SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 100 | P a g e 
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions Shyam Lal and Susheel Kumar Department of Mathematics, Faculty of Science, Banaras Hindu University, Varansi-221005, India Abstract In this paper, two new theorems on generalized Carleson Operator for a Walsh type wavelet packet system and for periodic Walsh type wavelet packet expansion of a function ํ‘“ํœ–ํฟํ‘ 0,1 , 1<ํ‘<โˆž, have been established. Mathematics Subject Classification: 40A30, 42C15 Keywords and Phrases Walsh function, Walsh- type wavelet Packets, periodic Walsh- type wavelet packets, Cesํ‘Ž ro's means of order 1 for single infinite series and for double infinite series, generalized Carleson operator for Walsh type and for periodic Walsh type wavelet packets. 
I. Introduction 
A new class of orthogonal expansion in ํฟ2(โ„) with good time frequency and regularity approximation properties are obtained in wavelet analysis. These expansions are useful in Signal analysis, Quantum mechanics, Numerical analysis, Engineering and Technology. Wavelet analysis generalizes an orthogonal wavelet expansion with suitable time frequency properties. In transient as well as stationary phenomena, this approach have applications over wavelet and short- time Fourier analysis. The properties of orthonormal bases have been studied in ํฟ2(ํ‘…) for wavelet expansion. The basic wavelet packet expansions of ํฟํ‘-functions, 1<ํ‘<โˆž, defined on the real line and the unit interval have significant importance in wavelet analysis. Walsh system is an example of a system of basic stationary wavelet packets (Billard [1] and Sjolin [9]). Paley [7], Billard [1] Sjolin [9] and Nielsen [6] have investigated point wise convergent properties of Walsh expansion of given ํฟํ‘[0,1) functions. At first, in 1966, Lennart Carleson [3] introduced an operator which is presently known as Carleson operator. In this paper, generalized Carleson operators for Walsh type wavelet packet expansion and for periodic Walsh type wavelet packet expansion for any ํ‘“โˆˆํฟํ‘[0,1) are introduced. Two new theorems have been established (1) The generalized Carleson operator for any Walsh-type wavelet packet system is of strong type ํ‘,ํ‘ , 1< ํ‘<โˆž. (2) The generalized Carleson operator for periodic Walsh-type wavelet packet expansion for a function ํ‘“โˆˆํฟํ‘ โ„ , 1<ํ‘<โˆž, converges a.e.. 
II. Definitions and Preliminaries 
The structure in which non-stationary wavelet packets live is that of a multiresolution analysis ํ‘‰ํ‘— ํ‘—โˆˆโ„ค for ํฟ2 โ„ .To every multiresolution analysis we have an associated scaling function ํœ™ and a wavelet ํœ“ with the properties that ํ‘‰ํ‘—=ํ‘ ํ‘ํ‘Žํ‘› 2 ํ‘— 2ํœ™ 2ํ‘—.โˆ’ํ‘˜ ;ํ‘˜ํœ–โ„ค and ํœ“ํ‘—,ํ‘˜โ‰ก2 ํ‘— 2ํœ“ 2ํ‘—.โˆ’ํ‘˜ ;ํ‘—,ํ‘˜ํœ–โ„ค are an orthonormal basis for ํฟ2 โ„ . Write ํ‘Šํ‘—=ํ‘ ํ‘ํ‘Žํ‘› 2 ํ‘— 2ํœ“ 2ํ‘—.โˆ’ํ‘˜ ;ํ‘˜ํœ–โ„ค . Let โ„• be the set of natural number and ํน0 ํ‘ ,ํน1 ํ‘ ,ํ‘ ํœ–โ„•, be a family of bounded operators on ํ‘™2 โ„ค of the form ํนํœ– ํ‘ ํ‘Ž ํ‘˜ = ํ‘Žํ‘› ํ‘›โˆˆโ„คํ‘•ํœ– ํ‘ ํ‘›โˆ’2ํ‘˜ , ํœ–=0,1 with ํ‘•1 ํ‘ ํ‘› =(โˆ’1)ํ‘› ํ‘•0 ํ‘ (1โˆ’ํ‘›) a sequence in ํ‘™1(โ„ค) such that ํน0 ํ‘ โˆ—ํน0 ํ‘ +ํน1 ํ‘ โˆ—ํน1 ํ‘ =1 ํน0 ํ‘ ํน1 ํ‘ โˆ—=0. We define the family of functions ํ‘คํ‘› 0โˆž recursively by letting ํ‘ค0=ํœ™ ,ํ‘ค1=ํœ“ and then for ํ‘›ํœ–โ„• ํ‘ค2ํ‘› ํ‘ฅ =2 ํ‘•0 ํ‘ (ํ‘ž)ํ‘คํ‘› 2ํ‘ฅโˆ’ํ‘ž ํ‘žโˆˆํ•ซ (2.1) ํ‘ค2ํ‘›+1 ํ‘ฅ =2 ํ‘•1 ํ‘ (ํ‘ž)ํ‘คํ‘› 2ํ‘ฅโˆ’ํ‘ž ํ‘žโˆˆํ•ซ (2.2) 
RESEARCH ARTICLE OPEN ACCESS
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 101 | P a g e 
where 2ํ‘โ‰คํ‘›<2ํ‘+1. The family ํ‘คํ‘› 0โˆž is our basic non โ€“stationary wavelet packet. It is known that ํ‘คํ‘› .โˆ’ํ‘˜ ;ํ‘›โ‰ฅ0,ํ‘˜โˆˆํ•ซ is an orthonormal basis for ํฟ2 โ„ .Moreover, ํ‘คํ‘› .โˆ’ํ‘˜ ;2ํ‘—โ‰คํ‘›<2ํ‘—+1,ํ‘˜โˆˆํ•ซ is an orthonormal basis for ํ‘Šํ‘—=ํ‘ ํ‘ํ‘Žํ‘› 2 ํ‘— 2ํ‘ค1 2ํ‘—.โˆ’ํ‘˜ ;ํ‘˜โˆˆํ•ซ . Each pair ํน0 ํ‘ ,ํน1 ํ‘ can be chosen as a pair of quardrature mirror filters associated with a multiresolution analysis, but this is not necessary. The trigonometric polynomial given by ํ‘š0 ํ‘ ํœ‰ = 1 2 ํ‘•0 ํ‘ (ํ‘˜)ํ‘’โˆ’ํ‘–ํ‘˜ํœ‰ ํ‘˜โˆˆํ•ซ and ํ‘š1 ํ‘ ํœ‰ = 1 2 ํ‘•1 ํ‘ (ํ‘˜)ํ‘’โˆ’ํ‘–ํ‘˜ํœ‰ ํ‘˜โˆˆํ•ซ are called the symbols of filters. The Haar low- pass quadrature mirror filter ํ‘•0(ํ‘˜) ํ‘˜ is given by ํ‘•0 0 =ํ‘•0 1 = 1 2,ํ‘•0 ํ‘˜ =0 otherwise, and the associate high-pass filter ํ‘•1(ํ‘˜) ํ‘˜ is given by ํ‘•1 ํ‘˜ =(โˆ’1)ํ‘˜ ํ‘•0 1โˆ’ํ‘˜ . 2.1 Walsh function and their properties The Walsh system ํ‘Šํ‘› ํ‘›=0โˆž is defined recursively on 0,1 on considering ํ‘Š0 ํ‘ฅ = 1,0โ‰คํ‘ฅ<10, ํ‘œํ‘กํ‘•ํ‘’ํ‘Ÿํ‘คํ‘–ํ‘ ํ‘’ and ํ‘Š2ํ‘› ํ‘ฅ =ํ‘Šํ‘› 2ํ‘ฅ +ํ‘Šํ‘› 2ํ‘ฅโˆ’1 , ํ‘Š2ํ‘›+1 ํ‘ฅ =ํ‘Šํ‘› 2ํ‘ฅ โˆ’ํ‘Šํ‘› 2ํ‘ฅโˆ’1 . Observe that the Walsh system is the family of wavelet packets obtained by considering ํœ‘=ํ‘Š0 ํœ“ ํ‘ฅ = 1, 0โ‰คํ‘ฅ< 12; โˆ’1, 12โ‰คํ‘ฅ<1; 0,ํ‘œํ‘กํ‘•ํ‘’ํ‘Ÿํ‘คํ‘–ํ‘ ํ‘’. and using the Haar filters in the definition of the non- stationary wavelet packets. The Walsh system is closed under point wise multiplication. Define the binary operator โŠ•:โ„•0ร—โ„•0โ†’โ„•0 by mโŠ•ํ‘›= ํ‘šํ‘–โˆ’ํ‘›ํ‘– 2ํ‘–โˆžํ‘– =0, where ํ‘š= ํ‘šํ‘–2ํ‘–โˆžํ‘– =0, ํ‘›= ํ‘›ํ‘–2ํ‘–โˆžํ‘– =0 and โ„•0=โ„•โˆช 0 . Then ํ‘Šํ‘š ํ‘ฅ ํ‘Šํ‘› ํ‘ฅ =ํ‘Šํ‘šโŠ•ํ‘› ํ‘ฅ , (2.3) (Schipp et al.[8]). We can carry over the operator โŠ• to the interval [0,1] by identifying those xโˆˆ[0,1] with a unique expansion x= ํ‘ฅํ‘—2โˆ’ํ‘—โˆ’1โˆžํ‘— =0 (almost all xโˆˆ[0,1] has such a unique expansion) by there associated binary sequence ํ‘ฅํ‘– . For two such point ํ‘ฅ,ํ‘ฆโˆˆ 0,1 , define xโŠ•ํ‘ฆ= ํ‘ฅํ‘–โˆ’ํ‘ฆํ‘– 2โˆ’ํ‘—โˆ’1โˆžํ‘— =0. The operation โŠ• is defined for almost all ํ‘ฅ,ํ‘ฆโˆˆ 0,1 .Using this definition we have ํ‘Šํ‘› ํ‘ฅโŠ•ํ‘ฆ =ํ‘Šํ‘› ํ‘ฅ ํ‘Šํ‘› ํ‘ฆ ( 2.4) for every pair x,y for which ํ‘ฅโŠ•ํ‘ฆ is defined (Golubov et al.[4]). 2.2 Walsh type wavelet packets Let ํ‘คํ‘› ํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„ค be a family of non-stationary wavelet packets constructed by using of family ํ‘•0 ํ‘ (ํ‘›) ํ‘=0โˆž of finite filters for which there is a constantํพโˆˆโ„• such that ํ‘•0 ํ‘ (ํ‘›) is the Haar filter for every ํ‘โ‰ฅํพ. If ํ‘ค1โˆˆํถ1(โ„) and it has compact support then we call ํ‘คํ‘› ํ‘›>0 a family of Walsh type wavelet packets. 