SlideShare uma empresa Scribd logo
1 de 31
Baixar para ler offline
Quadratic Form and Functional
        Optimization
     9th June, 2011   Junpei Tsuji
Optimization of multivariate
    quadratic function
                           𝑥1     1         3 1   𝑥1
𝐽 𝑥1 , 𝑥2 = 1.2 + 0.2, 0.3 𝑥2   +   𝑥1 , 𝑥2       𝑥2
                                  2         1 4
                              3 2
     = 1.2 + 0.2𝑥1 + 0.3𝑥2 + 𝑥1 + 𝑥1 𝑥2 + 2𝑥2 2
                              2




      𝑥1 , 𝑥2 , 𝐽 = 0.045, 0.064, 1.1881
Quadratic approximation
                                                       1
               𝑓 𝒙 ≈ 𝑓 ̅ + 𝑱̅ ∙ 𝒙 − � +
                                    𝒙                    𝒙−�
                                                           𝒙     𝑇�
                                                                   𝑯 𝒙−�
                                                                       𝒙
By Taylor's expansion

                                                       2
                     constant          linear form               quadratic form



    𝒙 ∶= 𝑥1 , 𝑥2 , ⋯ 𝑥 𝑝
                                𝑇
where


    𝑓 ̅ ∶= 𝑓 �
             𝒙
•


    𝑱̅: =      ,    ,⋯,
            𝜕𝑓   𝜕𝑓     𝜕𝑓
•

            𝜕𝑥1 𝜕𝑥2     𝜕𝑥 𝑝
                                        �
                                      𝒙=𝒙
•                                               Jacobian (gradient)

                         ⋯
                𝜕2 𝑓                  𝜕2 𝑓
              𝜕𝑥1 𝜕𝑥1               𝜕𝑥1 𝜕𝑥 𝑝
• � ∶=
   𝑯             ⋮       ⋱             ⋮
                         ⋯
                𝜕2 𝑓                  𝜕2 𝑓
                                                      Hessian (constant)

              𝜕𝑥 𝑝 𝜕𝑥1              𝜕𝑥 𝑝 𝜕𝑥 𝑝
                                                  �
                                                𝒙=𝒙
Completing the square
                          1
 𝑓 𝒙 = 𝑓 ̅ + 𝑱̅ ∙ 𝒙 − � +
                      𝒙     𝒙−�
                              𝒙       𝑇�
                                        𝑯 𝒙−�
                                            𝒙
                          2

• Let � = 𝒙∗ where 𝑱 𝒙∗ 𝑇 = 𝟎 then
      𝒙
                  1
      𝑓 𝒙 = 𝑓∗ +     𝒙 − 𝒙∗ 𝑇 𝑯∗ 𝒙 − 𝒙∗
                  2
           constant         quadratic form
Completing the square
                   1 𝑇
    𝑓 𝒙 = 𝑐 + 𝒃 𝒙 + 𝒙 𝑨𝑨
                  𝑇
                   2
                                       1
                            𝑓 𝒙 = 𝑑+       𝒙 − 𝒙0 𝑇 𝑨 𝒙 − 𝒙0
                                       2
                             1           1                 1
                       = 𝑑 + 𝒙0 𝑇 𝑨𝒙0 − 𝒙0 𝑇 𝑨 + 𝑨 𝑇 𝒙 + 𝒙 𝑇 𝑨𝑨
                             2           2                 2
      𝒃𝑇 =−       𝒙0 𝑇 𝑨 + 𝑨 𝑇
              1
              2
                                    𝒙0 𝑇 = −2𝒃 𝑇 𝑨 + 𝑨 𝑇 −1
•

                                      𝒙0 = −2 𝑨 + 𝑨 𝑇 −1 𝒃
      𝑐= 𝑑+       𝒙0 𝑇 𝑨𝒙0
              1

                             1 𝑇
              2

                  𝑑= 𝑐−        𝒙0 𝑨𝒙0 = 𝑐 − 2𝒃 𝑇 𝑨 + 𝑨 𝑇        𝑨 𝑨+ 𝑨𝑇         𝒃
•
                                                           −1              −1
                             2

                          𝑓 𝒙 = 𝑐 − 2𝒃 𝑇 𝑨 + 𝑨 𝑇   −1   𝑨 𝑨+ 𝑨𝑇   −1   𝒃
Therefore,

                    1
                      + 𝒙 + 2 𝑨 + 𝑨 𝑇 −1 𝒃 𝑇 𝑨 𝒙 + 2 𝑨 + 𝑨 𝑇 −1 𝒃
                    2
     If 𝑨 was symmetric matrix,
                             1 𝑇 −1      1
                 𝑓 𝒙 = 𝑐− 𝒃 𝑨 𝒃+            𝒙 + 𝑨−1 𝒃 𝑇 𝑨 𝒙 + 𝑨−1 𝒃
•

                             2           2
Quadratic form
                𝑓 𝒙𝒙 = 𝒙𝒙 𝑇 𝑺𝑺𝑺

• 𝑺 is symmetric matrix.
where
Symmetric matrix
• Symmetric matrix 𝑺 is defined as a matrix that satisfies the

                           𝑺𝑇 = 𝑺
  following formula:


• Symmetric matrix 𝑺 has real eigenvalues 𝜆 𝑖 and
  eigenvectors 𝒖 𝑖 that consist of normal orthogonal base.

                            𝑺𝒖 𝑖 = 𝜆 𝑖 𝒖 𝑖
where

                      𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆 𝑝
                            𝒖 𝑖 , 𝒖 𝑗 = 𝛿 𝑖𝑖
                   𝛿 𝑖𝑖 is Kronecker's delta
Diagonalization of symmetric matrix
• We define an orthogonal matrix 𝑼 as follows:
                           𝑼 = 𝒖1 , 𝒖2 , ⋯ , 𝒖 𝑝
• Then, 𝑼 satisfies the following formulas:
                                𝑼𝑇 𝑼= 𝑰
                              ∴ 𝑼−1 = 𝑼 𝑇
• where 𝑰 is an identity matrix.
   𝑺𝑺 = 𝑺 𝒖1 , 𝒖2 , ⋯ , 𝒖 𝑝 = 𝑺𝒖1 , 𝑺𝒖2 , ⋯ , 𝑺𝒖 𝑝
                                                            𝜆1
           = 𝜆1 𝒖1 , 𝜆2 𝒖2 , ⋯ , 𝜆 𝑝 𝒖 𝑝 =   𝒖1 , ⋯ , 𝒖 𝑝        ⋱
                                                                     𝜆𝑝
           = 𝑼 𝐝𝐝𝐝𝐝 𝜆1 , 𝜆2 , ⋯ , 𝜆 𝑝
                 ∴ 𝑺 = 𝑼 𝐝𝐝𝐝𝐝 𝜆1 , 𝜆2 , ⋯ , 𝜆 𝑝       𝑼𝑇
Transformation to principal axis
                       𝑓 𝒙′ = 𝒙′ 𝑇 𝑺𝑺′
• Then, we assume 𝒙𝒙 = 𝑼 𝑇 𝒛, where 𝒛 =
   𝑧1 , 𝑧1 , ⋯ , 𝑧 𝑝 .

