SlideShare uma empresa Scribd logo
1 de 24
1
Lecture-2 Recap Lecture-1
Introduction to the course title, Formal and In-
formal languages, Alphabets, Strings, Null
string, Words, Valid and In-valid alphabets,
length of a string, Reverse of a string, Defining
languages, Descriptive definition of languages,
EQUAL, EVEN-EVEN, INTEGER, EVEN, { an
bn
},
{ an
bn
an
}, factorial, FACTORIAL,
DOUBLEFACTORIAL, SQUARE,
DOUBLESQUARE, PRIME, PALINDROME.
2
Task
Q) Prove that there are as many palindromes
of length 2n, defined over Σ = {a,b,c}, as
there are of length 2n-1, n = 1,2,3… .
Determine the number of palindromes of
length 2n defined over the same alphabet as
well.
3
Solution
To calculate the number of palindromes
of length(2n), consider the following
diagram,
4
which shows that there are as many
palindromes of length 2n as there are the strings
of length n i.e. the required number of
palindromes are 3n
(as there are three letters in
the given alphabet, so the number of strings of
length n will be 3n
).
5
To calculate the number of palindromes
of length (2n-1) with a as the middle
letter, consider the following diagram,
6
which shows that there are as many
palindromes of length 2n-1, with a as middle
letter, as there are the strings of length n-1, i.e.
the required number of palindromes are 3n-1
.
Similarly the number of palindromes of length
2n-1, with b or c as middle letter, will be 3n-1
as
well. Hence the total number of palindromes of
length 2n-1 will be 3n-1
+ 3n-1
+ 3n-1
= 3 (3n-1
)= 3n
.
7
Kleene Star Closure
Given Σ, then the Kleene Star Closure of the
alphabet Σ, denoted by Σ*, is the collection of
all strings defined over Σ, including Λ.
It is to be noted that Kleene Star Closure can
be defined over any set of strings.
8
Examples
If Σ = {x}
Then Σ*
= {Λ, x, xx, xxx, xxxx, ….}
If Σ = {0,1}
Then Σ*
= {Λ, 0, 1, 00, 01, 10, 11, ….}
If Σ = {aaB, c} d
Then Σ* = {Λ, aaB, c, aaBaaB, aaBc, caaB,
cc, ….}
9
Note
Languages generated by Kleene Star
Closure of set of strings, are infinite
languages. (By infinite language, it is
supposed that the language contains infinite
many words, each of finite length).
10
Task
Q)
1) Let S={ab, bb} and T={ab, bb, bbbb} Show
that S*
= T*
[Hint S*
 T*
and T*
 S*
]
2) Let S={ab, bb} and T={ab, bb, bbb} Show
that S*
≠ T*
But S*
⊂ T*
3) Let S={a, bb, bab, abaab} be a set of strings.
Are abbabaabab and baabbbabbaabb in S*
?
Does any word in S*
have odd number of
b’s?
11
PLUS Operation (+
)
Plus Operation is same as Kleene Star Closure
except that it does not generate Λ (null string),
automatically.
Example:
If Σ = {0,1}
Then Σ+
= {0, 1, 00, 01, 10, 11, ….}
If Σ = {aab, c}
Then Σ+
= {aab, c, aabaab, aabc, caab, cc, ….}
12
TASK
Q1)Is there any case when S+
contains Λ? If
yes then justify your answer.
Q2) Prove that for any set of strings S
i. (S+
)*
=(S*
)*
ii. (S+
)+
=S+
iii. Is (S*
)+
=(S+
)*
13
Remark
It is to be noted that Kleene Star can also be
operated on any string i.e. a*
can be considered
to be all possible strings defined over {a}, which
shows that a*
generates
Λ, a, aa, aaa, …
It may also be noted that a+
can be considered to
be all possible non empty strings defined over
{a}, which shows that a+
generates
a, aa, aaa, aaaa, …
14
Defining Languages Continued…
Recursive definition of languages
The following three steps are used in recursive
definition
1. Some basic words are specified in the
language.
2. Rules for constructing more words are defined
in the language.
3. No strings except those constructed in above,
are allowed to be in the language.
15
Example
Defining language of INTEGER
Step 1:
1 is in INTEGER.
Step 2:
If x is in INTEGER then x+1 and x-1 are
also in INTEGER.
Step 3:
No strings except those constructed in
above, are allowed to be in INTEGER.
16
Example
Defining language of EVEN
Step 1:
2 is in EVEN.
Step 2:
If x is in EVEN then x+2 and x-2 are also in
EVEN.
Step 3:
No strings except those constructed in above,
are allowed to be in EVEN.
17
Example
Defining the language factorial
Step 1:
As 0!=1, so 1 is in factorial.
Step 2:
n!=n*(n-1)! is in factorial.
Step 3:
No strings except those constructed in above,
are allowed to be in factorial.
18
Defining the language PALINDROME,
defined over Σ = {a,b}
Step 1:
a and b are in PALINDROME
Step 2:
if x is palindrome, then s(x)Rev(s) and xx will
also be palindrome, where s belongs to Σ*
Step 3:
No strings except those constructed in
above, are allowed to be in palindrome
19
Defining the language {an
bn
}, n=1,2,3,… ,
of strings defined over Σ={a,b}
Step 1:
ab is in {an
bn
}
Step 2:
if x is in {an
bn
}, then axb is in {an
bn
}
Step 3:
No strings except those constructed in
above, are allowed to be in {an
bn
}
20
Defining the language L, of strings
ending in a , defined over Σ={a,b}
Step 1:
a is in L
Step 2:
if x is in L then s(x) is also in L, where s belongs
to Σ*
Step 3:
No strings except those constructed in
above, are allowed to be in L
21
Defining the language L, of strings
beginning and ending in same letters ,
defined over Σ={a, b}
Step 1:
a and b are in L
Step 2:
(a)s(a) and (b)s(b) are also in L, where s
belongs to Σ*
Step 3:
No strings except those constructed in
above, are allowed to be in L
22
Defining the language L, of strings
containing aa or bb , defined over
Σ={a, b}
Step 1:
aa and bb are in L
Step 2:
s(aa)s and s(bb)s are also in L, where s
belongs to Σ*
Step 3:
No strings except those constructed in
above, are allowed to be in L
23
Defining the language L, of strings
containing exactly aa, defined over
Σ={a, b}
Step 1:
aa is in L
Step 2:
s(aa)s is also in L, where s belongs to b*
Step 3:
No strings except those constructed in
above, are allowed to be in L
24
Summing Up
Kleene Star Closure, Plus operation, recursive
definition of languages, INTEGER, EVEN,
factorial, PALINDROME, {an
bn
}, languages of
strings (i) ending in a, (ii) beginning and ending
in same letters, (iii) containing aa or bb
(iv)containing exactly aa,

