SlideShare uma empresa Scribd logo
1 de 70
Qualitative
Data
Analysis
Carman Neustaedter
Outline
• Qualitative research
• Analysis methods
• Validity and generalizability
Qualitative Research Methods
• Interviews
• Ethnographic interviews (Spradley, 1979)
• Contextual interviews (Holtzblatt and Jones, 1995)
• Ethnographic observation (Spradley, 1980)
• Participatory design sessions (Sanders, 2005)
• Field deployments
Qualitative Research Goals
• Meaning: how people see the world
• Context: the world in which people act
• Process: what actions and activities people do
• Reasoning: why people act and behave the way they do
Maxwell, 2005
Quantitative vs. Qualitative
• Explanation through numbers
• Objective
• Deductive reasoning
• Predefined variables and
measurement
• Data collection before
analysis
• Cause and effect relationships
• Explanation through words
• Subjective
• Inductive reasoning
• Creativity, extraneous
variables
• Data collection and analysis
intertwined
• Description, meaning
Ron Wardell, EVDS 617 course notes
Quantitative vs. Qualitative
• Explanation through numbers
• Objective
• Deductive reasoning
• Predefined variables and
measurement
• Data collection before
analysis
• Cause and effect relationships
• Explanation through words
• Subjective
• Inductive reasoning
• Creativity, extraneous
variables
• Data collection and analysis
intertwined
• Description, meaning
Ron Wardell, EVDS 617 course notes
Quantitative vs. Qualitative
• Explanation through numbers
• Objective
• Deductive reasoning
• Predefined variables and
measurement
• Data collection before
analysis
• Cause and effect relationships
• Explanation through words
• Subjective
• Inductive reasoning
• Creativity, extraneous
variables
• Data collection and analysis
intertwined
• Description, meaning
Ron Wardell, EVDS 617 course notes
Quantitative vs. Qualitative
• Explanation through numbers
• Objective
• Deductive reasoning
• Predefined variables and
measurement
• Data collection before
analysis
• Cause and effect relationships
• Explanation through words
• Subjective
• Inductive reasoning
• Creativity, extraneous
variables
• Data collection and analysis
intertwined
• Description, meaning
Ron Wardell, EVDS 617 course notes
Quantitative vs. Qualitative
• Explanation through numbers
• Objective
• Deductive reasoning
• Predefined variables and
measurement
• Data collection before
analysis
• Cause and effect relationships
• Explanation through words
• Subjective
• Inductive reasoning
• Creativity, extraneous
variables
• Data collection and analysis
intertwined
• Description, meaning
Ron Wardell, EVDS 617 course notes
Quantitative vs. Qualitative
• Explanation through numbers
• Objective
• Deductive reasoning
• Predefined variables and
measurement
• Data collection before
analysis
• Cause and effect relationships
• Explanation through words
• Subjective
• Inductive reasoning
• Creativity, extraneous
variables
• Data collection and analysis
intertwined
• Description, meaning
Ron Wardell, EVDS 617 course notes
Quantitative vs. Qualitative
• Explanation through numbers
• Objective
• Deductive reasoning
• Predefined variables and
measurement
• Data collection before
analysis
• Cause and effect relationships
• Explanation through words
• Subjective
• Inductive reasoning
• Creativity, extraneous
variables
• Data collection and analysis
intertwined
• Description, meaning
Ron Wardell, EVDS 617 course notes
Getting ‘Good’ Qualitative Results
• Depends on:
• The quality of the data collector
• The quality of the data analyzer
• The quality of the presenter / writer
Ron Wardell, EVDS 617 course notes
Qualitative Data
• Written field notes
• Audio recordings of conversations
• Video recordings of activities
• Diary recordings of activities / thoughts
Qualitative Data
• Depth information on:
• thoughts, views, interpretations
• priorities, importance
• processes, practices
• intended effects of actions
• feelings and experiences
Ron Wardell, EVDS 617 course notes
Outline
• Qualitative research
• Analysis methods
• Validity and generalizability
Data Analysis
• Open Coding
• Systematic Coding
• Affinity Diagramming
Open Coding
• Treat data as answers to open-ended
questions
• ask data specific questions
• assign codes for answers
• record theoretical notes
Strauss and Corbin, 1998, Ron Wardell, EVDS 617 course notes
Example: Calendar Routines
• Families were interviewed about their
calendar routines
• What calendars they had
• Where they kept their calendars
• What types of events they recorded
• …
• Written notes
• Audio recordings
Neustaedter, 2007
Example: Calendar Routines
• Step 1: translate field notes (optional)
paper digital
Example: Calendar Routines
• Step 2: list questions / focal points
Where do families keep their calendars?
What uses do they have for their calendars?
Who adds to the calendars?
When do people check the calendars?
…
(you may end up adding to this list as you
go through your data)
Example: Calendar Routines
• Step 3: go through data and ask questions
Where do families keep their calendars?
Example: Calendar Routines
• Step 3: go through data and ask questions
Where do families keep their calendars?
[KI]
Calendar Locations:
[KI] – the kitchen[KI][KI]
Example: Calendar Routines
• Step 3: go through data and ask questions
Where do families keep their calendars?
[KI]
Calendar Locations:
[KI] – the kitchen
[CR] – child’s room
[CR]
Example: Calendar Routines
• Step 3: go through data and ask questions
Continue for the remaining questions….
[KI]
Calendar Locations:
[KI] – the kitchen
[CR] – child’s room
[CR]
Example: Calendar Routines
• The result:
• list of codes
• frequency of each code
• a sense of the importance of each code
• frequency != importance
Example 2: Calendar Contents
• Pictures were taken of family calendars
Neustaedter, 2007
Example: Calendar Contents
• Step 1: list questions / focal points
What type of events are on the calendar?
Who are the events for?
What other markings are made on the calendar?
…
(you may end up adding to this list as you go
through your data)
Example: Calendar Contents
• Step 2: go through data and ask questions
What types of events are on the calendar?