2.3 Periodic Walsh type wavelet packet As Meyer[6-a], an orthonormal basis for ํฟ2[0,1) is obtained periodizing any orthonormal wavelet basis associated with a multiresolution analysis. The periodization works equally well with non stationary wavelet packets. Let ํ‘คํ‘› ํ‘›=0โˆž be a family of non-stationary basic wavelet packets satisfying ํ‘คํ‘›(ํ‘ฅ) โ‰คํถํ‘›(1+ ํ‘ฅ )โˆ’1โˆ’โˆˆํ‘› for some โˆˆํ‘›>0, nโˆˆโ„•0. For nโˆˆโ„•0 we define the corresponding periodic wavelet packets ํ‘ค ํ‘› by ํ‘ค ํ‘› ํ‘ฅ = ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ ํ‘˜โˆˆโ„ค . It is important to note that the hypothesis about the point- wise decay of the wavelet packets ํ‘คํ‘› ensures that the periodic wavelet packets are well defined in ํฟํ‘ƒ[0,1) for 1โ‰คํ‘โ‰คโˆž . Wickerhauser and Hess[11] have proved that, the family ํ‘ค ํ‘› ํ‘›=0โˆž is an orthonormal basis for ํฟํ‘ƒ 0,1 .
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 102 | P a g e 
2.4 (C,1) and (C,1,1) method The series ํ‘Žํ‘›=ํ‘Ž0+ํ‘Ž1+ํ‘Ž2+โ‹ฏโˆžํ‘› =0, is said to be convergent to the sum S. If the partial sum ํ‘†ํ‘›=ํ‘Ž0+ํ‘Ž1+ํ‘Ž2+โ‹ฏ+ํ‘Žํ‘› tends to finite limit S when nโ†’โˆž; and a series which is not convergent is said to be divergent. If ํ‘†ํ‘›=ํ‘Ž0+ํ‘Ž1+ํ‘Ž2+โ‹ฏ+ํ‘Žํ‘›, and lim ํ‘›โ†’โˆž ํ‘†0+ํ‘†1+ํ‘†2+โ‹ฏ+ํ‘†ํ‘› ํ‘›+1=ํ‘†, Then we call S the (C,1) sum of ํ‘Žํ‘› and the (C,1) limits of ํ‘†ํ‘›. (Hardy[5],p.7) The series1+0-1+1+0-1+1+0...,is not convergent but it is summable (C,1) to the sum23 , (Titchmarsh [10], p.4111). Let ํ‘Žํ‘š,ํ‘› โˆžํ‘› =ํ‘œ โˆž ํ‘š=0= ํ‘Ž0,0+ํ‘Ž0,1+ํ‘Ž0,2+โ‹ฏ +ํ‘Ž1,0+ํ‘Ž1,1+ํ‘Ž1,2+โ‹ฏ +ํ‘Ž2,0+ํ‘Ž2,1+ํ‘Ž2,2+โ‹ฏ be a double infinite series (Bromwich[2],p.92). The partial sum of double infinite series denoted byํ‘†ํ‘š,ํ‘›, and defined by ํ‘†ํ‘š,ํ‘›= ํ‘Žํ‘–,ํ‘— . ํ‘› ํ‘—=0 ํ‘š ํ‘–=0 Write ํœŽํ‘š,ํ‘›= 1 ํ‘š+1 (ํ‘›+1) ํ‘†ํ‘–,ํ‘— ํ‘› ํ‘—=1 ํ‘š ํ‘–=1 = 1โˆ’ ํ‘– ํ‘š+1 1โˆ’ ํ‘— ํ‘›+1 ํ‘Žํ‘–,ํ‘— . (2.5)ํ‘›ํ‘— =1 ํ‘šํ‘– =1 If ํœŽํ‘š,ํ‘›โ†’ํ‘† as mโ†’โˆž,ํ‘›โ†’โˆž then we say that ํ‘Žํ‘š,ํ‘› โˆžํ‘› =0โˆž ํ‘š=0 is summable to S by (C,1,1) method. Consider the double infinite series (โˆ’1)ํ‘š+ํ‘›โˆžํ‘› =0โˆž ํ‘š=0 in this case, ํ‘†ํ‘š,ํ‘›= (โˆ’1)ํ‘–+ํ‘— ํ‘› ํ‘—=0 ํ‘š ํ‘–=0 = โˆ’1 (ํ‘–)ํ‘šํ‘– =0 โˆ’1 (ํ‘—)ํ‘›ํ‘— =0 = 1โˆ’1+1โˆ’โ‹ฏ+(โˆ’1)ํ‘š 1โˆ’1+1โˆ’โ‹ฏ+(โˆ’1)ํ‘› = 1โˆ’(โˆ’1)ํ‘š+11+1 1โˆ’(โˆ’1)ํ‘›+11+1 = 14 1+(โˆ’1)ํ‘š 1+(โˆ’1)ํ‘› = 1,ํ‘–ํ‘“,ํ‘š=2ํ‘›1,ํ‘›=2ํ‘›20,ํ‘–ํ‘“,ํ‘š=2ํ‘›1,ํ‘›=2ํ‘›2+10,ํ‘–ํ‘“,ํ‘š=2ํ‘›1+1,ํ‘›=2ํ‘›20,ํ‘–ํ‘“,ํ‘š=2ํ‘›1+1,ํ‘›=2ํ‘›2+1 ํ‘คํ‘•ํ‘’ํ‘Ÿํ‘’ ํ‘›1,ํ‘›2ํœ–โ„•0. Then limํ‘š,ํ‘›โ†’โˆž,โˆžํ‘†ํ‘š,ํ‘› does not exist. The double infinite series โˆ’1 (ํ‘š+ํ‘›)โˆžํ‘› =0โˆž ํ‘š=0 is not convergent. Let us consider ํœŽํ‘š,ํ‘›. ํœŽํ‘š,ํ‘›.= 1โˆ’ ํ‘– ํ‘š+1 1โˆ’ ํ‘— ํ‘›+1 โˆ’1 ํ‘–+ํ‘— ํ‘› ํ‘—=0 ํ‘š ํ‘–=0 = 3+(โˆ’1)ํ‘š+2ํ‘š 3+(โˆ’1)ํ‘›+2ํ‘› 16 ํ‘š+1 (ํ‘›+1) then ํœŽํ‘š,ํ‘›.โ†’ 14 as mโ†’โˆž,ํ‘›โ†’โˆž. Therefore the series โˆ’1 (ํ‘š+ํ‘›)โˆžํ‘› =0โˆž ํ‘š=0, is summable to 14 by(C,1,1) method. 2.5 Generalized Carleson operator Write ํ‘†ํ‘,ํ‘ํ‘“ ํ‘ฅ = ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘ํ‘› =0ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ ,ํ‘“โˆˆํฟํ‘(โ„) , 1<ํ‘<โˆž,
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 103 | P a g e 
ํœŽํ‘,ํ‘ํ‘“ ํ‘ฅ = 1 ํ‘+1 2 ํ‘†ํ‘–,ํ‘—ํ‘“ ํ‘ฅ ํ‘ํ‘— =0 ํ‘ํ‘– =0 = 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘ํ‘› =0ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ The Carleson operator for the Walsh type wavelet packet system, denoted by L, is defined by ํฟํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘ํ‘› =0ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ .ํ‘“โˆˆํฟํ‘(โ„) , 1<ํ‘<โˆž, = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘†ํ‘,ํ‘ํ‘“ ํ‘ฅ . The generalized carleson operator for the Walsh type wavelet packet system denoted by ํฟํ‘ is defined by (ํฟํ‘f) ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1 ํ‘›+1 2 ํ‘†ํ‘–,ํ‘—ํ‘“ ํ‘ฅ ํ‘ํ‘— =0 ํ‘ํ‘– =0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘†ํ‘,ํ‘ํ‘“ ํ‘ฅ . = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘ํ‘› =0ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ (2.6). Let us define the generalized Carleson Operator for the periodic Walsh type wavelet packet system ํ‘ค ํ‘› . Write ํ‘ ํ‘ํ‘“ ํ‘ฅ = ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘› ํ‘ฅ ,ํ‘“โˆˆํ‘ํ‘› =0ํฟํ‘(โ„) , 1<ํ‘<โˆž, ํœŽํ‘ํ‘“ ํ‘ฅ = 1 ํ‘+1 ํ‘ ํ‘ํ‘“ ํ‘ฅ ํ‘ ํ‘›=0 = 1 ํ‘+1 ํ‘“,ํ‘ค ํ‘› (ํ‘ค ํ‘–(ํ‘ฅ) ํ‘› ํ‘–=0 ํ‘ ํ‘›=0) = (1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘› ํ‘ฅ . ํ‘ ํ‘›=0 The Carleson operator for the periodic Walsh type wavelet packet system, denoted by ํ”พ, is defined by ํ”พํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘› ํ‘ฅ ํ‘ํ‘› =0 ,ํ‘“โˆˆํฟํ‘(โ„) , 1<ํ‘<โˆž, = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘ ํ‘ํ‘“ ํ‘ฅ . The generalized Carleson operator for the periodic Walsh type wavelet type packet system, denoted by , is defined by ํ”พํ‘ํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘ 0ํ‘“ ํ‘ฅ + ํ‘ 1ํ‘“ ํ‘ฅ + ํ‘ 2ํ‘“ ํ‘ฅ +โ‹ฏ+ ํ‘ ํ‘ํ‘“ ํ‘ฅ ํ‘+1 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1 ํ‘+1 ํ‘ ํ‘›ํ‘“ ํ‘ฅ ํ‘ํ‘› =0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํœŽํ‘ํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘› ํ‘ฅ ํ‘ํ‘› =0 . (2.7) 2.6 Strong type (p,p) Operator An operator T defined on ํฟํ‘ โ„ is of strong type(p,p) if it is sub-linear and there is a constant C such that ํ‘‡ํ‘“ ํ‘โ‰ค ํถ ํ‘“ ํ‘ for all ํ‘“โˆˆ ํฟํ‘ โ„ . 
III. Main Results 
In this paper, two new Theorem have been established in the following form: Theorem 3.1 Let ํ‘คํ‘› be a family of Walsh-type wavelet packet system. Then the generalized Carleson operator ํฟํ‘ defined by (2,6) for any Walsh-type wavelet packet system is of strong type(p,p),1<ํ‘<โˆž. Theorem 3.2 Let ํ‘ค ํ‘› be a periodic Walsh-type wavelet packets. Then the generalized Carleson Operator ํ”พํ‘ defined by (2.7) for periodic Walsh type wavelet packet expansion of any ํ‘“โˆˆํฟํ‘ โ„ ,1<ํ‘<โˆž, converges a.e... 3.1 Lemmas For the proof of the theorems following lemmas are required: Lemma 3.1 (Zygmund[12],p.197),Ifํ‘ฃ1,ํ‘ฃ2,ํ‘ฃ3,โ€ฆํ‘ฃํ‘› are non negative and non increasing,then ํ‘ข1ํ‘ฃ1+ํ‘ข2ํ‘ฃ2+ํ‘ข3ํ‘ฃ3+โ‹ฏ+ํ‘ขํ‘›ํ‘ฃํ‘› โ‰คํ‘ฃ1ํ‘šํ‘Žํ‘ฅ ํ‘ˆํ‘˜ Where ํ‘ˆํ‘˜=ํ‘ข1+ํ‘ข2+ํ‘ข3+โ‹ฏ+ํ‘ขํ‘˜ for k=1,2,3,...,n. Lemma 3.2 Let ํ‘“1โˆˆ ํฟ2(โ„), and define ํ‘“ํ‘› ํ‘›โ‰ฅ2 recursively by