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Lecture 8
Lecture 8Lecture 8
Lecture 8
 
Language
LanguageLanguage
Language
 
Lesson 11
Lesson 11Lesson 11
Lesson 11
 
Theory of automata and formal language
Theory of automata and formal languageTheory of automata and formal language
Theory of automata and formal language
 
Chapter1 Formal Language and Automata Theory
Chapter1 Formal Language and Automata TheoryChapter1 Formal Language and Automata Theory
Chapter1 Formal Language and Automata Theory
 
Lesson 03
Lesson 03Lesson 03
Lesson 03
 
Lesson 10
Lesson 10Lesson 10
Lesson 10
 
Lecture 3,4
Lecture 3,4Lecture 3,4
Lecture 3,4
 
Backus Naur and Chomsky Normal Forms
Backus Naur and Chomsky Normal FormsBackus Naur and Chomsky Normal Forms
Backus Naur and Chomsky Normal Forms
 
Lesson 05
Lesson 05Lesson 05
Lesson 05
 
Lesson 02
Lesson 02Lesson 02
Lesson 02
 
Theory of Automata
Theory of AutomataTheory of Automata
Theory of Automata
 
Lecture 3,4
Lecture 3,4Lecture 3,4
Lecture 3,4
 
Introduction to Computer theory (Automata Theory) 2nd Edition By Denial I.A. ...
Introduction to Computer theory (Automata Theory) 2nd Edition By Denial I.A. ...Introduction to Computer theory (Automata Theory) 2nd Edition By Denial I.A. ...
Introduction to Computer theory (Automata Theory) 2nd Edition By Denial I.A. ...
 