Example: Calendar Contents
• Step 2: go through data and ask questions
What types of events are on the calendar?
Types of Events:
[FO] – family outing
[FO]
Example: Calendar Contents
• Step 2: go through data and ask questions
What types of events are on the calendar?
Types of Events:
[FO] – family outing
[AN] - anniversary
[FO]
[AN]
Example: Calendar Contents
• Step 2: go through data and ask questions
Continue for the remaining questions….
Types of Events:
[FO] – family outing
[AN] - anniversary
[FO]
[AN]
Reporting Results
• Find the main themes
• Use quotes / scenarios to represent them
• Include counts for codes (optional)
Software: Microsoft Word
Software: Microsoft Excel
Software: ATLAS.ti
http://www.atlasti.com/ -- free trial available
Data Analysis
• Open Coding
• Systematic Coding
• Affinity Diagramming
Systematic Coding
• Categories are created ahead of time
• from existing literature
• from previous open coding
• Code the data just like open coding
Ron Wardell, EVDS 617 course notes
Data Analysis
• Open Coding
• Systematic Coding
• Affinity Diagramming
Affinity Diagramming
• Goal: what are the main themes?
• Write ideas on sticky notes
• Place notes on a large wall / surface
• Group notes hierarchically to see main
themes
Holtzblatt et al., 2005
Example: Calendar Field Study
Neustaedter, 2007
• Families were given a digital calendar to
use in their homes
• Thoughts / reactions recorded:
• Weekly interview notes
• Audio recordings from interviews
Example: Calendar Field Study
• Step 1: Affinity Notes
• go through data and write observations down
on post-it notes
• each note contains one idea
Example: Calendar Field Study
• Step 2: Diagram Building
• place all notes on a wall / surface
Example: Calendar Field Study
• Step 3: Diagram Building
• move notes into related columns / piles
Example: Calendar Field Study
• Step 3: Diagram Building
• move notes into related columns / piles
Example: Calendar Field Study
• Step 3: Diagram Building
• move notes into related columns / piles
Example: Calendar Field Study
• Step 3: Diagram Building
• move notes into related columns / piles
Example: Calendar Field Study
• Step 3: Diagram Building
• move notes into related columns / piles
Example: Calendar Field Study
• Step 3: Diagram Building
• move notes into related columns / piles
Example: Calendar Field Study
• Step 3: Diagram Building
• move notes into related columns / piles
Example: Calendar Field Study
• Step 4: Affinity Labels
• write labels describing each group
Example: Calendar Field Study
• Step 4: Affinity Labels
• write labels describing each group
Calendar placement
is a challenge
Example: Calendar Field Study
• Step 4: Affinity Labels
• write labels describing each group
Calendar placement
is a challenge
Interface visuals
affect usage
Example: Calendar Field Study
• Step 4: Affinity Labels
• write labels describing each group
Calendar placement
is a challenge
Interface visuals
affect usage
People check the
calendar when not at
home
Example: Calendar Field Study
• Step 5: Further Refine Groupings
• see Holtzblatt et al. 2005
Calendar placement
is a challenge
Interface visuals
affect usage
People check the
calendar when not at
home
Outline
• Qualitative research
• Analysis methods
• Validity and generalizability
Validity Threats
• Bias
• researcher’s influence on the study
• e.g., studying one’s own culture
• Reactivity
• researcher's effect on the setting or people
• e.g., people may do things differently
Maxwell, 2005
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Validity Tests
Maxwell, 2005
• Negative cases
• Triangulation
• Quasi-statistics
• Comparison
• Intensive / long term
• Rich data
• Respondent validation
• Intervention
Generalizability
• Internal generalizability
• do findings extend within the group studied?
• External generalizability
• do findings extend outside the group studied?
• Face generalizability
• there is no reason to believe the results don’t
generalize
Maxwell, 2005
Summary
• Qualitative goals:
• meaning, context, process, reasoning
• Good qualitative research:
• data collector / analyzer / presenter
Summary
• Qualitative data:
• detailed descriptions (audio, written, video)
• Analysis methods:
• open coding
• systematic coding
• affinity diagramming
Summary
• Report descriptions / scenarios / quotes
• Look for face generalizability
• Use validity tests
References
1. Dix, A., Finlay, J., Abowd, G., & Beale, R., (1998) Human Computer Interaction, 2nd ed. Toronto: Prentice-Hall.
- Chapter 11: qualitative methods in general
1. Holtzblatt, K, and Jones, S., (1995) Conducting and Analyzing a Contextual Interview, In Readings in Human-Computer
Interaction: Toward the Year 2000, 2nd ed., R.M. Baecker,et al., Editors, Morgan Kaufman, pp. 241-253.
- conducting and analyzing contextual interviews
1. Holtzblatt, K, Wendell, J., and Wood, S., (2005) Rapid Contextual Design: A How-To Guide to Key Techniques for User-
Centered Design, Morgan Kaufmann.
- Chapter 8: building affinity diagrams
1. Maxwell, J., (2005) Qualitative Research Design, In Applied Social Research Methods Series, Volume 41.
- Chapter 1: a model for qualitative research design
- Chapter 5: choosing qualitative methods and analysis
- Chapter 6: validity and generalizability
5. Neustaedter, C. 2007. Domestic Awareness and Family Calendars, PhD Dissertation, University of Calgary, Canada.
- example qualitative studies, analysis, and results reporting
6. Sanders, E.B. 1999. From User-Centered to Participatory Design Approaches, In Design and Social Sciences, J. Frascara
(Ed.), Taylor and Francis Books Limited.
- participatory design for idea generation
7. Spradley, J. (1979) The Ethnographic Interview, Holt, Rinehart & Winston.
- Part 2, Step 2: interviewing an informant
- Part 2, Step 5: analyzing ethnographic interviews
• Spradley, J., (1980) Participant Observation, Harcourt Brace Jovanovich.
- Part 2, Step 2: doing participant observation
- Part 2, Step 3: making an ethnographic record
• Strauss, A., and Corbin, J., (1998). Basics of Qualitative Research: Techniques and Procedures for Developing
Grounded Theory, SAGE Publications.
- Part 2: coding procedures

