SlideShare uma empresa Scribd logo
1 de 29
Unit 1
THE SCIENTIFIC WORK
Physics and Chemistry

    What do they have in common?
      
          Physicists and Chemists study
          the same: matter.
      
          Physicists, Chemists and other
          scientists work in the same way:
            
                SCIENTIFIC METHOD
Physics and Chemistry

    What makes them different?
      
          Physics studies
          phenomena that don't
          change the
          composition of matter.
      
          Chemistry studies
          phenomena that change
          the composition of
          matter.
SCIENTIFIC METHOD
SCIENTIFIC METHOD
            The observation of a
             phenomenon and
             curiosity make
             scientists ask
             questions.
            Before doing anything
             else, it's necessary to
             look for the previous
             knowledge about the
             phenomenon.
SCIENTIFIC METHOD
            Hypotheses are
             possible answers to
             the questions we
             asked.
            They are only
             testable predictions
             about the
             phenomenon.
SCIENTIFIC METHOD
          We use experiments for
           checking hypotheses.
          We reproduce a
           phenomenon in
           controlled conditions.
          We need measure and
           collecting data in tables
           or graphics
SCIENTIFIC METHOD
          We study the relationships
           between different
           variables.
          In an experiment there are
           three kinds of variables
              −   Independent
                  variables: they can be
                  changed.
              −   Dependent variables:
                  they are measured.
              −   Controlled variables:
                  they don't change.
SCIENTIFIC METHOD
           After the experiment, we
            analyse its results and
            draw a conclusion.
           If the hypothesis is true,
            we have learnt
            something new and it
            becomes in a law
           If the hypothesis is false.
            We must look for a new
            hypothesis and continue
            the research.
Magnitudes,
measurements and units

    Physical Magnitude: It refers to every
    property of matter that can be measured.
        −   Length, mass, surface, volume, density,
            velocity, force, temperature,...

    Measure: It compares a quantity of a
    magnitude with other that we use as a
    reference (unit).

    Unit: It is a quantity of a magnitude used to
    measure other quantities of the same
    magnitude. It's only useful if every people uses
    the same unit.
Magnitudes,
measurements and units
     Length of the classroom = 10 m
                  means
The length of the classroom is 10 times the
              length of 1 metre.
The International System
               of Units

    The SI has:
       −   a small group of magnitudes whose units
           are fixed directly: the fundamental
           magnitudes.
             
                  E.g.: Length → meter (m); Time → second
                  (s)
       −    The units for the other magnitudes are
           defined in relationship with the fundamental
           units: the derivative magnitudes.
             
                  E. g.: speed → meter/second (m/s)
The International System
             of Units
The fundamental magnitudes and their units




Length                     meter        m
 Mass               kilogram       kg
 Time                      second        s
 Amount of substance       mole         mol
 Temperature               Kelvin        K
 Electric current          amperes       A
 Luminous intensity        candela      cd
The International System
              of Units
Some examples of how to build the units of derivative
 magnitudes:
      −   Area = Length · width → m·m = m2
      −   Volume = Length · width · height → m·m·m =
          m3
      −   Speed = distance / time → m/s
      −   Acceleration = change of speed / time →
          (m/s)/s = m/s2
The International System
              of Units
Some examples of how to build the units of derivative
 magnitudes:
      −   Area = Length · width → m·m = m2
      −   Volume = Length · width · height → m·m·m =
          m3
      −   Speed = distance / time → m/s
      −   Acceleration = change of speed / time →
          (m/s)/s = m/s2
The International System
               of Units
More derivative units.

     Quantity            Name           Symbol
       Area                       square meter
       m2
       Volume        cubic meter     m3
       Force              Newton        N
       Pressure           Pascal              Pa
       Energy        Joule              J
       Power         Watt          W
       Voltage       volt          V
       Frequency          Hertz             Hz
       Electric charge    Coulomb      C
The International System
                   of Units
Prefixes: we used them when we need express quantities
  much bigger or smaller than basic unit.
                                                  Power of 10 for
 Prefix       Symbol            Meaning          Scientific Notation
_______________________________________________________________________
 mega-          M          1,000,000                    106

 kilo-          k              1,000                    103
 deci-          d                 0.1                   10-1
 centi-         c                 0.01                  10-2
 milli-         m                 0.001                 10-3
 micro-         µ                 0.000001              10-6
 nano-          n                 0.000000001           10-9
The International System
               of Units
Prefixes: the whole list
   Factor      Name      Symbol    Factor     Name     Symbol
       10-1      decimeter    dm       101      decameter     dam
       10-2      centimeter   cm       102      hectometer    hm

