SlideShare uma empresa Scribd logo
1 de 67
Baixar para ler offline
Functional Regression Analysis
Manuel FebreroBande
Dpt. de Estadística e Inv. Operativa
Univ. de Santiago de Compostela
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Table of Contents
1 Linear Models
Basis representation
Principal Components
Partial Least Squares
Examples
2 Non Linear and Semi Linear Models
Non Linear
Semi Linear Model
3 Generalized Models
Generalized Linear Models
Generalized Additive Models
4 Examples
Tecator
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Table of Contents
1 Linear Models
Basis representation
Principal Components
Partial Least Squares
Examples
2 Non Linear and Semi Linear Models
Non Linear
Semi Linear Model
3 Generalized Models
Generalized Linear Models
Generalized Additive Models
4 Examples
Tecator
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Introduction
Suppose that X ∈ L2(T) and y ∈ R. Assume also that
E [X(t)] = 0, ∀t ∈ [0, T] and E [y] = 0.
The functional linear regression model states that
y = X, β + =
T
X(t)β(t)dt +
where β ∈ L2(T) and is the error term.
One way of estimating β, it is representing the parameter (and optionally
Xi ) in a L2-basis in the following way:
β(t) =
k
βk θk (t), Xi (t) =
k
ci,k ψk (t)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Representation in a basis
Observed the sample {(X1, y1), . . . , (Xn, yn)}, we can approximate Xi
and β using a nite sum of basis elements:
Xi (t) =
Kx
k
cik ψk (t), β(t) =
Kβ
k
bk θk (t)
X = CΨ(t), β = θ b
where y = X, β + ≈ CΨθ b + = Zb +
b = (Z Z)−1
Z y,
ˆy = CJψθb = Zb = Z(Z Z)−1
Z y = Hy
with Jψθ = ( ψi , θj )ij . The choice of the appropiate basis becomes now
in a crucial step.
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Estimation of β
Fixed basis: B-spline, Wavelets, Fourier.
Ramsay and Silverman (2005), Ramsay and Silverman (2002),
Cardot (2000), Cardot et al. (2003), Antoniadis and Sapatinas
(2003) . . .
Functional Principal Components (FPC).
Silverman (1996), Cardot et al. (1999), Cardot and Sarda (2005),
Hall et al. (2006), Cardot et al. (2007), Yao and Lee (2005),. . .
Partial Least Squares (FPLS).
Preda and Saporta (2005), Krämer et al. (2008), . . .
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Principal components (PC)
The principal components of X are linear combinations given by the
eigenfunctions {vk }k≥1
of the covariance operator of X:
X(t) =
k
ck vk (t), ck = X, vk
where vk are the solution of the eigenvalue equation
T
Σ(t, s)vk (s)ds = λk vk (t), vk , vl = 1{k=l},
and Σ(t, s) = Cov(X(s), X(t)) ∀t, s ∈ [0, T]
As in classical multivariate setting, the process X and the set of its
principal eigenfunctions, {vk }k≥1
span the same linear space.
So, the PC's constitutes an orthonormal basis of L2.
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Fitted, Residuals, Leverage
Once a Functional Linear Model is estimated, then
yi = Xi , β(kn) =
kn
k=1
vik βk =
kn
k=1
vik
v·k Y
nλk
−→ Y = H(kn)Y
where H(kn) is the n × n hat matrix, given by:
H(kn) =
1
n
v·1v·1
λ1
+ · · · +
v·kn v·kn
λkn
.
So, the Cov(Y |X1, . . . , Xn) = σ2
H(kn). The leverage (0 ≤ H(kn),ii ≤ 1) is
a measure of the inuence a priori of a given observation in prediction.
As Tr H(kn) = kn, we can mark that observations (Xi , yi ) with leverage
much larger than the average (kn/n).
The residuals can now be written in matrix form:
e = Y − Y = In − H(kn) Y = v(kn+1:n)β(kn+1:n) + In − H(kn) ,
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Residual Variance
Using Cardot et al. (2003) and Hall et al. (2006), the term
v(kn+1:n)β(kn+1:n) can be neglected if n is large enough and kn has been
chosen suitably. Moreover, as Tr In − H(kn) = n − kn, it is not dicult
to see that:
E [e e|X1, . . . , Xn] = n
β2
kn+1
λkn+1
+ · · · +
β2
n
λn
+ (n − kn) σ2
,
which suggests that the error variance σ2
may be estimated by the
functional residual variance estimate, s2
R , given by:
s2
R =
e e
n − kn
.
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Measures of inuence
The functional Cook's measure for prediction
CPi =
y − y(−i,kn) y − y(−i,kn)
s2
R
,
The functional Cook's measure for estimation
CEi =
β(kn) − β(−i,kn)
2
s2
R
n
kn
k=1
1
λk
,
The functional Peña's measure for prediction
Pi =
si si
s2
R H(kn),ii
,
where si = yi − y(−1,kn),i , . . . , yi − y(−n,kn),i
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Example with PC's
t = seq(0, 1, length = nt - 51)
covexp = function(t1, t2) {
3 * exp(-abs(t1 - t2)/0.5)
}
Sigma = outer(t, t, covexp)
X = rproc2fdata(n - 200, t, sigma = Sigma)
plot(X)
0.0 0.2 0.4 0.6 0.8 1.0
-6-226
Gaussian process
t
X(t)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Example with PC's cont'ed
res = eigen(Sigma)
pc5teo = fdata(t(res$vector[, 1:5]), argvals = t) #Theo. PC's
pc5teo[[data]] = sweep(pc5teo[[data]], 1, norm.fdata(pc5teo),
/)
res.est = fdata2pc(X, ncomp = 5) # Estimated PC's
pc5est = res.est$rotation
0.0 0.2 0.4 0.6 0.8 1.0
-1.5-0.50.51.5
Theo. PC's
X(t)
0.0 0.2 0.4 0.6 0.8 1.0
-1.5-0.50.51.5
Estimated PC's
rotation
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
FLM with PC's I
betaf = t + log(t + 0.1)
betaf = fdata(betaf, argvals = t) #Theo. Beta
vteo = inprod.fdata(pc5teo, betaf) # Theo. Coefs
vest = inprod.fdata(pc5est, betaf) # Estim. coefs
comb.func = function(X, coefs) {
t = X$argvals
Xnew = sweep(X$data, 1, coefs, *)
Xnew = fdata(apply(Xnew, 2, sum), argvals = t, rangeval = X$rangeval,
names = X$names)
return(Xnew)
}
betapc5t = comb.func(pc5teo, vteo)
betapc5e = comb.func(pc5est, vest)
y = 4 + drop(inprod.fdata(X, betaf)) + rnorm(n, sd = 0.5) # Simulated response
res.pc = fregre.pc(X, y, l = 1:5)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
FLM with PC's II
0.0 0.2 0.4 0.6 0.8 1.0
-2.0-1.00.01.0
fdataobj
t
X(t)
Theor.
Oracle Theo. (5)
Oracle Est. PC(5)
Estim. from data
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
FLM with PC's III
summary(res.pc)
 *** Summary Functional Data Regression with Principal Components ***

 Call:
 fregre.pc(fdataobj = X, y = y, l = 1:5)

 Residuals:
 Min 1Q Median 3Q Max
 -1.46463 -0.34188 -0.00754 0.36205 1.48351

 Coefficients:
 Estimate Std. Error t value Pr(|t|)
 (Intercept) 4.03876 0.03721 108.553  2e-16 ***
 PC1 -0.12819 0.02836 -4.520 1.08e-05 ***
 PC2 -0.84670 0.04904 -17.265  2e-16 ***
 PC3 0.30974 0.08688 3.565 0.000458 ***
 PC4 -0.35799 0.10170 -3.520 0.000538 ***
 PC5 -0.11690 0.15306 -0.764 0.445917
 ---
 Signif. codes:
....
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
FLM with PC's IV
2 3 4 5
246
R-squared= 0.63
Fitted values
y
2 3 4 5
-1.50.01.5
Residuals vs fitted.values
Fitted values
Residuals
2 3 4 5
0.01.0
Scale-Location
Fitted values
Standardizedresiduals
0.02 0.04 0.06 0.08
0100200
Leverage
Leverage
Index.curves
-3 -2 -1 0 1 2 3
-1.50.01.5
Residuals
Theoretical Quantiles
SampleQuantiles
-1.50.01.5
Residuals
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
FLM with PC's V
....

 Residual standard error: 0.5262 on 194 degrees of freedom
 Multiple R-squared: 0.6349, Adjusted R-squared: 0.6255
 F-statistic: 67.46 on 5 and 194 DF, p-value:  2.2e-16


 -With 5 Principal Components is explained 91.31 %
 of the variability of explicative variables.

 -Variability for each principal components -PC- (%):
 PC1 PC2 PC3 PC4 PC5
 58.79 19.68 6.26 4.57 2.02
 -Names of possible atypical curves: No atypical curves
 -Names of possible influence curves:
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
FLM with PC's VI
2 3 4 5
246
R-squared= 0.63
Fitted values
y
2 3 4 5
-1.50.01.5
Residuals vs fitted.values
Fitted values
Residuals
2 3 4 5
0.01.0
Scale-Location
Fitted values
Standardizedresiduals
0.02 0.04 0.06 0.08
0100200
Leverage
Leverage
Index.curves
-3 -2 -1 0 1 2 3
-1.50.01.5
Residuals
Theoretical Quantiles
SampleQuantiles
-1.50.01.5
Residuals
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Choice of kn I
To avoid a perfect t, Cardot et al. (1999) proposed to estimate β by
taking βk = 0, for k ≥ kn + 1, with 0  kn  n and λkn
 0, and
minimizing the residual sum of squares given by:
RSS β(1:kn) =
n
i=1
yi −
kn
k=1
cik βk
2
= Y − c(1:kn)β(1:kn)
2
,
where Y = (y1, . . . , yn) , β(1:kn) = (β1, . . . , βkn
) and c(1:kn) is the n × kn
matrix whose k-th column is the vector c·k = (c1k , . . . , cnk ) , the k-th
principal component score, which veries c·k c·k = nλk and c·k c·l = 0, for
k = l. So,
β(1:kn) =
c·1
Y
nλ1
, . . . ,
c·kn
Y
nλkn
, β(kn) =
kn
k=1
βk vk =
kn
k=1
c·k Y
nλk
vk .
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Choice of kn II
The optimal kn should be chosen taking into account the work by Hall
et al. (2006) that establishes:
Hall et al. (2006)
E β − β(kn)
2
|X =
σ2
n
kn
k=1
1
λk
+
∞
k=kn+1
β, vk
2
Predictive Cross-Validation:
PCV (k) = 1
n
n
i=1
yi − Xi , β(−i,k)
2
,
Model Selection Criteria:
MSC (k) = log 1
n
n
i=1
yi − Xi , β(k)
2
+ pn
k
n ,
pn = 2 (AIC),
pn = 2n/(n − k − 2) (AICc),
pn = log(n)/n (SIC)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Example
res.pc3 = fregre.pc(X, y, l = 1:3)
res.pc7 = fregre.pc(X, y, l = 1:7)
basis.x = create.bspline.basis(c(0, 1), nbasis = 21)
basis.b5 = create.bspline.basis(c(0, 1), nbasis = 5)
basis.b7 = create.bspline.basis(c(0, 1), nbasis = 11)
res.basis5 = fregre.basis(X, y, basis.x = basis.x, basis.b = basis.b5)
res.basis7 = fregre.basis(X, y, basis.x = basis.x, basis.b = basis.b7)
0.0 0.2 0.4 0.6 0.8 1.0
-2.0-1.00.01.0
PC's-Basis Example
X(t)
Beta
PC(3)
PC(7)
Spl(5)
Spl(11)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
PC Ridge Regression
Cardot et al. (2007) have proposed to modied the estimation of β in
order to solve its stability when some terms corresponding to small
eigenvalues are added to the model.
βRR
(kn) =
kn
k=1
Cov(ˆc·k , y)
ˆλk + rn
ˆvk .
where rn  0 (ridge parameter).
E β − βRR
(kn)
2
|X =
σ2
n
kn
k=1
ˆλk
ˆλk + rn
2
+ r2
n
kn
k=1
β, ˆvk
2
ˆλk + rn
2
+
+
∞
k=kn+1
β, ˆvk
2
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Partial Least Squares (PLS) [Preda and Saporta (2005)]
The basis idea of PLS approach is to construct a set of orthogonal
random variables {νi }i≥1
in the linear space spanned by X taking into
account the covariance between Y and X.
The PLS components are obtained in the following iterative way:
1 Dene y0 = y − ¯y and X0 = X − ¯X and let l = 0
2 Let tl+1 = Xl , wl+1 , where wl+1 ∈ L2 such that Cov(yl , tl+1)
2
is
maximal. Then wl+1 = Cov(yl , Xl ) / ||Cov(yl , Xl )||
3 Let yl+1 = yl − ul+1tl+1 where ul+1 = Cov(yl , tl+1) /Var[tl+1] and
Xl+1 = Xl − νl+1tl+1 where νl+1 = Cov(Xl , tl+1) /Var[tl+1]
4 Let l = l + 1 and back to step 2.
Finally, X = ¯X + l tl νl and y = ¯y + l ul tl + e
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
MV PLS estimation I
Let X = (Xi (τj )) the (n × T) matrix with the evaluations of functional
data at the discretization points {τj }
T
j=1
and y the response vector
(n × p).
1 Select a weight non-zero vector w of length T (for example a row of
X or the PC1) and normalize it.
2 Compute a score vector t = Xw, t is (n × 1)
3 Compute a y-loading vector q = y t, q is (p × 1)
4 Compute a y-score vector u = yq, u is (n × 1)
5 Compute a new weight vector w1 = X u and normalize it.
6 If ||w − w1||  the convergence is obtained, otherwise w = w1 and
go to step 2.
The pair (t, u) are the scores, respectively, for X and y.
These six steps can be summarized obtaining the rst eigenvector of
the matrices X YY X and XX YY .
The components (p, b) for X and y are computed in the following
way:
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
MV PLS estimation II
7 Compute the loading vector p = X t/(t t)
8 Deact X computing X1 = X − tp
9 Compute regression of Y onto t: b = y t/(t t)
10 Adjust y using b: y1 = y − tb
11 If more are needed then set X = X1 and y = y1 and go to 1.
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Best selection of components I
res.pc.cv = fregre.pc.cv(X, y, 5)
res.pc.cv2 = fregre.pc.cv(X, y, 5, rn = seq(0, 0.5, len = 11),
criteria = CV)
res.basis.cv = fregre.basis.cv(X, y, basis.x = 13:17, basis.b = 5:11)
res.pls.cv = fregre.pls.cv(X, y, 4, criteria = CV)
 Opt. PC: 2 1 4
 PCRR: 2 1 4 3 -
 Basis X 13 Basis B: 5
 PLS 1
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Best selection of components II
0.0 0.2 0.4 0.6 0.8 1.0
-2.0-1.00.00.51.0
Beta
t
X(t)
Beta
PC
PCRR
PLS
Spl
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Prediction
PC
r^2: 0.655
s^2: 0.236
3 4 5 6
2345
3456
PLS
r^2: 0.548
s^2: 0.306
2 3 4 5 2 3 4 5
2345
B-Spline
r^2: 0.665
s^2: 0.231
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Remarks on FLM
Penalized versions of PC or PLS can also be applied simply
substituting {X}
n
i=1
by ˜X
n
i=1
with ˜Xi = (I + λP)
−1
Xi and P a
penalization matrix.
Bootstrap methods can be adapted to test or study dierent aspects
of the FLM
res.boot = fregre.bootstrap(res.pc3, nb = 500, wild = FALSE)
lines(betaf, lwd = 2)
0.0 0.2 0.4 0.6 0.8 1.0
-2.0-1.00.01.0
beta.est bootstrap
X(t)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Bootstrap on Regression Models I
Fit the funcional linear model to the dataset and obtain ˆβ, ˆyi , ˆei , . . ..
Consider the statistic ˆθ you want to replicate
Depends on model and it is homoskedastic (β, r2
, s2
R ,...) ⇒ Obtain
B standard bootstrap samples of size n from the dataset of sample
curves (denoted by Xb
1 , . . . , Xb
n where Xb
i = Xi∗ ). Optional
Smooth the bootstrap samples of both sets of curves and residuals.
Obtain Xb
i = Xb
i + Zb
i where Zb
i is a Gaussian process with zero
mean and covariance operator γX ΓX , (0 ≤ γX ≤ 1)
Depends on model and on i-element or it is heteroskedastic
(ˆyi , IFi , . . .) ⇒ Fix Xb
i = Xi
Obtain B standard bootstrap samples of size n from the residuals
(denoted by eb
= eb
1
, . . . , eb
n ).
Homoskedasticity. Naive boostrap (eb
i = ei∗ ) or Smoothed bootstrap
(eb
i = eb
i + zb
i , where zb
i is normally distributed with mean 0 and
variance γe s2
R , (0 ≤ γe ≤ 1).)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Bootstrap on Regression Models II
Heteroskedasticity. Wild Bootstrap. eb
i = f (ˆei )v∗
i with
f (ˆei ) =