Theory of automata and formal language
Theory of automata and formal languageTheory of automata and formal language
Theory of automata and formal language
 
Lesson 09
Lesson 09Lesson 09
Lesson 09
 
Model answer of exam TC_spring 2013
Model answer of exam TC_spring 2013Model answer of exam TC_spring 2013
Model answer of exam TC_spring 2013
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Automata theory
Automata theoryAutomata theory
Automata theory
 
Introduction to Computer theory Daniel Cohen Chapter 2 Solutions
Introduction to Computer theory Daniel Cohen Chapter 2 SolutionsIntroduction to Computer theory Daniel Cohen Chapter 2 Solutions
Introduction to Computer theory Daniel Cohen Chapter 2 Solutions
 

Semelhante a Lesson 02

Theory of Automata ___ Basis ...........
Theory of Automata ___ Basis ...........Theory of Automata ___ Basis ...........
Theory of Automata ___ Basis ...........NaumanAli215439
 
Lesson-01-29092022-081117pm.ppt
Lesson-01-29092022-081117pm.pptLesson-01-29092022-081117pm.ppt
Lesson-01-29092022-081117pm.pptashja1
 
theory of computation lecture 02
theory of computation lecture 02theory of computation lecture 02
theory of computation lecture 028threspecter
 
Mod 2_RegularExpressions.pptx
Mod 2_RegularExpressions.pptxMod 2_RegularExpressions.pptx
Mod 2_RegularExpressions.pptxRaviAr5
 
01-Introduction&Languages.pdf
01-Introduction&Languages.pdf01-Introduction&Languages.pdf
01-Introduction&Languages.pdfTariqSaeed80
 
01 alphabets strings and languages
01 alphabets strings and languages01 alphabets strings and languages
01 alphabets strings and languagesJohnDevaPrasanna1
 
Theory of computing
Theory of computingTheory of computing
Theory of computingRanjan Kumar
 
Chapter2CDpdf__2021_11_26_09_19_08.pdf
Chapter2CDpdf__2021_11_26_09_19_08.pdfChapter2CDpdf__2021_11_26_09_19_08.pdf
Chapter2CDpdf__2021_11_26_09_19_08.pdfDrIsikoIsaac
 
Chapter 3 REGULAR EXPRESSION.pdf
Chapter 3 REGULAR EXPRESSION.pdfChapter 3 REGULAR EXPRESSION.pdf
Chapter 3 REGULAR EXPRESSION.pdfdawod yimer
 
Final formal languages
Final formal languagesFinal formal languages
Final formal languagesMegha Khanna
 
Class1
 Class1 Class1
Class1issbp
 
Automata definitions
Automata definitionsAutomata definitions
Automata definitionsSajid Marwat
 
Lesson 01.ppt
Lesson 01.pptLesson 01.ppt
Lesson 01.pptImXaib
 

Semelhante a Lesson 02 (20)

Theory of Automata ___ Basis ...........
Theory of Automata ___ Basis ...........Theory of Automata ___ Basis ...........
Theory of Automata ___ Basis ...........
 
Lesson-01-29092022-081117pm.ppt
Lesson-01-29092022-081117pm.pptLesson-01-29092022-081117pm.ppt
Lesson-01-29092022-081117pm.ppt
 
L_2_apl.pptx
L_2_apl.pptxL_2_apl.pptx
L_2_apl.pptx
 
theory of computation lecture 02
theory of computation lecture 02theory of computation lecture 02
theory of computation lecture 02
 
Mod 2_RegularExpressions.pptx
Mod 2_RegularExpressions.pptxMod 2_RegularExpressions.pptx
Mod 2_RegularExpressions.pptx
 
01-Introduction&Languages.pdf
01-Introduction&Languages.pdf01-Introduction&Languages.pdf
01-Introduction&Languages.pdf
 
01 alphabets strings and languages
01 alphabets strings and languages01 alphabets strings and languages
01 alphabets strings and languages
 
Theory of computing
Theory of computingTheory of computing
Theory of computing
 
Chapter2CDpdf__2021_11_26_09_19_08.pdf
Chapter2CDpdf__2021_11_26_09_19_08.pdfChapter2CDpdf__2021_11_26_09_19_08.pdf
Chapter2CDpdf__2021_11_26_09_19_08.pdf
 
PART A.doc
PART A.docPART A.doc
PART A.doc
 
Chapter 3 REGULAR EXPRESSION.pdf
Chapter 3 REGULAR EXPRESSION.pdfChapter 3 REGULAR EXPRESSION.pdf
Chapter 3 REGULAR EXPRESSION.pdf
 