       10-3      millimeter   mm       103      kilometer     km

       10-6      micrometer   µm       106      megameter     Mm
       10-9      nanometer    nm       109      gigameter     Gm

       10-12     picometer    pm       1012      terameter    Tm

       10-15     femtometer   fm       1015      petameter    Pm

       10-18     attometer    am       1018      exameter     Em
       10-21     zeptometer   zm       1021      zettameter   Zm

       10-24     yoctometer   ym       1024      yottameter   Ym
Changing units

    We can change a quantity into another unit.
    Conversion factors help us to do it.

    A conversion factor is a fraction with the
    same quantity in its denominator and in its
    numerator but expressed in different units.

               1h           1 km
                     =1           =1
              60 min       1000 m

              60 min       1000 m
                     =1           =1
               1h           1 km
Changing units
 Let's see a few examples of how to use them
                       1 km    2570 km ·1
           2570 m ·          =            =2,570 km
                      1000 m     1000
                      1 h 1 min 3500 h
           3500 s ·       ·     =      =0,972 h
                    60 min 60 s   3600
                  2

       
500 cm² ·
           1m
          100 cm  
                 =500 cm² ·     
                               1m²
                            10000 cm²
                                      =    
                                        500 m²
                                        10000
                                               =0,05 m²

     m   m 1 km 3600 s 30 · 3600 km      km
   30 =30 ·      ·    =             =108
     s   s 1000 m 1 h     1000 h          h
Significant figures
•
    They indicate precision of a measurement.
•
    Sig Figs in a measurement are the really
    known digits.

                        2.3 cm
Significant figures

    Counting Sig Figs:
       −   Which are sig figs?
             
               All nonzero digits.
            
               Zeros between nonzero digits
       −   Which aren't sig figs?
             
                 Leading zeros – 0,0025
             
                 Final zeros without
                 a decimal point – 250

    Examples:
       −   0,00120 → 3 sig figs;   15000 → 2 sig figs
       −   15000, → 5 sig figs;           13,04 → 4 sig
Significant figures

    Calculating with sig figs
       −   Multiplicate or divide: the factor with the
           fewer number of sig figs determines the
           number of sig figs of the result:
             
                 2,345 m · 4,55 m = 10,66975 m 2 = 10,7 m2
             
                 (4 sig figs) (3 sig figs) → (3 sig figs)
       −   Add or substract: the number with the
           fewer number of decimal places
           determines the number of decimal places
           of the result:
             
                 3,456 m + 2,35 m = 5,806 m = 5,81 m
             
                 (3 decimal places) (2 decimal places) → (2 decimal places)
Significant figures

    Calculating with sig figs
       −   Exact number have no limit of sig fig:
             
                 Example: Area = ½ · Base · height.
             
                 ½ isn't taken into account to round the
                 result.
       −   Rounding the result:
             
                 If the first figure is 5, 6, 7, 8 or 9, the last
                 figure taken into account is increased in 1
             
                 If not, it doesn't change.
Scientific notation

    Is used to write very large or very small quantities:
        −   385 000 000 Km = 3.85·108 Km
        −   0,000 000 000 157 m = 1,57·10-10 m

    Changing a number to scientific notation:
        −   We move the decimal point until there is an only
            number in its left side.
        −   The exponent of 10 is the number of places we
            moved the decimal point:
              
                  The exponent is positive if we move it to the left side
              
                  It's negative if we move it to the right side.
Measurement errors

    It's impossible to measure a quantity with
    total precision.

    When we measure, we'll never know the
    real value of the quantity.