ˆei
n
n−kn
Opt1
ˆei /
√
1 − hii Opt2
ˆei /(1 − hii ) Opt3
and
v∗
i =
−(
√
5 − 1)/2 with prob. (
√
5 + 1)/2
√
5
−(
√
5 + 1)/2 with prob. (
√
5 − 1)/2
√
5
(Golden rule).
Let ˆθb
B
b=1
the statistic associated for each bootstrap dataset
The nal estimated is:
Condence Interval: Consider the (1 − α)-quantile (c1−α) of
ˆθb − ˆθ
B
b=1
and dene IC(1 − α) = θ : θ − ˆθ ≤ c1−α
Hypothesis testing: pˆθ = B
b=1 1 ˆθb
≤ ˆθ /B
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Tecator dataset
850 900 950 1000 1050
2.02.53.03.54.04.55.05.5
Spectrometric curves
Wavelength (mm)
Absorbances
850 900 950 1000 1050
−0.02−0.010.000.010.020.030.040.05
Spectrometric curves
Wavelength (mm)
d(Absorbances,1)
850 900 950 1000 1050
−0.004−0.0020.0000.0020.004
Spectrometric curves
Wavelength (mm)
d(Absorbances,2)
Figure : Tecator example. From left to right: Absorbances, rst and second
derivative coloured by the content of fat (blue=low, red=high)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Tecator example
data(tecator)
ab = tecator$absorp.fdata
ab2 = fdata.deriv(ab, 2)
dataf = as.data.frame(tecator$y) # Fat, Protein, Water
tt = ab[[argvals]]
b.pc0 = create.pc.basis(ab, 1:4)
b.pc2 = create.pc.basis(ab2, 1:4)
basis.x = list(ab = b.pc0, ab2 = b.pc2)
f = Fat ~ ab + ab2
ldata = list(df = dataf, ab = ab, ab2 = ab2)
res = fregre.lm(f, ldata, basis.x = basis.x)
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Tecator results
summary(res)

 Call:
 lm(formula = pf, data = XX, x = TRUE)

 Residuals:
 Min 1Q Median 3Q Max
 -10.8067 -1.9219 0.2561 1.8306 9.0273

 Coefficients:
 Estimate Std. Error t value Pr(|t|)
 (Intercept) 18.14233 0.20772 87.342  2e-16 ***
 ab.PC1 0.15511 0.08402 1.846 0.06633 .
 ab.PC2 4.70801 1.52557 3.086 0.00231 **
 ab.PC3 -13.37410 4.58308 -2.918 0.00391 **
 ab.PC4 0.26779 2.46191 0.109 0.91349
 ab2.PC1 3437.06617 386.05052 8.903 2.85e-16 ***
 ab2.PC2 2688.52106 1525.50024 1.762 0.07949 .
 ab2.PC3 932.68030 432.69736 2.156 0.03228 *
 ab2.PC4 628.03681 767.97070 0.818 0.41442
 ---
 Signif. codes:
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Tecator results II
summary(res)
....
 ab2.PC4 628.03681 767.97070 0.818 0.41442
 ---
 Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 3.046 on 206 degrees of freedom
 Multiple R-squared: 0.945, Adjusted R-squared: 0.9428
....
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Tecator Diagnosis I
10 20 30 40 50 60
-10-50510
Fitted values
Residuals
Residuals vs Fitted
43
44
7
-3 -2 -1 0 1 2 3
-4-2024
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
43
7
44
10 20 30 40 50 60
0.00.51.01.52.0
Fitted values
Standardizedresiduals
Scale-Location
43
7
44
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Tecator Diagnosis II
850 900 950 1000 1050
2.03.55.0
Spectrometric curves
Wavelength (mm)
Absorbances
850 900 950 1000 1050
-0.0040.002
Spectrometric curves
Wavelength (mm)
d(Absorbances,2)
850 900 950 1000 1050
-1.50.01.5
Beta ab, r^2: 0.218
t
rotation
850 900 950 1000 1050
-100001000
Beta ab2, r^2: 0.707
t
rotation
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Table of Contents
1 Linear Models
Basis representation
Principal Components
Partial Least Squares
Examples
2 Non Linear and Semi Linear Models
Non Linear
Semi Linear Model
3 Generalized Models
Generalized Linear Models
Generalized Additive Models
4 Examples
Tecator
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Non Linear Model [Ferraty and Vieu (2006)]
Suppose (X, y) are a pair of r.v. with y ∈ R and X ∈ E where E is a
semi-metric space. To predict the response Y with X, the natural
estimator is the conditional expectation:
m(X) = E(Y |X = X),
where the NW estimator is given by:
ˆm(X) =
n
i=1
Yi K(h−1
d(X, Xi ))
n
i=1
K(h−1
d(X, Xi ))
,
where K is a asymmetric kernel function and h is the bandwidth
parameter.
Cross-Validation hopt = arg min CV (h)
CV (h) =
n
i=1
yi − ˆm(−i)(Xi )
2
or any of the GCV methods (MSC).
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Conditional distribution
Another alternative is to use the cumulative conditional distribution
FY |X=X (y) = FX
Y (y) = P(Y ≤ y|X = X)
and computing from this, for example, the median or the quantiles
med(X) = inf {y ∈ R, FY |X=X (y) ≥ 1/2}
tα(X) = inf {y ∈ R, FY |X=X (y) ≥ α}
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Asymptotics
Conditions for regression function:
m : E → R, lim
d(X ,X)→0
m(X ) = m(X),
m : E → R, |m (X) − m (X ) |  Cd (X , X)
β
Conditions for conditional distributions
F : E × R → R, lim
d(X ,X)→0
FX
Y (y) = FX
Y (y), lim
d(y ,y)→0
FX
Y (y ) = FX
Y (y)
F : E × R → R, |FX
Y (y ) − FX
Y (y)|  C d (X , X)
β
+ d (y , y)
β
Indeed, the small ball probability condition is needed
P(X ∈ B(X, )) = ϕX ( )  0 and the existence of conditional moments
greater than 2.
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Semi Linear Model [Aneiros-Pérez and Vieu (2006)]
Let (X, Z, y) with y ∈ R (response), X ∈ E (functional) and Z ∈ Rp
(MV covariates).
y = Zβ + m(X) +
The parameters of the model are estimated by:
ˆβh = ˜Zt
h
˜Zh
−1
˜Zt
h ˜yh,
˜mh(X) =
n
i=1
Wnh(X, Xi )(yi − Zt
i
ˆβh)
where
˜Zh = (I − Wh) Z, ˜yh = (I − Wh) y, Wh = Wnh (Xi , Xj )ij ,
Wnh (X, Xi ) = K(d(X,Xi )/h
n
j=1 K(d(X,Xj )/h
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Diagnosis, Residuals, Inuence
Fitted values: yi = HX Y where HX is the projection or smoothing
matrix (n × n)
Residuals: e = (I − HX )Y
Eq. degrees of freedom: df (H) = tr(H)
Cov(Y |X1, . . . , Xn) = σ2
HX .
Residual variance: s2
R = e e
n−df (HX ) .
Inuence: (0 ≤ HX,ii ≤ 1).
So, we can label those observations (Xi , yi ) with more inuence than
the average (3df (HX )/n).
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Tecator example I
fat = tecator$y$Fat
res.np = fregre.np(ab2, fat, h = 5e-04)
summary(res.np)
 *** Summary Functional Non-linear Model ***

 -Call: fregre.np(fdataobj = ab2, y = fat, h = 5e-04)