Mais conteúdo relacionado

Mais procurados

Qualitative data analysis
Qualitative data analysisQualitative data analysis
Qualitative data analysis
Shankar Talwar
 
Qualitative data analysis - Martyn Hammersley
Qualitative data analysis - Martyn HammersleyQualitative data analysis - Martyn Hammersley
Qualitative data analysis - Martyn Hammersley
OUmethods
 

Mais procurados (20)

Qualitative data analysis
Qualitative data analysisQualitative data analysis
Qualitative data analysis
 
Data Analysis Procedure and Types of Quality Data
Data Analysis Procedure and Types of Quality DataData Analysis Procedure and Types of Quality Data
Data Analysis Procedure and Types of Quality Data
 
Using Qualitative Data Analysis Software By Michelle C. Bligh, Ph.D., Claremo...
Using Qualitative Data Analysis Software By Michelle C. Bligh, Ph.D., Claremo...Using Qualitative Data Analysis Software By Michelle C. Bligh, Ph.D., Claremo...
Using Qualitative Data Analysis Software By Michelle C. Bligh, Ph.D., Claremo...
 
Data analysis chapter 18 from the companion website for educational research
Data analysis   chapter 18 from the companion website for educational researchData analysis   chapter 18 from the companion website for educational research
Data analysis chapter 18 from the companion website for educational research
 
Chapter8.coding
Chapter8.codingChapter8.coding
Chapter8.coding
 
Qualitative data analysis - Martyn Hammersley
Qualitative data analysis - Martyn HammersleyQualitative data analysis - Martyn Hammersley
Qualitative data analysis - Martyn Hammersley
 
Qualitative data analysis
Qualitative data analysisQualitative data analysis
Qualitative data analysis
 
Qualitative Data Analysis
Qualitative Data  AnalysisQualitative Data  Analysis
Qualitative Data Analysis
 
Qualitative codes and coding
Qualitative codes and coding Qualitative codes and coding
Qualitative codes and coding
 
Qualitative Data Analysis (Steps)
Qualitative Data Analysis (Steps)Qualitative Data Analysis (Steps)
Qualitative Data Analysis (Steps)
 
From first cycle to second cycle qualitative coding: "Seeing a whole"
From first cycle to second cycle qualitative coding: "Seeing a whole"From first cycle to second cycle qualitative coding: "Seeing a whole"
From first cycle to second cycle qualitative coding: "Seeing a whole"
 
Qualitative data analysis: many approaches to understand user insights
Qualitative data analysis: many approaches to understand user insightsQualitative data analysis: many approaches to understand user insights
Qualitative data analysis: many approaches to understand user insights
 
Summary of different approaches collection of coding and data analysis for q...
Summary of different approaches collection of coding and data analysis  for q...Summary of different approaches collection of coding and data analysis  for q...
Summary of different approaches collection of coding and data analysis for q...
 
Analyzing qualitative data 4 13-17
Analyzing qualitative data 4 13-17Analyzing qualitative data 4 13-17
Analyzing qualitative data 4 13-17
 
Content analysis20 07-12
Content analysis20 07-12Content analysis20 07-12
Content analysis20 07-12
 
Coding, Segmenting & Categorizing in Qualitative Data Analysis
Coding, Segmenting & Categorizing in Qualitative Data AnalysisCoding, Segmenting & Categorizing in Qualitative Data Analysis
Coding, Segmenting & Categorizing in Qualitative Data Analysis
 
Chapter30
Chapter30Chapter30
Chapter30
 
11 - qualitative research data analysis ( Dr. Abdullah Al-Beraidi - Dr. Ibrah...
11 - qualitative research data analysis ( Dr. Abdullah Al-Beraidi - Dr. Ibrah...11 - qualitative research data analysis ( Dr. Abdullah Al-Beraidi - Dr. Ibrah...
11 - qualitative research data analysis ( Dr. Abdullah Al-Beraidi - Dr. Ibrah...
 
Chapter 4 common features of qualitative data analysis
Chapter 4 common features of qualitative data analysisChapter 4 common features of qualitative data analysis
Chapter 4 common features of qualitative data analysis
 
Analyzing observational data during qualitative research
Analyzing observational data during qualitative researchAnalyzing observational data during qualitative research
Analyzing observational data during qualitative research
 

Destaque

Pilot Project on Distance Learning and Remote Library Access
Pilot Project on Distance Learning and Remote Library AccessPilot Project on Distance Learning and Remote Library Access
Pilot Project on Distance Learning and Remote Library Access
Videoguy
 
Qualitative evidence of municipal service delivery protests implications for...
Qualitative evidence of municipal service delivery protests  implications for...Qualitative evidence of municipal service delivery protests  implications for...
Qualitative evidence of municipal service delivery protests implications for...
Merlien Institute
 
qualitative research DR. MADHUR VERMA PGIMS ROHTAK
 qualitative research DR. MADHUR VERMA PGIMS ROHTAK qualitative research DR. MADHUR VERMA PGIMS ROHTAK
qualitative research DR. MADHUR VERMA PGIMS ROHTAK
MADHUR VERMA
 

Destaque (20)

Intentionality and Narrativity in Phenomenological Research
Intentionality and Narrativity in Phenomenological ResearchIntentionality and Narrativity in Phenomenological Research
Intentionality and Narrativity in Phenomenological Research
 