    Every measurement has an error because:
       −   The measurement instrument can only see
           a few sig figs.
       −   It may not be well built or calibrated.
       −   We are using it in the wrong way.
Measurement errors

    There are two ways for expressing the error
    of a measurement:
       −   Absolute error: it is the difference
           between the value of the measurement and
           the value accepted as exact.
       −   Relative error: it is the absolute error in
           relationship with the quantity.
Measurement errors

    How to calculate the error. EXAMPLE 1:
       −   We have measured several times the mass of a
           ball:
             
                 20,17 g, 20,21 g, 20,25 g, 20,15 g, 20,28 g
       −   It's supposed that the real value of the ball of the
           mass is the average value of all the
           measurements:
             
                 Vr = (20,17 g + 20,21 g + 20,25 g + 20,15 g + 20,27 g )/5 = 20,21 g
       −   The absolute error of the first measurement is:
             
                 Er = |20,17 g – 20,21 g| = 0,04 g
       −   The relative error is calculate dividing the absolute
           error by the value of quantity.
Measurement error

    How to calculate the error. EXAMPLE 2:
       −   We have measured once the length of a
           piece of paper using a ruler that is
           graduated in millimetres: 29,7 cm
       −   We suppose that the real value is the
           measured value.
       −   The absolute error is the precision of the
           rule:
                Ea = 0,1 cm
       −   Relative error:
             
                 Er = 0,1 cm / 29,7 cm = 0,0034 = 0,34 %

Mais conteúdo relacionado

Mais procurados

F4 Experiments
F4 ExperimentsF4 Experiments
F4 Experimentsmarjerin
 
Physics Form 4 KSSM Experiment 2.2
Physics Form 4 KSSM Experiment 2.2Physics Form 4 KSSM Experiment 2.2
Physics Form 4 KSSM Experiment 2.2LIMCHUANYANGMoe
 
Phy i assign&answers_2011
Phy i assign&answers_2011Phy i assign&answers_2011
Phy i assign&answers_2011Sufi Sulaiman
 
Tabla magnitudes y unidades
Tabla magnitudes y unidadesTabla magnitudes y unidades
Tabla magnitudes y unidadesdanirg
 
Topic 1realm of physics
Topic 1realm of physicsTopic 1realm of physics
Topic 1realm of physicsnlahoud
 
IB Physics SL - Design Lab
IB Physics SL - Design  LabIB Physics SL - Design  Lab
IB Physics SL - Design LabLorrchan
 
Elasticity
ElasticityElasticity
Elasticityohmed
 
Tabla conversiones
Tabla conversionesTabla conversiones
Tabla conversionesjulioosha
 
First semester diploma Engineering physics i
First semester diploma Engineering physics  iFirst semester diploma Engineering physics  i
First semester diploma Engineering physics iSHAMJITH KM
 
Segunda ley de newton
Segunda ley de newtonSegunda ley de newton
Segunda ley de newtonvivitorde
 
Physics lab manual
Physics lab manualPhysics lab manual
Physics lab manualdevadasvijan
 
units and dimensions
units and dimensionsunits and dimensions
units and dimensionsKrishna Gali
 
Principles of physics
Principles of physicsPrinciples of physics
Principles of physicsSpringer
 
IB Phyiscs SL - Pendulum Lab
IB Phyiscs SL - Pendulum LabIB Phyiscs SL - Pendulum Lab
IB Phyiscs SL - Pendulum LabLorrchan
 
Physics lesson2 force&motion
Physics lesson2 force&motionPhysics lesson2 force&motion
Physics lesson2 force&motionBeam Edu
 

Mais procurados (20)

F4 Experiments
F4 ExperimentsF4 Experiments
F4 Experiments
 
Physics Form 4 KSSM Experiment 2.2
Physics Form 4 KSSM Experiment 2.2Physics Form 4 KSSM Experiment 2.2
Physics Form 4 KSSM Experiment 2.2
 
Phy i assign&answers_2011
Phy i assign&answers_2011Phy i assign&answers_2011
Phy i assign&answers_2011
 
Learning Unit 1
Learning Unit 1Learning Unit 1
Learning Unit 1
 
Tabla magnitudes y unidades
Tabla magnitudes y unidadesTabla magnitudes y unidades
Tabla magnitudes y unidades
 
Topic 1realm of physics
Topic 1realm of physicsTopic 1realm of physics
Topic 1realm of physics
 
IB Physics SL - Design Lab
IB Physics SL - Design  LabIB Physics SL - Design  Lab
IB Physics SL - Design Lab
 