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 104 | P a g e 
ํ‘“ํ‘› ํ‘ฅ = ํ‘“ํ‘š 2ํ‘ฅ +ํ‘“ํ‘š 2ํ‘ฅโˆ’1 ,ํ‘›=2ํ‘š ํ‘“ํ‘š 2ํ‘ฅ โˆ’ํ‘“ํ‘š 2ํ‘ฅโˆ’1 ,ํ‘›=2ํ‘š+1 Then ํ‘“ํ‘š ํ‘ฅ = ํ‘Š ํ‘šโˆ’2ํ‘—ํ‘2โˆ’ํ‘— 2ํ‘—โˆ’1 ํ‘=0ํ‘“1(2ํ‘—x-p) for m , j โˆˆโ„•,2ํ‘—โ‰คํ‘š<2ํ‘—+1. Lemma 3.3 Let ํ‘คํ‘› ํ‘›โ‰ฅ0 be a family of Walsh type wavelet packets. If ํ‘ค1โˆˆํถ1(โ„) then there exists an isomorphism ํœ“โˆถ ํฟํ‘ โ„ โ†’ํฟํ‘ โ„ ,1<ํ‘<โˆž,ํ‘ ํ‘ขํ‘ํ‘• ํ‘กํ‘•ํ‘Žํ‘ก ํœ“ํ‘คํ‘› .โˆ’ํ‘˜ = ํ‘คํ‘› .โˆ’ํ‘˜ ,ํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„ค. Lemma (3.2) and (3.3) can be easily proved. Lemma 3.4 (Billard [1] and Sjํ‘œ lin [9]. Let ํ‘“โˆˆํฟ1[0,1) and define ํ‘†ํ‘› ํ‘ฅ,ํ‘“ = ํ‘“ ํ‘ก ํ‘Šํ‘˜ ํ‘ก ํ‘‘ํ‘กํ‘Šํ‘˜ ํ‘ฅ .10 ํ‘› ํ‘˜=0 Then the Carleson operator G defined by ํบํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘› ํ‘†ํ‘›(ํ‘ฅ,ํ‘“) is of strong type (p,p) for 1<ํ‘<โˆž. 3.2 Proof of Theorem 3.1 For, ํ‘“,ํ‘”,ํฟํ‘(โ„) ํฟํ‘ ํ‘“+ํ‘” ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํœŽํ‘,ํ‘ ํ‘“+ํ‘” (ํ‘ฅ) = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘“+ํ‘”,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜)ํ‘ํ‘› =0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘“,ํ‘คํ‘› .โˆ’ํ‘˜ + ํ‘”,ํ‘คํ‘› .โˆ’ํ‘˜ ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ ํ‘ํ‘› =0 ํ‘ ํ‘ขํ‘ โ‰คํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ ํ‘˜=โˆ’ํ‘ ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜) ํ‘ ํ‘›=0 + ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ ํ‘˜=โˆ’ํ‘ ํ‘”,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜) ํ‘ ํ‘›=0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 (ํœŽํ‘,ํ‘ํ‘“)(ํ‘ฅ) + ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 (ํœŽํ‘,ํ‘ํ‘”)(ํ‘ฅ) = ํฟํ‘ํ‘“ ํ‘ฅ + ํฟํ‘ํ‘” ํ‘ฅ . Also for ํ›ผโˆˆโ„ ํฟํ‘ํ›ผํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 (ํœŽํ‘,ํ‘(ํ›ผํ‘“))(ํ‘ฅ) = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ํ‘˜ =โˆ’ํ‘ ํ›ผํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜)ํ‘ํ‘› =0 = ํ›ผ ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ ํ‘˜=โˆ’ํ‘ ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜) ํ‘ ํ‘›=0 = ํ›ผ ํฟํ‘ํ‘“ ํ‘ฅ . Choose M โˆˆโ„• such that Supp(ํ‘คํ‘›)โŠ‚[โˆ’ํ‘€,ํ‘€] for ํ‘›โ‰ฅ0. Fix ํ‘โˆˆ(1,โˆž) and take any ํ‘“ ํ‘ฅ = ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ โˆˆํฟํ‘ โ„ .ํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„ค Define ํ‘“ํ‘˜ ํ‘ฅ = ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ ,ํ‘”ํ‘˜ ํ‘ฅ = ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘Šํ‘› ํ‘ฅโˆ’ํ‘˜ . ํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„คํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„ค We have ํ‘“ํ‘˜ ํ‘โ‰ˆ ํ‘”ํ‘˜ ํ‘,ํ‘คํ‘–ํ‘กํ‘• bounds independent of k (Lemma 3.3) .Note that for {ํ‘ฅโˆˆ ํ‘™,ํ‘™+1 : ํฟํ‘ํ‘“(ํ‘ฅ) >ํ›ผ} โ‰ค ํถ ํ›ผํ‘ ํฟํ‘ํ‘“ํ‘˜(ํ‘ฅ) ํ‘™+1+ํ‘› ํ‘˜=ํ‘™โˆ’ํ‘› ํ‘ ํ‘‘ํ‘ฅ. Using the Marcinkiewiez interpolation theorem, it suffices to prove that ํฟํ‘ํ‘“ํ‘˜ ํ‘โ‰คํถ ํ‘“ํ‘˜ ํ‘, where C is a constant independent of k.
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 105 | P a g e 
Since ํ‘“ํ‘˜ ํ‘ ํ‘โ‰ค2(ํ‘›+1) ํ‘“ํ‘˜ ํ‘ ํ‘โ‰ค2ํถ(ํ‘›+1) ํ‘”ํ‘˜ ํ‘ ํ‘โ‰คํถ1 ํ‘“ ํ‘ ํ‘ ํ‘˜โˆˆโ„คํ‘˜โˆˆโ„ค ํ‘™+1+ํ‘› ํ‘˜=ํ‘™โˆ’ํ‘›ํ‘™โˆˆโ„ค where ํถ1 is constant. Without loss of generality, we assume that k=0. Let K โˆˆ โ„• be the scale from which only the Haar filter is used to generate the wavelet packets ํ‘คํ‘› ํ‘›โ‰ฅ2ํ‘˜+1. Let N โˆˆโ„• and suppose 2ํ‘—โ‰คํ‘โ‰ค2ํฝ+1 for some J>ํพ+1.ํถํ‘™ํ‘’ํ‘Žํ‘Ÿํ‘™ํ‘ฆ,ํ‘“ํ‘œํ‘Ÿ each ํ‘ฅโˆˆโ„. ํฟํ‘ํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜)ํ‘ํ‘› =0 =ํ‘ ํ‘ขํ‘ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘›(.) ํ‘คํ‘›(ํ‘ฅ)ํ‘ํ‘› =0 , ํ‘˜=0, โ‰คํ‘ ํ‘ขํ‘1โ‰คํ‘<2ํ‘˜+1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› (.) ํ‘คํ‘›(ํ‘ฅ)ํ‘ํ‘› =0 +ํ‘ ํ‘ขํ‘ํฝ>ํพ+1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› (.) 2ํฝโˆ’1 ํ‘›=2ํพ+1 ํ‘คํ‘› (ํ‘ฅ) +ํ‘ ํ‘ขํ‘ํฝ>ํพ+1 ํ‘ ํ‘ขํ‘2ํฝโ‰คํ‘<2ํฝ+1 1โˆ’ ํ‘› ํ‘โˆ’2ํฝ+1 ํ‘“,ํ‘คํ‘›(.) ํ‘คํ‘› (ํ‘ฅ)ํ‘ ํ‘›=2ํฝ =ํฝ1+ํฝ2+ํฝ3 say. (3.2) Using Lemma 3.1, we have ํฝ1=ํ‘ ํ‘ขํ‘1โ‰คํ‘<2ํ‘˜+1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› (.) ํ‘คํ‘›(ํ‘ฅ) 2ํ‘˜+1โˆ’1 ํ‘›=0 โ‰คํ‘ ํ‘ขํ‘1โ‰คํ‘<2ํ‘˜+1 ํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› (.) ํ‘คํ‘›(ํ‘ฅ)0=ํ‘›โ‰ค2ํพ+1โˆ’1 โ‰ค ํ‘“,ํ‘คํ‘›(.) 2ํพ+1โˆ’1 ํ‘›=0 ํ‘คํ‘› (ํ‘ฅ) โ‰ค ํ‘“,ํ‘คํ‘›(.) ํ‘คํ‘›(ํ‘ฅ) โˆž ํœ’[โˆ’ํ‘,ํ‘] (ํ‘ฅ) โ‰ค ํ‘“0 ํ‘ ํ‘คํ‘› ํ‘ž 2ํพ+1โˆ’1 ํ‘›=0 ํ‘คํ‘› (ํ‘ฅ) โˆž ํœ’[โˆ’ํ‘,ํ‘] ํ‘ฅ . (3.3) Next, ํฝ2= ํ‘ ํ‘ขํ‘ํฝ>ํพ+1 1โˆ’ ํ‘› ํ‘+1 2ํฝโˆ’1 ํ‘›=2ํพ+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) โ‰ค ํ‘ ํ‘ขํ‘ ํฝ>ํ‘˜+1max ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ)2ํ‘˜+1=ํ‘›โ‰ค2ํฝโˆ’1 . Also ํ‘ ํ‘ขํ‘ ํฝ>ํ‘˜+1 (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ)2ํฝโˆ’1 ํ‘›=2ํ‘˜+1 ํ‘ƒ โ‰ค supํ‘šํ‘Žํ‘ฅ ํฝ>ํ‘˜+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘2ํ‘˜+1=ํ‘›โ‰ค2ํฝโˆ’1 โ‰คํถ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ โˆž ํ‘›=0 =ํถ ํ‘“0 ํ‘. (3.4) Consider ํฝ3, ํฝ3= ํ‘ ํ‘ขํ‘ 2ํฝโ‰คํ‘<2ํฝ+1 (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ โ‰ค ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ 2ํพโˆ’1 ํ‘—=0, so it suffices to prove that ํ‘ ํ‘ขํ‘ ํ‘—>ํ‘˜+1 ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ ํ‘ โ‰คํถ ํ‘“0 ํ‘ for ํ‘—=0,1,2,โ€ฆ,2ํ‘˜โˆ’1. Fix ํฝ>ํพ+1 ,0โ‰คํ‘—โ‰ค22ํ‘˜โˆ’1 and 2ํฝ+ํ‘—2ํฝํพโ‰คํ‘<2ํฝ+ ํ‘—+1 2ํฝโˆ’ํพ. Write,
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 106 | P a g e 