UNIT_-_II.docx
UNIT_-_II.docxUNIT_-_II.docx
UNIT_-_II.docx
 
Final formal languages
Final formal languagesFinal formal languages
Final formal languages
 
Regular Expression
Regular ExpressionRegular Expression
Regular Expression
 
Class1
 Class1 Class1
Class1
 
10651372.ppt
10651372.ppt10651372.ppt
10651372.ppt
 
Automata definitions
Automata definitionsAutomata definitions
Automata definitions
 
To lec 03
To lec 03To lec 03
To lec 03
 
Lesson 01.ppt
Lesson 01.pptLesson 01.ppt
Lesson 01.ppt
 
Theory of computation
Theory of computationTheory of computation
Theory of computation
 

Mais de maamir farooq (20)

Ooad lab1
Ooad lab1Ooad lab1
Ooad lab1
 
Php client libray
Php client librayPhp client libray
Php client libray
 
Swiftmailer
SwiftmailerSwiftmailer
Swiftmailer
 
Lect15
Lect15Lect15
Lect15
 
Lec 7
Lec 7Lec 7
Lec 7
 
Lec 6
Lec 6Lec 6
Lec 6
 
Lec 5
Lec 5Lec 5
Lec 5
 
J query 1.7 cheat sheet
J query 1.7 cheat sheetJ query 1.7 cheat sheet
J query 1.7 cheat sheet
 
Assignment
AssignmentAssignment
Assignment
 
Java script summary
Java script summaryJava script summary
Java script summary
 
Lec 3
Lec 3Lec 3
Lec 3
 
Lec 2
Lec 2Lec 2
Lec 2
 
Lec 1
Lec 1Lec 1
Lec 1
 
Css summary
Css summaryCss summary
Css summary
 
Manual of image processing lab
Manual of image processing labManual of image processing lab
Manual of image processing lab
 
Session management
Session managementSession management
Session management
 
Data management
Data managementData management
Data management
 
Content provider
Content providerContent provider
Content provider
 
Android sq lite database tutorial
Android sq lite database tutorialAndroid sq lite database tutorial
Android sq lite database tutorial
 
5. content providers
5. content providers5. content providers
5. content providers
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 