      𝑓 𝑼 𝑇 𝒛 = 𝑼 𝑇 𝒛 𝑇 𝑺 𝑼 𝑇 𝒛 = 𝒛 𝑇 𝑼𝑺𝑼 𝑇 𝒛
            = 𝒛 𝑇 𝐝𝐝𝐝𝐝 𝜆1 , 𝜆2 , ⋯ , 𝜆 𝑝 𝒛
                           𝑝

               ∴ 𝑓 𝒛 = � 𝜆 𝑖 𝑧 𝑖2
                          𝑖=1
Contour surface
• If we assume 𝑓 𝒛 equals constant 𝑐,
                          𝑝

                𝑓 𝒛 = � 𝜆 𝑖 𝑧 𝑖2 = 𝑐
                         𝑖=1
• When 𝑝 = 2,
  – a locus of 𝒛 illustrates an ellipse if 𝜆1 𝜆2 > 0.
  – a locus of 𝒛 illustrates a hyperbola if 𝜆1 𝜆2 < 0.
Contour surface
                           𝑧2                2

                                     𝑓 𝒛 = � 𝜆 𝑖 𝑧 𝑖 2 = 𝑐𝑐𝑐𝑐𝑐.
                                            𝑖=1
                                             𝜆1 𝜆2 > 0



                                                 𝑧1




maximal or minimal point




                                                      𝑓 𝑥1 , 𝑥2 = −𝑥1 2 − 2𝑥2 2 + 20.0
Transformation to principal axis
            𝑥𝑥2


                  𝑓 𝒙𝒙 = 𝑐𝑐𝑐𝑐𝑐.




                                      𝑥𝑥1


                                   𝒙𝒙 = 𝑼 𝑇 𝒛
                                  ∴ 𝒛 = 𝑼𝒙′
                       Transformation to principal axis
Parallel translation
             𝑥𝑥2

𝑥2

                   �
                   𝒙             𝑥𝑥1


                            𝑓 𝒙 = 𝑐𝑐𝑐𝑐𝑐.


                       𝑥1
                              𝒙𝒙 = 𝒙 − �𝒙
1
Contour surface of quadratic function
        𝑓 𝒙 = 𝑓 +
               ∗
                    𝒙 − 𝒙∗        𝑇
                                      𝑯∗ 𝒙 − 𝒙∗
                  2
   𝑥2

                   �
                   𝒙


                            𝑓 𝒙 = 𝑐𝑐𝑐𝑐𝑐.


                       𝑥1
Contour surface
         𝑧2

                                  2

                         𝑓 𝒛 = � 𝜆 𝑖 𝑧 𝑖 2 = 𝑐𝑐𝑐𝑐𝑐.
                                 𝑖=1
                                  𝜆1 𝜆2 < 0
                    𝑧1




saddle point




                              𝑓 𝑥1 , 𝑥2 = 𝑥1 2 − 𝑥2 2
Stationary points
𝑓 𝑥1 , 𝑥2 = 𝑥1 3 + 𝑥2 3 + 3𝑥1 𝑥2 + 2




  maximal point
                                       saddle point
Stationary points
                    1 3
𝑓 𝑥1 , 𝑥2 = exp −     𝑥1 + 𝑥1 − 𝑥2 2
                    3




   saddle point
                                         maximal point
Newton-Raphson method

   𝑓𝑓 𝒙 = 𝟎 where 𝑓 𝒙 is 𝑁-th polynomial by
• Newton’s method is an approximate solver of

  using a quadratic approximation.


                                                              𝑓 𝒙


                                            quadratic approximation of 𝑓 𝒙 in 𝒙
                                                                                 1
                                                     𝑓 𝒙 + Δ𝒙 ≈ 𝑓 𝒙 + 𝑱 𝒙 ∙ Δ𝒙 + Δ𝒙 𝑇 𝑯 𝒙 Δ𝒙
                                                                                 2
                                                            𝜕𝑓 𝒙 + Δ𝒙
              𝑓𝑓 𝒙∗ = 𝟎                                       𝜕 Δ𝒙
                                                                      = 𝑱 𝒙 𝑇 + 𝑯 𝒙 Δ𝒙



                          𝒙∗   𝒙 + 𝚫𝒙   𝒙
                                                                    𝒙
Algorithm of Newton’s method
Procedure Newton (𝑱 𝒙 , 𝑯 𝒙 )
 1. Initialize 𝒙.
 2. Calculate 𝑱 𝒙 and 𝑯 𝒙 .

    equation and giving ∆𝒙 :
          𝑱 𝒙 𝑇 + 𝑯 𝒙 ∆𝒙 = 𝟎
 3. Solve the following simultaneous


 4. Update 𝒙 as follows:
               𝒙 ← 𝒙 + ∆𝒙
 5. If ∆𝒙 < 𝛿 then return 𝒙 else go
    back to 2.
Linear regression
                                                                     𝑝
             𝑦
                                                  𝑦 = 𝑓 𝒙 = 𝛽0 + � 𝛽 𝑗 𝑥 𝑗
                      𝑁 samples
                                    𝒙 𝑖, 𝑦 𝑖
                                                                    𝑗=1




                                                      𝒙   𝑝-th dimensional space


We would like to find 𝜷∗ that minimizes the residual sum of square (RSS).
Linear regression
                             min RSS 𝜷
                               𝜷

                                                                    2
                 𝑁                    𝑁                  𝑝
• where

 RSS 𝜷 = � 𝑦 𝑖 − 𝑓 𝒙 𝑖         2   = � 𝑦𝑖 −       𝛽0 + � 𝛽 𝑗 𝑥 𝑖𝑖
             𝑖=1                     𝑖=1               𝑗=1
• Given 𝑿, 𝒚, 𝜷 as follows:
          𝑥11        ⋯   𝑥1𝑝 1       𝑦1           𝛽1
    𝑿=     ⋮         ⋱    ⋮ ⋮ , 𝒚=   ⋮ , 𝜷=       ⋮
          𝑥 𝑁𝑁       ⋯   𝑥 𝑁𝑁 1      𝑦𝑁           𝛽𝑝

                         ∴ RSS 𝜷 = 𝒚 − 𝑿𝜷     2
Linear regression
     RSS 𝜷 = 𝐽 𝜷 = 𝒚 − 𝑿𝜷 2 = 𝒚 − 𝑿𝜷 𝑇 𝒚 − 𝑿𝜷
           = 𝒚 𝑇 𝒚 − 𝜷 𝑇 𝑿 𝑇 𝒚 − 𝒚 𝑇 𝑿𝜷 + 𝜷 𝑇 𝑿 𝑇 𝑿𝜷


         𝒂𝑇 𝜷 = 𝒂
    𝜕
    𝜕𝜷

         𝜷𝑇 𝒂 = 𝒂
•
    𝜕
    𝜕𝜷

         𝜷 𝑇 𝑨𝜷 = 𝑨
•
    𝜕
    𝜕𝜷
                        𝜕𝐽
               𝐽′   𝜷 =    = −2𝑿 𝑇 𝒚 + 2𝑿 𝑇 𝑿𝜷
•