 -Bandwidth (h): 5e-04
 -R squared: 0.9928937
 -Residual variance: 1.626762 on 151.737 degrees of freedom
 -Names of possible atypical curves: No atypical curves
 -Names of possible influence curves: 5 6 7 10 11 31 33 34 35 43
 It prints only the 10 most influence curves
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Tecator example II
10 20 30 40 50
01020304050
R-squared= 0.99
Fitted values
y
10 20 30 40 50
-3-1123
Residuals vs fitted.values
Fitted values
Residuals
10 20 30 40 50
0.00.51.01.5
Scale-Location
Fitted values
Standardizedresiduals
0.0 0.2 0.4 0.6 0.8 1.0
050100200
Leverage
Leverage
Index.curves
5671011
3133 3435
43
99
122
131132
140143
171174175
183
-3 -2 -1 0 1 2 3
-3-1123
Residuals
Theoretical Quantiles
SampleQuantiles
-3-1123
Residuals
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Table of Contents
1 Linear Models
Basis representation
Principal Components
Partial Least Squares
Examples
2 Non Linear and Semi Linear Models
Non Linear
Semi Linear Model
3 Generalized Models
Generalized Linear Models
Generalized Additive Models
4 Examples
Tecator
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Generalized Linear Models
Let y belonging to a Exponential Family PDF:
f (y; θ, τ) = h(y; τ) exp
b(θ)T(y) − A(θ)
d(τ)
where h(y; τ), b(θ), T(y), A(θ) and d(τ) are known. In this case,
E(Y ) = µ = A (θ) and Var(Y ) = A (θ)d(τ).
y is related with a covariate X(X) through a linear predictor η = Xβ
( X, β ) and a link function g such that E(y) = µ = g−1
(η).
Distribution Link Function Mean Variance
Normal Identity: η = µ µ = η 1
Binomial Logit: η = ln( µ
1−µ ) µ = 1
1+exp(−η) µ(1 − µ)
Poisson Log: η = ln(µ) µ = exp(η) µ
Gamma Inverse: η = 1/µ µ = 1/η µ2
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Estimation of η
Typically, to estimate η, project X and β onto a nite number of
elements of a functional basis:
η = X, β ≈
pX
i=1
pβ
j=1
xi φi , ψj βj = xT
Jβ
with X(t) =
pX
i=1
xi φi (t) and β(t) =
pβ
j=1
βj ψj (t)
Fixed basis: B-spline, Wavelets, Fourier.
James (2002), . . .
Functional Principal Components (FPC).
Cardot and Sarda (2005); Escabias et al. (2004, 2005); Müller and
Stadtmüller (2005),. . .
Partial Least Squares (FPLS).
Preda and Saporta (2005), Escabias et al. (2007). . .
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Estimation of Generalized Linear Models
Iterated Reweighted Least Squares (IRLS)
Let ˆη0 = Xˆβ0 ( X, ˆβ0 ) the initial or current estimate of the linear
predictor with tted value ˆµ0 = g−1
(ˆη0)
Form the adjusted dependent variate z0 = ˆη0 + (y − ˆµ0)g (ˆµ0)
Dene the weights W0 = 1/(Var[ˆµ0] g (ˆµ0)2
)
Regress z0 on the covariates X with weights W0 to obtain new
estimates ˆβ0, (ˆη0, ˆµ0)
Repeat until changes in parameters and/or deviance are small
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Generalized Additive Models (MV)
As in GLM, the response variable y is estimated through a sum of
smooth functions of the covariates X and a g link function.
E(y) = µ = g−1
(β0 +
K
j=1
fj (Xj ))
with Xj the columns of X and E(fj (Xj )) = 0
ESTIMATION: IRLS mixed with BACKFITTING steps
Let ˆη0 = ˆβ0 +
K
j=1
ˆfj (Xj ), the initial or current estimate of the
linear predictor with tted value ˆµ0 = g−1
(ˆη0)
Form the adjusted dependent variate z0 = ˆη0 + (y − ˆµ0)g (ˆµ0)
Dene the weights W0 = 1/(V (ˆµ0)g (ˆµ0)2
)
Regress using Backtting steps z0 on the covariates X with weights
W0
Repeat until changes in functions and/or deviance are small
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Functional Spectral Additive Models Müller and Yao (2008)
Consider the PC representation of X
X(t) = µ(t) +
k
xk vk (t)
where vk (t) is the k eigenfunction and xk the scores. Then, the
Functional Spectral Additive Model is dened as:
Y = β0 +
K
k=1
fk (xk ) +
with with E( ) = 0, Var[ ] = σ2
and E(fk (xk )) = 0, ∀k = 1, 2, . . . , K
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Functional Generalized Spectral Additive Models
Consider (again) the PC representation of X (or other representation)
X(t) = µ(t) +
k
xk vk (t)
where vk (t) is the k eigenfunction and xk the scores.
Then, the Functional Generalized Spectral Additive Model is dened to
verify:
E(y) = g−1
β0 +
K
k=1
fk (xk )
with E(fk (xk )) = 0, ∀k = 1, 2, . . . , K
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Functional Generalized Kernel Additive Models
Febrero-Bande and González-Manteiga (2013)
Given several functional variables (X1
, d1), . . . , (Xp
, dp) (dj is a
semi-metric)
Then, the Functional Generalized Kernel Additive Model is dened to
verify:
E(y) = µ = g−1
β0 +
K
k=1
fk (Xk
)
with E(fk (Xk
)) = 0, ∀k = 1, 2, . . . , p
In the backtting step, the functional non parametric method is used
ˆfk (Xk
0
) =
N
i=1
yi − ˆβ0 − j=k
ˆfj (Xj
i ) K dk (Xk
0
, Xk
i )/hk
N
j=1
K dk (Xk
0
, Xk
j )/hk
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Practical considerations
Our model only uses distances between data → Other spaces than
L2.
How to avoid concurvity in FDA? The Distance Correlation proposed
by Székely et al. (2007) works although is not yet proved for FDA.
Avoiding overtting. Control the global amount of smoothing at
each step. GCV.
Convergence. Using Buja et al. (1989), the global convergence is
ensured and also oracle property.
Boundary eect in FDA is closely related to small ball probabilities.
Are your data closely surrounded with your chosen semi-metrics?
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Table of Contents
1 Linear Models
Basis representation
Principal Components
Partial Least Squares
Examples
2 Non Linear and Semi Linear Models
Non Linear
Semi Linear Model
3 Generalized Models
Generalized Linear Models
Generalized Additive Models
4 Examples
Tecator
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
fda.usc Febrero-Bande and Oviedo de la Fuente (2012)
Let fat,ab,ab1 and ab2, the response and the covariates.
ldata=list(df=data.frame(fat=fat),
ab=ab,ab1=ab1,ab2=ab2)
b.pc0=create.pc.basis(ab,1:4)
b.pc1=create.pc.basis(ab1,1:4)
b.pc2=create.pc.basis(ab2,1:4)
basis.x=list(ab=b.pc0,ab1=b.pc1,ab2=b.pc2)
Correlation Distances Székely et al. (2007)
R d2(fat) d2(X) d2(X ) d2(X )
d2(fat) 1.000 0.454 0.886 0.956
d2(X) 0.454 1.000 0.669 0.497
d2(X ) 0.886 0.669 1.000 0.930
d2(X ) 0.956 0.497 0.930 1.000
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
FGLM
res.glm=fregre.glm(fat∼ab+ab2,data=ldata, basis.x=basis.x)
Estimate Std. Error t value Pr( |t|)
(Intercept) 18.14233 0.20772 87.342  2e-16 ***
ab.PC1 0.15511 0.08402 1.846 0.06633 .
ab.PC2 4.70801 1.52557 3.086 0.00231 **
ab.PC3 -13.37410 4.58308 -2.918 0.00391 **
ab.PC4 0.26779 2.46191 0.109 0.91349
ab2.PC1 3437.06617 386.05052 8.903 2.85e-16 ***
ab2.PC2 2688.52106 1525.50024 1.762 0.07949 .
ab2.PC3 932.68030 432.69736 2.156 0.03228 *
ab2.PC4 628.03681 767.97070 0.818 0.41442
Residual standard error: 3.046 on 206 d.f.
Multiple R-squared: 0.945, Adjusted R-squared: 0.9428
F-statistic: 442.3 on 8 and 206 DF, p-value:  2.2e-16
cor(fat, β1, ab )2 = 21.8%, cor(fat, β2, ab2 )2 = 70.7%
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
850 900 950 1000 1050
2.03.04.05.0
Spectrometric curves
Wavelength (mm)
Absorbances
850 900 950 1000 1050
−0.0040.0000.004
Spectrometric curves
Wavelength (mm)
d(Absorbances,2)850 900 950 1000 1050
−1.50.01.0
beta.est
t
rotation
850 900 950 1000 1050
−10000500
beta.est
t
rotation
Figure : Tecator example. Estimation of beta parameters
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
GSAM
res.gsam=fregre.gsam(fat∼s(ab)+s(ab2),data=ldata,
basis.x=basis.x)
Parametric coecients: Estimate Std. Error t value Pr( |t|)
(Intercept) 18.14233 0.05041 359.9 2e-16 ***
Approximate signicance of smooth terms
edf Ref.df F p-value
s(ab.PC1) 5.548 6.654 4.696 0.000111 ***
s(ab.PC2) 1.000 1.000 27.491 4.40e-07 ***
s(ab.PC3) 1.980 2.536 17.891 8.23e-09 ***
s(ab.PC4) 7.127 8.126 4.471 5.38e-05 ***
s(ab2.PC1) 7.115 8.110 242.865  2e-16 ***
s(ab2.PC2) 7.381 8.305 5.004 1.03e-05 ***
s(ab2.PC3) 8.276 8.797 5.052 5.61e-06 ***
s(ab2.PC4) 5.986 7.130 7.532 4.52e-08 ***
R-sq.(adj) = 0.997 Deviance explained = 99.7%
GCV score = 0.6927 Scale est. = 0.54638 n = 215
cor(fat, K
k=1 fk (xab
k ))2 = 35.2%, cor(fat, K
k=1 fk (xab2
k ))2 = 89.6%
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
GKAM
res.gkam=fregre.gkam(fat∼s(ab)+s(ab2),data=ldata)
alpha= 18.2 n= 215 Converged? Yes Iterations:4
Smoothed terms
h cor(f(X),eta) edf
f(ab2) 0.000371 1.000 88.7
f(ab) 9.410000 0.409 1.6
Residual deviance= 116.361 Null deviance= 34735.44
AIC= 662.88 Deviance explained= 99.7 %
R-sq.= 0.997 R-sq.(adj)= 0.994
cor(fat, f1(ab))2
= 16.9%, cor(fat, f2(ab2))2
= 99.6%
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qqq
q
qqqqqq
q
qqq
q
q
q
q
q
q
qq
q
q
qqq
q
q
qq
qq
q
qqqq
q
q
qq q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
qqqq q
q
q
q q
q
q q q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q q
q
q
q
q
q
q
q
q
qqq
q
q
q
qq
qq q
q
q
q
q
q
q
q
qq q q
q
q
q
0 10 20 30 40 50
−10−505
GLM
Fat
Residuals
q
q
q
q q qq
q
q
q q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qqqq
q
q
q
q
q q q qq
q
q
q
q
qqqq
q
q
q
q
qqq
q
qqq
q
qq
qq
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
qq
q
q
q
q
q qq
q
q
q
q
q
q
qq
q
q
q
q
q q
q
q
q
qq
q
q
q
q
qq
q
q
q
qq
q
q
q q q
qq
q
q
q
q q
q
q q
q
q
q
q
q
qq
q
qqq
q
qq
qq
q
q
qq
q
q q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q q
q
q
q
q
q q q
qq
q
q
qqq
q
q
qq
qq
q
q
q
q
q
q
q
q q
q
q
q q q
q
q q
0 10 20 30 40 50
−10−505
GSAM
Fat
Residuals
q qqq q qqq qq q
q
qqq qqqqqq qqq qqqqq q q qq q q q qqq qq q qqqq q
q qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqq qq q qqq qqqqqqqqqqqq qqqqq q qqqqq q
q q q q q q q q q q qq
q qqqqqqqq qqqq q q qq qq q q qq q q q q q qqqq q q q q q q q q q qqq qqqqqqqq qqqq q q qqq q q q qq q q q q q
0 10 20 30 40 50
−10−505
GKAM
Fat
Residuals
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
qq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
qq
qqq
q
q
q
qq q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q q q q
q q
q
q q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
qqq
q
q
q
qqq
q q
q
q
q
q
q
q
q
qq q q
q
q
q
0 10 20 30 40 50
0246810
GLM
Fat
|Residuals|
q
q
q
q q qq
q
q
q
qq
q
q
q qq
q
q
q
q
qqq
q
q
qqq
q
q
q
q
q q q
qq
q
q
q
q
qqqq
q
q q
q
q
qq
qqqq
q
q
q
qqqq
q
q
q
qq
q
qq
q
qq
q
q
q
qqq
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
qqqq
q
q
q q
q
q q
qq
q
qqqqq
q
q
q
q
qq
q
q q q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
qq
q
qqqqq
q
qq
q
q
qq
q
q
q
q
qq
q
q
qq
q
q q
q
q
q
q
q
q q
q
q
q
q
q
q q q
qq
q
qqqq
qq
q
q
qq
q
q
q
q
q
qq
q
q
q qq q q
q q q
0 10 20 30 40 50
0246810
GSAM
Fat
|Residuals|
q qqq q qqq qq q
q
qqq qqqqqq qqq qqqqq q q qq q q q qqq qq q qqqq q
q qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq qqqqqqqqqqqq qq q qqq qqqqqqqqqqqq qqqqq q qqqqq q
q
q q q q q q q q q q
qq qqqqqqqq qqqq q q qq qq q q qq q q q q q qqqq q q q q q q q q q qqq qqqqqqqq qqqq q q qqq q q q qq q q q q q
0 10 20 30 40 50
0246810
GKAM
Fat
|Residuals|
Figure : Diagnostic plots for Tecator example
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Fat
10 20 30 40 50 60
q
q
q
q
q
qq
q
qq
q
q
qqqqqqq qq
qq q
q qqqq
q
q
qq
q
qq
qq q
qq
q
qqq
q
q
q
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqq
q q
q
qq qqqq qqqq qq qqq
qqqq qq
qq q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qqqqqqqqqqqq
q
qqqq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqq qqqqqqq
q
qq qq
q
q qq
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
qqq qqqq qq qq q
q qqqq
q
q
qq
q
qq
qqq
q q
q
qqq
q
q
q
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqq
q q
q
qq qqqq qqqqqq qqq
qqqqq
q
q qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqqqqqqqq q
q
qq qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqqqq qqqq q
q
qq qq
q
q qq
q
q
q
q
q
10 20 30 40 50
01020304050
q
q
q
q
q
qq
q
qq
q
q
qqq qqqqqqqq q
qqqqq
q
q
qq
q
qq
q qq
qq
q
qqq
q
q
q
qqq qqqqqqqqqqqqqqqqqqqqqqq qqq qqqq qqq qqqq qq
qqqqqqq qqqqq
q q
q
q qqqqqqqqqq qqqq
qqqqqq
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqqqq qqqq q
q
qqqq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqqqq qqqqq
q
q qqq
q
qqq
q
q
q
q
q
103050
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqq
q
qqq
q
q q
qqqq q q
qq
q
q
q
qq
q
qq
q
qq
q
q q
q
qqqqqqqqqqqqqqqqqq
qqqqqqqqq
qq
qqqqqqqqqqqqqqqqqqqqqqqqq q
qq
qq
q
q
qq
qqqq
qq
qq
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q q q
q q
q
q
q
q
q
q
q
qqqqqqqqqqqq
q qqqq
q
q q
q
q
qq
q
q
q
q
q
q
q q q q
q
q
q
q
q
q
q
q
qqqqq
q
qqq
qqqq q
qq
qq
q
q
qq
q
q
q
q
q
FGLM
Est.5.5%
Pr.CV 1.91 q
q
q
q
q
q
q
q
q
q
q
q
qqq qqq
q
qq q
q
q q
qqqqqq
qq
q
q
q
qq
q
q q
q
qq
q
q q
q
qqqqqqqqqqqqqqqqqq
qqqqqqqqq
qq
qqqqqqqqqq qqq qqqqqqqqqqqqq
qq
qq
q
q
qq
qqqq
qq
qq
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q q q
q q
q
q
q
q
q
q
q
qqqqqqqqqqq q
q qq qq
q
qq
q
q
q q
q
q
q
q
q
q
q qq q
q
q
q
q
q
q
q
q
qqqqqq
qq qqqq qq
qq
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq qqq
q
qqq
q
q q
qqqq q q
qq
q
q
q
q q
q
qq
q
qq
q
qq
q
qqq qqqqqqqqqqqqqqq
qqqqqqqq q
qq
qqqq qqq qqqq qq
qqqqqqq qqqqqq
q q
q q
q
q
qq
qqqq
q q
qq
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q qq
q q
q
q
q
q
q
q
q
qqqqqqq qqqq q
q qqqq
q
qq
q
q
qq
q
q
q
q
q
q
q q q q
q
q
q
q
q
q
q
q
qqqqq
q
qq qqqqq q
q q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
qqq
qqqq
qq
q
q
q
q
qqqq q q
qq
qqq
qqq
q
q
q
qqq
q
q
q
qqqqqqqqq
qqqqqqqqq
qq
q
qq
qqqq
qqqqqqqqqqqq
qqq
qqqqqqqqqqqq q
qq
qq
qqqq
qqqqqq
qqq
qqqqqq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqqqqqqqq
q
q
qq
qq
q
q qq
q q
q
q
qq
q
q
q
q
q q
q
q
q
q
q
q
q
q
q qqqqqqqq
qqqq
q q
qq
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
qqq
qqqq
qq
q
q
q
q
qqqqqq
qq
q qq
qq q
q
q
q
qqq
q
q
q
qqqqqqqqq
qqqqqqqqq
qq
q
qq
qqqq
qqqqqqqqqqqq
qqq
qqqqqqqqqqqqq
qq
qq
qqqq
qqqq qq
qqq
qqqq qq
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qqqqqqqqqqq
q
q
qq
qq
q
qqq
qq
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
qqqqqqq qq
qqqq
qq
qq
qq
q
q
qq
q
q
q
q
q
GSAM
Est. 0.3%
Pr.CV 0.59
01020304050
q
q
q
q
q
qq
q
qq
q
q
qqq
qqqq
qq
q
q
q
q
qqqq q q
qq
qqq
q qq
q
q
q
qqq
q
q
q
qqq qqqqqq
qqqqqqqqq
qq
q
qq
qqq q
qq qqqq qqq qqq
q qqqqqqqqq qqqqqq
q q
q q
qqqq
qqqqq q
qqq
qqqqqq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqqqq qq
qq
q
q
qq
qq
q
qqq
q q
q
q
qq
q
q
q
q
q q
q
q
q
q
q
q
q
q
q qqqqqqqq
qqqq
q q
q q
qq
q
q
qq
q
q
q
q
q
0 10 20 30 40 50
1020304050
q
q
q
q
q
qq
q
qq
q
q
qqq
qqqqqqqq
q
qqqqq
q
q
qq
q
q
q q
qq
qq
q
qqq
q q
q
qq
q
qqqqqqqqqqqqqqqqqqqqqqq
qqq
qqqq
qqq
qq
qq
q
q
qqqqqq
q
qqqq
q q
q
q
q
qqqqqqqqqq
qqqq
qqqqqq
qqq
q
q
q
q
q q
q q
q
q
q
q
q
q
q
q
qqqqqqqq
qqqq
q
q
qqqq
q
q qq
q
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqqqq
qqqqq
q q
qqq
q
qqq
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
q
qqq
qqqq qqqq
q
q qqqq
q
q
qq
q
q
q q
q q
qq
q
qqq
qq
q
qq
q
qqqqqqqqqqqqqqq qqqqqqqq
qqq
qqqq
qqq
qq
qq
q
q
qqqqqq
q
qqqq
qq
q
q
q
q qqqq qqqq q
q qqq
qqqq qq
qq q
q
q
q
q
q q
qq
q
q
q
q
q
q
q
q
q qqqqqqq
qqqq
q
q
qqqq
q
qqq
q
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqq qq
qqqqq
q q
q qq
q
q qq
q
q
q
q
q
0 10 20 30 40 50
q
q
q
q
q
qq
q
qq
q
q
qqq
qqqq qq qq
q
q qqqq
q
q
qq
q
q
q q
qq
q q
q
qqq
q q
q
qq
q
qqqqqqqqqqqqqqq qqqqqqqq
qqq
qqqq
qqq
qq
q q
q
q
qqqqqq
q
qqqq
qq
q
q
q
q qqqq qqqqq
q qqq
qqqqqq
q qq
q
q
q
q
q q
q q
q
q
q
q
q
q
q
q
qqqqqqqq
qqqq
q
q
qq qq
q
qqq
q
q q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqqqqq
qqqq q
q q
q qq
q
q qq
q
q
q
q
q
FGKAM
Est. 0.007 %
Pr.CV 0.83
Figure : Fitted values for Tecator example
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
Bernouilli response: I(Fat≥ 15%)).
165 random observations as Training set (50 for testing)
Method Sample Min. 1st. Qu. Median Mean 3rd. Qu. Max.
GLM Train. 100% 100% 100% 100% 100% 100%
Test 88.0% 96.0% 98.0% 97.5% 98.0% 100%
GSAM Train. 100.0% 100.0% 100.0% 100% 100% 100%
Test 54.0% 92.0% 94.0% 93.8% 98.0% 100%
GKAM Train. 97.58% 98.18% 98.8% 98.7% 98.8% 100%
Test. 90.0% 96.0% 98.0% 97.9% 100.0% 100%
Table : Statistics for percentage of good classication in 500 replications.
Linear Models Non Linear and Semi Linear Models Generalized Models Examples
qq
qq
qqq
q
qq q
qqqqqqqqqqqq q qqqqq
q
qq qqqqqqqqqqqqq
qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqq qqq qqqq q
q
q
q
q
q
q q
q
q qqq qq qqq qqq qqqqqqqqqqqqqqqqqqqqq
q
q
qqq qq q
q qqqq
qqqqqqqqqqqqqq q
q
q
q q
q
qqqqqqqqqqq
qqqqq q q
q qq qq
qqqqqqqqqq qqq qq
q
q
qqq qqqqqqqqq
−5 0 5 10
0.00.20.40.60.81.0
η
µ
q q
q
q
q
qq
q
q
q
q
q
q q q
q q q
q
qqqq
q
q
q q
qq
q
q
q
q
q qqq
q
qq
q
q q q
q
q
q
qq
q
q
qqqqqqqq
q
qq
q
qq
q
q
qq
qq
qq
q
q
q
qq
q
qq
q
q q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q q q
qq
q
q
q qq
q
qqq
q
q
qqqq
q
q
q
qq
q
q
q
q
qqqq
q
q
q
q
qqq
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q qqqq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q qq
qqq qq
q q
q
q
q
q q
q
q
q
qq
q
q
q
qqq q
−1.0 0.0 1.0 2.0
−50510
f1(abs)
η
qq
q
q
q
qq
q
q
q
q
q
qqq
qqq
q
qqqq
q
q
qq
qq
q
q
q
q
qq qq
q
qq
q
qqq
q
q
q
qq
q
q
qqqqqqqq
q
qq
q
qq
q
q
qq
qq
qq
q
q
q
q q
q
qq
q
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
qqq
qq
q
q
qq q
q
qqq
q
q
qqqq
q
q
q
qq
q
q
q
q
q qq q
q
q
q
q
qqq
q
q
q q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqqq
q
q
qq
q
q
q
q
q
q
q
q
q
q
qqq
qqqqq
qq
q
q
q
qq
q
q
q
q q
q
q
q
qqqq
−5 0 5
−50510
f2(abs″)
η
Figure : Estimation of the partial eects (gray=I(Fat≥ 15%)).
References References
References I
Aneiros-Pérez, G. and Vieu, P. (2006). Semi-functional partial linear regression.
Statistics  Probability Letters, 76(11):11021110.
Antoniadis, A. and Sapatinas, T. (2003). Wavelet methods for continuous-time
prediction using hilbert-valued autoregressive processes. Journal of Multivariate
Analysis, 87(1):133158.
Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models.
The Annals of Statistics, 17(2):pp. 453510.
Cardot, H. (2000). Nonparametric estimation of smoothed principal components
analysis of sampled noisy functions. Journal of Nonparametric Statistics,
12(4):503538.
Cardot, H., Ferraty, F., and Sarda, P. (1999). Functional linear model. Statistics 
Probability Letters, 45(1):1122.
Cardot, H., Ferraty, F., and Sarda, P. (2003). Spline estimators for the functional
linear model. Statistica Sinica, 13(3):571592.
Cardot, H., Mas, A., and Sarda, P. (2007). Clt in functional linear regression models.
Probability Theory and Related Fields, 138(3):325361.
Cardot, H. and Sarda, P. (2005). Estimation in generalized linear models for functional
data via penalized likelihood. Journal of Multivariate Analysis, 92(1):2441.
References References
References II
Escabias, M., Aguilera, A., and Valderrama, M. (2004). Principal component
estimation of functional logistic regression: discussion of two dierent approaches.
Journal of Nonparametric Statistics, 16(3-4):365384.
Escabias, M., Aguilera, A., and Valderrama, M. (2005). Modeling environmental data
by functional principal component logistic regression. Environmetrics, 16(1):95107.
Escabias, M., Aguilera, A., and Valderrama, M. (2007). Functional pls logit regression
model. Computational Statistics  Data Analysis, 51(10):48914902.
Febrero-Bande, M. and González-Manteiga, W. (2013). Generalized additive models
for functional data. TEST, pages 115. 10.1007/s11749-012-0308-0.
Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). fda.usc: Functional Data
Analysis. Utilities for Statistical Computing. R package version 1.0.0.
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory and
practice. Springer.
Hall, P., Müller, H., and Wang, J. (2006). Properties of principal component methods
for functional and longitudinal data analysis. The Annals of Statistics,
34(3):14931517.
James, G. (2002). Generalized linear models with functional predictors. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 64(3):411432.
Krämer, N., Boulesteix, A., and Tutz, G. (2008). Penalized partial least squares with
applications to b-spline transformations and functional data. Chemometrics and
Intelligent Laboratory Systems, 94(1):6069.
References References
References III
Müller, H. and Stadtmüller, U. (2005). Generalized functional linear models. The
Annals of Statistics, 33(2):774805.
Müller, H. and Yao, F. (2008). Functional additive models. Journal of the American
Statistical Association, 103(484):15341544.
Preda, C. and Saporta, G. (2005). Pls regression on a stochastic process.
Computational Statistics  Data Analysis, 48(1):149158.
Ramsay, J. and Silverman, B. (2002). Applied functional data analysis: methods and
case studies, volume 77. Springer New York:.
Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer.
Silverman, B. (1996). Smoothed functional principal components analysis by choice of
norm. The Annals of Statistics, 24(1):124.
Székely, G., Rizzo, M., and Bakirov, N. (2007). Measuring and testing dependence by
correlation of distances. The Annals of Statistics, 35(6):27692794.
Yao, F. and Lee, T. (2005). Penalized spline models for functional principal
component analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):325.