Último (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 

Lesson 02

  • 1. 1 Lecture-2 Recap Lecture-1 Introduction to the course title, Formal and In- formal languages, Alphabets, Strings, Null string, Words, Valid and In-valid alphabets, length of a string, Reverse of a string, Defining languages, Descriptive definition of languages, EQUAL, EVEN-EVEN, INTEGER, EVEN, { an bn }, { an bn an }, factorial, FACTORIAL, DOUBLEFACTORIAL, SQUARE, DOUBLESQUARE, PRIME, PALINDROME.
  • 2. 2 Task Q) Prove that there are as many palindromes of length 2n, defined over Σ = {a,b,c}, as there are of length 2n-1, n = 1,2,3… . Determine the number of palindromes of length 2n defined over the same alphabet as well.
  • 3. 3 Solution To calculate the number of palindromes of length(2n), consider the following diagram,
  • 4. 4 which shows that there are as many palindromes of length 2n as there are the strings of length n i.e. the required number of palindromes are 3n (as there are three letters in the given alphabet, so the number of strings of length n will be 3n ).
  • 5. 5 To calculate the number of palindromes of length (2n-1) with a as the middle letter, consider the following diagram,
  • 6. 6 which shows that there are as many palindromes of length 2n-1, with a as middle letter, as there are the strings of length n-1, i.e. the required number of palindromes are 3n-1 . Similarly the number of palindromes of length 2n-1, with b or c as middle letter, will be 3n-1 as well. Hence the total number of palindromes of length 2n-1 will be 3n-1 + 3n-1 + 3n-1 = 3 (3n-1 )= 3n .
  • 7. 7 Kleene Star Closure Given Σ, then the Kleene Star Closure of the alphabet Σ, denoted by Σ*, is the collection of all strings defined over Σ, including Λ. It is to be noted that Kleene Star Closure can be defined over any set of strings.
  • 8. 8 Examples If Σ = {x} Then Σ* = {Λ, x, xx, xxx, xxxx, ….} If Σ = {0,1} Then Σ* = {Λ, 0, 1, 00, 01, 10, 11, ….} If Σ = {aaB, c} d Then Σ* = {Λ, aaB, c, aaBaaB, aaBc, caaB, cc, ….}
  • 9. 9 Note Languages generated by Kleene Star Closure of set of strings, are infinite languages. (By infinite language, it is supposed that the language contains infinite many words, each of finite length).
  • 10. 10 Task Q) 1) Let S={ab, bb} and T={ab, bb, bbbb} Show that S* = T* [Hint S*  T* and T*  S* ] 2) Let S={ab, bb} and T={ab, bb, bbb} Show that S* ≠ T* But S* ⊂ T* 3) Let S={a, bb, bab, abaab} be a set of strings. Are abbabaabab and baabbbabbaabb in S* ? Does any word in S* have odd number of b’s?
  • 11. 11 PLUS Operation (+ ) Plus Operation is same as Kleene Star Closure except that it does not generate Λ (null string), automatically. Example: If Σ = {0,1} Then Σ+ = {0, 1, 00, 01, 10, 11, ….} If Σ = {aab, c} Then Σ+ = {aab, c, aabaab, aabc, caab, cc, ….}
  • 12. 12 TASK Q1)Is there any case when S+ contains Λ? If yes then justify your answer. Q2) Prove that for any set of strings S i. (S+ )* =(S* )* ii. (S+ )+ =S+ iii. Is (S* )+ =(S+ )*
  • 13. 13 Remark It is to be noted that Kleene Star can also be operated on any string i.e. a* can be considered to be all possible strings defined over {a}, which shows that a* generates Λ, a, aa, aaa, … It may also be noted that a+ can be considered to be all possible non empty strings defined over {a}, which shows that a+ generates a, aa, aaa, aaaa, …
  • 14. 14 Defining Languages Continued… Recursive definition of languages The following three steps are used in recursive definition 1. Some basic words are specified in the language. 2. Rules for constructing more words are defined in the language. 3. No strings except those constructed in above, are allowed to be in the language.
  • 15. 15 Example Defining language of INTEGER Step 1: 1 is in INTEGER. Step 2: If x is in INTEGER then x+1 and x-1 are also in INTEGER. Step 3: No strings except those constructed in above, are allowed to be in INTEGER.
  • 16. 16 Example Defining language of EVEN Step 1: 2 is in EVEN. Step 2: If x is in EVEN then x+2 and x-2 are also in EVEN. Step 3: No strings except those constructed in above, are allowed to be in EVEN.
  • 17. 17 Example Defining the language factorial Step 1: As 0!=1, so 1 is in factorial. Step 2: n!=n*(n-1)! is in factorial. Step 3: No strings except those constructed in above, are allowed to be in factorial.
  • 18. 18 Defining the language PALINDROME, defined over Σ = {a,b} Step 1: a and b are in PALINDROME Step 2: if x is palindrome, then s(x)Rev(s) and xx will also be palindrome, where s belongs to Σ* Step 3: No strings except those constructed in above, are allowed to be in palindrome
  • 19. 19 Defining the language {an bn }, n=1,2,3,… , of strings defined over Σ={a,b} Step 1: ab is in {an bn } Step 2: if x is in {an bn }, then axb is in {an bn } Step 3: No strings except those constructed in above, are allowed to be in {an bn }
  • 20. 20 Defining the language L, of strings ending in a , defined over Σ={a,b} Step 1: a is in L Step 2: if x is in L then s(x) is also in L, where s belongs to Σ* Step 3: No strings except those constructed in above, are allowed to be in L
  • 21. 21 Defining the language L, of strings beginning and ending in same letters , defined over Σ={a, b} Step 1: a and b are in L Step 2: (a)s(a) and (b)s(b) are also in L, where s belongs to Σ* Step 3: No strings except those constructed in above, are allowed to be in L
  • 22. 22 Defining the language L, of strings containing aa or bb , defined over Σ={a, b} Step 1: aa and bb are in L Step 2: s(aa)s and s(bb)s are also in L, where s belongs to Σ* Step 3: No strings except those constructed in above, are allowed to be in L
  • 23. 23 Defining the language L, of strings containing exactly aa, defined over Σ={a, b} Step 1: aa is in L Step 2: s(aa)s is also in L, where s belongs to b* Step 3: No strings except those constructed in above, are allowed to be in L
  • 24. 24 Summing Up Kleene Star Closure, Plus operation, recursive definition of languages, INTEGER, EVEN, factorial, PALINDROME, {an bn }, languages of strings (i) ending in a, (ii) beginning and ending in same letters, (iii) containing aa or bb (iv)containing exactly aa,