Elasticity
ElasticityElasticity
Elasticity
 
Tabla conversiones
Tabla conversionesTabla conversiones
Tabla conversiones
 
Fisica i young & freedman
Fisica i young & freedmanFisica i young & freedman
Fisica i young & freedman
 
First semester diploma Engineering physics i
First semester diploma Engineering physics  iFirst semester diploma Engineering physics  i
First semester diploma Engineering physics i
 
Segunda ley de newton
Segunda ley de newtonSegunda ley de newton
Segunda ley de newton
 
Describing Motion
Describing MotionDescribing Motion
Describing Motion
 
Physics lab manual
Physics lab manualPhysics lab manual
Physics lab manual
 
units and dimensions
units and dimensionsunits and dimensions
units and dimensions
 
Principles of physics
Principles of physicsPrinciples of physics
Principles of physics
 
Lecture 03
Lecture 03Lecture 03
Lecture 03
 
Inertia
InertiaInertia
Inertia
 
IB Phyiscs SL - Pendulum Lab
IB Phyiscs SL - Pendulum LabIB Phyiscs SL - Pendulum Lab
IB Phyiscs SL - Pendulum Lab
 
Physics lesson2 force&motion
Physics lesson2 force&motionPhysics lesson2 force&motion
Physics lesson2 force&motion
 

Semelhante a Scientific Work

3 e physcial quantities and units_pure_upload
3 e physcial quantities and units_pure_upload3 e physcial quantities and units_pure_upload
3 e physcial quantities and units_pure_uploadmrangkk
 
PHYSICS - UNITS.pptx
PHYSICS - UNITS.pptxPHYSICS - UNITS.pptx
PHYSICS - UNITS.pptxGyanrajChavan
 
Chemistry t1
Chemistry t1Chemistry t1
Chemistry t1enpi275
 
Lecture 1 physics_and_measurement
Lecture 1 physics_and_measurementLecture 1 physics_and_measurement
Lecture 1 physics_and_measurementKhairul Azhar
 
Physical Quantities--Units and Measurement--Conversion of Units
Physical Quantities--Units and Measurement--Conversion of UnitsPhysical Quantities--Units and Measurement--Conversion of Units
Physical Quantities--Units and Measurement--Conversion of UnitsKhanSaif2
 
measurement-200427061108.pdf
measurement-200427061108.pdfmeasurement-200427061108.pdf
measurement-200427061108.pdffamilychannel7
 
Metrics and Measurement
Metrics and MeasurementMetrics and Measurement
Metrics and MeasurementPaul Schumann
 
2_UNITS_MEASUREMENT.ppt
2_UNITS_MEASUREMENT.ppt2_UNITS_MEASUREMENT.ppt
2_UNITS_MEASUREMENT.pptMLaniban
 
Sistema Internacional de unidades y cifras significativas
Sistema Internacional de unidades y cifras significativasSistema Internacional de unidades y cifras significativas
Sistema Internacional de unidades y cifras significativasCristhian Hilasaca Zea
 
Sistema internacional de unidades (EPITyC)
Sistema internacional de unidades (EPITyC)Sistema internacional de unidades (EPITyC)
Sistema internacional de unidades (EPITyC)Yimmy HZ
 
Sistema internacional de unidades (EPIIA)
Sistema internacional de unidades (EPIIA)Sistema internacional de unidades (EPIIA)
Sistema internacional de unidades (EPIIA)Yimmy HZ
 
Diploma sem 2 applied science physics-unit 1-chap 1 measurements
Diploma sem 2 applied science physics-unit 1-chap 1 measurementsDiploma sem 2 applied science physics-unit 1-chap 1 measurements
Diploma sem 2 applied science physics-unit 1-chap 1 measurementsRai University
 
Measurement and Analysis of Data.pptx
Measurement and Analysis of Data.pptxMeasurement and Analysis of Data.pptx
Measurement and Analysis of Data.pptxViaCerelleReyesVilla
 
Measurements
MeasurementsMeasurements
Measurementspglaynn
 

Semelhante a Scientific Work (20)

3 e physcial quantities and units_pure_upload
3 e physcial quantities and units_pure_upload3 e physcial quantities and units_pure_upload
3 e physcial quantities and units_pure_upload
 