                        𝜕𝜷
Linear regression
Given 𝜷∗ that satisfies 𝐽′ 𝜷∗ = 𝟎,
                       𝑿 𝑇 𝒚 = 𝑿 𝑇 𝑿𝜷∗
                      𝒚 𝑇 𝑿 = 𝜷∗ 𝑇 𝑿 𝑇 𝑿
                   ∴ 𝜷∗ =      𝑿𝑇 𝑿   −1
                                           𝑿𝑇 𝒚

  ∴ 𝐽 𝜷 = 𝒚 𝒚 − 𝜷 𝑿 𝑿𝜷 − 𝜷 𝑿 𝑇 𝑿𝜷 + 𝜷 𝑇 𝑿 𝑇 𝑿𝜷
               𝑇       𝑇   𝑇    ∗      ∗𝑇

 ∴ 𝐽 𝜷
       = 𝒚 𝑇 𝒚 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷∗ + 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷∗ − 𝜷 𝑇 𝑿 𝑇 𝑿𝜷∗
       − 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷 + 𝜷 𝑇 𝑿 𝑇 𝑿𝜷
 ∴ 𝐽 𝜷 = 𝒚 𝑇 𝒚 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷∗ + 𝜷 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿 𝜷 − 𝜷∗
                                              completing the square
Linear regression
 𝐽 𝜷 = 𝒚 𝑇 𝒚 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷∗ + 𝜷 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿 𝜷 − 𝜷∗
 = 𝒚 − 𝑿𝜷∗ 2 + 𝜷 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿 𝜷 − 𝜷∗
           1
 = 𝐽 𝜷 +
      ∗
              𝜷 − 𝜷 ∗ 𝑇 𝑯 𝜷 − 𝜷∗
           2
Residual sum of squares (RSS)    quadratic form

                            𝛽2                         𝐽 𝜷 = 𝑐𝑐𝑐𝑐𝑐.
by Linear Regression


                                             𝜷∗

                                                        𝜷∗ = 𝑿 𝑇 𝑿 −1 𝑿 𝑇 𝒚
                                                            𝑯 = 2𝑿 𝑇 𝑿
                                                  𝛽1
Hessian

• 𝑯≔                 = 2𝑿 𝑇 𝑿
          𝜕2 𝐽
         𝜕𝛽 𝑖 𝜕𝛽 𝑗

• 𝑯 has the following two features:
                                   𝑯𝑇 = 𝑯
                                  ∀ 𝒙 ≠ 𝟎, 𝒙 𝑇 𝑯𝑯 > 0
  – symmetric matrix:
  – positive-definite matrix:


Therefore, 𝜷∗ =       𝑿𝑇 𝑿   −1
                                  𝑿 𝑇 𝒚 is the minimum
of 𝐽 𝜷 .
Analysis of residuals
                       𝒚∗ = 𝑿𝜷∗
• Then, we substitute 𝜷∗ = 𝑿 𝑇 𝑿   −1
                                        𝑿 𝑇 𝒚 in the above,
              𝒚∗ = 𝑿𝜷∗ = 𝑿 𝑿 𝑇 𝑿    −1
                                         𝑿𝑇 𝒚

                ∴ 𝒚∗ = ℋ𝒚 (Hat matrix)

• the vector of residuals 𝒓 can be expressed by follows:
           𝒓 = 𝒚 − 𝒚∗ = 𝒚 − ℋ𝒚 = 𝑰 − ℋ 𝒚
  𝑉𝑉𝑉 𝒓 = 𝑉𝑉𝑉 𝑰 − ℋ 𝒚 = 𝑰 − ℋ 𝑉𝑉𝑉 𝒚 𝑰 − ℋ 𝑇
Analysis of residuals
                ℋ = 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇
The hat matrix ℋ is a projection matrix, which

1. Projection: ℋ 2 = ℋ
satisfies the following equations:

   ℋ 2 = ℋ ∙ ℋ = 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇 ∙ 𝑿 𝑿 𝑇 𝑿   −1
                                                 𝑿𝑇
         = 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇
             = 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇 = ℋ
2. Orthogonal: ℋ 𝑇 = ℋ
Analysis of residuals

                 𝑥11    ⋯       𝑥1𝑝 1           𝛽1 ∗
       𝑦1 ∗                                      ⋮
        ⋮ =       ⋮     ⋱        ⋮ ⋮
                                                𝛽𝑝 ∗
       𝑦 𝑁∗      𝑥 𝑁1   ⋯       𝑥 𝑁𝑁 1
                                                𝛽0 ∗

           𝑥11                    𝑥1𝑝        1
= 𝛽1   ∗    ⋮ + ⋯ + 𝛽 𝑝∗           ⋮   + 𝛽0 ⋮
                                           ∗

           𝑥 𝑁1                   𝑥 𝑁𝑁       1
            𝒙1                       𝒙𝑝                𝒙 𝑝+1 = 𝟏
                    linear combination in 𝑝 + 1 -th vector space
Analysis of residuals


                               𝒚
                                        𝒚∗ = ℋ𝒚 (Projection)

        𝒙𝑝
                                   𝒚∗

                          𝒙𝑗

                 𝑝 + 1 -th dimensional super surface

𝑁-th dimensional space
Analysis of residuals
 𝒚 = 𝑿𝜷
• 𝜷 = 𝑿−1 𝒚, where 𝑿−1 is M-P generalized inverse.
                              𝑝= 𝑁
                              𝑝> 𝑁
    1. Unique solution:

                              𝑝< 𝑁
    2. Many solutions:


                    𝑿−1
    3. No solution:


     𝑿   −1
              =� 𝑿𝑿 𝑿𝑿𝑿 −1     𝜷 = 𝑿−1 𝒚 is min in 𝜷
                  𝑿𝑿𝑿 −1 𝑿𝑿        𝒚 − 𝑿𝜷 2 is min
•

Mais conteúdo relacionado

Mais procurados

Computer science project work
Computer science project workComputer science project work
Computer science project workrahulchamp2345
 
3. M2M and IoT - Technology Fundamentals
3. M2M and IoT - Technology Fundamentals3. M2M and IoT - Technology Fundamentals
3. M2M and IoT - Technology FundamentalsJitendra Tomar
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
Ludo game using c++ with documentation
Ludo game using c++ with documentation Ludo game using c++ with documentation
Ludo game using c++ with documentation Mauryasuraj98
 
Experience Certificate - Saif Ullah--
Experience Certificate -  Saif Ullah--Experience Certificate -  Saif Ullah--
Experience Certificate - Saif Ullah--Saifullah Saif
 
Case studies in io t smart-home
Case studies in io t  smart-homeCase studies in io t  smart-home
Case studies in io t smart-homevishal choudhary
 
Smart City IoT Platforms - Benefits and Challenges
Smart City IoT Platforms - Benefits and ChallengesSmart City IoT Platforms - Benefits and Challenges
Smart City IoT Platforms - Benefits and ChallengesDr. Mazlan Abbas
 
Ppt on data science
Ppt on data science Ppt on data science
Ppt on data science Ansh Budania
 