ํ‘—,3= (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ . Using lemma 3.2, we have ํ‘—,3 = (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘Š ํ‘›โˆ’2ํฝโˆ’ํ‘—2ํฝโˆ’ํพ(ํ‘ 2โˆ’ ํฝโˆ’ํพ ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ ํ‘ค2ํ‘˜+ํ‘—(2ํฝโˆ’ํพํ‘ฅโˆ’ํ‘ ) 2ํฝโˆ’ํพโˆ’1 ํ‘ =0 . Define ํนํ‘ ํ‘ก = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘Šํ‘›โˆ’2ํฝโˆ’ํ‘—2ํฝโˆ’ํพ, ํ‘ก , ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ and ํน ํ‘ก = ํ‘ ํ‘ขํ‘ ํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ ํนํ‘ ํ‘ก . We have ํ‘—โ€ฒ 3 = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ , โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ , โ‰ค ํน(ํ‘ 2โˆ’(ํฝโˆ’ํพ) ํ‘ค2ํ‘˜+ํ‘—((2ํฝโˆ’ํพ)ํ‘ฅโˆ’ํ‘ ) 2ํฝโˆ’ํพโˆ’1 ํ‘†=0, and using the compact support of the wavelet packets, ํ‘—โ€ฒ 3 = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ , โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ โ‰ค ํ‘ค2ํ‘˜+ํ‘— โˆž ํน(([2ํฝโˆ’ํพํ‘€+1 ํ‘™=โˆ’ํ‘€ํ‘ฅ]+ํ‘™)2โˆ’(ํฝโˆ’ํพ)). Note that F is constant on dyadic interval of type [ํ‘™2โˆ’(ํ‘—โˆ’ํ‘˜),(ํ‘™+1)2โˆ’(ํ‘—โˆ’ํ‘˜)) and taking ฮ”ํ‘™=(( 2ํฝโˆ’ํพํ‘ฅ+ํ‘™ 2โˆ’ ํฝโˆ’ํพ , 2ํฝโˆ’ํพํ‘ฅ+(ํ‘™+1) 2โˆ’ ํฝโˆ’ํพ ), we have ํ‘—โ€ฒ 3 = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ โ‰ค ํ‘ค2ํ‘˜+ํ‘— โˆž ฮ”ํ‘™ โˆ’1 ํน ํ‘ก ํ‘‘ํ‘ก ฮ”ํ‘™ ํ‘€+1 ํ‘™=โˆ’ํ‘€ . We need an estimate of F that does not depend on J . Note that for k, 0โ‰คํ‘˜<2ํฝโˆ’ํพ , using (2.3) ํ‘Š2ํฝ+ํ‘—2ํฝโˆ’ํพ ํ‘ก ํ‘Šํ‘˜ ํ‘ก =ํ‘Š2ํฝ+ํ‘—2ํฝโˆ’ํพ+ํ‘˜ ํ‘ก , since the binary expansions of 2ํฝ+ํ‘—2ํฝโˆ’ํพ and of k have no 1โ€™s in common. Hence, ํนํ‘ ํ‘ก = ํ‘Š2ํฝ+ํ‘—2ํฝโˆ’ํพ ํ‘ก ํนํ‘ ํ‘ก = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘Šํ‘› ํ‘ก ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 107 | P a g e 
โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘Šํ‘› ํ‘ก ํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ . Using lemma (3.4) , we have F(t)โ‰ค2 ํบํ‘”ํ‘œ ํ‘ก . Thus, 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ โ‰ค2 ํ‘ค2ํ‘˜+ํ‘— โˆž ฮ”ํ‘™ โˆ’1 ํบํ‘”0 ํ‘ก ํ‘‘ํ‘ก ฮ”ํ‘™ ํ‘€+1 ํ‘™=โˆ’ํ‘€ . Let ฮ”ํ‘™ โˆ— be the smallest dyadic interval containing ฮ”ํ‘™ and ํ‘ฅ , and note that ฮ”ํ‘™ โˆ— โ‰ค(ํ‘€+1) ฮ”ํ‘™ since ํ‘ฅโˆˆ ฮ”0โˆ’ํท . We have 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ โ‰ค2 ํ‘ค2ํ‘˜+ํ‘— โˆž ฮ”ํ‘™ โˆ’1 ํบํ‘”0 ํ‘ก ํ‘‘ํ‘ก ฮ”ํ‘™ ํ‘€+1 ํ‘™=โˆ’ํ‘€ โ‰ค4 ํ‘ค2ํ‘˜+ํ‘— โˆž(ํ‘€+1)2 ํ‘€โˆ— ํบํ‘”0 ํ‘ฅ (3.5) Where ํ‘€โˆ— is the maximal operator of Hardy and Little wood . The right hand side of (3.5) neither depend on N nor J so we may conclude that ํฝ3โ‰ค ํ‘ ํ‘ขํ‘ ํฝ>ํพ+1 ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ 2ํพโˆ’1 ํ‘—=0 โ‰ค ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ ํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ 2ํ‘˜โˆ’1 ํ‘—=0 โ‰ค4 ํ‘ค2ํ‘˜+ํ‘— โˆž(ํ‘€+1)2 ํ‘€โˆ— ํบํ‘”0 ํ‘ฅ ,ํ‘Ž.ํ‘’.. (3.6) Using (Sjํ‘œ lin [9]), ํ‘€โˆ— and G both of strong type (p,p), hence both are bounded. ํ‘ ํ‘ขํ‘ ํฝ>ํพ+1ํฝ3 ํ‘ƒ โ‰ค ํ‘ ํ‘ขํ‘ ํฝ>ํพ+1 ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ (1 ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํ‘˜ 2ํพโˆ’1 ํ‘—=0โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ โ‰คํถ ํ‘”0 ํ‘ โ‰คํถ1 ํ‘“0 ํ‘, ํ‘—=0,1,2,3,โ€ฆ,2ํพ-1. Thus the Theorem 3.1 is completely established. 3.3 proof of the Theorem 3.2 Let ํ‘“โˆˆํฟํ‘ 0,1 , and choose Mโˆˆโ„• such that supp(ํ‘คํ‘›)โŠ‚[โˆ’ํ‘€,ํ‘€] for nโ‰ฅ0. Then ํ”พํ‘ํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘›(ํ‘ฅ) ํ‘ ํ‘›=0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“, ํ‘คํ‘›(.โˆ’ํ‘˜1)ํ‘€+1 ํ‘˜1=โˆ’ํ‘€ ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜2)ํ‘€+1 ํ‘˜2=โˆ’ํ‘€ ํ‘ํ‘› =0
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 108 | P a g e 
= ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜1) ํ‘€+1 ํ‘˜1=โˆ’ํ‘€ ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜2)ํ‘€+1 ํ‘˜2=โˆ’ํ‘€ ํ‘ํ‘› =0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜1) ํ‘ํ‘› =0ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜2) ํ‘€+1 ํ‘˜2=โˆ’ํ‘€ ํ‘€+1 ํ‘˜1=โˆ’ํ‘€ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“ ํ‘ฆ ํ‘คํ‘› ํ‘ฆโˆ’ํ‘˜1 ํ‘‘ํ‘ฆํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜2) 10 ํ‘ํ‘› =0 ํ‘€+1 ํ‘˜2=โˆ’ํ‘€ ํ‘€+1 ํ‘˜1=โˆ’ํ‘€ Following the proof of theorem 3.1, it can be proved that the generalized Carleson operator ํ”พํ‘ for the periodic Walsh type wavelet packet expansions converges a.e.. 
IV. Acknowledgments 
Shyam Lal, one of the author, is thankful to DST - CIMS for encouragement to this work. Susheel Kumar, one of the authors, is grateful to C.S.I.R. (India) in the form of Junior Research Fellowship vide Ref. No. 19-06/2011 (i)EU-IV Dated:03-10-2011 for this research work. Authors are grateful to the referee for his valuable suggestions and comments for the improvement of this paper. References [1] Billard, P., Sur la convergence Presque partout des series de Fourier-Walshdes fontions de lโ€™espace ํฟ2(0,1), Studia Math, 28:363-388, 1967. [2] Bromwich, T. J .I โ€™A., An introduction to the theory of infinite Series, The University press, Macmillan and Co; Limited, London, 1908. [3] Carleson, L. , โ€œOn convergence and growth of partial sums of Fourier seriesโ€ , Acta Mathematica 116(1): 135157, (1966). [4] Golubov , B., Efimov, A. And Skvortson, V., Walsh Series and Transforms, Dordrcct: Kluwer Academic Publishers Group ,Theory and application, Translated Form the 1987 Russian Original by W.R.. Wade, 1991. [5] Hardy, G. H., Divergent Series, Oxford at the Clarendon Press, 1949. [6-a] Meyer .Y. Wavelets and Operators. Cambridge University Press, 1992. [6] Morten. N. Walsh Type Wavelet Packet Expansions. [7] Paley R. E. A. C., A remarkable system of orthogonal functions. Proc. Lond. Math. Soc., 34:241279, 1932. [8] Schipp, F., Wade, W. R. and Simon, P., Walsh Series, Bristol: AdamHilger Ltd. An Introduction to Dyadic Harmonic Analysis, with the Collaboration of J. P_al, 1990. [9] Sjํ‘œ lin P., An inequality of paley and convergence a.e. of Walsh-FourierSeries, Arkiv fํ‘œ r Matematik, 7:551-570, 1969. [10] Titchmarsh, E.C., The Theory of functions, Second Edition, OxfordUniversity Press, (1939). [11] Wickerhauser, M. V. and Hess,N. Wavelets and Time-Frequency Analysis, Proceedings of the IEEE, 84:4(1996), 523-540. [12] Zygmund A., Trigonometric Series Volume I, Cambridge UniversityPress, 1959.