PHYSICS - UNITS.pptx
PHYSICS - UNITS.pptxPHYSICS - UNITS.pptx
PHYSICS - UNITS.pptx
 
Chemistry t1
Chemistry t1Chemistry t1
Chemistry t1
 
Lecture 1 physics_and_measurement
Lecture 1 physics_and_measurementLecture 1 physics_and_measurement
Lecture 1 physics_and_measurement
 
Physical Quantities--Units and Measurement--Conversion of Units
Physical Quantities--Units and Measurement--Conversion of UnitsPhysical Quantities--Units and Measurement--Conversion of Units
Physical Quantities--Units and Measurement--Conversion of Units
 
measurement-200427061108.pdf
measurement-200427061108.pdfmeasurement-200427061108.pdf
measurement-200427061108.pdf
 
Metrics and Measurement
Metrics and MeasurementMetrics and Measurement
Metrics and Measurement
 
PHYSICS-FOR-ENGINEERS.pptx
PHYSICS-FOR-ENGINEERS.pptxPHYSICS-FOR-ENGINEERS.pptx
PHYSICS-FOR-ENGINEERS.pptx
 
2_UNITS_MEASUREMENT.ppt
2_UNITS_MEASUREMENT.ppt2_UNITS_MEASUREMENT.ppt
2_UNITS_MEASUREMENT.ppt
 
Sistema Internacional de unidades y cifras significativas
Sistema Internacional de unidades y cifras significativasSistema Internacional de unidades y cifras significativas
Sistema Internacional de unidades y cifras significativas
 
Sistema internacional de unidades (EPITyC)
Sistema internacional de unidades (EPITyC)Sistema internacional de unidades (EPITyC)
Sistema internacional de unidades (EPITyC)
 
Sistema internacional de unidades (EPIIA)
Sistema internacional de unidades (EPIIA)Sistema internacional de unidades (EPIIA)
Sistema internacional de unidades (EPIIA)
 
Diploma sem 2 applied science physics-unit 1-chap 1 measurements
Diploma sem 2 applied science physics-unit 1-chap 1 measurementsDiploma sem 2 applied science physics-unit 1-chap 1 measurements
Diploma sem 2 applied science physics-unit 1-chap 1 measurements
 
Ch 2 data analysis
Ch 2 data analysisCh 2 data analysis
Ch 2 data analysis
 
Measurement and Analysis of Data.pptx
Measurement and Analysis of Data.pptxMeasurement and Analysis of Data.pptx
Measurement and Analysis of Data.pptx
 
Ch 2 data analysis
Ch 2 data analysisCh 2 data analysis
Ch 2 data analysis
 
Sistema internacional de unidades
Sistema internacional de unidadesSistema internacional de unidades
Sistema internacional de unidades
 
Inorg lec 2.pptx
Inorg lec 2.pptxInorg lec 2.pptx
Inorg lec 2.pptx
 
Measurements
MeasurementsMeasurements
Measurements
 
PowerPointCh2_Sections2.5.pdf
PowerPointCh2_Sections2.5.pdfPowerPointCh2_Sections2.5.pdf
PowerPointCh2_Sections2.5.pdf
 

Mais de Jose Pacheco

Ejercicios de revision fisica
Ejercicios de revision fisicaEjercicios de revision fisica
Ejercicios de revision fisicaJose Pacheco
 
Ejercicios revisión vectores y cinemática
Ejercicios revisión vectores y cinemáticaEjercicios revisión vectores y cinemática
Ejercicios revisión vectores y cinemáticaJose Pacheco
 
Masa y volumen segundo eso
Masa y volumen segundo esoMasa y volumen segundo eso
Masa y volumen segundo esoJose Pacheco
 
M a s_selectividad
M a s_selectividadM a s_selectividad
M a s_selectividadJose Pacheco
 
Chemical bond pdf of the prezi
Chemical bond pdf of the preziChemical bond pdf of the prezi
Chemical bond pdf of the preziJose Pacheco
 
Terbio jose angel guillen romero 3ºb
Terbio jose angel guillen romero 3ºbTerbio jose angel guillen romero 3ºb
Terbio jose angel guillen romero 3ºbJose Pacheco
 