Machine Learning Model Evaluation Methods
Machine Learning Model Evaluation MethodsMachine Learning Model Evaluation Methods
Machine Learning Model Evaluation MethodsPyingkodi Maran
 
Computer science and information technology
Computer science and information technology Computer science and information technology
Computer science and information technology Vivek Kumar Sinha
 
Challenges in indian currency denomination recognition &amp; authentication
Challenges in indian currency denomination recognition &amp; authenticationChallenges in indian currency denomination recognition &amp; authentication
Challenges in indian currency denomination recognition &amp; authenticationeSAT Journals
 
Probability And Its Axioms
Probability And Its AxiomsProbability And Its Axioms
Probability And Its Axiomsmathscontent
 
Probability and Random Variables
Probability and Random VariablesProbability and Random Variables
Probability and Random VariablesSubhobrata Banerjee
 
E waste and its impact on India
E waste and its impact on IndiaE waste and its impact on India
E waste and its impact on IndiaKunal Gawade, CFE
 

Mais procurados (20)

ACS Assessment Letter
ACS Assessment LetterACS Assessment Letter
ACS Assessment Letter
 
Computer science project work
Computer science project workComputer science project work
Computer science project work
 
3. M2M and IoT - Technology Fundamentals
3. M2M and IoT - Technology Fundamentals3. M2M and IoT - Technology Fundamentals
3. M2M and IoT - Technology Fundamentals
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Ludo game using c++ with documentation
Ludo game using c++ with documentation Ludo game using c++ with documentation
Ludo game using c++ with documentation
 
Experience Certificate - Saif Ullah--
Experience Certificate -  Saif Ullah--Experience Certificate -  Saif Ullah--
Experience Certificate - Saif Ullah--
 
Samsung certificate
Samsung certificateSamsung certificate
Samsung certificate
 
Case studies in io t smart-home
Case studies in io t  smart-homeCase studies in io t  smart-home
Case studies in io t smart-home
 
Smart City IoT Platforms - Benefits and Challenges
Smart City IoT Platforms - Benefits and ChallengesSmart City IoT Platforms - Benefits and Challenges
Smart City IoT Platforms - Benefits and Challenges
 
Ppt on data science
Ppt on data science Ppt on data science
Ppt on data science
 
Machine Learning Model Evaluation Methods
Machine Learning Model Evaluation MethodsMachine Learning Model Evaluation Methods
Machine Learning Model Evaluation Methods
 
Computer science and information technology
Computer science and information technology Computer science and information technology
Computer science and information technology
 
Cisco project ideas
Cisco   project ideasCisco   project ideas
Cisco project ideas
 
Vector Calculus.
Vector Calculus.Vector Calculus.
Vector Calculus.
 
QSpiders - Aptitude Assignments
QSpiders - Aptitude AssignmentsQSpiders - Aptitude Assignments
QSpiders - Aptitude Assignments
 
Challenges in indian currency denomination recognition &amp; authentication
Challenges in indian currency denomination recognition &amp; authenticationChallenges in indian currency denomination recognition &amp; authentication
Challenges in indian currency denomination recognition &amp; authentication
 
AE outcome
AE outcomeAE outcome
AE outcome
 
Probability And Its Axioms
Probability And Its AxiomsProbability And Its Axioms
Probability And Its Axioms
 
Probability and Random Variables
Probability and Random VariablesProbability and Random Variables
Probability and Random Variables
 
E waste and its impact on India
E waste and its impact on IndiaE waste and its impact on India
E waste and its impact on India
 

Semelhante a Quadratic form and functional optimization

Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201Drradz Maths
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
Bounded arithmetic in free logic
Bounded arithmetic in free logicBounded arithmetic in free logic
Bounded arithmetic in free logicYamagata Yoriyuki
 
equivalence and countability
equivalence and countabilityequivalence and countability
equivalence and countabilityROHAN GAIKWAD
 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodSEMINARGROOT
 
DERIVATIVES implicit function.pptx
DERIVATIVES implicit function.pptxDERIVATIVES implicit function.pptx
DERIVATIVES implicit function.pptxKulsumPaleja1
 
Page rank - from theory to application
Page rank - from theory to applicationPage rank - from theory to application
Page rank - from theory to applicationGAYO3
 
SUEC 高中 Adv Maths (Extreme Value)
SUEC 高中 Adv Maths (Extreme Value)SUEC 高中 Adv Maths (Extreme Value)
SUEC 高中 Adv Maths (Extreme Value)tungwc
 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsSantiagoGarridoBulln
 
Bounded arithmetic in free logic
Bounded arithmetic in free logicBounded arithmetic in free logic
Bounded arithmetic in free logicYamagata Yoriyuki
 
Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivationHassaan Saleem
 
Higher order differential equation
Higher order differential equationHigher order differential equation
Higher order differential equationSooraj Maurya
 
07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processingJordanJohmMallillin
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxmassm99m
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
 
g_9 - L_1 Solving Quadratic Equations.pptx
g_9 - L_1 Solving Quadratic Equations.pptxg_9 - L_1 Solving Quadratic Equations.pptx
g_9 - L_1 Solving Quadratic Equations.pptxMichelleMatriano
 
Rational function 11
Rational function 11Rational function 11
Rational function 11AjayQuines
 

Semelhante a Quadratic form and functional optimization (20)

Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Bounded arithmetic in free logic
Bounded arithmetic in free logicBounded arithmetic in free logic
Bounded arithmetic in free logic
 
equivalence and countability
equivalence and countabilityequivalence and countability
equivalence and countability
 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's method
 
DERIVATIVES implicit function.pptx
DERIVATIVES implicit function.pptxDERIVATIVES implicit function.pptx
DERIVATIVES implicit function.pptx
 
Page rank - from theory to application
Page rank - from theory to applicationPage rank - from theory to application
Page rank - from theory to application
 
SUEC 高中 Adv Maths (Extreme Value)
SUEC 高中 Adv Maths (Extreme Value)SUEC 高中 Adv Maths (Extreme Value)
SUEC 高中 Adv Maths (Extreme Value)
 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methods
 
Bounded arithmetic in free logic
Bounded arithmetic in free logicBounded arithmetic in free logic
Bounded arithmetic in free logic
 
Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivation
 
lec19.ppt
lec19.pptlec19.ppt
lec19.ppt
 
Higher order differential equation
Higher order differential equationHigher order differential equation
Higher order differential equation
 
Lecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdfLecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdf
 
07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 
g_9 - L_1 Solving Quadratic Equations.pptx
g_9 - L_1 Solving Quadratic Equations.pptxg_9 - L_1 Solving Quadratic Equations.pptx
g_9 - L_1 Solving Quadratic Equations.pptx
 
Rational function 11
Rational function 11Rational function 11
Rational function 11
 

Mais de Junpei Tsuji

素因数分解しようぜ! #日曜数学会
素因数分解しようぜ! #日曜数学会素因数分解しようぜ! #日曜数学会
素因数分解しようぜ! #日曜数学会Junpei Tsuji
 