Mais conteúdo relacionado

Mais procurados

オントロジー工学に基づく 知識の体系化と利用
オントロジー工学に基づく知識の体系化と利用オントロジー工学に基づく知識の体系化と利用
オントロジー工学に基づく 知識の体系化と利用Kouji Kozaki
 
位相的データ解析入門 「『穴』lytics」
位相的データ解析入門 「『穴』lytics」位相的データ解析入門 「『穴』lytics」
位相的データ解析入門 「『穴』lytics」Yutaka Kuroki
 
単語の分散表現と構成性の計算モデルの発展
単語の分散表現と構成性の計算モデルの発展単語の分散表現と構成性の計算モデルの発展
単語の分散表現と構成性の計算モデルの発展Naoaki Okazaki
 
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御Ryosuke Okuta
 
【DL輪読会】Scaling laws for single-agent reinforcement learning
【DL輪読会】Scaling laws for single-agent reinforcement learning【DL輪読会】Scaling laws for single-agent reinforcement learning
【DL輪読会】Scaling laws for single-agent reinforcement learningDeep Learning JP
 
USB Type-C, USB PDケーブルとお友達になろう
USB Type-C, USB PDケーブルとお友達になろうUSB Type-C, USB PDケーブルとお友達になろう
USB Type-C, USB PDケーブルとお友達になろうKatsuhiro Suzuki
 
[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms
[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms
[DL輪読会]Fast and Slow Learning of Recurrent Independent MechanismsDeep Learning JP
 
システム制御とディープラーニング
システム制御とディープラーニングシステム制御とディープラーニング
システム制御とディープラーニングKeio Robotics Association
 
(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel LearningMasahiro Suzuki
 
[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networks[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networksDeep Learning JP
 
機械学習の技術的負債
機械学習の技術的負債機械学習の技術的負債
機械学習の技術的負債西岡 賢一郎
 
[DL Hacks 実装]Deep Sense: A Unified Deep Learning Framework for Time-SeriesMob...
[DL Hacks 実装]Deep Sense: A Unified Deep Learning Framework for Time-SeriesMob...[DL Hacks 実装]Deep Sense: A Unified Deep Learning Framework for Time-SeriesMob...
[DL Hacks 実装]Deep Sense: A Unified Deep Learning Framework for Time-SeriesMob...Deep Learning JP
 
形態素解析の過去・現在・未来
形態素解析の過去・現在・未来形態素解析の過去・現在・未来
形態素解析の過去・現在・未来Preferred Networks
 
第7回WBAシンポジウム:全脳確率的生成モデル(WB-PGM)〜世界モデルと推論に基づく汎用人工知能に向けて
第7回WBAシンポジウム:全脳確率的生成モデル(WB-PGM)〜世界モデルと推論に基づく汎用人工知能に向けて第7回WBAシンポジウム:全脳確率的生成モデル(WB-PGM)〜世界モデルと推論に基づく汎用人工知能に向けて
第7回WBAシンポジウム:全脳確率的生成モデル(WB-PGM)〜世界モデルと推論に基づく汎用人工知能に向けてThe Whole Brain Architecture Initiative
 
今イチオシの教育トレンド、 マイクロラーニングって何?
今イチオシの教育トレンド、マイクロラーニングって何?今イチオシの教育トレンド、マイクロラーニングって何?
今イチオシの教育トレンド、 マイクロラーニングって何?アシストマイクロ株式会社
 
النظرية الاجتماعية
   النظرية الاجتماعية   النظرية الاجتماعية
النظرية الاجتماعيةHoda Mohammed
 
TechCon2021 TAXI車載システムの IoT化で 解決した課題と新たに提供した価値
TechCon2021 TAXI車載システムの IoT化で 解決した課題と新たに提供した価値TechCon2021 TAXI車載システムの IoT化で 解決した課題と新たに提供した価値
TechCon2021 TAXI車載システムの IoT化で 解決した課題と新たに提供した価値IshikawaTakao
 
R による文書分類入門
R による文書分類入門R による文書分類入門
R による文書分類入門Takeshi Arabiki
 
創発インタラクションの意義:機能分化に対する変分原理と数理モデル
創発インタラクションの意義:機能分化に対する変分原理と数理モデル創発インタラクションの意義:機能分化に対する変分原理と数理モデル
創発インタラクションの意義:機能分化に対する変分原理と数理モデルThe Whole Brain Architecture Initiative
 

Mais procurados (20)

オントロジー工学に基づく 知識の体系化と利用
オントロジー工学に基づく知識の体系化と利用オントロジー工学に基づく知識の体系化と利用
オントロジー工学に基づく 知識の体系化と利用
 
位相的データ解析入門 「『穴』lytics」
位相的データ解析入門 「『穴』lytics」位相的データ解析入門 「『穴』lytics」
位相的データ解析入門 「『穴』lytics」
 
単語の分散表現と構成性の計算モデルの発展
単語の分散表現と構成性の計算モデルの発展単語の分散表現と構成性の計算モデルの発展
単語の分散表現と構成性の計算モデルの発展
 
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
DLフレームワークChainerの紹介と分散深層強化学習によるロボット制御
 
【DL輪読会】Scaling laws for single-agent reinforcement learning
【DL輪読会】Scaling laws for single-agent reinforcement learning【DL輪読会】Scaling laws for single-agent reinforcement learning
【DL輪読会】Scaling laws for single-agent reinforcement learning
 
USB Type-C, USB PDケーブルとお友達になろう
USB Type-C, USB PDケーブルとお友達になろうUSB Type-C, USB PDケーブルとお友達になろう
USB Type-C, USB PDケーブルとお友達になろう
 
[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms
[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms
[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms
 
システム制御とディープラーニング
システム制御とディープラーニングシステム制御とディープラーニング
システム制御とディープラーニング
 
学振DC1採用目安
学振DC1採用目安学振DC1採用目安
学振DC1採用目安
 
(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning
 
[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networks[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networks
 
機械学習の技術的負債
機械学習の技術的負債機械学習の技術的負債
機械学習の技術的負債
 
[DL Hacks 実装]Deep Sense: A Unified Deep Learning Framework for Time-SeriesMob...
[DL Hacks 実装]Deep Sense: A Unified Deep Learning Framework for Time-SeriesMob...[DL Hacks 実装]Deep Sense: A Unified Deep Learning Framework for Time-SeriesMob...
[DL Hacks 実装]Deep Sense: A Unified Deep Learning Framework for Time-SeriesMob...
 