Pilot Project on Distance Learning and Remote Library Access
Pilot Project on Distance Learning and Remote Library AccessPilot Project on Distance Learning and Remote Library Access
Pilot Project on Distance Learning and Remote Library Access
 
Session 2 Methods qualitative_quantitative
Session 2 Methods qualitative_quantitativeSession 2 Methods qualitative_quantitative
Session 2 Methods qualitative_quantitative
 
Slideshare Presentation of Qualitative Data
Slideshare   Presentation of Qualitative DataSlideshare   Presentation of Qualitative Data
Slideshare Presentation of Qualitative Data
 
Mapping Experiences with Actor Network Theory
Mapping Experiences with Actor Network TheoryMapping Experiences with Actor Network Theory
Mapping Experiences with Actor Network Theory
 
Research Trends: Qualitative Analysis in CSCL_Heisawn
Research Trends: Qualitative Analysis in CSCL_HeisawnResearch Trends: Qualitative Analysis in CSCL_Heisawn
Research Trends: Qualitative Analysis in CSCL_Heisawn
 
Qualitative evidence of municipal service delivery protests implications for...
Qualitative evidence of municipal service delivery protests  implications for...Qualitative evidence of municipal service delivery protests  implications for...
Qualitative evidence of municipal service delivery protests implications for...
 
Trends in user research methods - WIAD17
Trends in user research methods - WIAD17Trends in user research methods - WIAD17
Trends in user research methods - WIAD17
 
Qualitiative data analysis: data triangulation
Qualitiative data analysis: data triangulationQualitiative data analysis: data triangulation
Qualitiative data analysis: data triangulation
 
Descriptive and qualitative research analysis
Descriptive and qualitative research analysisDescriptive and qualitative research analysis
Descriptive and qualitative research analysis
 
Teaching Creativity: Blending graphic & web design for cartography
Teaching Creativity: Blending graphic & web design for cartographyTeaching Creativity: Blending graphic & web design for cartography
Teaching Creativity: Blending graphic & web design for cartography
 
Science Research: Descriptive Research
Science Research: Descriptive ResearchScience Research: Descriptive Research
Science Research: Descriptive Research
 
Cities: Origin, Concepts of Growth, and Spatial Theories
Cities: Origin, Concepts of Growth, and Spatial TheoriesCities: Origin, Concepts of Growth, and Spatial Theories
Cities: Origin, Concepts of Growth, and Spatial Theories
 
qualitative research DR. MADHUR VERMA PGIMS ROHTAK
 qualitative research DR. MADHUR VERMA PGIMS ROHTAK qualitative research DR. MADHUR VERMA PGIMS ROHTAK
qualitative research DR. MADHUR VERMA PGIMS ROHTAK
 
types of qualitative research
types of qualitative researchtypes of qualitative research
types of qualitative research
 
Components of begg appliance /certified fixed orthodontic courses by Indian d...
Components of begg appliance /certified fixed orthodontic courses by Indian d...Components of begg appliance /certified fixed orthodontic courses by Indian d...
Components of begg appliance /certified fixed orthodontic courses by Indian d...
 
Research Methodologies
Research Methodologies Research Methodologies
Research Methodologies
 
Qualitative Research Methods by Paulino Silva - ECSM2015
Qualitative Research Methods by Paulino Silva - ECSM2015Qualitative Research Methods by Paulino Silva - ECSM2015
Qualitative Research Methods by Paulino Silva - ECSM2015
 
Types of research, b usiness research
Types of research, b usiness researchTypes of research, b usiness research
Types of research, b usiness research
 
QUALITATIVE RESEARCH PROCESS
QUALITATIVE RESEARCH PROCESSQUALITATIVE RESEARCH PROCESS
QUALITATIVE RESEARCH PROCESS
 

Semelhante a Qualitative data 2

information-skills-for-researchers-v3
information-skills-for-researchers-v3information-skills-for-researchers-v3
information-skills-for-researchers-v3
Jacqueline Thomas
 
Lecture 9.28.10
Lecture 9.28.10Lecture 9.28.10
Lecture 9.28.10
VMRoberts
 

Semelhante a Qualitative data 2 (20)

Digital Dissertation Overview - Dissertation Top Gun
Digital Dissertation Overview - Dissertation Top GunDigital Dissertation Overview - Dissertation Top Gun
Digital Dissertation Overview - Dissertation Top Gun
 
Overview of the dissertation process. Tools, techniques by phase.
Overview of the dissertation process. Tools, techniques by phase.Overview of the dissertation process. Tools, techniques by phase.
Overview of the dissertation process. Tools, techniques by phase.
 
Sample Lecture
Sample LectureSample Lecture
Sample Lecture
 
Using Qualitative Methods for Library Evaluation: An Interactive Workshop
Using Qualitative Methods for Library Evaluation: An Interactive WorkshopUsing Qualitative Methods for Library Evaluation: An Interactive Workshop
Using Qualitative Methods for Library Evaluation: An Interactive Workshop
 
Using Qualitative Methods for Library Evaluation: An Interactive Workshop
Using Qualitative Methods for Library Evaluation: An Interactive WorkshopUsing Qualitative Methods for Library Evaluation: An Interactive Workshop
Using Qualitative Methods for Library Evaluation: An Interactive Workshop
 
Assignment presentation QDA analysis
Assignment presentation QDA analysisAssignment presentation QDA analysis
Assignment presentation QDA analysis
 
The research methods in linguistics chapter 1
The research methods in linguistics chapter 1The research methods in linguistics chapter 1
The research methods in linguistics chapter 1
 
S5. qualitative #2 2019
S5. qualitative #2 2019S5. qualitative #2 2019
S5. qualitative #2 2019
 
creswell book.pdf
creswell book.pdfcreswell book.pdf
creswell book.pdf
 
Research methods in social sciences : An Overview
Research methods in social sciences : An OverviewResearch methods in social sciences : An Overview
Research methods in social sciences : An Overview
 
Are You Ready to Write Up Your Qualitative Data?
Are You Ready to Write Up Your Qualitative Data?Are You Ready to Write Up Your Qualitative Data?
Are You Ready to Write Up Your Qualitative Data?
 