Mais conteรบdo relacionado

Mais procurados

Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)
Eqah Ihah
ย 
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
Alexander Decker
ย 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of Beetle
Liang Kai Hu
ย 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
IJERD Editor
ย 

Mais procurados (17)

Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and minds
ย 
H0743842
H0743842H0743842
H0743842
ย 
Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)
ย 
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
ย 
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
ย 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
ย 
3.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-243.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-24
ย 
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
ย 
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
ย 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of Beetle
ย 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
ย 
Unveiling the physics of hair shapes - journal club 2014
Unveiling the physics of hair shapes - journal club 2014Unveiling the physics of hair shapes - journal club 2014
Unveiling the physics of hair shapes - journal club 2014
ย 
Bounds on inverse domination in squares of graphs
Bounds on inverse domination in squares of graphsBounds on inverse domination in squares of graphs
Bounds on inverse domination in squares of graphs
ย 
Runge Kutta Method
Runge Kutta MethodRunge Kutta Method
Runge Kutta Method
ย 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
ย 
MLP่ผช่ชญใ‚นใƒใ‚šใƒผใ‚น8็ซ  ใƒˆใƒฌใƒผใ‚นใƒŽใƒซใƒ ๆญฃๅ‰‡ๅŒ–
MLP่ผช่ชญใ‚นใƒใ‚šใƒผใ‚น8็ซ  ใƒˆใƒฌใƒผใ‚นใƒŽใƒซใƒ ๆญฃๅ‰‡ๅŒ–MLP่ผช่ชญใ‚นใƒใ‚šใƒผใ‚น8็ซ  ใƒˆใƒฌใƒผใ‚นใƒŽใƒซใƒ ๆญฃๅ‰‡ๅŒ–
MLP่ผช่ชญใ‚นใƒใ‚šใƒผใ‚น8็ซ  ใƒˆใƒฌใƒผใ‚นใƒŽใƒซใƒ ๆญฃๅ‰‡ๅŒ–
ย 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
ย 

Destaque

Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
IJERA Editor
ย 
Secure by design building id based security
Secure by design building id based securitySecure by design building id based security
Secure by design building id based security
Arun Gopinath
ย 
An Automated Input Data Management Approach for Discrete Event Simulation App...
An Automated Input Data Management Approach for Discrete Event Simulation App...An Automated Input Data Management Approach for Discrete Event Simulation App...
An Automated Input Data Management Approach for Discrete Event Simulation App...
IJERA Editor
ย 
HRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
HRSSUG - SharePoint 2013 - A brief overview of IT Pro CapabilityHRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
HRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
Scott Hoag
ย 
Womens Aid - New Donor Campaign
Womens Aid - New Donor CampaignWomens Aid - New Donor Campaign
Womens Aid - New Donor Campaign
Post Media
ย 

Destaque (20)

Electroelastic Response of a Piezoelectric Semi-infinite Body with Dโˆž Symmetr...
Electroelastic Response of a Piezoelectric Semi-infinite Body with Dโˆž Symmetr...Electroelastic Response of a Piezoelectric Semi-infinite Body with Dโˆž Symmetr...
Electroelastic Response of a Piezoelectric Semi-infinite Body with Dโˆž Symmetr...
ย 
P450294101
P450294101P450294101
P450294101
ย 
Getting Started with Office 365
Getting Started with Office 365Getting Started with Office 365
Getting Started with Office 365
ย 
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...
ย 
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...
ย 
Soft Computing Technique Based Enhancement of Transmission System Lodability ...
Soft Computing Technique Based Enhancement of Transmission System Lodability ...Soft Computing Technique Based Enhancement of Transmission System Lodability ...
Soft Computing Technique Based Enhancement of Transmission System Lodability ...
ย 
E045032833
E045032833E045032833
E045032833
ย 
Design the High Speed Kogge-Stone Adder by Using
Design the High Speed Kogge-Stone Adder by UsingDesign the High Speed Kogge-Stone Adder by Using
Design the High Speed Kogge-Stone Adder by Using
ย 
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
ย 
Cx4301574577
Cx4301574577Cx4301574577
Cx4301574577
ย 
Acoustic Analysis of Commercially Available Timber Species in Nigeria
Acoustic Analysis of Commercially Available Timber Species in NigeriaAcoustic Analysis of Commercially Available Timber Species in Nigeria
Acoustic Analysis of Commercially Available Timber Species in Nigeria
ย 
Symbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner BasisSymbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner Basis
ย 
Secure by design building id based security
Secure by design building id based securitySecure by design building id based security
Secure by design building id based security
ย 
Ei4301816822
Ei4301816822Ei4301816822
Ei4301816822
ย 
An Automated Input Data Management Approach for Discrete Event Simulation App...
An Automated Input Data Management Approach for Discrete Event Simulation App...An Automated Input Data Management Approach for Discrete Event Simulation App...
An Automated Input Data Management Approach for Discrete Event Simulation App...
ย 
HRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
HRSSUG - SharePoint 2013 - A brief overview of IT Pro CapabilityHRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
HRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
ย 
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...
ย 
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePoint
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePointSPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePoint
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePoint
ย 
Parallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix MultiplicationParallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix Multiplication
ย 
Womens Aid - New Donor Campaign
Womens Aid - New Donor CampaignWomens Aid - New Donor Campaign
Womens Aid - New Donor Campaign
ย 

Semelhante a Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions

Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyOutgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
foxtrot jp R
ย 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
irjes
ย 

Semelhante a Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions (20)

Fuzzy random variables and Kolomogrovโ€™s important results
Fuzzy random variables and Kolomogrovโ€™s important resultsFuzzy random variables and Kolomogrovโ€™s important results
Fuzzy random variables and Kolomogrovโ€™s important results
ย 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
ย 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy Numbers
ย 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
ย 
Calculas
CalculasCalculas
Calculas
ย 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
ย 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model
ย 
On uniformly continuous uniform space
On uniformly continuous uniform spaceOn uniformly continuous uniform space
On uniformly continuous uniform space
ย 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44
ย 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
ย 
Proje kt
Proje ktProje kt
Proje kt
ย 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
ย 
Sequence Entropy and the Complexity Sequence Entropy For ๐’๐’๏€ Action
Sequence Entropy and the Complexity Sequence Entropy For ๐’๐’๏€ ActionSequence Entropy and the Complexity Sequence Entropy For ๐’๐’๏€ Action
Sequence Entropy and the Complexity Sequence Entropy For ๐’๐’๏€ Action
ย 
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyOutgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
ย 
Lecture 6 radial basis-function_network
Lecture 6 radial basis-function_networkLecture 6 radial basis-function_network
Lecture 6 radial basis-function_network
ย 
paper publication
paper publicationpaper publication
paper publication
ย 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
ย 
9057263
90572639057263
9057263
ย 
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTIONPROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
ย 
Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependency
ย 

รšltimo

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
sivaprakash250
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
ย 
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
SUHANI PANDEY
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
ย 

รšltimo (20)

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
ย 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
ย 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
ย 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
ย 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
ย 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
ย 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
ย 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
ย 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
ย 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ย 
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
ย 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
ย 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
ย 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
ย 

Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions

  • 1. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 100 | P a g e Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions Shyam Lal and Susheel Kumar Department of Mathematics, Faculty of Science, Banaras Hindu University, Varansi-221005, India Abstract In this paper, two new theorems on generalized Carleson Operator for a Walsh type wavelet packet system and for periodic Walsh type wavelet packet expansion of a function ํ‘“ํœ–ํฟํ‘ 0,1 , 1<ํ‘<โˆž, have been established. Mathematics Subject Classification: 40A30, 42C15 Keywords and Phrases Walsh function, Walsh- type wavelet Packets, periodic Walsh- type wavelet packets, Cesํ‘Ž ro's means of order 1 for single infinite series and for double infinite series, generalized Carleson operator for Walsh type and for periodic Walsh type wavelet packets. I. Introduction A new class of orthogonal expansion in ํฟ2(โ„) with good time frequency and regularity approximation properties are obtained in wavelet analysis. These expansions are useful in Signal analysis, Quantum mechanics, Numerical analysis, Engineering and Technology. Wavelet analysis generalizes an orthogonal wavelet expansion with suitable time frequency properties. In transient as well as stationary phenomena, this approach have applications over wavelet and short- time Fourier analysis. The properties of orthonormal bases have been studied in ํฟ2(ํ‘…) for wavelet expansion. The basic wavelet packet expansions of ํฟํ‘-functions, 1<ํ‘<โˆž, defined on the real line and the unit interval have significant importance in wavelet analysis. Walsh system is an example of a system of basic stationary wavelet packets (Billard [1] and Sjolin [9]). Paley [7], Billard [1] Sjolin [9] and Nielsen [6] have investigated point wise convergent properties of Walsh expansion of given ํฟํ‘[0,1) functions. At first, in 1966, Lennart Carleson [3] introduced an operator which is presently known as Carleson operator. In this paper, generalized Carleson operators for Walsh type wavelet packet expansion and for periodic Walsh type wavelet packet expansion for any ํ‘“โˆˆํฟํ‘[0,1) are introduced. Two new theorems have been established (1) The generalized Carleson operator for any Walsh-type wavelet packet system is of strong type ํ‘,ํ‘ , 1< ํ‘<โˆž. (2) The generalized Carleson operator for periodic Walsh-type wavelet packet expansion for a function ํ‘“โˆˆํฟํ‘ โ„ , 1<ํ‘<โˆž, converges a.e.. II. Definitions and Preliminaries The structure in which non-stationary wavelet packets live is that of a multiresolution analysis ํ‘‰ํ‘— ํ‘—โˆˆโ„ค for ํฟ2 โ„ .To every multiresolution analysis we have an associated scaling function ํœ™ and a wavelet ํœ“ with the properties that ํ‘‰ํ‘—=ํ‘ ํ‘ํ‘Žํ‘› 2 ํ‘— 2ํœ™ 2ํ‘—.โˆ’ํ‘˜ ;ํ‘˜ํœ–โ„ค and ํœ“ํ‘—,ํ‘˜โ‰ก2 ํ‘— 2ํœ“ 2ํ‘—.โˆ’ํ‘˜ ;ํ‘—,ํ‘˜ํœ–โ„ค are an orthonormal basis for ํฟ2 โ„ . Write ํ‘Šํ‘—=ํ‘ ํ‘ํ‘Žํ‘› 2 ํ‘— 2ํœ“ 2ํ‘—.โˆ’ํ‘˜ ;ํ‘˜ํœ–โ„ค . Let โ„• be the set of natural number and ํน0 ํ‘ ,ํน1 ํ‘ ,ํ‘ ํœ–โ„•, be a family of bounded operators on ํ‘™2 โ„ค of the form ํนํœ– ํ‘ ํ‘Ž ํ‘˜ = ํ‘Žํ‘› ํ‘›โˆˆโ„คํ‘•ํœ– ํ‘ ํ‘›โˆ’2ํ‘˜ , ํœ–=0,1 with ํ‘•1 ํ‘ ํ‘› =(โˆ’1)ํ‘› ํ‘•0 ํ‘ (1โˆ’ํ‘›) a sequence in ํ‘™1(โ„ค) such that ํน0 ํ‘ โˆ—ํน0 ํ‘ +ํน1 ํ‘ โˆ—ํน1 ํ‘ =1 ํน0 ํ‘ ํน1 ํ‘ โˆ—=0. We define the family of functions ํ‘คํ‘› 0โˆž recursively by letting ํ‘ค0=ํœ™ ,ํ‘ค1=ํœ“ and then for ํ‘›ํœ–โ„• ํ‘ค2ํ‘› ํ‘ฅ =2 ํ‘•0 ํ‘ (ํ‘ž)ํ‘คํ‘› 2ํ‘ฅโˆ’ํ‘ž ํ‘žโˆˆํ•ซ (2.1) ํ‘ค2ํ‘›+1 ํ‘ฅ =2 ํ‘•1 ํ‘ (ํ‘ž)ํ‘คํ‘› 2ํ‘ฅโˆ’ํ‘ž ํ‘žโˆˆํ•ซ (2.2) RESEARCH ARTICLE OPEN ACCESS
  • 2. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 101 | P a g e where 2ํ‘โ‰คํ‘›<2ํ‘+1. The family ํ‘คํ‘› 0โˆž is our basic non โ€“stationary wavelet packet. It is known that ํ‘คํ‘› .โˆ’ํ‘˜ ;ํ‘›โ‰ฅ0,ํ‘˜โˆˆํ•ซ is an orthonormal basis for ํฟ2 โ„ .Moreover, ํ‘คํ‘› .โˆ’ํ‘˜ ;2ํ‘—โ‰คํ‘›<2ํ‘—+1,ํ‘˜โˆˆํ•ซ is an orthonormal basis for ํ‘Šํ‘—=ํ‘ ํ‘ํ‘Žํ‘› 2 ํ‘— 2ํ‘ค1 2ํ‘—.โˆ’ํ‘˜ ;ํ‘˜โˆˆํ•ซ . Each pair ํน0 ํ‘ ,ํน1 ํ‘ can be chosen as a pair of quardrature mirror filters associated with a multiresolution analysis, but this is not necessary. The trigonometric polynomial given by ํ‘š0 ํ‘ ํœ‰ = 1 2 ํ‘•0 ํ‘ (ํ‘˜)ํ‘’โˆ’ํ‘–ํ‘˜ํœ‰ ํ‘˜โˆˆํ•ซ and ํ‘š1 ํ‘ ํœ‰ = 1 2 ํ‘•1 ํ‘ (ํ‘˜)ํ‘’โˆ’ํ‘–ํ‘˜ํœ‰ ํ‘˜โˆˆํ•ซ are called the symbols of filters. The Haar low- pass quadrature mirror filter ํ‘•0(ํ‘˜) ํ‘˜ is given by ํ‘•0 0 =ํ‘•0 1 = 1 2,ํ‘•0 ํ‘˜ =0 otherwise, and the associate high-pass filter ํ‘•1(ํ‘˜) ํ‘˜ is given by ํ‘•1 ํ‘˜ =(โˆ’1)ํ‘˜ ํ‘•0 1โˆ’ํ‘˜ . 2.1 Walsh function and their properties The Walsh system ํ‘Šํ‘› ํ‘›=0โˆž is defined recursively on 0,1 on considering ํ‘Š0 ํ‘ฅ = 1,0โ‰คํ‘ฅ<10, ํ‘œํ‘กํ‘•ํ‘’ํ‘Ÿํ‘คํ‘–ํ‘ ํ‘’ and ํ‘Š2ํ‘› ํ‘ฅ =ํ‘Šํ‘› 2ํ‘ฅ +ํ‘Šํ‘› 2ํ‘ฅโˆ’1 , ํ‘Š2ํ‘›+1 ํ‘ฅ =ํ‘Šํ‘› 2ํ‘ฅ โˆ’ํ‘Šํ‘› 2ํ‘ฅโˆ’1 . Observe that the Walsh system is the family of wavelet packets obtained by considering ํœ‘=ํ‘Š0 ํœ“ ํ‘ฅ = 1, 0โ‰คํ‘ฅ< 12; โˆ’1, 12โ‰คํ‘ฅ<1; 0,ํ‘œํ‘กํ‘•ํ‘’ํ‘Ÿํ‘คํ‘–ํ‘ ํ‘’. and using the Haar filters in the definition of the non- stationary wavelet packets. The Walsh system is closed under point wise multiplication. Define the binary operator โŠ•:โ„•0ร—โ„•0โ†’โ„•0 by mโŠ•ํ‘›= ํ‘šํ‘–โˆ’ํ‘›ํ‘– 2ํ‘–โˆžํ‘– =0, where ํ‘š= ํ‘šํ‘–2ํ‘–โˆžํ‘– =0, ํ‘›= ํ‘›ํ‘–2ํ‘–โˆžํ‘– =0 and โ„•0=โ„•โˆช 0 . Then ํ‘Šํ‘š ํ‘ฅ ํ‘Šํ‘› ํ‘ฅ =ํ‘Šํ‘šโŠ•ํ‘› ํ‘ฅ , (2.3) (Schipp et al.