形態素解析の過去・現在・未来
形態素解析の過去・現在・未来形態素解析の過去・現在・未来
形態素解析の過去・現在・未来
 
第7回WBAシンポジウム:全脳確率的生成モデル(WB-PGM)〜世界モデルと推論に基づく汎用人工知能に向けて
第7回WBAシンポジウム:全脳確率的生成モデル(WB-PGM)〜世界モデルと推論に基づく汎用人工知能に向けて第7回WBAシンポジウム:全脳確率的生成モデル(WB-PGM)〜世界モデルと推論に基づく汎用人工知能に向けて
第7回WBAシンポジウム:全脳確率的生成モデル(WB-PGM)〜世界モデルと推論に基づく汎用人工知能に向けて
 
今イチオシの教育トレンド、 マイクロラーニングって何?
今イチオシの教育トレンド、マイクロラーニングって何?今イチオシの教育トレンド、マイクロラーニングって何?
今イチオシの教育トレンド、 マイクロラーニングって何?
 
النظرية الاجتماعية
   النظرية الاجتماعية   النظرية الاجتماعية
النظرية الاجتماعية
 
TechCon2021 TAXI車載システムの IoT化で 解決した課題と新たに提供した価値
TechCon2021 TAXI車載システムの IoT化で 解決した課題と新たに提供した価値TechCon2021 TAXI車載システムの IoT化で 解決した課題と新たに提供した価値
TechCon2021 TAXI車載システムの IoT化で 解決した課題と新たに提供した価値
 
R による文書分類入門
R による文書分類入門R による文書分類入門
R による文書分類入門
 
創発インタラクションの意義:機能分化に対する変分原理と数理モデル
創発インタラクションの意義:機能分化に対する変分原理と数理モデル創発インタラクションの意義:機能分化に対する変分原理と数理モデル
創発インタラクションの意義:機能分化に対する変分原理と数理モデル
 

Destaque

Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 03
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 03Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 03
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 03NeuroMat
 
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 02
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 02Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 02
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 02NeuroMat
 
Introdução elementar à modelagem estocástica de cadeias simbólicas
Introdução elementar à modelagem estocástica de cadeias simbólicasIntrodução elementar à modelagem estocástica de cadeias simbólicas
Introdução elementar à modelagem estocástica de cadeias simbólicasNeuroMat
 
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 01
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 01Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 01
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 01NeuroMat
 
Perspectives on Applications of a Stochastic Spiking Neuron Model to Neural N...
Perspectives on Applications of a Stochastic Spiking Neuron Model to Neural N...Perspectives on Applications of a Stochastic Spiking Neuron Model to Neural N...
Perspectives on Applications of a Stochastic Spiking Neuron Model to Neural N...NeuroMat
 
Desafios matemáticos e computacionais da neurociência
Desafios matemáticos e computacionais da neurociênciaDesafios matemáticos e computacionais da neurociência
Desafios matemáticos e computacionais da neurociênciaNeuroMat
 

Destaque (6)

Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 03
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 03Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 03
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 03
 
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 02
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 02Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 02
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 02
 
Introdução elementar à modelagem estocástica de cadeias simbólicas
Introdução elementar à modelagem estocástica de cadeias simbólicasIntrodução elementar à modelagem estocástica de cadeias simbólicas
Introdução elementar à modelagem estocástica de cadeias simbólicas
 
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 01
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 01Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 01
Introdução ao Armazenamento de Dados de Experimentos em Neurociência - Parte 01
 
Perspectives on Applications of a Stochastic Spiking Neuron Model to Neural N...
Perspectives on Applications of a Stochastic Spiking Neuron Model to Neural N...Perspectives on Applications of a Stochastic Spiking Neuron Model to Neural N...
Perspectives on Applications of a Stochastic Spiking Neuron Model to Neural N...
 
Desafios matemáticos e computacionais da neurociência
Desafios matemáticos e computacionais da neurociênciaDesafios matemáticos e computacionais da neurociência
Desafios matemáticos e computacionais da neurociência
 

Semelhante a Functional Regression Analysis Guide

Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo
 
Fourier series example
Fourier series exampleFourier series example
Fourier series exampleAbi finni
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptStavrovDule2
 
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...Michael Lie
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular SystemNonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular SystemPhilip Diette
 
Comparison GUM versus GUM+1
Comparison GUM  versus GUM+1Comparison GUM  versus GUM+1
Comparison GUM versus GUM+1Maurice Maeck
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...inventionjournals
 
Add math may june 2016 p1
Add math may june 2016 p1Add math may june 2016 p1
Add math may june 2016 p1Don Cunningham
 
Linear models
Linear modelsLinear models
Linear modelsFAO
 
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...Waqas Tariq
 

Semelhante a Functional Regression Analysis Guide (20)

R Language Introduction
R Language IntroductionR Language Introduction
R Language Introduction
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation Project
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Section6 stochastic
Section6 stochasticSection6 stochastic
Section6 stochastic
 
02_AJMS_297_21.pdf
02_AJMS_297_21.pdf02_AJMS_297_21.pdf
02_AJMS_297_21.pdf
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
Time-Series Analysis on Multiperiodic Conditional Correlation by Sparse Covar...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
DCT
DCTDCT
DCT
 
DCT
DCTDCT
DCT
 
DCT
DCTDCT
DCT
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
 
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular SystemNonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
 
Comparison GUM versus GUM+1
Comparison GUM  versus GUM+1Comparison GUM  versus GUM+1
Comparison GUM versus GUM+1
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
Add math may june 2016 p1
Add math may june 2016 p1Add math may june 2016 p1
Add math may june 2016 p1
 
12. Linear models
12. Linear models12. Linear models
12. Linear models
 
Linear models
Linear modelsLinear models
Linear models
 
ch3.ppt
ch3.pptch3.ppt
ch3.ppt
 
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
 

Mais de NeuroMat

Gromov and the ”ergo-brain”
Gromov and the ”ergo-brain”Gromov and the ”ergo-brain”
Gromov and the ”ergo-brain”NeuroMat
 
Hidden context tree modeling of EEG data
Hidden context tree modeling of EEG dataHidden context tree modeling of EEG data
Hidden context tree modeling of EEG dataNeuroMat
 
Goodness–of–fit tests for regression models: the functional data case
Goodness–of–fit tests for regression models: the functional data caseGoodness–of–fit tests for regression models: the functional data case
Goodness–of–fit tests for regression models: the functional data caseNeuroMat
 
MEPHunter: Making things easier for signal visualization and analysis
MEPHunter: Making things easier for signal visualization and analysisMEPHunter: Making things easier for signal visualization and analysis
MEPHunter: Making things easier for signal visualization and analysisNeuroMat
 
Neuroscience Experiments System - NES - Versão 0.1
Neuroscience Experiments System - NES - Versão 0.1Neuroscience Experiments System - NES - Versão 0.1
Neuroscience Experiments System - NES - Versão 0.1NeuroMat
 
Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...NeuroMat
 
Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...NeuroMat
 
Data Provenance and Scientific Workflow Management
Data Provenance and Scientific Workflow ManagementData Provenance and Scientific Workflow Management
Data Provenance and Scientific Workflow ManagementNeuroMat
 

Mais de NeuroMat (8)

Gromov and the ”ergo-brain”
Gromov and the ”ergo-brain”Gromov and the ”ergo-brain”
Gromov and the ”ergo-brain”
 
Hidden context tree modeling of EEG data
Hidden context tree modeling of EEG dataHidden context tree modeling of EEG data
Hidden context tree modeling of EEG data
 
Goodness–of–fit tests for regression models: the functional data case
Goodness–of–fit tests for regression models: the functional data caseGoodness–of–fit tests for regression models: the functional data case
Goodness–of–fit tests for regression models: the functional data case
 
MEPHunter: Making things easier for signal visualization and analysis
MEPHunter: Making things easier for signal visualization and analysisMEPHunter: Making things easier for signal visualization and analysis
MEPHunter: Making things easier for signal visualization and analysis
 
Neuroscience Experiments System - NES - Versão 0.1
Neuroscience Experiments System - NES - Versão 0.1Neuroscience Experiments System - NES - Versão 0.1
Neuroscience Experiments System - NES - Versão 0.1
 
Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...
 
Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...
 
Data Provenance and Scientific Workflow Management
Data Provenance and Scientific Workflow ManagementData Provenance and Scientific Workflow Management
Data Provenance and Scientific Workflow Management
 

Último

ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 

Último (20)

LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 

Functional Regression Analysis Guide

  • 1. Functional Regression Analysis Manuel FebreroBande Dpt. de Estadística e Inv. Operativa Univ. de Santiago de Compostela
  • 2. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Table of Contents 1 Linear Models Basis representation Principal Components Partial Least Squares Examples 2 Non Linear and Semi Linear Models Non Linear Semi Linear Model 3 Generalized Models Generalized Linear Models Generalized Additive Models 4 Examples Tecator
  • 3. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Table of Contents 1 Linear Models Basis representation Principal Components Partial Least Squares Examples 2 Non Linear and Semi Linear Models Non Linear Semi Linear Model 3 Generalized Models Generalized Linear Models Generalized Additive Models 4 Examples Tecator
  • 4. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Introduction Suppose that X ∈ L2(T) and y ∈ R. Assume also that E [X(t)] = 0, ∀t ∈ [0, T] and E [y] = 0. The functional linear regression model states that y = X, β + = T X(t)β(t)dt + where β ∈ L2(T) and is the error term. One way of estimating β, it is representing the parameter (and optionally Xi ) in a L2-basis in the following way: β(t) = k βk θk (t), Xi (t) = k ci,k ψk (t)
  • 5. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Representation in a basis Observed the sample {(X1, y1), . . . , (Xn, yn)}, we can approximate Xi and β using a nite sum of basis elements: Xi (t) = Kx k cik ψk (t), β(t) = Kβ k bk θk (t) X = CΨ(t), β = θ b where y = X, β + ≈ CΨθ b + = Zb + b = (Z Z)−1 Z y, ˆy = CJψθb = Zb = Z(Z Z)−1 Z y = Hy with Jψθ = ( ψi , θj )ij . The choice of the appropiate basis becomes now in a crucial step.
  • 6. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Estimation of β Fixed basis: B-spline, Wavelets, Fourier. Ramsay and Silverman (2005), Ramsay and Silverman (2002), Cardot (2000), Cardot et al. (2003), Antoniadis and Sapatinas (2003) . . . Functional Principal Components (FPC). Silverman (1996), Cardot et al. (1999), Cardot and Sarda (2005), Hall et al. (2006), Cardot et al. (2007), Yao and Lee (2005),. . . Partial Least Squares (FPLS). Preda and Saporta (2005), Krämer et al. (2008), . . .
  • 7. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Principal components (PC) The principal components of X are linear combinations given by the eigenfunctions {vk }k≥1 of the covariance operator of X: X(t) = k ck vk (t), ck = X, vk where vk are the solution of the eigenvalue equation T Σ(t, s)vk (s)ds = λk vk (t), vk , vl = 1{k=l}, and Σ(t, s) = Cov(X(s), X(t)) ∀t, s ∈ [0, T] As in classical multivariate setting, the process X and the set of its principal eigenfunctions, {vk }k≥1 span the same linear space. So, the PC's constitutes an orthonormal basis of L2.
  • 8. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Fitted, Residuals, Leverage Once a Functional Linear Model is estimated, then yi = Xi , β(kn) = kn k=1 vik βk = kn k=1 vik v·k Y nλk −→ Y = H(kn)Y where H(kn) is the n × n hat matrix, given by: H(kn) = 1 n v·1v·1 λ1 + · · · + v·kn v·kn λkn . So, the Cov(Y |X1, . . . , Xn) = σ2 H(kn). The leverage (0 ≤ H(kn),ii ≤ 1) is a measure of the inuence a priori of a given observation in prediction. As Tr H(kn) = kn, we can mark that observations (Xi , yi ) with leverage much larger than the average (kn/n). The residuals can now be written in matrix form: e = Y − Y = In − H(kn) Y = v(kn+1:n)β(kn+1:n) + In − H(kn) ,
  • 9. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Residual Variance Using Cardot et al. (2003) and Hall et al. (2006), the term v(kn+1:n)β(kn+1:n) can be neglected if n is large enough and kn has been chosen suitably. Moreover, as Tr In − H(kn) = n − kn, it is not dicult to see that: E [e e|X1, . . . , Xn] = n β2 kn+1 λkn+1 + · · · + β2 n λn + (n − kn) σ2 , which suggests that the error variance σ2 may be estimated by the functional residual variance estimate, s2 R , given by: s2 R = e e n − kn .
  • 10. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Measures of inuence The functional Cook's measure for prediction CPi = y − y(−i,kn) y − y(−i,kn) s2 R , The functional Cook's measure for estimation CEi = β(kn) − β(−i,kn) 2 s2 R n kn k=1 1 λk , The functional Peña's measure for prediction Pi = si si s2 R H(kn),ii , where si = yi − y(−1,kn),i , . . . , yi − y(−n,kn),i
  • 11. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Example with PC's t = seq(0, 1, length = nt - 51) covexp = function(t1, t2) { 3 * exp(-abs(t1 - t2)/0.5) } Sigma = outer(t, t, covexp) X = rproc2fdata(n - 200, t, sigma = Sigma) plot(X) 0.0 0.2 0.4 0.6 0.8 1.0 -6-226 Gaussian process t X(t)
  • 12. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Example with PC's cont'ed res = eigen(Sigma) pc5teo = fdata(t(res$vector[, 1:5]), argvals = t) #Theo. PC's pc5teo[[data]] = sweep(pc5teo[[data]], 1, norm.fdata(pc5teo), /) res.est = fdata2pc(X, ncomp = 5) # Estimated PC's pc5est = res.est$rotation 0.0 0.2 0.4 0.6 0.8 1.0 -1.5-0.50.51.5 Theo. PC's X(t) 0.0 0.2 0.4 0.6 0.8 1.0 -1.5-0.50.51.5 Estimated PC's rotation
  • 13. Linear Models Non Linear and Semi Linear Models Generalized Models Examples FLM with PC's I betaf = t + log(t + 0.1) betaf = fdata(betaf, argvals = t) #Theo. Beta vteo = inprod.fdata(pc5teo, betaf) # Theo. Coefs vest = inprod.fdata(pc5est, betaf) # Estim. coefs comb.func = function(X, coefs) { t = X$argvals Xnew = sweep(X$data, 1, coefs, *) Xnew = fdata(apply(Xnew, 2, sum), argvals = t, rangeval = X$rangeval, names = X$names) return(Xnew) } betapc5t = comb.func(pc5teo, vteo) betapc5e = comb.func(pc5est, vest) y = 4 + drop(inprod.fdata(X, betaf)) + rnorm(n, sd = 0.5) # Simulated response res.pc = fregre.pc(X, y, l = 1:5)
  • 14. Linear Models Non Linear and Semi Linear Models Generalized Models Examples FLM with PC's II 0.0 0.2 0.4 0.6 0.8 1.0 -2.0-1.00.01.0 fdataobj t X(t) Theor. Oracle Theo. (5) Oracle Est. PC(5) Estim. from data
  • 15. Linear Models Non Linear and Semi Linear Models Generalized Models Examples FLM with PC's III summary(res.pc) *** Summary Functional Data Regression with Principal Components *** Call: fregre.pc(fdataobj = X, y = y, l = 1:5) Residuals: Min 1Q Median 3Q Max -1.46463 -0.34188 -0.00754 0.36205 1.48351 Coefficients: Estimate Std. Error t value Pr(|t|) (Intercept) 4.03876 0.03721 108.553 2e-16 *** PC1 -0.12819 0.02836 -4.520 1.08e-05 *** PC2 -0.84670 0.04904 -17.265 2e-16 *** PC3 0.30974 0.08688 3.565 0.000458 *** PC4 -0.35799 0.10170 -3.520 0.000538 *** PC5 -0.11690 0.15306 -0.764 0.445917 --- Signif. codes: ....
  • 16. Linear Models Non Linear and Semi Linear Models Generalized Models Examples FLM with PC's IV 2 3 4 5 246 R-squared= 0.63 Fitted values y 2 3 4 5 -1.50.01.5 Residuals vs fitted.values Fitted values Residuals 2 3 4 5 0.01.0 Scale-Location Fitted values Standardizedresiduals 0.02 0.04 0.06 0.08 0100200 Leverage Leverage Index.curves -3 -2 -1 0 1 2 3 -1.50.01.5 Residuals Theoretical Quantiles SampleQuantiles -1.50.01.5 Residuals
  • 17. Linear Models Non Linear and Semi Linear Models Generalized Models Examples FLM with PC's V .... Residual standard error: 0.5262 on 194 degrees of freedom Multiple R-squared: 0.6349, Adjusted R-squared: 0.6255 F-statistic: 67.46 on 5 and 194 DF, p-value: 2.2e-16 -With 5 Principal Components is explained 91.31 % of the variability of explicative variables. -Variability for each principal components -PC- (%): PC1 PC2 PC3 PC4 PC5 58.79 19.68 6.26 4.57 2.02 -Names of possible atypical curves: No atypical curves -Names of possible influence curves:
  • 18. Linear Models Non Linear and Semi Linear Models Generalized Models Examples FLM with PC's VI 2 3 4 5 246 R-squared= 0.63 Fitted values y 2 3 4 5 -1.50.01.5 Residuals vs fitted.values Fitted values Residuals 2 3 4 5 0.01.0 Scale-Location Fitted values Standardizedresiduals 0.02 0.04 0.06 0.08 0100200 Leverage Leverage Index.curves -3 -2 -1 0 1 2 3 -1.50.01.5 Residuals Theoretical Quantiles SampleQuantiles -1.50.01.5 Residuals
  • 19. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Choice of kn I To avoid a perfect t, Cardot et al. (1999) proposed to estimate β by taking βk = 0, for k ≥ kn + 1, with 0 kn n and λkn 0, and minimizing the residual sum of squares given by: RSS β(1:kn) = n i=1 yi − kn k=1 cik βk 2 = Y − c(1:kn)β(1:kn) 2 , where Y = (y1, . . . , yn) , β(1:kn) = (β1, . . . , βkn ) and c(1:kn) is the n × kn matrix whose k-th column is the vector c·k = (c1k , . . . , cnk ) , the k-th principal component score, which veries c·k c·k = nλk and c·k c·l = 0, for k = l. So, β(1:kn) = c·1 Y nλ1 , . . . , c·kn Y nλkn , β(kn) = kn k=1 βk vk = kn k=1 c·k Y nλk vk .
  • 20. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Choice of kn II The optimal kn should be chosen taking into account the work by Hall et al. (2006) that establishes: Hall et al. (2006) E β − β(kn) 2 |X = σ2 n kn k=1 1 λk + ∞ k=kn+1 β, vk 2 Predictive Cross-Validation: PCV (k) = 1 n n i=1 yi − Xi , β(−i,k) 2 , Model Selection Criteria: MSC (k) = log 1 n n i=1 yi − Xi , β(k) 2 + pn k n , pn = 2 (AIC), pn = 2n/(n − k − 2) (AICc), pn = log(n)/n (SIC)
  • 21. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Example res.pc3 = fregre.pc(X, y, l = 1:3) res.pc7 = fregre.pc(X, y, l = 1:7) basis.x = create.bspline.basis(c(0, 1), nbasis = 21) basis.b5 = create.bspline.basis(c(0, 1), nbasis = 5) basis.b7 = create.bspline.basis(c(0, 1), nbasis = 11) res.basis5 = fregre.basis(X, y, basis.x = basis.x, basis.b = basis.b5) res.basis7 = fregre.basis(X, y, basis.x = basis.x, basis.b = basis.b7) 0.0 0.2 0.4 0.6 0.8 1.0 -2.0-1.00.01.0 PC's-Basis Example X(t) Beta PC(3) PC(7) Spl(5) Spl(11)
  • 22. Linear Models Non Linear and Semi Linear Models Generalized Models Examples PC Ridge Regression Cardot et al. (2007) have proposed to modied the estimation of β in order to solve its stability when some terms corresponding to small eigenvalues are added to the model. βRR (kn) = kn k=1 Cov(ˆc·k , y) ˆλk + rn ˆvk . where rn 0 (ridge parameter). E β − βRR (kn) 2 |X = σ2 n kn k=1 ˆλk ˆλk + rn 2 + r2 n kn k=1 β, ˆvk 2 ˆλk + rn 2 + + ∞ k=kn+1 β, ˆvk 2
  • 23. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Partial Least Squares (PLS) [Preda and Saporta (2005)] The basis idea of PLS approach is to construct a set of orthogonal random variables {νi }i≥1 in the linear space spanned by X taking into account the covariance between Y and X. The PLS components are obtained in the following iterative way: 1 Dene y0 = y − ¯y and X0 = X − ¯X and let l = 0 2 Let tl+1 = Xl , wl+1 , where wl+1 ∈ L2 such that Cov(yl , tl+1) 2 is maximal. Then wl+1 = Cov(yl , Xl ) / ||Cov(yl , Xl )|| 3 Let yl+1 = yl − ul+1tl+1 where ul+1 = Cov(yl , tl+1) /Var[tl+1] and Xl+1 = Xl − νl+1tl+1 where νl+1 = Cov(Xl , tl+1) /Var[tl+1] 4 Let l = l + 1 and back to step 2. Finally, X = ¯X + l tl νl and y = ¯y + l ul tl + e
  • 24. Linear Models Non Linear and Semi Linear Models Generalized Models Examples MV PLS estimation I Let X = (Xi (τj )) the (n × T) matrix with the evaluations of functional data at the discretization points {τj } T j=1 and y the response vector (n × p). 1 Select a weight non-zero vector w of length T (for example a row of X or the PC1) and normalize it. 2 Compute a score vector t = Xw, t is (n × 1) 3 Compute a y-loading vector q = y t, q is (p × 1) 4 Compute a y-score vector u = yq, u is (n × 1) 5 Compute a new weight vector w1 = X u and normalize it. 6 If ||w − w1|| the convergence is obtained, otherwise w = w1 and go to step 2. The pair (t, u) are the scores, respectively, for X and y. These six steps can be summarized obtaining the rst eigenvector of the matrices X YY X and XX YY . The components (p, b) for X and y are computed in the following way:
  • 25. Linear Models Non Linear and Semi Linear Models Generalized Models Examples MV PLS estimation II 7 Compute the loading vector p = X t/(t t) 8 Deact X computing X1 = X − tp 9 Compute regression of Y onto t: b = y t/(t t) 10 Adjust y using b: y1 = y − tb 11 If more are needed then set X = X1 and y = y1 and go to 1.
  • 26. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Best selection of components I res.pc.cv = fregre.pc.cv(X, y, 5) res.pc.cv2 = fregre.pc.cv(X, y, 5, rn = seq(0, 0.5, len = 11), criteria = CV) res.basis.cv = fregre.basis.cv(X, y, basis.x = 13:17, basis.b = 5:11) res.pls.cv = fregre.pls.cv(X, y, 4, criteria = CV) Opt. PC: 2 1 4 PCRR: 2 1 4 3 - Basis X 13 Basis B: 5 PLS 1
  • 27. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Best selection of components II 0.0 0.2 0.4 0.6 0.8 1.0 -2.0-1.00.00.51.0 Beta t X(t) Beta PC PCRR PLS Spl
  • 28. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Prediction PC r^2: 0.655 s^2: 0.236 3 4 5 6 2345 3456 PLS r^2: 0.548 s^2: 0.306 2 3 4 5 2 3 4 5 2345 B-Spline r^2: 0.665 s^2: 0.231
  • 29. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Remarks on FLM Penalized versions of PC or PLS can also be applied simply substituting {X} n i=1 by ˜X n i=1 with ˜Xi = (I + λP) −1 Xi and P a penalization matrix. Bootstrap methods can be adapted to test or study dierent aspects of the FLM res.boot = fregre.bootstrap(res.pc3, nb = 500, wild = FALSE) lines(betaf, lwd = 2) 0.0 0.2 0.4 0.6 0.8 1.0 -2.0-1.00.01.0 beta.est bootstrap X(t)