Trend Spotting Workshop
Trend Spotting WorkshopTrend Spotting Workshop
Trend Spotting Workshop
 
The Process of Conducting Educational Research
The Process of Conducting Educational ResearchThe Process of Conducting Educational Research
The Process of Conducting Educational Research
 
information-skills-for-researchers-v3
information-skills-for-researchers-v3information-skills-for-researchers-v3
information-skills-for-researchers-v3
 
Studying information behavior: The Many Faces of Digital Visitors and Residents
Studying information behavior: The Many Faces of Digital Visitors and ResidentsStudying information behavior: The Many Faces of Digital Visitors and Residents
Studying information behavior: The Many Faces of Digital Visitors and Residents
 
Studying information behavior: The Many Faces of Digital Visitors and Residents
Studying information behavior: The Many Faces of Digital Visitors and ResidentsStudying information behavior: The Many Faces of Digital Visitors and Residents
Studying information behavior: The Many Faces of Digital Visitors and Residents
 
3. Do you have some idea how you will study your topic?
3. Do you have some idea how you will study your topic?3. Do you have some idea how you will study your topic?
3. Do you have some idea how you will study your topic?
 
Evidence-based Librarianship for All
Evidence-based Librarianship for AllEvidence-based Librarianship for All
Evidence-based Librarianship for All
 
Lecture 9.28.10
Lecture 9.28.10Lecture 9.28.10
Lecture 9.28.10
 
Research methodology
Research methodologyResearch methodology
Research methodology
 

Mais de Illi Elas (12)

Grammar 4
Grammar 4Grammar 4
Grammar 4
 
Research methodology illi
Research methodology illiResearch methodology illi
Research methodology illi
 
Research methodology illi second draft
Research methodology illi second draftResearch methodology illi second draft
Research methodology illi second draft
 
Grammar 3
Grammar 3Grammar 3
Grammar 3
 
Questionnaires for research methodology
Questionnaires for research methodologyQuestionnaires for research methodology
Questionnaires for research methodology
 
Presentation mini research methdology
Presentation mini research methdologyPresentation mini research methdology
Presentation mini research methdology
 
Grammar 2
Grammar 2Grammar 2
Grammar 2
 
Grammar 1
Grammar 1Grammar 1
Grammar 1
 
Quantitative data 2
Quantitative data 2Quantitative data 2
Quantitative data 2
 
Quantitative data
Quantitative dataQuantitative data
Quantitative data
 
Qualitative data
Qualitative dataQualitative data
Qualitative data
 
Research methodology
Research methodologyResearch methodology
Research methodology
 

Último

Último (20)

Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 

Qualitative data 2

  • 2. Outline • Qualitative research • Analysis methods • Validity and generalizability
  • 3. Qualitative Research Methods • Interviews • Ethnographic interviews (Spradley, 1979) • Contextual interviews (Holtzblatt and Jones, 1995) • Ethnographic observation (Spradley, 1980) • Participatory design sessions (Sanders, 2005) • Field deployments
  • 4. Qualitative Research Goals • Meaning: how people see the world • Context: the world in which people act • Process: what actions and activities people do • Reasoning: why people act and behave the way they do Maxwell, 2005
  • 5. Quantitative vs. Qualitative • Explanation through numbers • Objective • Deductive reasoning • Predefined variables and measurement • Data collection before analysis • Cause and effect relationships • Explanation through words • Subjective • Inductive reasoning • Creativity, extraneous variables • Data collection and analysis intertwined • Description, meaning Ron Wardell, EVDS 617 course notes
  • 6. Quantitative vs. Qualitative • Explanation through numbers • Objective • Deductive reasoning • Predefined variables and measurement • Data collection before analysis • Cause and effect relationships • Explanation through words • Subjective • Inductive reasoning • Creativity, extraneous variables • Data collection and analysis intertwined • Description, meaning Ron Wardell, EVDS 617 course notes
  • 7. Quantitative vs. Qualitative • Explanation through numbers • Objective • Deductive reasoning • Predefined variables and measurement • Data collection before analysis • Cause and effect relationships • Explanation through words • Subjective • Inductive reasoning • Creativity, extraneous variables • Data collection and analysis intertwined • Description, meaning Ron Wardell, EVDS 617 course notes
  • 8. Quantitative vs. Qualitative • Explanation through numbers • Objective • Deductive reasoning • Predefined variables and measurement • Data collection before analysis • Cause and effect relationships • Explanation through words • Subjective • Inductive reasoning • Creativity, extraneous variables • Data collection and analysis intertwined • Description, meaning Ron Wardell, EVDS 617 course notes
  • 9. Quantitative vs. Qualitative • Explanation through numbers • Objective • Deductive reasoning • Predefined variables and measurement • Data collection before analysis • Cause and effect relationships • Explanation through words • Subjective • Inductive reasoning • Creativity, extraneous variables • Data collection and analysis intertwined • Description, meaning Ron Wardell, EVDS 617 course notes
  • 10. Quantitative vs. Qualitative • Explanation through numbers • Objective • Deductive reasoning • Predefined variables and measurement • Data collection before analysis • Cause and effect relationships • Explanation through words • Subjective • Inductive reasoning • Creativity, extraneous variables • Data collection and analysis intertwined • Description, meaning Ron Wardell, EVDS 617 course notes
  • 11. Quantitative vs. Qualitative • Explanation through numbers • Objective • Deductive reasoning • Predefined variables and measurement • Data collection before analysis • Cause and effect relationships • Explanation through words • Subjective • Inductive reasoning • Creativity, extraneous variables • Data collection and analysis intertwined • Description, meaning Ron Wardell, EVDS 617 course notes
  • 12. Getting ‘Good’ Qualitative Results • Depends on: • The quality of the data collector • The quality of the data analyzer • The quality of the presenter / writer Ron Wardell, EVDS 617 course notes
  • 13. Qualitative Data • Written field notes • Audio recordings of conversations • Video recordings of activities • Diary recordings of activities / thoughts
  • 14. Qualitative Data • Depth information on: • thoughts, views, interpretations • priorities, importance • processes, practices • intended effects of actions • feelings and experiences Ron Wardell, EVDS 617 course notes
  • 15. Outline • Qualitative research • Analysis methods • Validity and generalizability
  • 16. Data Analysis • Open Coding • Systematic Coding • Affinity Diagramming
  • 17. Open Coding • Treat data as answers to open-ended questions • ask data specific questions • assign codes for answers • record theoretical notes Strauss and Corbin, 1998, Ron Wardell, EVDS 617 course notes
  • 18. Example: Calendar Routines • Families were interviewed about their calendar routines • What calendars they had • Where they kept their calendars • What types of events they recorded • … • Written notes • Audio recordings Neustaedter, 2007
  • 19. Example: Calendar Routines • Step 1: translate field notes (optional) paper digital
  • 20. Example: Calendar Routines • Step 2: list questions / focal points Where do families keep their calendars? What uses do they have for their calendars? Who adds to the calendars? When do people check the calendars? … (you may end up adding to this list as you go through your data)
  • 21. Example: Calendar Routines • Step 3: go through data and ask questions Where do families keep their calendars?
  • 22. Example: Calendar Routines • Step 3: go through data and ask questions Where do families keep their calendars? [KI] Calendar Locations: [KI] – the kitchen[KI][KI]
  • 23. Example: Calendar Routines • Step 3: go through data and ask questions Where do families keep their calendars? [KI] Calendar Locations: [KI] – the kitchen [CR] – child’s room [CR]
  • 24. Example: Calendar Routines • Step 3: go through data and ask questions Continue for the remaining questions…. [KI] Calendar Locations: [KI] – the kitchen [CR] – child’s room [CR]
  • 25. Example: Calendar Routines • The result: • list of codes • frequency of each code • a sense of the importance of each code • frequency != importance
  • 26. Example 2: Calendar Contents • Pictures were taken of family calendars Neustaedter, 2007
  • 27. Example: Calendar Contents • Step 1: list questions / focal points What type of events are on the calendar? Who are the events for? What other markings are made on the calendar? … (you may end up adding to this list as you go through your data)
  • 28. Example: Calendar Contents • Step 2: go through data and ask questions What types of events are on the calendar?
  • 29. Example: Calendar Contents • Step 2: go through data and ask questions What types of events are on the calendar? Types of Events: [FO] – family outing [FO]