Rodio jose angel guillen romero 3ºb
Rodio jose angel guillen romero 3ºbRodio jose angel guillen romero 3ºb
Rodio jose angel guillen romero 3ºbJose Pacheco
 
Bario jose angel guillen romero 3ºb
Bario jose angel guillen romero 3ºbBario jose angel guillen romero 3ºb
Bario jose angel guillen romero 3ºbJose Pacheco
 
Bohrio jose angel guillen romero 3ºb
Bohrio jose angel guillen romero 3ºbBohrio jose angel guillen romero 3ºb
Bohrio jose angel guillen romero 3ºbJose Pacheco
 
Silicio.carlos ruiz rubio 3 b
Silicio.carlos ruiz rubio 3 bSilicio.carlos ruiz rubio 3 b
Silicio.carlos ruiz rubio 3 bJose Pacheco
 
Radón.carlos ruiz rubio 3 b
Radón.carlos ruiz rubio 3 bRadón.carlos ruiz rubio 3 b
Radón.carlos ruiz rubio 3 bJose Pacheco
 
Niobio.carlos ruiz rubio 3 b
Niobio.carlos ruiz rubio 3 bNiobio.carlos ruiz rubio 3 b
Niobio.carlos ruiz rubio 3 bJose Pacheco
 
Holmio.carlos ruiz rubio 3 b
Holmio.carlos ruiz rubio 3 bHolmio.carlos ruiz rubio 3 b
Holmio.carlos ruiz rubio 3 bJose Pacheco
 
Curio.carlos ruiz rubio 3 b
Curio.carlos ruiz rubio 3 bCurio.carlos ruiz rubio 3 b
Curio.carlos ruiz rubio 3 bJose Pacheco
 

Mais de Jose Pacheco (20)

Ejercicios de revision fisica
Ejercicios de revision fisicaEjercicios de revision fisica
Ejercicios de revision fisica
 
Ejercicios revisión vectores y cinemática
Ejercicios revisión vectores y cinemáticaEjercicios revisión vectores y cinemática
Ejercicios revisión vectores y cinemática
 
Masa y volumen segundo eso
Masa y volumen segundo esoMasa y volumen segundo eso
Masa y volumen segundo eso
 
M a s_selectividad
M a s_selectividadM a s_selectividad
M a s_selectividad
 
Chemical bond pdf of the prezi
Chemical bond pdf of the preziChemical bond pdf of the prezi
Chemical bond pdf of the prezi
 
Lutecio
LutecioLutecio
Lutecio
 
Flerovio
FlerovioFlerovio
Flerovio
 
Antimonio
AntimonioAntimonio
Antimonio
 
Aluminio
AluminioAluminio
Aluminio
 
Terbio jose angel guillen romero 3ºb
Terbio jose angel guillen romero 3ºbTerbio jose angel guillen romero 3ºb
Terbio jose angel guillen romero 3ºb
 
Rodio jose angel guillen romero 3ºb
Rodio jose angel guillen romero 3ºbRodio jose angel guillen romero 3ºb
Rodio jose angel guillen romero 3ºb
 
Bario jose angel guillen romero 3ºb
Bario jose angel guillen romero 3ºbBario jose angel guillen romero 3ºb
Bario jose angel guillen romero 3ºb
 
Bohrio jose angel guillen romero 3ºb
Bohrio jose angel guillen romero 3ºbBohrio jose angel guillen romero 3ºb
Bohrio jose angel guillen romero 3ºb
 
Silicio.carlos ruiz rubio 3 b
Silicio.carlos ruiz rubio 3 bSilicio.carlos ruiz rubio 3 b
Silicio.carlos ruiz rubio 3 b
 
Radón.carlos ruiz rubio 3 b
Radón.carlos ruiz rubio 3 bRadón.carlos ruiz rubio 3 b
Radón.carlos ruiz rubio 3 b
 
Niobio.carlos ruiz rubio 3 b
Niobio.carlos ruiz rubio 3 bNiobio.carlos ruiz rubio 3 b
Niobio.carlos ruiz rubio 3 b
 
Holmio.carlos ruiz rubio 3 b
Holmio.carlos ruiz rubio 3 bHolmio.carlos ruiz rubio 3 b
Holmio.carlos ruiz rubio 3 b
 