モンテカルロ法を用いた素数大富豪素数問題の評価 #素数大富豪研究会
モンテカルロ法を用いた素数大富豪素数問題の評価 #素数大富豪研究会 モンテカルロ法を用いた素数大富豪素数問題の評価 #素数大富豪研究会
モンテカルロ法を用いた素数大富豪素数問題の評価 #素数大富豪研究会 Junpei Tsuji
 
ピタゴラス数とヒルベルトの定理90 #3分で数学を語る会
ピタゴラス数とヒルベルトの定理90 #3分で数学を語る会ピタゴラス数とヒルベルトの定理90 #3分で数学を語る会
ピタゴラス数とヒルベルトの定理90 #3分で数学を語る会Junpei Tsuji
 
五次方程式はやっぱり解ける #日曜数学会
五次方程式はやっぱり解ける #日曜数学会五次方程式はやっぱり解ける #日曜数学会
五次方程式はやっぱり解ける #日曜数学会Junpei Tsuji
 
第18回日曜数学会オンライン・オープニング資料
第18回日曜数学会オンライン・オープニング資料第18回日曜数学会オンライン・オープニング資料
第18回日曜数学会オンライン・オープニング資料Junpei Tsuji
 
「にじたい」へのいざない #ロマンティック数学ナイト
「にじたい」へのいざない #ロマンティック数学ナイト「にじたい」へのいざない #ロマンティック数学ナイト
「にじたい」へのいざない #ロマンティック数学ナイトJunpei Tsuji
 
ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会
ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会 ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会
ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会 Junpei Tsuji
 
x^2 + ny^2 の形で表せる素数 - めざせプライムマスター!
x^2 + ny^2 の形で表せる素数 - めざせプライムマスター!x^2 + ny^2 の形で表せる素数 - めざせプライムマスター!
x^2 + ny^2 の形で表せる素数 - めざせプライムマスター!Junpei Tsuji
 
x^2+ny^2の形で表せる素数の法則と類体論
x^2+ny^2の形で表せる素数の法則と類体論x^2+ny^2の形で表せる素数の法則と類体論
x^2+ny^2の形で表せる素数の法則と類体論Junpei Tsuji
 
オイラー先生のおしゃれな素数判定 - 第14回 #日曜数学会
オイラー先生のおしゃれな素数判定 - 第14回 #日曜数学会オイラー先生のおしゃれな素数判定 - 第14回 #日曜数学会
オイラー先生のおしゃれな素数判定 - 第14回 #日曜数学会Junpei Tsuji
 
萩の月問題 - 第14回 #日曜数学会
萩の月問題 - 第14回 #日曜数学会萩の月問題 - 第14回 #日曜数学会
萩の月問題 - 第14回 #日曜数学会Junpei Tsuji
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式Junpei Tsuji
 
私の好きな関数とのなれそめ #ロマンティック数学ナイト
私の好きな関数とのなれそめ #ロマンティック数学ナイト私の好きな関数とのなれそめ #ロマンティック数学ナイト
私の好きな関数とのなれそめ #ロマンティック数学ナイトJunpei Tsuji
 
ベルヌーイ数とお友達になろう #ロマンティック数学ナイト
ベルヌーイ数とお友達になろう #ロマンティック数学ナイト ベルヌーイ数とお友達になろう #ロマンティック数学ナイト
ベルヌーイ数とお友達になろう #ロマンティック数学ナイト Junpei Tsuji
 
五次方程式は解けない - 第12回 #日曜数学会
五次方程式は解けない - 第12回 #日曜数学会五次方程式は解けない - 第12回 #日曜数学会
五次方程式は解けない - 第12回 #日曜数学会Junpei Tsuji
 
「ガロア表現」を使って素数の分解法則を考える #mathmoring
「ガロア表現」を使って素数の分解法則を考える #mathmoring「ガロア表現」を使って素数の分解法則を考える #mathmoring
「ガロア表現」を使って素数の分解法則を考える #mathmoringJunpei Tsuji
 
連分数マジック - 第3回 #日曜数学会 in 札幌
連分数マジック - 第3回 #日曜数学会 in 札幌連分数マジック - 第3回 #日曜数学会 in 札幌
連分数マジック - 第3回 #日曜数学会 in 札幌Junpei Tsuji
 
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」Junpei Tsuji
 
ゼータへ続く素数の階段物語 第13回 数学カフェ「素数!!」
ゼータへ続く素数の階段物語 第13回 数学カフェ「素数!!」ゼータへ続く素数の階段物語 第13回 数学カフェ「素数!!」
ゼータへ続く素数の階段物語 第13回 数学カフェ「素数!!」Junpei Tsuji
 
非正則素数チェッカー #日曜数学会
非正則素数チェッカー #日曜数学会非正則素数チェッカー #日曜数学会
非正則素数チェッカー #日曜数学会Junpei Tsuji
 

Mais de Junpei Tsuji (20)

素因数分解しようぜ! #日曜数学会
素因数分解しようぜ! #日曜数学会素因数分解しようぜ! #日曜数学会
素因数分解しようぜ! #日曜数学会
 
モンテカルロ法を用いた素数大富豪素数問題の評価 #素数大富豪研究会
モンテカルロ法を用いた素数大富豪素数問題の評価 #素数大富豪研究会 モンテカルロ法を用いた素数大富豪素数問題の評価 #素数大富豪研究会
モンテカルロ法を用いた素数大富豪素数問題の評価 #素数大富豪研究会
 
ピタゴラス数とヒルベルトの定理90 #3分で数学を語る会
ピタゴラス数とヒルベルトの定理90 #3分で数学を語る会ピタゴラス数とヒルベルトの定理90 #3分で数学を語る会
ピタゴラス数とヒルベルトの定理90 #3分で数学を語る会
 
五次方程式はやっぱり解ける #日曜数学会
五次方程式はやっぱり解ける #日曜数学会五次方程式はやっぱり解ける #日曜数学会
五次方程式はやっぱり解ける #日曜数学会
 
第18回日曜数学会オンライン・オープニング資料
第18回日曜数学会オンライン・オープニング資料第18回日曜数学会オンライン・オープニング資料
第18回日曜数学会オンライン・オープニング資料
 
「にじたい」へのいざない #ロマンティック数学ナイト
「にじたい」へのいざない #ロマンティック数学ナイト「にじたい」へのいざない #ロマンティック数学ナイト
「にじたい」へのいざない #ロマンティック数学ナイト
 
ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会
ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会 ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会
ラマヌジャンやっぱりやばいじゃん - 第15回 #日曜数学会
 
x^2 + ny^2 の形で表せる素数 - めざせプライムマスター!
x^2 + ny^2 の形で表せる素数 - めざせプライムマスター!x^2 + ny^2 の形で表せる素数 - めざせプライムマスター!
x^2 + ny^2 の形で表せる素数 - めざせプライムマスター!
 
x^2+ny^2の形で表せる素数の法則と類体論
x^2+ny^2の形で表せる素数の法則と類体論x^2+ny^2の形で表せる素数の法則と類体論
x^2+ny^2の形で表せる素数の法則と類体論
 
オイラー先生のおしゃれな素数判定 - 第14回 #日曜数学会
オイラー先生のおしゃれな素数判定 - 第14回 #日曜数学会オイラー先生のおしゃれな素数判定 - 第14回 #日曜数学会
オイラー先生のおしゃれな素数判定 - 第14回 #日曜数学会
 