  • 30. Example: Calendar Contents • Step 2: go through data and ask questions What types of events are on the calendar? Types of Events: [FO] – family outing [AN] - anniversary [FO] [AN]
  • 31. Example: Calendar Contents • Step 2: go through data and ask questions Continue for the remaining questions…. Types of Events: [FO] – family outing [AN] - anniversary [FO] [AN]
  • 32. Reporting Results • Find the main themes • Use quotes / scenarios to represent them • Include counts for codes (optional)
  • 36. Data Analysis • Open Coding • Systematic Coding • Affinity Diagramming
  • 37. Systematic Coding • Categories are created ahead of time • from existing literature • from previous open coding • Code the data just like open coding Ron Wardell, EVDS 617 course notes
  • 38. Data Analysis • Open Coding • Systematic Coding • Affinity Diagramming
  • 39. Affinity Diagramming • Goal: what are the main themes? • Write ideas on sticky notes • Place notes on a large wall / surface • Group notes hierarchically to see main themes Holtzblatt et al., 2005
  • 40. Example: Calendar Field Study Neustaedter, 2007 • Families were given a digital calendar to use in their homes • Thoughts / reactions recorded: • Weekly interview notes • Audio recordings from interviews
  • 41. Example: Calendar Field Study • Step 1: Affinity Notes • go through data and write observations down on post-it notes • each note contains one idea
  • 42. Example: Calendar Field Study • Step 2: Diagram Building • place all notes on a wall / surface
  • 43. Example: Calendar Field Study • Step 3: Diagram Building • move notes into related columns / piles
  • 44. Example: Calendar Field Study • Step 3: Diagram Building • move notes into related columns / piles
  • 45. Example: Calendar Field Study • Step 3: Diagram Building • move notes into related columns / piles
  • 46. Example: Calendar Field Study • Step 3: Diagram Building • move notes into related columns / piles
  • 47. Example: Calendar Field Study • Step 3: Diagram Building • move notes into related columns / piles
  • 48. Example: Calendar Field Study • Step 3: Diagram Building • move notes into related columns / piles
  • 49. Example: Calendar Field Study • Step 3: Diagram Building • move notes into related columns / piles
  • 50. Example: Calendar Field Study • Step 4: Affinity Labels • write labels describing each group
  • 51. Example: Calendar Field Study • Step 4: Affinity Labels • write labels describing each group Calendar placement is a challenge
  • 52. Example: Calendar Field Study • Step 4: Affinity Labels • write labels describing each group Calendar placement is a challenge Interface visuals affect usage
  • 53. Example: Calendar Field Study • Step 4: Affinity Labels • write labels describing each group Calendar placement is a challenge Interface visuals affect usage People check the calendar when not at home
  • 54. Example: Calendar Field Study • Step 5: Further Refine Groupings • see Holtzblatt et al. 2005 Calendar placement is a challenge Interface visuals affect usage People check the calendar when not at home
  • 55. Outline • Qualitative research • Analysis methods • Validity and generalizability
  • 56. Validity Threats • Bias • researcher’s influence on the study • e.g., studying one’s own culture • Reactivity • researcher's effect on the setting or people • e.g., people may do things differently Maxwell, 2005
  • 57. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 58. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 59. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 60. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 61. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 62. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 63. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 64. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 65. Validity Tests Maxwell, 2005 • Negative cases • Triangulation • Quasi-statistics • Comparison • Intensive / long term • Rich data • Respondent validation • Intervention
  • 66. Generalizability • Internal generalizability • do findings extend within the group studied? • External generalizability • do findings extend outside the group studied? • Face generalizability • there is no reason to believe the results don’t generalize Maxwell, 2005
  • 67. Summary • Qualitative goals: • meaning, context, process, reasoning • Good qualitative research: • data collector / analyzer / presenter
  • 68. Summary • Qualitative data: • detailed descriptions (audio, written, video) • Analysis methods: • open coding • systematic coding • affinity diagramming
  • 69. Summary • Report descriptions / scenarios / quotes • Look for face generalizability • Use validity tests
  • 70. References 1. Dix, A., Finlay, J., Abowd, G., & Beale, R., (1998) Human Computer Interaction, 2nd ed. Toronto: Prentice-Hall. - Chapter 11: qualitative methods in general 1. Holtzblatt, K, and Jones, S., (1995) Conducting and Analyzing a Contextual Interview, In Readings in Human-Computer Interaction: Toward the Year 2000, 2nd ed., R.M. Baecker,et al., Editors, Morgan Kaufman, pp. 241-253. - conducting and analyzing contextual interviews 1. Holtzblatt, K, Wendell, J., and Wood, S., (2005) Rapid Contextual Design: A How-To Guide to Key Techniques for User- Centered Design, Morgan Kaufmann. - Chapter 8: building affinity diagrams 1. Maxwell, J., (2005) Qualitative Research Design, In Applied Social Research Methods Series, Volume 41. - Chapter 1: a model for qualitative research design - Chapter 5: choosing qualitative methods and analysis - Chapter 6: validity and generalizability 5. Neustaedter, C. 2007. Domestic Awareness and Family Calendars, PhD Dissertation, University of Calgary, Canada. - example qualitative studies, analysis, and results reporting 6. Sanders, E.B. 1999. From User-Centered to Participatory Design Approaches, In Design and Social Sciences, J. Frascara (Ed.), Taylor and Francis Books Limited. - participatory design for idea generation 7. Spradley, J. (1979) The Ethnographic Interview, Holt, Rinehart & Winston. - Part 2, Step 2: interviewing an informant - Part 2, Step 5: analyzing ethnographic interviews • Spradley, J., (1980) Participant Observation, Harcourt Brace Jovanovich. - Part 2, Step 2: doing participant observation - Part 2, Step 3: making an ethnographic record • Strauss, A., and Corbin, J., (1998). Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, SAGE Publications. - Part 2: coding procedures