Curio.carlos ruiz rubio 3 b
Curio.carlos ruiz rubio 3 bCurio.carlos ruiz rubio 3 b
Curio.carlos ruiz rubio 3 b
 
Zirconium
ZirconiumZirconium
Zirconium
 
Erbio
ErbioErbio
Erbio
 

Scientific Work

  • 2. Physics and Chemistry  What do they have in common?  Physicists and Chemists study the same: matter.  Physicists, Chemists and other scientists work in the same way:  SCIENTIFIC METHOD
  • 3. Physics and Chemistry  What makes them different?  Physics studies phenomena that don't change the composition of matter.  Chemistry studies phenomena that change the composition of matter.
  • 5. SCIENTIFIC METHOD  The observation of a phenomenon and curiosity make scientists ask questions.  Before doing anything else, it's necessary to look for the previous knowledge about the phenomenon.
  • 6. SCIENTIFIC METHOD  Hypotheses are possible answers to the questions we asked.  They are only testable predictions about the phenomenon.
  • 7. SCIENTIFIC METHOD  We use experiments for checking hypotheses.  We reproduce a phenomenon in controlled conditions.  We need measure and collecting data in tables or graphics
  • 8. SCIENTIFIC METHOD  We study the relationships between different variables.  In an experiment there are three kinds of variables − Independent variables: they can be changed. − Dependent variables: they are measured. − Controlled variables: they don't change.
  • 9. SCIENTIFIC METHOD  After the experiment, we analyse its results and draw a conclusion.  If the hypothesis is true, we have learnt something new and it becomes in a law  If the hypothesis is false. We must look for a new hypothesis and continue the research.
  • 10. Magnitudes, measurements and units  Physical Magnitude: It refers to every property of matter that can be measured. − Length, mass, surface, volume, density, velocity, force, temperature,...  Measure: It compares a quantity of a magnitude with other that we use as a reference (unit).  Unit: It is a quantity of a magnitude used to measure other quantities of the same magnitude. It's only useful if every people uses the same unit.
  • 11. Magnitudes, measurements and units Length of the classroom = 10 m means The length of the classroom is 10 times the length of 1 metre.
  • 12. The International System of Units  The SI has: − a small group of magnitudes whose units are fixed directly: the fundamental magnitudes.  E.g.: Length → meter (m); Time → second (s) − The units for the other magnitudes are defined in relationship with the fundamental units: the derivative magnitudes.  E. g.: speed → meter/second (m/s)
  • 13. The International System of Units The fundamental magnitudes and their units Length meter m Mass kilogram kg Time second s Amount of substance mole mol Temperature Kelvin K Electric current amperes A Luminous intensity candela cd
  • 14. The International System of Units Some examples of how to build the units of derivative magnitudes: − Area = Length · width → m·m = m2 − Volume = Length · width · height → m·m·m = m3 − Speed = distance / time → m/s − Acceleration = change of speed / time → (m/s)/s = m/s2
  • 15. The International System of Units Some examples of how to build the units of derivative magnitudes: − Area = Length · width → m·m = m2 − Volume = Length · width · height → m·m·m = m3 − Speed = distance / time → m/s − Acceleration = change of speed / time → (m/s)/s = m/s2
  • 16. The International System of Units More derivative units. Quantity Name Symbol Area square meter m2 Volume cubic meter m3 Force Newton N Pressure Pascal Pa Energy Joule J Power Watt W Voltage volt V Frequency Hertz Hz Electric charge Coulomb C
  • 17. The International System of Units Prefixes: we used them when we need express quantities much bigger or smaller than basic unit. Power of 10 for Prefix Symbol Meaning Scientific Notation _______________________________________________________________________ mega- M 1,000,000 106 kilo- k 1,000 103 deci- d 0.1 10-1 centi- c 0.01 10-2 milli- m 0.001 10-3 micro- µ 0.000001 10-6 nano- n 0.000000001 10-9