[8]). We can carry over the operator โŠ• to the interval [0,1] by identifying those xโˆˆ[0,1] with a unique expansion x= ํ‘ฅํ‘—2โˆ’ํ‘—โˆ’1โˆžํ‘— =0 (almost all xโˆˆ[0,1] has such a unique expansion) by there associated binary sequence ํ‘ฅํ‘– . For two such point ํ‘ฅ,ํ‘ฆโˆˆ 0,1 , define xโŠ•ํ‘ฆ= ํ‘ฅํ‘–โˆ’ํ‘ฆํ‘– 2โˆ’ํ‘—โˆ’1โˆžํ‘— =0. The operation โŠ• is defined for almost all ํ‘ฅ,ํ‘ฆโˆˆ 0,1 .Using this definition we have ํ‘Šํ‘› ํ‘ฅโŠ•ํ‘ฆ =ํ‘Šํ‘› ํ‘ฅ ํ‘Šํ‘› ํ‘ฆ ( 2.4) for every pair x,y for which ํ‘ฅโŠ•ํ‘ฆ is defined (Golubov et al.[4]). 2.2 Walsh type wavelet packets Let ํ‘คํ‘› ํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„ค be a family of non-stationary wavelet packets constructed by using of family ํ‘•0 ํ‘ (ํ‘›) ํ‘=0โˆž of finite filters for which there is a constantํพโˆˆโ„• such that ํ‘•0 ํ‘ (ํ‘›) is the Haar filter for every ํ‘โ‰ฅํพ. If ํ‘ค1โˆˆํถ1(โ„) and it has compact support then we call ํ‘คํ‘› ํ‘›>0 a family of Walsh type wavelet packets. 2.3 Periodic Walsh type wavelet packet As Meyer[6-a], an orthonormal basis for ํฟ2[0,1) is obtained periodizing any orthonormal wavelet basis associated with a multiresolution analysis. The periodization works equally well with non stationary wavelet packets. Let ํ‘คํ‘› ํ‘›=0โˆž be a family of non-stationary basic wavelet packets satisfying ํ‘คํ‘›(ํ‘ฅ) โ‰คํถํ‘›(1+ ํ‘ฅ )โˆ’1โˆ’โˆˆํ‘› for some โˆˆํ‘›>0, nโˆˆโ„•0. For nโˆˆโ„•0 we define the corresponding periodic wavelet packets ํ‘ค ํ‘› by ํ‘ค ํ‘› ํ‘ฅ = ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ ํ‘˜โˆˆโ„ค . It is important to note that the hypothesis about the point- wise decay of the wavelet packets ํ‘คํ‘› ensures that the periodic wavelet packets are well defined in ํฟํ‘ƒ[0,1) for 1โ‰คํ‘โ‰คโˆž . Wickerhauser and Hess[11] have proved that, the family ํ‘ค ํ‘› ํ‘›=0โˆž is an orthonormal basis for ํฟํ‘ƒ 0,1 .
  • 3. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 102 | P a g e 2.4 (C,1) and (C,1,1) method The series ํ‘Žํ‘›=ํ‘Ž0+ํ‘Ž1+ํ‘Ž2+โ‹ฏโˆžํ‘› =0, is said to be convergent to the sum S. If the partial sum ํ‘†ํ‘›=ํ‘Ž0+ํ‘Ž1+ํ‘Ž2+โ‹ฏ+ํ‘Žํ‘› tends to finite limit S when nโ†’โˆž; and a series which is not convergent is said to be divergent. If ํ‘†ํ‘›=ํ‘Ž0+ํ‘Ž1+ํ‘Ž2+โ‹ฏ+ํ‘Žํ‘›, and lim ํ‘›โ†’โˆž ํ‘†0+ํ‘†1+ํ‘†2+โ‹ฏ+ํ‘†ํ‘› ํ‘›+1=ํ‘†, Then we call S the (C,1) sum of ํ‘Žํ‘› and the (C,1) limits of ํ‘†ํ‘›. (Hardy[5],p.7) The series1+0-1+1+0-1+1+0...,is not convergent but it is summable (C,1) to the sum23 , (Titchmarsh [10], p.4111). Let ํ‘Žํ‘š,ํ‘› โˆžํ‘› =ํ‘œ โˆž ํ‘š=0= ํ‘Ž0,0+ํ‘Ž0,1+ํ‘Ž0,2+โ‹ฏ +ํ‘Ž1,0+ํ‘Ž1,1+ํ‘Ž1,2+โ‹ฏ +ํ‘Ž2,0+ํ‘Ž2,1+ํ‘Ž2,2+โ‹ฏ be a double infinite series (Bromwich[2],p.92). The partial sum of double infinite series denoted byํ‘†ํ‘š,ํ‘›, and defined by ํ‘†ํ‘š,ํ‘›= ํ‘Žํ‘–,ํ‘— . ํ‘› ํ‘—=0 ํ‘š ํ‘–=0 Write ํœŽํ‘š,ํ‘›= 1 ํ‘š+1 (ํ‘›+1) ํ‘†ํ‘–,ํ‘— ํ‘› ํ‘—=1 ํ‘š ํ‘–=1 = 1โˆ’ ํ‘– ํ‘š+1 1โˆ’ ํ‘— ํ‘›+1 ํ‘Žํ‘–,ํ‘— . (2.5)ํ‘›ํ‘— =1 ํ‘šํ‘– =1 If ํœŽํ‘š,ํ‘›โ†’ํ‘† as mโ†’โˆž,ํ‘›โ†’โˆž then we say that ํ‘Žํ‘š,ํ‘› โˆžํ‘› =0โˆž ํ‘š=0 is summable to S by (C,1,1) method. Consider the double infinite series (โˆ’1)ํ‘š+ํ‘›โˆžํ‘› =0โˆž ํ‘š=0 in this case, ํ‘†ํ‘š,ํ‘›= (โˆ’1)ํ‘–+ํ‘— ํ‘› ํ‘—=0 ํ‘š ํ‘–=0 = โˆ’1 (ํ‘–)ํ‘šํ‘– =0 โˆ’1 (ํ‘—)ํ‘›ํ‘— =0 = 1โˆ’1+1โˆ’โ‹ฏ+(โˆ’1)ํ‘š 1โˆ’1+1โˆ’โ‹ฏ+(โˆ’1)ํ‘› = 1โˆ’(โˆ’1)ํ‘š+11+1 1โˆ’(โˆ’1)ํ‘›+11+1 = 14 1+(โˆ’1)ํ‘š 1+(โˆ’1)ํ‘› = 1,ํ‘–ํ‘“,ํ‘š=2ํ‘›1,ํ‘›=2ํ‘›20,ํ‘–ํ‘“,ํ‘š=2ํ‘›1,ํ‘›=2ํ‘›2+10,ํ‘–ํ‘“,ํ‘š=2ํ‘›1+1,ํ‘›=2ํ‘›20,ํ‘–ํ‘“,ํ‘š=2ํ‘›1+1,ํ‘›=2ํ‘›2+1 ํ‘คํ‘•ํ‘’ํ‘Ÿํ‘’ ํ‘›1,ํ‘›2ํœ–โ„•0. Then limํ‘š,ํ‘›โ†’โˆž,โˆžํ‘†ํ‘š,ํ‘› does not exist. The double infinite series โˆ’1 (ํ‘š+ํ‘›)โˆžํ‘› =0โˆž ํ‘š=0 is not convergent. Let us consider ํœŽํ‘š,ํ‘›. ํœŽํ‘š,ํ‘›.= 1โˆ’ ํ‘– ํ‘š+1 1โˆ’ ํ‘— ํ‘›+1 โˆ’1 ํ‘–+ํ‘— ํ‘› ํ‘—=0 ํ‘š ํ‘–=0 = 3+(โˆ’1)ํ‘š+2ํ‘š 3+(โˆ’1)ํ‘›+2ํ‘› 16 ํ‘š+1 (ํ‘›+1) then ํœŽํ‘š,ํ‘›.โ†’ 14 as mโ†’โˆž,ํ‘›โ†’โˆž. Therefore the series โˆ’1 (ํ‘š+ํ‘›)โˆžํ‘› =0โˆž ํ‘š=0, is summable to 14 by(C,1,1) method. 2.5 Generalized Carleson operator Write ํ‘†ํ‘,ํ‘ํ‘“ ํ‘ฅ = ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘ํ‘› =0ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ ,ํ‘“โˆˆํฟํ‘(โ„) , 1<ํ‘<โˆž,
  • 4. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 103 | P a g e ํœŽํ‘,ํ‘ํ‘“ ํ‘ฅ = 1 ํ‘+1 2 ํ‘†ํ‘–,ํ‘—ํ‘“ ํ‘ฅ ํ‘ํ‘— =0 ํ‘ํ‘– =0 = 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘ํ‘› =0ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ The Carleson operator for the Walsh type wavelet packet system, denoted by L, is defined by ํฟํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘ํ‘› =0ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ .ํ‘“โˆˆํฟํ‘(โ„) , 1<ํ‘<โˆž, = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘†ํ‘,ํ‘ํ‘“ ํ‘ฅ . The generalized carleson operator for the Walsh type wavelet packet system denoted by ํฟํ‘ is defined by (ํฟํ‘f) ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1 ํ‘›+1 2 ํ‘†ํ‘–,ํ‘—ํ‘“ ํ‘ฅ ํ‘ํ‘— =0 ํ‘ํ‘– =0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘†ํ‘,ํ‘ํ‘“ ํ‘ฅ . = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘ํ‘› =0ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ (2.6). Let us define the generalized Carleson Operator for the periodic Walsh type wavelet packet system ํ‘ค ํ‘› . Write ํ‘ ํ‘ํ‘“ ํ‘ฅ = ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘› ํ‘ฅ ,ํ‘“โˆˆํ‘ํ‘› =0ํฟํ‘(โ„) , 1<ํ‘<โˆž, ํœŽํ‘ํ‘“ ํ‘ฅ = 1 ํ‘+1 ํ‘ ํ‘ํ‘“ ํ‘ฅ ํ‘ ํ‘›=0 = 1 ํ‘+1 ํ‘“,ํ‘ค ํ‘› (ํ‘ค ํ‘–(ํ‘ฅ) ํ‘› ํ‘–=0 ํ‘ ํ‘›=0) = (1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘› ํ‘ฅ . ํ‘ ํ‘›=0 The Carleson operator for the periodic Walsh type wavelet packet system, denoted by ํ”พ, is defined by ํ”พํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘› ํ‘ฅ ํ‘ํ‘› =0 ,ํ‘“โˆˆํฟํ‘(โ„) , 1<ํ‘<โˆž, = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘ ํ‘ํ‘“ ํ‘ฅ . The