O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.

Fraud Detection presentation

15.659 visualizações

Publicada em

Statistical data modeling
Data preprocessing
Matching algorithms
Peer group outliers and covariance
Time-series analysis

Publicada em: Economia e finanças
  • Entre para ver os comentários

Fraud Detection presentation

  1. 1. Fraud DetectionHernan Huwyler Madrid, Spain Fraud Risk Forum January 2013
  2. 2. Who detects fraud? 33% 18% 14% 13% 6% • Fraud Risk • Internal Audit Management FRM • Suspicions• Tipoff • By —chance” Transaction Reporting Controls PwCs Global economic crime survey 2012
  3. 3. legitimate recordlegitimate record legitimate record fraudulent record out of 9 system flags
  4. 4. Objective:maximize correct predictions and maintain incorrect predictions at an acceptable level
  5. 5. Data Analysis Identify AnalyticsInternal Data Apply Analytics to DataIndustry Data Leads Refine
  6. 6. Data Analysis 1 Branch A Branch C Invigilation Branch B HQ Branch D Business Branch A BI Branch C Intiligence Branch B Branch D
  7. 7. Data Cleansing Algorithms Poor initial data conversion Factiva World Check System consolidations World Compliance Manual data entry Interfaces and Customized data baches cleansing rules
  8. 8. Demos Vendors / Employees - Conflicts of interests Vendor Activity – Sequentiality and fetching Treasury – Unrecorded Payments Treasury – Abnormalities and triangulations Several sources of data Combined attributes Normalization
  9. 9. Some techniques Statistical data modeling Data preprocessing Matching algorithms Peer group outliers and covariance Time-series analysis
  10. 10. Open discussions Supervised, unsupervised & hybrid techniques Quality data Design, implementation and evaluation Visualization tools E-business transactions Best practices

×