  • 18. The International System of Units Prefixes: the whole list Factor Name Symbol Factor Name Symbol 10-1 decimeter dm 101 decameter dam 10-2 centimeter cm 102 hectometer hm 10-3 millimeter mm 103 kilometer km 10-6 micrometer µm 106 megameter Mm 10-9 nanometer nm 109 gigameter Gm 10-12 picometer pm 1012 terameter Tm 10-15 femtometer fm 1015 petameter Pm 10-18 attometer am 1018 exameter Em 10-21 zeptometer zm 1021 zettameter Zm 10-24 yoctometer ym 1024 yottameter Ym
  • 19. Changing units  We can change a quantity into another unit. Conversion factors help us to do it.  A conversion factor is a fraction with the same quantity in its denominator and in its numerator but expressed in different units. 1h 1 km =1 =1 60 min 1000 m 60 min 1000 m =1 =1 1h 1 km
  • 20. Changing units Let's see a few examples of how to use them 1 km 2570 km ·1 2570 m · = =2,570 km 1000 m 1000 1 h 1 min 3500 h 3500 s · · = =0,972 h 60 min 60 s 3600 2  500 cm² · 1m 100 cm  =500 cm² ·  1m² 10000 cm² =  500 m² 10000 =0,05 m² m m 1 km 3600 s 30 · 3600 km km 30 =30 · · = =108 s s 1000 m 1 h 1000 h h
  • 21. Significant figures • They indicate precision of a measurement. • Sig Figs in a measurement are the really known digits. 2.3 cm
  • 22. Significant figures  Counting Sig Figs: − Which are sig figs?  All nonzero digits.  Zeros between nonzero digits − Which aren't sig figs?  Leading zeros – 0,0025  Final zeros without a decimal point – 250  Examples: − 0,00120 → 3 sig figs; 15000 → 2 sig figs − 15000, → 5 sig figs; 13,04 → 4 sig
  • 23. Significant figures  Calculating with sig figs − Multiplicate or divide: the factor with the fewer number of sig figs determines the number of sig figs of the result:  2,345 m · 4,55 m = 10,66975 m 2 = 10,7 m2  (4 sig figs) (3 sig figs) → (3 sig figs) − Add or substract: the number with the fewer number of decimal places determines the number of decimal places of the result:  3,456 m + 2,35 m = 5,806 m = 5,81 m  (3 decimal places) (2 decimal places) → (2 decimal places)
  • 24. Significant figures  Calculating with sig figs − Exact number have no limit of sig fig:  Example: Area = ½ · Base · height.  ½ isn't taken into account to round the result. − Rounding the result:  If the first figure is 5, 6, 7, 8 or 9, the last figure taken into account is increased in 1  If not, it doesn't change.
  • 25. Scientific notation  Is used to write very large or very small quantities: − 385 000 000 Km = 3.85·108 Km − 0,000 000 000 157 m = 1,57·10-10 m  Changing a number to scientific notation: − We move the decimal point until there is an only number in its left side. − The exponent of 10 is the number of places we moved the decimal point:  The exponent is positive if we move it to the left side  It's negative if we move it to the right side.
  • 26. Measurement errors  It's impossible to measure a quantity with total precision.  When we measure, we'll never know the real value of the quantity.  Every measurement has an error because: − The measurement instrument can only see a few sig figs. − It may not be well built or calibrated. − We are using it in the wrong way.
  • 27. Measurement errors  There are two ways for expressing the error of a measurement: − Absolute error: it is the difference between the value of the measurement and the value accepted as exact. − Relative error: it is the absolute error in relationship with the quantity.
  • 28. Measurement errors  How to calculate the error. EXAMPLE 1: − We have measured several times the mass of a ball:  20,17 g, 20,21 g, 20,25 g, 20,15 g, 20,28 g − It's supposed that the real value of the ball of the mass is the average value of all the measurements:  Vr = (20,17 g + 20,21 g + 20,25 g + 20,15 g + 20,27 g )/5 = 20,21 g − The absolute error of the first measurement is:  Er = |20,17 g – 20,21 g| = 0,04 g − The relative error is calculate dividing the absolute error by the value of quantity.
  • 29. Measurement error  How to calculate the error. EXAMPLE 2: − We have measured once the length of a piece of paper using a ruler that is graduated in millimetres: 29,7 cm − We suppose that the real value is the measured value. − The absolute error is the precision of the rule:  Ea = 0,1 cm − Relative error:  Er = 0,1 cm / 29,7 cm = 0,0034 = 0,34 %