1  2 1  0 3 2 
  • 71. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0   1 3 3 2    1  1  2 1  0 3 2     5  units 2   6
  • 72. Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18* Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*