萩の月問題 - 第14回 #日曜数学会
萩の月問題 - 第14回 #日曜数学会萩の月問題 - 第14回 #日曜数学会
萩の月問題 - 第14回 #日曜数学会
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式
 
私の好きな関数とのなれそめ #ロマンティック数学ナイト
私の好きな関数とのなれそめ #ロマンティック数学ナイト私の好きな関数とのなれそめ #ロマンティック数学ナイト
私の好きな関数とのなれそめ #ロマンティック数学ナイト
 
ベルヌーイ数とお友達になろう #ロマンティック数学ナイト
ベルヌーイ数とお友達になろう #ロマンティック数学ナイト ベルヌーイ数とお友達になろう #ロマンティック数学ナイト
ベルヌーイ数とお友達になろう #ロマンティック数学ナイト
 
五次方程式は解けない - 第12回 #日曜数学会
五次方程式は解けない - 第12回 #日曜数学会五次方程式は解けない - 第12回 #日曜数学会
五次方程式は解けない - 第12回 #日曜数学会
 
「ガロア表現」を使って素数の分解法則を考える #mathmoring
「ガロア表現」を使って素数の分解法則を考える #mathmoring「ガロア表現」を使って素数の分解法則を考える #mathmoring
「ガロア表現」を使って素数の分解法則を考える #mathmoring
 
連分数マジック - 第3回 #日曜数学会 in 札幌
連分数マジック - 第3回 #日曜数学会 in 札幌連分数マジック - 第3回 #日曜数学会 in 札幌
連分数マジック - 第3回 #日曜数学会 in 札幌
 
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
 
ゼータへ続く素数の階段物語 第13回 数学カフェ「素数!!」
ゼータへ続く素数の階段物語 第13回 数学カフェ「素数!!」ゼータへ続く素数の階段物語 第13回 数学カフェ「素数!!」
ゼータへ続く素数の階段物語 第13回 数学カフェ「素数!!」
 
非正則素数チェッカー #日曜数学会
非正則素数チェッカー #日曜数学会非正則素数チェッカー #日曜数学会
非正則素数チェッカー #日曜数学会
 

Último

Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 

Último (20)

Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 

Quadratic form and functional optimization

  • 1. Quadratic Form and Functional Optimization 9th June, 2011 Junpei Tsuji
  • 2. Optimization of multivariate quadratic function 𝑥1 1 3 1 𝑥1 𝐽 𝑥1 , 𝑥2 = 1.2 + 0.2, 0.3 𝑥2 + 𝑥1 , 𝑥2 𝑥2 2 1 4 3 2 = 1.2 + 0.2𝑥1 + 0.3𝑥2 + 𝑥1 + 𝑥1 𝑥2 + 2𝑥2 2 2 𝑥1 , 𝑥2 , 𝐽 = 0.045, 0.064, 1.1881
  • 3. Quadratic approximation 1 𝑓 𝒙 ≈ 𝑓 ̅ + 𝑱̅ ∙ 𝒙 − � + 𝒙 𝒙−� 𝒙 𝑇� 𝑯 𝒙−� 𝒙 By Taylor's expansion 2 constant linear form quadratic form 𝒙 ∶= 𝑥1 , 𝑥2 , ⋯ 𝑥 𝑝 𝑇 where 𝑓 ̅ ∶= 𝑓 � 𝒙 • 𝑱̅: = , ,⋯, 𝜕𝑓 𝜕𝑓 𝜕𝑓 • 𝜕𝑥1 𝜕𝑥2 𝜕𝑥 𝑝 � 𝒙=𝒙 • Jacobian (gradient) ⋯ 𝜕2 𝑓 𝜕2 𝑓 𝜕𝑥1 𝜕𝑥1 𝜕𝑥1 𝜕𝑥 𝑝 • � ∶= 𝑯 ⋮ ⋱ ⋮ ⋯ 𝜕2 𝑓 𝜕2 𝑓 Hessian (constant) 𝜕𝑥 𝑝 𝜕𝑥1 𝜕𝑥 𝑝 𝜕𝑥 𝑝 � 𝒙=𝒙
  • 4. Completing the square 1 𝑓 𝒙 = 𝑓 ̅ + 𝑱̅ ∙ 𝒙 − � + 𝒙 𝒙−� 𝒙 𝑇� 𝑯 𝒙−� 𝒙 2 • Let � = 𝒙∗ where 𝑱 𝒙∗ 𝑇 = 𝟎 then 𝒙 1 𝑓 𝒙 = 𝑓∗ + 𝒙 − 𝒙∗ 𝑇 𝑯∗ 𝒙 − 𝒙∗ 2 constant quadratic form
  • 5. Completing the square 1 𝑇 𝑓 𝒙 = 𝑐 + 𝒃 𝒙 + 𝒙 𝑨𝑨 𝑇 2 1 𝑓 𝒙 = 𝑑+ 𝒙 − 𝒙0 𝑇 𝑨 𝒙 − 𝒙0 2 1 1 1 = 𝑑 + 𝒙0 𝑇 𝑨𝒙0 − 𝒙0 𝑇 𝑨 + 𝑨 𝑇 𝒙 + 𝒙 𝑇 𝑨𝑨 2 2 2 𝒃𝑇 =− 𝒙0 𝑇 𝑨 + 𝑨 𝑇 1 2 𝒙0 𝑇 = −2𝒃 𝑇 𝑨 + 𝑨 𝑇 −1 • 𝒙0 = −2 𝑨 + 𝑨 𝑇 −1 𝒃 𝑐= 𝑑+ 𝒙0 𝑇 𝑨𝒙0 1 1 𝑇 2 𝑑= 𝑐− 𝒙0 𝑨𝒙0 = 𝑐 − 2𝒃 𝑇 𝑨 + 𝑨 𝑇 𝑨 𝑨+ 𝑨𝑇 𝒃 • −1 −1 2 𝑓 𝒙 = 𝑐 − 2𝒃 𝑇 𝑨 + 𝑨 𝑇 −1 𝑨 𝑨+ 𝑨𝑇 −1 𝒃 Therefore, 1 + 𝒙 + 2 𝑨 + 𝑨 𝑇 −1 𝒃 𝑇 𝑨 𝒙 + 2 𝑨 + 𝑨 𝑇 −1 𝒃 2 If 𝑨 was symmetric matrix, 1 𝑇 −1 1 𝑓 𝒙 = 𝑐− 𝒃 𝑨 𝒃+ 𝒙 + 𝑨−1 𝒃 𝑇 𝑨 𝒙 + 𝑨−1 𝒃 • 2 2
  • 6. Quadratic form 𝑓 𝒙𝒙 = 𝒙𝒙 𝑇 𝑺𝑺𝑺 • 𝑺 is symmetric matrix. where
  • 7. Symmetric matrix • Symmetric matrix 𝑺 is defined as a matrix that satisfies the 𝑺𝑇 = 𝑺 following formula: • Symmetric matrix 𝑺 has real eigenvalues 𝜆 𝑖 and eigenvectors 𝒖 𝑖 that consist of normal orthogonal base. 𝑺𝒖 𝑖 = 𝜆 𝑖 𝒖 𝑖 where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆 𝑝 𝒖 𝑖 , 𝒖 𝑗 = 𝛿 𝑖𝑖 𝛿 𝑖𝑖 is Kronecker's delta
  • 8. Diagonalization of symmetric matrix • We define an orthogonal matrix 𝑼 as follows: 𝑼 = 𝒖1 , 𝒖2 , ⋯ , 𝒖 𝑝 • Then, 𝑼 satisfies the following formulas: 𝑼𝑇 𝑼= 𝑰 ∴ 𝑼−1 = 𝑼 𝑇 • where 𝑰 is an identity matrix. 𝑺𝑺 = 𝑺 𝒖1 , 𝒖2 , ⋯ , 𝒖 𝑝 = 𝑺𝒖1 , 𝑺𝒖2 , ⋯ , 𝑺𝒖 𝑝 𝜆1 = 𝜆1 𝒖1 , 𝜆2 𝒖2 , ⋯ , 𝜆 𝑝 𝒖 𝑝 = 𝒖1 , ⋯ , 𝒖 𝑝 ⋱ 𝜆𝑝 = 𝑼 𝐝𝐝𝐝𝐝 𝜆1 , 𝜆2 , ⋯ , 𝜆 𝑝 ∴ 𝑺 = 𝑼 𝐝𝐝𝐝𝐝 𝜆1 , 𝜆2 , ⋯ , 𝜆 𝑝 𝑼𝑇
  • 9. Transformation to principal axis 𝑓 𝒙′ = 𝒙′ 𝑇 𝑺𝑺′ • Then, we assume 𝒙𝒙 = 𝑼 𝑇 𝒛, where 𝒛 = 𝑧1 , 𝑧1 , ⋯ , 𝑧 𝑝 . 𝑓 𝑼 𝑇 𝒛 = 𝑼 𝑇 𝒛 𝑇 𝑺 𝑼 𝑇 𝒛 = 𝒛 𝑇 𝑼𝑺𝑼 𝑇 𝒛 = 𝒛 𝑇 𝐝𝐝𝐝𝐝 𝜆1 , 𝜆2 , ⋯ , 𝜆 𝑝 𝒛 𝑝 ∴ 𝑓 𝒛 = � 𝜆 𝑖 𝑧 𝑖2 𝑖=1
  • 10. Contour surface • If we assume 𝑓 𝒛 equals constant 𝑐, 𝑝 𝑓 𝒛 = � 𝜆 𝑖 𝑧 𝑖2 = 𝑐 𝑖=1 • When 𝑝 = 2, – a locus of 𝒛 illustrates an ellipse if 𝜆1 𝜆2 > 0. – a locus of 𝒛 illustrates a hyperbola if 𝜆1 𝜆2 < 0.
  • 11. Contour surface 𝑧2 2 𝑓 𝒛 = � 𝜆 𝑖 𝑧 𝑖 2 = 𝑐𝑐𝑐𝑐𝑐. 𝑖=1 𝜆1 𝜆2 > 0 𝑧1 maximal or minimal point 𝑓 𝑥1 , 𝑥2 = −𝑥1 2 − 2𝑥2 2 + 20.0
  • 12. Transformation to principal axis 𝑥𝑥2 𝑓 𝒙𝒙 = 𝑐𝑐𝑐𝑐𝑐. 𝑥𝑥1 𝒙𝒙 = 𝑼 𝑇 𝒛 ∴ 𝒛 = 𝑼𝒙′ Transformation to principal axis
  • 13. Parallel translation 𝑥𝑥2 𝑥2 � 𝒙 𝑥𝑥1 𝑓 𝒙 = 𝑐𝑐𝑐𝑐𝑐. 𝑥1 𝒙𝒙 = 𝒙 − �𝒙
  • 14. 1 Contour surface of quadratic function 𝑓 𝒙 = 𝑓 + ∗ 𝒙 − 𝒙∗ 𝑇 𝑯∗ 𝒙 − 𝒙∗ 2 𝑥2 � 𝒙 𝑓 𝒙 = 𝑐𝑐𝑐𝑐𝑐. 𝑥1
  • 15. Contour surface 𝑧2 2 𝑓 𝒛 = � 𝜆 𝑖 𝑧 𝑖 2 = 𝑐𝑐𝑐𝑐𝑐. 𝑖=1 𝜆1 𝜆2 < 0 𝑧1 saddle point 𝑓 𝑥1 , 𝑥2 = 𝑥1 2 − 𝑥2 2
  • 16. Stationary points 𝑓 𝑥1 , 𝑥2 = 𝑥1 3 + 𝑥2 3 + 3𝑥1 𝑥2 + 2 maximal point saddle point
  • 17. Stationary points 1 3 𝑓 𝑥1 , 𝑥2 = exp − 𝑥1 + 𝑥1 − 𝑥2 2 3 saddle point maximal point
  • 18.