  • 30. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Bootstrap on Regression Models I Fit the funcional linear model to the dataset and obtain ˆβ, ˆyi , ˆei , . . .. Consider the statistic ˆθ you want to replicate Depends on model and it is homoskedastic (β, r2 , s2 R ,...) ⇒ Obtain B standard bootstrap samples of size n from the dataset of sample curves (denoted by Xb 1 , . . . , Xb n where Xb i = Xi∗ ). Optional Smooth the bootstrap samples of both sets of curves and residuals. Obtain Xb i = Xb i + Zb i where Zb i is a Gaussian process with zero mean and covariance operator γX ΓX , (0 ≤ γX ≤ 1) Depends on model and on i-element or it is heteroskedastic (ˆyi , IFi , . . .) ⇒ Fix Xb i = Xi Obtain B standard bootstrap samples of size n from the residuals (denoted by eb = eb 1 , . . . , eb n ). Homoskedasticity. Naive boostrap (eb i = ei∗ ) or Smoothed bootstrap (eb i = eb i + zb i , where zb i is normally distributed with mean 0 and variance γe s2 R , (0 ≤ γe ≤ 1).)
  • 31. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Bootstrap on Regression Models II Heteroskedasticity. Wild Bootstrap. eb i = f (ˆei )v∗ i with f (ˆei ) =    ˆei n n−kn Opt1 ˆei / √ 1 − hii Opt2 ˆei /(1 − hii ) Opt3 and v∗ i = −( √ 5 − 1)/2 with prob. ( √ 5 + 1)/2 √ 5 −( √ 5 + 1)/2 with prob. ( √ 5 − 1)/2 √ 5 (Golden rule). Let ˆθb B b=1 the statistic associated for each bootstrap dataset The nal estimated is: Condence Interval: Consider the (1 − α)-quantile (c1−α) of ˆθb − ˆθ B b=1 and dene IC(1 − α) = θ : θ − ˆθ ≤ c1−α Hypothesis testing: pˆθ = B b=1 1 ˆθb ≤ ˆθ /B
  • 32. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Tecator dataset 850 900 950 1000 1050 2.02.53.03.54.04.55.05.5 Spectrometric curves Wavelength (mm) Absorbances 850 900 950 1000 1050 −0.02−0.010.000.010.020.030.040.05 Spectrometric curves Wavelength (mm) d(Absorbances,1) 850 900 950 1000 1050 −0.004−0.0020.0000.0020.004 Spectrometric curves Wavelength (mm) d(Absorbances,2) Figure : Tecator example. From left to right: Absorbances, rst and second derivative coloured by the content of fat (blue=low, red=high)
  • 33. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Tecator example data(tecator) ab = tecator$absorp.fdata ab2 = fdata.deriv(ab, 2) dataf = as.data.frame(tecator$y) # Fat, Protein, Water tt = ab[[argvals]] b.pc0 = create.pc.basis(ab, 1:4) b.pc2 = create.pc.basis(ab2, 1:4) basis.x = list(ab = b.pc0, ab2 = b.pc2) f = Fat ~ ab + ab2 ldata = list(df = dataf, ab = ab, ab2 = ab2) res = fregre.lm(f, ldata, basis.x = basis.x)
  • 34. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Tecator results summary(res) Call: lm(formula = pf, data = XX, x = TRUE) Residuals: Min 1Q Median 3Q Max -10.8067 -1.9219 0.2561 1.8306 9.0273 Coefficients: Estimate Std. Error t value Pr(|t|) (Intercept) 18.14233 0.20772 87.342 2e-16 *** ab.PC1 0.15511 0.08402 1.846 0.06633 . ab.PC2 4.70801 1.52557 3.086 0.00231 ** ab.PC3 -13.37410 4.58308 -2.918 0.00391 ** ab.PC4 0.26779 2.46191 0.109 0.91349 ab2.PC1 3437.06617 386.05052 8.903 2.85e-16 *** ab2.PC2 2688.52106 1525.50024 1.762 0.07949 . ab2.PC3 932.68030 432.69736 2.156 0.03228 * ab2.PC4 628.03681 767.97070 0.818 0.41442 --- Signif. codes:
  • 35. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Tecator results II summary(res) .... ab2.PC4 628.03681 767.97070 0.818 0.41442 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.046 on 206 degrees of freedom Multiple R-squared: 0.945, Adjusted R-squared: 0.9428 ....
  • 36. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Tecator Diagnosis I 10 20 30 40 50 60 -10-50510 Fitted values Residuals Residuals vs Fitted 43 44 7 -3 -2 -1 0 1 2 3 -4-2024 Theoretical Quantiles Standardizedresiduals Normal Q-Q 43 7 44 10 20 30 40 50 60 0.00.51.01.52.0 Fitted values Standardizedresiduals Scale-Location 43 7 44
  • 37. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Tecator Diagnosis II 850 900 950 1000 1050 2.03.55.0 Spectrometric curves Wavelength (mm) Absorbances 850 900 950 1000 1050 -0.0040.002 Spectrometric curves Wavelength (mm) d(Absorbances,2) 850 900 950 1000 1050 -1.50.01.5 Beta ab, r^2: 0.218 t rotation 850 900 950 1000 1050 -100001000 Beta ab2, r^2: 0.707 t rotation
  • 38. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Table of Contents 1 Linear Models Basis representation Principal Components Partial Least Squares Examples 2 Non Linear and Semi Linear Models Non Linear Semi Linear Model 3 Generalized Models Generalized Linear Models Generalized Additive Models 4 Examples Tecator
  • 39. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Non Linear Model [Ferraty and Vieu (2006)] Suppose (X, y) are a pair of r.v. with y ∈ R and X ∈ E where E is a semi-metric space. To predict the response Y with X, the natural estimator is the conditional expectation: m(X) = E(Y |X = X), where the NW estimator is given by: ˆm(X) = n i=1 Yi K(h−1 d(X, Xi )) n i=1 K(h−1 d(X, Xi )) , where K is a asymmetric kernel function and h is the bandwidth parameter. Cross-Validation hopt = arg min CV (h) CV (h) = n i=1 yi − ˆm(−i)(Xi ) 2 or any of the GCV methods (MSC).
  • 40. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Conditional distribution Another alternative is to use the cumulative conditional distribution FY |X=X (y) = FX Y (y) = P(Y ≤ y|X = X) and computing from this, for example, the median or the quantiles med(X) = inf {y ∈ R, FY |X=X (y) ≥ 1/2} tα(X) = inf {y ∈ R, FY |X=X (y) ≥ α}
  • 41. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Asymptotics Conditions for regression function: m : E → R, lim d(X ,X)→0 m(X ) = m(X), m : E → R, |m (X) − m (X ) | Cd (X , X) β Conditions for conditional distributions F : E × R → R, lim d(X ,X)→0 FX Y (y) = FX Y (y), lim d(y ,y)→0 FX Y (y ) = FX Y (y) F : E × R → R, |FX Y (y ) − FX Y (y)| C d (X , X) β + d (y , y) β Indeed, the small ball probability condition is needed P(X ∈ B(X, )) = ϕX ( ) 0 and the existence of conditional moments greater than 2.
  • 42. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Semi Linear Model [Aneiros-Pérez and Vieu (2006)] Let (X, Z, y) with y ∈ R (response), X ∈ E (functional) and Z ∈ Rp (MV covariates). y = Zβ + m(X) + The parameters of the model are estimated by: ˆβh = ˜Zt h ˜Zh −1 ˜Zt h ˜yh, ˜mh(X) = n i=1 Wnh(X, Xi )(yi − Zt i ˆβh) where ˜Zh = (I − Wh) Z, ˜yh = (I − Wh) y, Wh = Wnh (Xi , Xj )ij , Wnh (X, Xi ) = K(d(X,Xi )/h n j=1 K(d(X,Xj )/h
  • 43. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Diagnosis, Residuals, Inuence Fitted values: yi = HX Y where HX is the projection or smoothing matrix (n × n) Residuals: e = (I − HX )Y Eq. degrees of freedom: df (H) = tr(H) Cov(Y |X1, . . . , Xn) = σ2 HX . Residual variance: s2 R = e e n−df (HX ) . Inuence: (0 ≤ HX,ii ≤ 1). So, we can label those observations (Xi , yi ) with more inuence than the average (3df (HX )/n).
  • 44. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Tecator example I fat = tecator$y$Fat res.np = fregre.np(ab2, fat, h = 5e-04) summary(res.np) *** Summary Functional Non-linear Model *** -Call: fregre.np(fdataobj = ab2, y = fat, h = 5e-04) -Bandwidth (h): 5e-04 -R squared: 0.9928937 -Residual variance: 1.626762 on 151.737 degrees of freedom -Names of possible atypical curves: No atypical curves -Names of possible influence curves: 5 6 7 10 11 31 33 34 35 43 It prints only the 10 most influence curves
  • 45. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Tecator example II 10 20 30 40 50 01020304050 R-squared= 0.99 Fitted values y 10 20 30 40 50 -3-1123 Residuals vs fitted.values Fitted values Residuals 10 20 30 40 50 0.00.51.01.5 Scale-Location Fitted values Standardizedresiduals 0.0 0.2 0.4 0.6 0.8 1.0 050100200 Leverage Leverage Index.curves 5671011 3133 3435 43 99 122 131132 140143 171174175 183 -3 -2 -1 0 1 2 3 -3-1123 Residuals Theoretical Quantiles SampleQuantiles -3-1123 Residuals
  • 46. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Table of Contents 1 Linear Models Basis representation Principal Components Partial Least Squares Examples 2 Non Linear and Semi Linear Models Non Linear Semi Linear Model 3 Generalized Models Generalized Linear Models Generalized Additive Models 4 Examples Tecator
  • 47. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Generalized Linear Models Let y belonging to a Exponential Family PDF: f (y; θ, τ) = h(y; τ) exp b(θ)T(y) − A(θ) d(τ) where h(y; τ), b(θ), T(y), A(θ) and d(τ) are known. In this case, E(Y ) = µ = A (θ) and Var(Y ) = A (θ)d(τ). y is related with a covariate X(X) through a linear predictor η = Xβ ( X, β ) and a link function g such that E(y) = µ = g−1 (η). Distribution Link Function Mean Variance Normal Identity: η = µ µ = η 1 Binomial Logit: η = ln( µ 1−µ ) µ = 1 1+exp(−η) µ(1 − µ) Poisson Log: η = ln(µ) µ = exp(η) µ Gamma Inverse: η = 1/µ µ = 1/η µ2
  • 48. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Estimation of η Typically, to estimate η, project X and β onto a nite number of elements of a functional basis: η = X, β ≈ pX i=1 pβ j=1 xi φi , ψj βj = xT Jβ with X(t) = pX i=1 xi φi (t) and β(t) = pβ j=1 βj ψj (t) Fixed basis: B-spline, Wavelets, Fourier. James (2002), . . . Functional Principal Components (FPC). Cardot and Sarda (2005); Escabias et al. (2004, 2005); Müller and Stadtmüller (2005),. . . Partial Least Squares (FPLS). Preda and Saporta (2005), Escabias et al. (2007). . .
  • 49. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Estimation of Generalized Linear Models Iterated Reweighted Least Squares (IRLS) Let ˆη0 = Xˆβ0 ( X, ˆβ0 ) the initial or current estimate of the linear predictor with tted value ˆµ0 = g−1 (ˆη0) Form the adjusted dependent variate z0 = ˆη0 + (y − ˆµ0)g (ˆµ0) Dene the weights W0 = 1/(Var[ˆµ0] g (ˆµ0)2 ) Regress z0 on the covariates X with weights W0 to obtain new estimates ˆβ0, (ˆη0, ˆµ0) Repeat until changes in parameters and/or deviance are small
  • 50. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Generalized Additive Models (MV) As in GLM, the response variable y is estimated through a sum of smooth functions of the covariates X and a g link function. E(y) = µ = g−1 (β0 + K j=1 fj (Xj )) with Xj the columns of X and E(fj (Xj )) = 0 ESTIMATION: IRLS mixed with BACKFITTING steps Let ˆη0 = ˆβ0 + K j=1 ˆfj (Xj ), the initial or current estimate of the linear predictor with tted value ˆµ0 = g−1 (ˆη0) Form the adjusted dependent variate z0 = ˆη0 + (y − ˆµ0)g (ˆµ0) Dene the weights W0 = 1/(V (ˆµ0)g (ˆµ0)2 ) Regress using Backtting steps z0 on the covariates X with weights W0 Repeat until changes in functions and/or deviance are small
  • 51. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Functional Spectral Additive Models Müller and Yao (2008) Consider the PC representation of X X(t) = µ(t) + k xk vk (t) where vk (t) is the k eigenfunction and xk the scores. Then, the Functional Spectral Additive Model is dened as: Y = β0 + K k=1 fk (xk ) + with with E( ) = 0, Var[ ] = σ2 and E(fk (xk )) = 0, ∀k = 1, 2, . . . , K
  • 52. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Functional Generalized Spectral Additive Models Consider (again) the PC representation of X (or other representation) X(t) = µ(t) + k xk vk (t) where vk (t) is the k eigenfunction and xk the scores. Then, the Functional Generalized Spectral Additive Model is dened to verify: E(y) = g−1 β0 + K k=1 fk (xk ) with E(fk (xk )) = 0, ∀k = 1, 2, . . . , K
  • 53. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Functional Generalized Kernel Additive Models Febrero-Bande and González-Manteiga (2013) Given several functional variables (X1 , d1), . . . , (Xp , dp) (dj is a semi-metric) Then, the Functional Generalized Kernel Additive Model is dened to verify: E(y) = µ = g−1 β0 + K k=1 fk (Xk ) with E(fk (Xk )) = 0, ∀k = 1, 2, . . . , p In the backtting step, the functional non parametric method is used ˆfk (Xk 0 ) = N i=1 yi − ˆβ0 − j=k ˆfj (Xj i ) K dk (Xk 0 , Xk i )/hk N j=1 K dk (Xk 0 , Xk j )/hk
  • 54. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Practical considerations Our model only uses distances between data → Other spaces than L2. How to avoid concurvity in FDA? The Distance Correlation proposed by Székely et al. (2007) works although is not yet proved for FDA. Avoiding overtting. Control the global amount of smoothing at each step. GCV. Convergence. Using Buja et al. (1989), the global convergence is ensured and also oracle property. Boundary eect in FDA is closely related to small ball probabilities. Are your data closely surrounded with your chosen semi-metrics?
  • 55. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Table of Contents 1 Linear Models Basis representation Principal Components Partial Least Squares Examples 2 Non Linear and Semi Linear Models Non Linear Semi Linear Model 3 Generalized Models Generalized Linear Models Generalized Additive Models 4 Examples Tecator
  • 56. Linear Models Non Linear and Semi Linear Models Generalized Models Examples fda.usc Febrero-Bande and Oviedo de la Fuente (2012) Let fat,ab,ab1 and ab2, the response and the covariates. ldata=list(df=data.frame(fat=fat), ab=ab,ab1=ab1,ab2=ab2) b.pc0=create.pc.basis(ab,1:4) b.pc1=create.pc.basis(ab1,1:4) b.pc2=create.pc.basis(ab2,1:4) basis.x=list(ab=b.pc0,ab1=b.pc1,ab2=b.pc2) Correlation Distances Székely et al. (2007) R d2(fat) d2(X) d2(X ) d2(X ) d2(fat) 1.000 0.454 0.886 0.956 d2(X) 0.454 1.000 0.669 0.497 d2(X ) 0.886 0.669 1.000 0.930 d2(X ) 0.956 0.497 0.930 1.000
  • 57. Linear Models Non Linear and Semi Linear Models Generalized Models Examples FGLM res.glm=fregre.glm(fat∼ab+ab2,data=ldata, basis.x=basis.x) Estimate Std. Error t value Pr( |t|) (Intercept) 18.14233 0.20772 87.342 2e-16 *** ab.PC1 0.15511 0.08402 1.846 0.06633 . ab.PC2 4.70801 1.52557 3.086 0.00231 ** ab.PC3 -13.37410 4.58308 -2.918 0.00391 ** ab.PC4 0.26779 2.46191 0.109 0.91349 ab2.PC1 3437.06617 386.05052 8.903 2.85e-16 *** ab2.PC2 2688.52106 1525.50024 1.762 0.07949 . ab2.PC3 932.68030 432.69736 2.156 0.03228 * ab2.PC4 628.03681 767.97070 0.818 0.41442 Residual standard error: 3.046 on 206 d.f. Multiple R-squared: 0.945, Adjusted R-squared: 0.9428 F-statistic: 442.3 on 8 and 206 DF, p-value: 2.2e-16 cor(fat, β1, ab )2 = 21.8%, cor(fat, β2, ab2 )2 = 70.7%