Notas do Editor

  1. The goals of qualitative research are to understand: Meaning Context Process Reasoning
  2. These points are under contention by researchers. Quantitative research involves explaining a phenomenon based on numerical evidence. For example, X is faster than Y so X must be better. Qualitative research involves explaining a phenomenon through words. For example, using a description of a real world act or process. Quantitative is objective: it is undistorted by emotion or personal bias; based on observable phenomenon. Qualitative is subjective: it is influenced by personal opinion, the creativity of the researcher to ask the right questions and see the right actions. You need to understand what your biases are ahead of time and understand how they will affect the results. Quantitative relies on deductive reasoning where you will start with a hypothesis or principle and attempt to prove/disprove it. Qualitative relies on inductive reasoning in which general principles are derived from particular facts or instances. You don’t start with a hypothesis. You start by observing small samples and drawing larger conclusions about populations as a whole from these observations. Quantitative relies on collecting data first then analysis it to get objective results. Qualitative relies on collecting data, analyzing it, refining the research method and questions, and then repeating the process. Quantitative gives you cause and effect relationships. Qualitative gives you meanings and descriptions of phenomena.
  3. These points are under contention by researchers. Quantitative research involves explaining a phenomenon based on numerical evidence. For example, X is faster than Y so X must be better. Qualitative research involves explaining a phenomenon through words. For example, using a description of a real world act or process. Quantitative is objective: it is undistorted by emotion or personal bias; based on observable phenomenon. Qualitative is subjective: it is influenced by personal opinion, the creativity of the researcher to ask the right questions and see the right actions. You need to understand what your biases are ahead of time and understand how they will affect the results. Quantitative relies on deductive reasoning where you will start with a hypothesis or principle and attempt to prove/disprove it. Qualitative relies on inductive reasoning in which general principles are derived from particular facts or instances. You don’t start with a hypothesis. You start by observing small samples and drawing larger conclusions about populations as a whole from these observations. Quantitative relies on collecting data first then analysis it to get objective results. Qualitative relies on collecting data, analyzing it, refining the research method and questions, and then repeating the process. Quantitative gives you cause and effect relationships. Qualitative gives you meanings and descriptions of phenomena.
  4. These points are under contention by researchers. Quantitative research involves explaining a phenomenon based on numerical evidence. For example, X is faster than Y so X must be better. Qualitative research involves explaining a phenomenon through words. For example, using a description of a real world act or process. Quantitative is objective: it is undistorted by emotion or personal bias; based on observable phenomenon. Qualitative is subjective: it is influenced by personal opinion, the creativity of the researcher to ask the right questions and see the right actions. You need to understand what your biases are ahead of time and understand how they will affect the results. Quantitative relies on deductive reasoning where you will start with a hypothesis or principle and attempt to prove/disprove it. Qualitative relies on inductive reasoning in which general principles are derived from particular facts or instances. You don’t start with a hypothesis. You start by observing small samples and drawing larger conclusions about populations as a whole from these observations. Quantitative relies on collecting data first then analysis it to get objective results. Qualitative relies on collecting data, analyzing it, refining the research method and questions, and then repeating the process. Quantitative gives you cause and effect relationships. Qualitative gives you meanings and descriptions of phenomena.
  5. These points are under contention by researchers. Quantitative research involves explaining a phenomenon based on numerical evidence. For example, X is faster than Y so X must be better. Qualitative research involves explaining a phenomenon through words. For example, using a description of a real world act or process. Quantitative is objective: it is undistorted by emotion or personal bias; based on observable phenomenon. Qualitative is subjective: it is influenced by personal opinion, the creativity of the researcher to ask the right questions and see the right actions. You need to understand what your biases are ahead of time and understand how they will affect the results. Quantitative relies on deductive reasoning where you will start with a hypothesis or principle and attempt to prove/disprove it. Qualitative relies on inductive reasoning in which general principles are derived from particular facts or instances. You don’t start with a hypothesis. You start by observing small samples and drawing larger conclusions about populations as a whole from these observations. Quantitative relies on collecting data first then analysis it to get objective results. Qualitative relies on collecting data, analyzing it, refining the research method and questions, and then repeating the process. Quantitative gives you cause and effect relationships. Qualitative gives you meanings and descriptions of phenomena.
  6. These points are under contention by researchers. Quantitative research involves explaining a phenomenon based on numerical evidence. For example, X is faster than Y so X must be better. Qualitative research involves explaining a phenomenon through words. For example, using a description of a real world act or process. Quantitative is objective: it is undistorted by emotion or personal bias; based on observable phenomenon. Qualitative is subjective: it is influenced by personal opinion, the creativity of the researcher to ask the right questions and see the right actions. You need to understand what your biases are ahead of time and understand how they will affect the results. Quantitative relies on deductive reasoning where you will start with a hypothesis or principle and attempt to prove/disprove it. Qualitative relies on inductive reasoning in which general principles are derived from particular facts or instances. You don’t start with a hypothesis. You start by observing small samples and drawing larger conclusions about populations as a whole from these observations. Quantitative relies on collecting data first then analysis it to get objective results. Qualitative relies on collecting data, analyzing it, refining the research method and questions, and then repeating the process. Quantitative gives you cause and effect relationships. Qualitative gives you meanings and descriptions of phenomena.
  7. These points are under contention by researchers. Quantitative research involves explaining a phenomenon based on numerical evidence. For example, X is faster than Y so X must be better. Qualitative research involves explaining a phenomenon through words. For example, using a description of a real world act or process. Quantitative is objective: it is undistorted by emotion or personal bias; based on observable phenomenon. Qualitative is subjective: it is influenced by personal opinion, the creativity of the researcher to ask the right questions and see the right actions. You need to understand what your biases are ahead of time and understand how they will affect the results. Quantitative relies on deductive reasoning where you will start with a hypothesis or principle and attempt to prove/disprove it. Qualitative relies on inductive reasoning in which general principles are derived from particular facts or instances. You don’t start with a hypothesis. You start by observing small samples and drawing larger conclusions about populations as a whole from these observations. Quantitative relies on collecting data first then analysis it to get objective results. Qualitative relies on collecting data, analyzing it, refining the research method and questions, and then repeating the process. Quantitative gives you cause and effect relationships. Qualitative gives you meanings and descriptions of phenomena.
  8. These points are under contention by researchers. Quantitative research involves explaining a phenomenon based on numerical evidence. For example, X is faster than Y so X must be better. Qualitative research involves explaining a phenomenon through words. For example, using a description of a real world act or process. Quantitative is objective: it is undistorted by emotion or personal bias; based on observable phenomenon. Qualitative is subjective: it is influenced by personal opinion, the creativity of the researcher to ask the right questions and see the right actions. You need to understand what your biases are ahead of time and understand how they will affect the results. Quantitative relies on deductive reasoning where you will start with a hypothesis or principle and attempt to prove/disprove it. Qualitative relies on inductive reasoning in which general principles are derived from particular facts or instances. You don’t start with a hypothesis. You start by observing small samples and drawing larger conclusions about populations as a whole from these observations. Quantitative relies on collecting data first then analysis it to get objective results. Qualitative relies on collecting data, analyzing it, refining the research method and questions, and then repeating the process. Quantitative gives you cause and effect relationships. Qualitative gives you meanings and descriptions of phenomena.
  9. Quality of the data collector: listening skills, interpersonal skills, observational skills Quality of the data analyzer: interpretation, inference Quality of the presenter / writer: if the person is able to effectively communicate the phenomenon
  10. Understand the threats that may exist and try to rule them out or understand how they affect the results.
  11. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  12. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  13. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  14. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  15. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  16. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  17. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  18. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  19. There are several ways to ensure your results are valid. validity tests: - intensive, long term endearment -- more data, repeated observation and interviews - rich data -- full and detailed descriptions - respondent validation -- ask them if the reportings are correct (though this could be just as invalid as the original work) - intervention -- interact with them and see how behavior changes - searching for negative cases - triangulation -- collect data from a variety of settings and methods - quasi-statistics -- e.g., frequency counts - comparison -- multicase, multisite studies
  20. Internal generalizability: you may have studied only a few people within a larger group. Do findings extend to all people in this group? External generalizability: do findings extend outside this group? This is typically not the focus as qualitative studies focus on one particular type of group. It is difficult to get external validity (generalizability) with qualitative research. Instead, you should seek face generalizability -- there is no obvious reason not to believe that the results don't genearlize to the larger population. Use some of the validity tests just described to do this, look for negative cases, etc.