  • 19. Newton-Raphson method 𝑓𝑓 𝒙 = 𝟎 where 𝑓 𝒙 is 𝑁-th polynomial by • Newton’s method is an approximate solver of using a quadratic approximation. 𝑓 𝒙 quadratic approximation of 𝑓 𝒙 in 𝒙 1 𝑓 𝒙 + Δ𝒙 ≈ 𝑓 𝒙 + 𝑱 𝒙 ∙ Δ𝒙 + Δ𝒙 𝑇 𝑯 𝒙 Δ𝒙 2 𝜕𝑓 𝒙 + Δ𝒙 𝑓𝑓 𝒙∗ = 𝟎 𝜕 Δ𝒙 = 𝑱 𝒙 𝑇 + 𝑯 𝒙 Δ𝒙 𝒙∗ 𝒙 + 𝚫𝒙 𝒙 𝒙
  • 20. Algorithm of Newton’s method Procedure Newton (𝑱 𝒙 , 𝑯 𝒙 ) 1. Initialize 𝒙. 2. Calculate 𝑱 𝒙 and 𝑯 𝒙 . equation and giving ∆𝒙 : 𝑱 𝒙 𝑇 + 𝑯 𝒙 ∆𝒙 = 𝟎 3. Solve the following simultaneous 4. Update 𝒙 as follows: 𝒙 ← 𝒙 + ∆𝒙 5. If ∆𝒙 < 𝛿 then return 𝒙 else go back to 2.
  • 21. Linear regression 𝑝 𝑦 𝑦 = 𝑓 𝒙 = 𝛽0 + � 𝛽 𝑗 𝑥 𝑗 𝑁 samples 𝒙 𝑖, 𝑦 𝑖 𝑗=1 𝒙 𝑝-th dimensional space We would like to find 𝜷∗ that minimizes the residual sum of square (RSS).
  • 22. Linear regression min RSS 𝜷 𝜷 2 𝑁 𝑁 𝑝 • where RSS 𝜷 = � 𝑦 𝑖 − 𝑓 𝒙 𝑖 2 = � 𝑦𝑖 − 𝛽0 + � 𝛽 𝑗 𝑥 𝑖𝑖 𝑖=1 𝑖=1 𝑗=1 • Given 𝑿, 𝒚, 𝜷 as follows: 𝑥11 ⋯ 𝑥1𝑝 1 𝑦1 𝛽1 𝑿= ⋮ ⋱ ⋮ ⋮ , 𝒚= ⋮ , 𝜷= ⋮ 𝑥 𝑁𝑁 ⋯ 𝑥 𝑁𝑁 1 𝑦𝑁 𝛽𝑝 ∴ RSS 𝜷 = 𝒚 − 𝑿𝜷 2
  • 23. Linear regression RSS 𝜷 = 𝐽 𝜷 = 𝒚 − 𝑿𝜷 2 = 𝒚 − 𝑿𝜷 𝑇 𝒚 − 𝑿𝜷 = 𝒚 𝑇 𝒚 − 𝜷 𝑇 𝑿 𝑇 𝒚 − 𝒚 𝑇 𝑿𝜷 + 𝜷 𝑇 𝑿 𝑇 𝑿𝜷 𝒂𝑇 𝜷 = 𝒂 𝜕 𝜕𝜷 𝜷𝑇 𝒂 = 𝒂 • 𝜕 𝜕𝜷 𝜷 𝑇 𝑨𝜷 = 𝑨 • 𝜕 𝜕𝜷 𝜕𝐽 𝐽′ 𝜷 = = −2𝑿 𝑇 𝒚 + 2𝑿 𝑇 𝑿𝜷 • 𝜕𝜷
  • 24. Linear regression Given 𝜷∗ that satisfies 𝐽′ 𝜷∗ = 𝟎, 𝑿 𝑇 𝒚 = 𝑿 𝑇 𝑿𝜷∗ 𝒚 𝑇 𝑿 = 𝜷∗ 𝑇 𝑿 𝑇 𝑿 ∴ 𝜷∗ = 𝑿𝑇 𝑿 −1 𝑿𝑇 𝒚 ∴ 𝐽 𝜷 = 𝒚 𝒚 − 𝜷 𝑿 𝑿𝜷 − 𝜷 𝑿 𝑇 𝑿𝜷 + 𝜷 𝑇 𝑿 𝑇 𝑿𝜷 𝑇 𝑇 𝑇 ∗ ∗𝑇 ∴ 𝐽 𝜷 = 𝒚 𝑇 𝒚 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷∗ + 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷∗ − 𝜷 𝑇 𝑿 𝑇 𝑿𝜷∗ − 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷 + 𝜷 𝑇 𝑿 𝑇 𝑿𝜷 ∴ 𝐽 𝜷 = 𝒚 𝑇 𝒚 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷∗ + 𝜷 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿 𝜷 − 𝜷∗ completing the square
  • 25. Linear regression 𝐽 𝜷 = 𝒚 𝑇 𝒚 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿𝜷∗ + 𝜷 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿 𝜷 − 𝜷∗ = 𝒚 − 𝑿𝜷∗ 2 + 𝜷 − 𝜷∗ 𝑇 𝑿 𝑇 𝑿 𝜷 − 𝜷∗ 1 = 𝐽 𝜷 + ∗ 𝜷 − 𝜷 ∗ 𝑇 𝑯 𝜷 − 𝜷∗ 2 Residual sum of squares (RSS) quadratic form 𝛽2 𝐽 𝜷 = 𝑐𝑐𝑐𝑐𝑐. by Linear Regression 𝜷∗ 𝜷∗ = 𝑿 𝑇 𝑿 −1 𝑿 𝑇 𝒚 𝑯 = 2𝑿 𝑇 𝑿 𝛽1
  • 26. Hessian • 𝑯≔ = 2𝑿 𝑇 𝑿 𝜕2 𝐽 𝜕𝛽 𝑖 𝜕𝛽 𝑗 • 𝑯 has the following two features: 𝑯𝑇 = 𝑯 ∀ 𝒙 ≠ 𝟎, 𝒙 𝑇 𝑯𝑯 > 0 – symmetric matrix: – positive-definite matrix: Therefore, 𝜷∗ = 𝑿𝑇 𝑿 −1 𝑿 𝑇 𝒚 is the minimum of 𝐽 𝜷 .
  • 27. Analysis of residuals 𝒚∗ = 𝑿𝜷∗ • Then, we substitute 𝜷∗ = 𝑿 𝑇 𝑿 −1 𝑿 𝑇 𝒚 in the above, 𝒚∗ = 𝑿𝜷∗ = 𝑿 𝑿 𝑇 𝑿 −1 𝑿𝑇 𝒚 ∴ 𝒚∗ = ℋ𝒚 (Hat matrix) • the vector of residuals 𝒓 can be expressed by follows: 𝒓 = 𝒚 − 𝒚∗ = 𝒚 − ℋ𝒚 = 𝑰 − ℋ 𝒚 𝑉𝑉𝑉 𝒓 = 𝑉𝑉𝑉 𝑰 − ℋ 𝒚 = 𝑰 − ℋ 𝑉𝑉𝑉 𝒚 𝑰 − ℋ 𝑇
  • 28. Analysis of residuals ℋ = 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇 The hat matrix ℋ is a projection matrix, which 1. Projection: ℋ 2 = ℋ satisfies the following equations: ℋ 2 = ℋ ∙ ℋ = 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇 ∙ 𝑿 𝑿 𝑇 𝑿 −1 𝑿𝑇 = 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇 = 𝑿 𝑿 𝑇 𝑿 −1 𝑿 𝑇 = ℋ 2. Orthogonal: ℋ 𝑇 = ℋ
  • 29. Analysis of residuals 𝑥11 ⋯ 𝑥1𝑝 1 𝛽1 ∗ 𝑦1 ∗ ⋮ ⋮ = ⋮ ⋱ ⋮ ⋮ 𝛽𝑝 ∗ 𝑦 𝑁∗ 𝑥 𝑁1 ⋯ 𝑥 𝑁𝑁 1 𝛽0 ∗ 𝑥11 𝑥1𝑝 1 = 𝛽1 ∗ ⋮ + ⋯ + 𝛽 𝑝∗ ⋮ + 𝛽0 ⋮ ∗ 𝑥 𝑁1 𝑥 𝑁𝑁 1 𝒙1 𝒙𝑝 𝒙 𝑝+1 = 𝟏 linear combination in 𝑝 + 1 -th vector space
  • 30. Analysis of residuals 𝒚 𝒚∗ = ℋ𝒚 (Projection) 𝒙𝑝 𝒚∗ 𝒙𝑗 𝑝 + 1 -th dimensional super surface 𝑁-th dimensional space
  • 31. Analysis of residuals 𝒚 = 𝑿𝜷 • 𝜷 = 𝑿−1 𝒚, where 𝑿−1 is M-P generalized inverse. 𝑝= 𝑁 𝑝> 𝑁 1. Unique solution: 𝑝< 𝑁 2. Many solutions: 𝑿−1 3. No solution: 𝑿 −1 =� 𝑿𝑿 𝑿𝑿𝑿 −1 𝜷 = 𝑿−1 𝒚 is min in 𝜷 𝑿𝑿𝑿 −1 𝑿𝑿 𝒚 − 𝑿𝜷 2 is min •