  • 58. Linear Models Non Linear and Semi Linear Models Generalized Models Examples 850 900 950 1000 1050 2.03.04.05.0 Spectrometric curves Wavelength (mm) Absorbances 850 900 950 1000 1050 −0.0040.0000.004 Spectrometric curves Wavelength (mm) d(Absorbances,2)850 900 950 1000 1050 −1.50.01.0 beta.est t rotation 850 900 950 1000 1050 −10000500 beta.est t rotation Figure : Tecator example. Estimation of beta parameters
  • 59. Linear Models Non Linear and Semi Linear Models Generalized Models Examples GSAM res.gsam=fregre.gsam(fat∼s(ab)+s(ab2),data=ldata, basis.x=basis.x) Parametric coecients: Estimate Std. Error t value Pr( |t|) (Intercept) 18.14233 0.05041 359.9 2e-16 *** Approximate signicance of smooth terms edf Ref.df F p-value s(ab.PC1) 5.548 6.654 4.696 0.000111 *** s(ab.PC2) 1.000 1.000 27.491 4.40e-07 *** s(ab.PC3) 1.980 2.536 17.891 8.23e-09 *** s(ab.PC4) 7.127 8.126 4.471 5.38e-05 *** s(ab2.PC1) 7.115 8.110 242.865 2e-16 *** s(ab2.PC2) 7.381 8.305 5.004 1.03e-05 *** s(ab2.PC3) 8.276 8.797 5.052 5.61e-06 *** s(ab2.PC4) 5.986 7.130 7.532 4.52e-08 *** R-sq.(adj) = 0.997 Deviance explained = 99.7% GCV score = 0.6927 Scale est. = 0.54638 n = 215 cor(fat, K k=1 fk (xab k ))2 = 35.2%, cor(fat, K k=1 fk (xab2 k ))2 = 89.6%
  • 60. Linear Models Non Linear and Semi Linear Models Generalized Models Examples GKAM res.gkam=fregre.gkam(fat∼s(ab)+s(ab2),data=ldata) alpha= 18.2 n= 215 Converged? Yes Iterations:4 Smoothed terms h cor(f(X),eta) edf f(ab2) 0.000371 1.000 88.7 f(ab) 9.410000 0.409 1.6 Residual deviance= 116.361 Null deviance= 34735.44 AIC= 662.88 Deviance explained= 99.7 % R-sq.= 0.997 R-sq.(adj)= 0.994 cor(fat, f1(ab))2 = 16.9%, cor(fat, f2(ab2))2 = 99.6%
  • 61. Linear Models Non Linear and Semi Linear Models Generalized Models Examples q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q qq q q q q q q q q q q qqq q qqqqqq q qqq q q q q q q qq q q qqq q q qq qq q qqqq q q qq q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq qqqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q qq qq q q q q q q q q qq q q q q q 0 10 20 30 40 50 −10−505 GLM Fat Residuals q q q q q qq q q q q q q q q qq q q q q q q q q qqqq q q q q q q q qq q q q q qqqq q q q q qqq q qqq q qq qq q q qq q q q q q q q qq q q q qq q q q qq q q q q q qq q q q q q q qq q q q q q q q q q qq q q q q qq q q q qq q q q q q qq q q q q q q q q q q q q q qq q qqq q qq qq q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q qqq q q qq qq q q q q q q q q q q q q q q q q q 0 10 20 30 40 50 −10−505 GSAM Fat Residuals q qqq q qqq qq q q qqq qqqqqq qqq qqqqq q q qq q q q qqq qq q qqqq q q qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqq qq q qqq qqqqqqqqqqqq qqqqq q qqqqq q q q q q q q q q q q qq q qqqqqqqq qqqq q q qq qq q q qq q q q q q qqqq q q q q q q q q q qqq qqqqqqqq qqqq q q qqq q q q qq q q q q q 0 10 20 30 40 50 −10−505 GKAM Fat Residuals q q q q q q q q q q q q q q q qq q qq q q q q q q q qq q q q q q q q qq q q q q q q q q q q q qq q q qq qq q q q qq q q q q q q q q q q qq q q q qq q qq qqq q q q qq q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q qqq q q q q q q q q q qq q q q q q 0 10 20 30 40 50 0246810 GLM Fat |Residuals| q q q q q qq q q q qq q q q qq q q q q qqq q q qqq q q q q q q q qq q q q q qqqq q q q q q qq qqqq q q q qqqq q q q qq q qq q qq q q q qqq q q qq q q q q q qq q q q q q q qqqq q q q q q q q qq q qqqqq q q q q qq q q q q q q q q q q q q q q q q q q q qq q qqqqq q qq q q qq q q q q qq q q qq q q q q q q q q q q q q q q q q q q qq q qqqq qq q q qq q q q q q qq q q q qq q q q q q 0 10 20 30 40 50 0246810 GSAM Fat |Residuals| q qqq q qqq qq q q qqq qqqqqq qqq qqqqq q q qq q q q qqq qq q qqqq q q qq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qq qqqqqqqqqqqq qq q qqq qqqqqqqqqqqq qqqqq q qqqqq q q q q q q q q q q q q qq qqqqqqqq qqqq q q qq qq q q qq q q q q q qqqq q q q q q q q q q qqq qqqqqqqq qqqq q q qqq q q q qq q q q q q 0 10 20 30 40 50 0246810 GKAM Fat |Residuals| Figure : Diagnostic plots for Tecator example
  • 62. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Fat 10 20 30 40 50 60 q q q q q qq q qq q q qqqqqqq qq qq q q qqqq q q qq q qq qq q qq q qqq q q q qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqq q q q qq qqqq qqqq qq qqq qqqq qq qq q q q q q q q q q q q q q q q q q q qqqqqqqqqqqq q qqqq q q qq q q q q q q q q q q q q q q q q q q q q q qqqqqq qqqqqqq q qq qq q q qq q q q q q q q q q q qq q qq q q qqq qqqq qq qq q q qqqq q q qq q qq qqq q q q qqq q q q qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqq qqq qqqqqqqqqqqq q q q qq qqqq qqqqqq qqq qqqqq q q qq q q q q q q q q q q q q q q q q qqqqqqqqqqqq q q qq qq q q qq q q q q q q q q q q q q q q q q q q q q q qqqqqqqq qqqq q q qq qq q q qq q q q q q 10 20 30 40 50 01020304050 q q q q q qq q qq q q qqq qqqqqqqq q qqqqq q q qq q qq q qq qq q qqq q q q qqq qqqqqqqqqqqqqqqqqqqqqqq qqq qqqq qqq qqqq qq qqqqqqq qqqqq q q q q qqqqqqqqqq qqqq qqqqqq qqq q q q q q q q q q q q q q q q q qqqqqqqq qqqq q q qqqq q q qq q q q q q q q q q q q q q q q q q q q q q qqqqqqqq qqqqq q q qqq q qqq q q q q q 103050 q q q q q q q q q q q q qqqqqq q qqq q q q qqqq q q qq q q q qq q qq q qq q q q q qqqqqqqqqqqqqqqqqq qqqqqqqqq qq qqqqqqqqqqqqqqqqqqqqqqqqq q qq qq q q qq qqqq qq qq q q q qq qq q q q q q q q q q q q q q q q q q q q q qqqqqqqqqqqq q qqqq q q q q q qq q q q q q q q q q q q q q q q q q q qqqqq q qqq qqqq q qq qq q q qq q q q q q FGLM Est.5.5% Pr.CV 1.91 q q q q q q q q q q q q qqq qqq q qq q q q q qqqqqq qq q q q qq q q q q qq q q q q qqqqqqqqqqqqqqqqqq qqqqqqqqq qq qqqqqqqqqq qqq qqqqqqqqqqqqq qq qq q q qq qqqq qq qq q q q qq qq q q q q q q q q q q q q q q q q q q q q qqqqqqqqqqq q q qq qq q qq q q q q q q q q q q q qq q q q q q q q q q qqqqqq qq qqqq qq qq qq q q qq q q q q q q q q q q q q q q q q q qqq qqq q qqq q q q qqqq q q qq q q q q q q qq q qq q qq q qqq qqqqqqqqqqqqqqq qqqqqqqq q qq qqqq qqq qqqq qq qqqqqqq qqqqqq q q q q q q qq qqqq q q qq q q q qq qq q q q q q q q q q qq q q q q q q q q q qqqqqqq qqqq q q qqqq q qq q q qq q q q q q q q q q q q q q q q q q q qqqqq q qq qqqqq q q q qq q q qq q q q q q q q q q q qq q qq q q qqq qqqq qq q q q q qqqq q q qq qqq qqq q q q qqq q q q qqqqqqqqq qqqqqqqqq qq q qq qqqq qqqqqqqqqqqq qqq qqqqqqqqqqqq q qq qq qqqq qqqqqq qqq qqqqqq q qq q q q q q q q q q q q q q q q q qqqqqqqqqqqq q q qq qq q q qq q q q q qq q q q q q q q q q q q q q q q qqqqqqqq qqqq q q qq qq q q qq q q q q q q q q q q qq q qq q q qqq qqqq qq q q q q qqqqqq qq q qq qq q q q q qqq q q q qqqqqqqqq qqqqqqqqq qq q qq qqqq qqqqqqqqqqqq qqq qqqqqqqqqqqqq qq qq qqqq qqqq qq qqq qqqq qq q q q q q q q q q q q q q q q q q q q q qqqqqqqqqqq q q qq qq q qqq qq q q qq q q q q qq q q q q q q q q qqqqqqq qq qqqq qq qq qq q q qq q q q q q GSAM Est. 0.3% Pr.CV 0.59 01020304050 q q q q q qq q qq q q qqq qqqq qq q q q q qqqq q q qq qqq q qq q q q qqq q q q qqq qqqqqq qqqqqqqqq qq q qq qqq q qq qqqq qqq qqq q qqqqqqqqq qqqqqq q q q q qqqq qqqqq q qqq qqqqqq q qq q q q q q q q q q q q q q q q q qqqqqqqq qq qq q q qq qq q qqq q q q q qq q q q q q q q q q q q q q q q qqqqqqqq qqqq q q q q qq q q qq q q q q q 0 10 20 30 40 50 1020304050 q q q q q qq q qq q q qqq qqqqqqqq q qqqqq q q qq q q q q qq qq q qqq q q q qq q qqqqqqqqqqqqqqqqqqqqqqq qqq qqqq qqq qq qq q q qqqqqq q qqqq q q q q q qqqqqqqqqq qqqq qqqqqq qqq q q q q q q q q q q q q q q q q qqqqqqqq qqqq q q qqqq q q qq q qq q qq q q q q q q q q q q q q q q q qqqqqqqq qqqqq q q qqq q qqq q q q q q q q q q q qq q qq q q qqq qqqq qqqq q q qqqq q q qq q q q q q q qq q qqq qq q qq q qqqqqqqqqqqqqqq qqqqqqqq qqq qqqq qqq qq qq q q qqqqqq q qqqq qq q q q q qqqq qqqq q q qqq qqqq qq qq q q q q q q q qq q q q q q q q q q qqqqqqq qqqq q q qqqq q qqq q qq q qq q q q q q q q q q q q q q q q qqqqqq qq qqqqq q q q qq q q qq q q q q q 0 10 20 30 40 50 q q q q q qq q qq q q qqq qqqq qq qq q q qqqq q q qq q q q q qq q q q qqq q q q qq q qqqqqqqqqqqqqqq qqqqqqqq qqq qqqq qqq qq q q q q qqqqqq q qqqq qq q q q q qqqq qqqqq q qqq qqqqqq q qq q q q q q q q q q q q q q q q q qqqqqqqq qqqq q q qq qq q qqq q q q q qq q q q q q q q q q q q q q q q qqqqqqqq qqqq q q q q qq q q qq q q q q q FGKAM Est. 0.007 % Pr.CV 0.83 Figure : Fitted values for Tecator example
  • 63. Linear Models Non Linear and Semi Linear Models Generalized Models Examples Bernouilli response: I(Fat≥ 15%)). 165 random observations as Training set (50 for testing) Method Sample Min. 1st. Qu. Median Mean 3rd. Qu. Max. GLM Train. 100% 100% 100% 100% 100% 100% Test 88.0% 96.0% 98.0% 97.5% 98.0% 100% GSAM Train. 100.0% 100.0% 100.0% 100% 100% 100% Test 54.0% 92.0% 94.0% 93.8% 98.0% 100% GKAM Train. 97.58% 98.18% 98.8% 98.7% 98.8% 100% Test. 90.0% 96.0% 98.0% 97.9% 100.0% 100% Table : Statistics for percentage of good classication in 500 replications.
  • 64. Linear Models Non Linear and Semi Linear Models Generalized Models Examples qq qq qqq q qq q qqqqqqqqqqqq q qqqqq q qq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqq qqq qqqq q q q q q q q q q q qqq qq qqq qqq qqqqqqqqqqqqqqqqqqqqq q q qqq qq q q qqqq qqqqqqqqqqqqqq q q q q q q qqqqqqqqqqq qqqqq q q q qq qq qqqqqqqqqq qqq qq q q qqq qqqqqqqqq −5 0 5 10 0.00.20.40.60.81.0 η µ q q q q q qq q q q q q q q q q q q q qqqq q q q q qq q q q q q qqq q qq q q q q q q q qq q q qqqqqqqq q qq q qq q q qq qq qq q q q qq q qq q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q qq q qqq q q qqqq q q q qq q q q q qqqq q q q q qqq q q qq qq q q q q q q q q q q q q q q qqqq q q qq q q q q q q q q q q q qq qqq qq q q q q q q q q q q qq q q q qqq q −1.0 0.0 1.0 2.0 −50510 f1(abs) η qq q q q qq q q q q q qqq qqq q qqqq q q qq qq q q q q qq qq q qq q qqq q q q qq q q qqqqqqqq q qq q qq q q qq qq qq q q q q q q qq q qq q qq q q q q q q q q q q q q qq q q q q q qq q q qqq qq q q qq q q qqq q q qqqq q q q qq q q q q q qq q q q q q qqq q q q q q q q q q q q q q q q q q q q qqqqq q q qq q q q q q q q q q q qqq qqqqq qq q q q qq q q q q q q q q qqqq −5 0 5 −50510 f2(abs″) η Figure : Estimation of the partial eects (gray=I(Fat≥ 15%)).
  • 65. References References References I Aneiros-Pérez, G. and Vieu, P. (2006). Semi-functional partial linear regression. Statistics Probability Letters, 76(11):11021110. Antoniadis, A. and Sapatinas, T. (2003). Wavelet methods for continuous-time prediction using hilbert-valued autoregressive processes. Journal of Multivariate Analysis, 87(1):133158. Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models. The Annals of Statistics, 17(2):pp. 453510. Cardot, H. (2000). Nonparametric estimation of smoothed principal components analysis of sampled noisy functions. Journal of Nonparametric Statistics, 12(4):503538. Cardot, H., Ferraty, F., and Sarda, P. (1999). Functional linear model. Statistics Probability Letters, 45(1):1122. Cardot, H., Ferraty, F., and Sarda, P. (2003). Spline estimators for the functional linear model. Statistica Sinica, 13(3):571592. Cardot, H., Mas, A., and Sarda, P. (2007). Clt in functional linear regression models. Probability Theory and Related Fields, 138(3):325361. Cardot, H. and Sarda, P. (2005). Estimation in generalized linear models for functional data via penalized likelihood. Journal of Multivariate Analysis, 92(1):2441.
  • 66. References References References II Escabias, M., Aguilera, A., and Valderrama, M. (2004). Principal component estimation of functional logistic regression: discussion of two dierent approaches. Journal of Nonparametric Statistics, 16(3-4):365384. Escabias, M., Aguilera, A., and Valderrama, M. (2005). Modeling environmental data by functional principal component logistic regression. Environmetrics, 16(1):95107. Escabias, M., Aguilera, A., and Valderrama, M. (2007). Functional pls logit regression model. Computational Statistics Data Analysis, 51(10):48914902. Febrero-Bande, M. and González-Manteiga, W. (2013). Generalized additive models for functional data. TEST, pages 115. 10.1007/s11749-012-0308-0. Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). fda.usc: Functional Data Analysis. Utilities for Statistical Computing. R package version 1.0.0. Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory and practice. Springer. Hall, P., Müller, H., and Wang, J. (2006). Properties of principal component methods for functional and longitudinal data analysis. The Annals of Statistics, 34(3):14931517. James, G. (2002). Generalized linear models with functional predictors. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3):411432. Krämer, N., Boulesteix, A., and Tutz, G. (2008). Penalized partial least squares with applications to b-spline transformations and functional data. Chemometrics and Intelligent Laboratory Systems, 94(1):6069.
  • 67. References References References III Müller, H. and Stadtmüller, U. (2005). Generalized functional linear models. The Annals of Statistics, 33(2):774805. Müller, H. and Yao, F. (2008). Functional additive models. Journal of the American Statistical Association, 103(484):15341544. Preda, C. and Saporta, G. (2005). Pls regression on a stochastic process. Computational Statistics Data Analysis, 48(1):149158. Ramsay, J. and Silverman, B. (2002). Applied functional data analysis: methods and case studies, volume 77. Springer New York:. Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer. Silverman, B. (1996). Smoothed functional principal components analysis by choice of norm. The Annals of Statistics, 24(1):124. Székely, G., Rizzo, M., and Bakirov, N. (2007). Measuring and testing dependence by correlation of distances. The Annals of Statistics, 35(6):27692794. Yao, F. and Lee, T. (2005). Penalized spline models for functional principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):325.