generalized Carleson operator for the periodic Walsh type wavelet type packet system, denoted by , is defined by ํ”พํ‘ํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํ‘ 0ํ‘“ ํ‘ฅ + ํ‘ 1ํ‘“ ํ‘ฅ + ํ‘ 2ํ‘“ ํ‘ฅ +โ‹ฏ+ ํ‘ ํ‘ํ‘“ ํ‘ฅ ํ‘+1 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1 ํ‘+1 ํ‘ ํ‘›ํ‘“ ํ‘ฅ ํ‘ํ‘› =0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํœŽํ‘ํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘› ํ‘ฅ ํ‘ํ‘› =0 . (2.7) 2.6 Strong type (p,p) Operator An operator T defined on ํฟํ‘ โ„ is of strong type(p,p) if it is sub-linear and there is a constant C such that ํ‘‡ํ‘“ ํ‘โ‰ค ํถ ํ‘“ ํ‘ for all ํ‘“โˆˆ ํฟํ‘ โ„ . III. Main Results In this paper, two new Theorem have been established in the following form: Theorem 3.1 Let ํ‘คํ‘› be a family of Walsh-type wavelet packet system. Then the generalized Carleson operator ํฟํ‘ defined by (2,6) for any Walsh-type wavelet packet system is of strong type(p,p),1<ํ‘<โˆž. Theorem 3.2 Let ํ‘ค ํ‘› be a periodic Walsh-type wavelet packets. Then the generalized Carleson Operator ํ”พํ‘ defined by (2.7) for periodic Walsh type wavelet packet expansion of any ํ‘“โˆˆํฟํ‘ โ„ ,1<ํ‘<โˆž, converges a.e... 3.1 Lemmas For the proof of the theorems following lemmas are required: Lemma 3.1 (Zygmund[12],p.197),Ifํ‘ฃ1,ํ‘ฃ2,ํ‘ฃ3,โ€ฆํ‘ฃํ‘› are non negative and non increasing,then ํ‘ข1ํ‘ฃ1+ํ‘ข2ํ‘ฃ2+ํ‘ข3ํ‘ฃ3+โ‹ฏ+ํ‘ขํ‘›ํ‘ฃํ‘› โ‰คํ‘ฃ1ํ‘šํ‘Žํ‘ฅ ํ‘ˆํ‘˜ Where ํ‘ˆํ‘˜=ํ‘ข1+ํ‘ข2+ํ‘ข3+โ‹ฏ+ํ‘ขํ‘˜ for k=1,2,3,...,n. Lemma 3.2 Let ํ‘“1โˆˆ ํฟ2(โ„), and define ํ‘“ํ‘› ํ‘›โ‰ฅ2 recursively by
  • 5. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 104 | P a g e ํ‘“ํ‘› ํ‘ฅ = ํ‘“ํ‘š 2ํ‘ฅ +ํ‘“ํ‘š 2ํ‘ฅโˆ’1 ,ํ‘›=2ํ‘š ํ‘“ํ‘š 2ํ‘ฅ โˆ’ํ‘“ํ‘š 2ํ‘ฅโˆ’1 ,ํ‘›=2ํ‘š+1 Then ํ‘“ํ‘š ํ‘ฅ = ํ‘Š ํ‘šโˆ’2ํ‘—ํ‘2โˆ’ํ‘— 2ํ‘—โˆ’1 ํ‘=0ํ‘“1(2ํ‘—x-p) for m , j โˆˆโ„•,2ํ‘—โ‰คํ‘š<2ํ‘—+1. Lemma 3.3 Let ํ‘คํ‘› ํ‘›โ‰ฅ0 be a family of Walsh type wavelet packets. If ํ‘ค1โˆˆํถ1(โ„) then there exists an isomorphism ํœ“โˆถ ํฟํ‘ โ„ โ†’ํฟํ‘ โ„ ,1<ํ‘<โˆž,ํ‘ ํ‘ขํ‘ํ‘• ํ‘กํ‘•ํ‘Žํ‘ก ํœ“ํ‘คํ‘› .โˆ’ํ‘˜ = ํ‘คํ‘› .โˆ’ํ‘˜ ,ํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„ค. Lemma (3.2) and (3.3) can be easily proved. Lemma 3.4 (Billard [1] and Sjํ‘œ lin [9]. Let ํ‘“โˆˆํฟ1[0,1) and define ํ‘†ํ‘› ํ‘ฅ,ํ‘“ = ํ‘“ ํ‘ก ํ‘Šํ‘˜ ํ‘ก ํ‘‘ํ‘กํ‘Šํ‘˜ ํ‘ฅ .10 ํ‘› ํ‘˜=0 Then the Carleson operator G defined by ํบํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘› ํ‘†ํ‘›(ํ‘ฅ,ํ‘“) is of strong type (p,p) for 1<ํ‘<โˆž. 3.2 Proof of Theorem 3.1 For, ํ‘“,ํ‘”,ํฟํ‘(โ„) ํฟํ‘ ํ‘“+ํ‘” ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 ํœŽํ‘,ํ‘ ํ‘“+ํ‘” (ํ‘ฅ) = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘“+ํ‘”,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜)ํ‘ํ‘› =0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘“,ํ‘คํ‘› .โˆ’ํ‘˜ + ํ‘”,ํ‘คํ‘› .โˆ’ํ‘˜ ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ ํ‘ํ‘› =0 ํ‘ ํ‘ขํ‘ โ‰คํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ ํ‘˜=โˆ’ํ‘ ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜) ํ‘ ํ‘›=0 + ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ ํ‘˜=โˆ’ํ‘ ํ‘”,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜) ํ‘ ํ‘›=0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 (ํœŽํ‘,ํ‘ํ‘“)(ํ‘ฅ) + ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 (ํœŽํ‘,ํ‘ํ‘”)(ํ‘ฅ) = ํฟํ‘ํ‘“ ํ‘ฅ + ํฟํ‘ํ‘” ํ‘ฅ . Also for ํ›ผโˆˆโ„ ํฟํ‘ํ›ผํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 (ํœŽํ‘,ํ‘(ํ›ผํ‘“))(ํ‘ฅ) = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ํ‘˜ =โˆ’ํ‘ ํ›ผํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜)ํ‘ํ‘› =0 = ํ›ผ ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ ํ‘˜=โˆ’ํ‘ ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜) ํ‘ ํ‘›=0 = ํ›ผ ํฟํ‘ํ‘“ ํ‘ฅ . Choose M โˆˆโ„• such that Supp(ํ‘คํ‘›)โŠ‚[โˆ’ํ‘€,ํ‘€] for ํ‘›โ‰ฅ0. Fix ํ‘โˆˆ(1,โˆž) and take any ํ‘“ ํ‘ฅ = ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ โˆˆํฟํ‘ โ„ .ํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„ค Define ํ‘“ํ‘˜ ํ‘ฅ = ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘› ํ‘ฅโˆ’ํ‘˜ ,ํ‘”ํ‘˜ ํ‘ฅ = ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘Šํ‘› ํ‘ฅโˆ’ํ‘˜ . ํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„คํ‘›โ‰ฅ0,ํ‘˜โˆˆโ„ค We have ํ‘“ํ‘˜ ํ‘โ‰ˆ ํ‘”ํ‘˜ ํ‘,ํ‘คํ‘–ํ‘กํ‘• bounds independent of k (Lemma 3.3) .Note that for {ํ‘ฅโˆˆ ํ‘™,ํ‘™+1 : ํฟํ‘ํ‘“(ํ‘ฅ) >ํ›ผ} โ‰ค ํถ ํ›ผํ‘ ํฟํ‘ํ‘“ํ‘˜(ํ‘ฅ) ํ‘™+1+ํ‘› ํ‘˜=ํ‘™โˆ’ํ‘› ํ‘ ํ‘‘ํ‘ฅ. Using the Marcinkiewiez interpolation theorem, it suffices to prove that ํฟํ‘ํ‘“ํ‘˜ ํ‘โ‰คํถ ํ‘“ํ‘˜ ํ‘, where C is a constant independent of k.
  • 6. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 105 | P a g e Since ํ‘“ํ‘˜ ํ‘ ํ‘โ‰ค2(ํ‘›+1) ํ‘“ํ‘˜ ํ‘ ํ‘โ‰ค2ํถ(ํ‘›+1) ํ‘”ํ‘˜ ํ‘ ํ‘โ‰คํถ1 ํ‘“ ํ‘ ํ‘ ํ‘˜โˆˆโ„คํ‘˜โˆˆโ„ค ํ‘™+1+ํ‘› ํ‘˜=ํ‘™โˆ’ํ‘›ํ‘™โˆˆโ„ค where ํถ1 is constant. Without loss of generality, we assume that k=0. Let K โˆˆ โ„• be the scale from which only the Haar filter is used to generate the wavelet packets ํ‘คํ‘› ํ‘›โ‰ฅ2ํ‘˜+1. Let N โˆˆโ„• and suppose 2ํ‘—โ‰คํ‘โ‰ค2ํฝ+1 for some J>ํพ+1.ํถํ‘™ํ‘’ํ‘Žํ‘Ÿํ‘™ํ‘ฆ,ํ‘“ํ‘œํ‘Ÿ each ํ‘ฅโˆˆโ„. ํฟํ‘ํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 1โˆ’ ํ‘˜ ํ‘+1 ํ‘ํ‘˜ =โˆ’ํ‘ ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜) ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜)ํ‘ํ‘› =0 =ํ‘ ํ‘ขํ‘ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘›(.) ํ‘คํ‘›(ํ‘ฅ)ํ‘ํ‘› =0 , ํ‘˜=0, โ‰คํ‘ ํ‘ขํ‘1โ‰คํ‘<2ํ‘˜+1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› (.) ํ‘คํ‘›(ํ‘ฅ)ํ‘ํ‘› =0 +ํ‘ ํ‘ขํ‘ํฝ>ํพ+1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› (.) 2ํฝโˆ’1 ํ‘›=2ํพ+1 ํ‘คํ‘› (ํ‘ฅ) +ํ‘ ํ‘ขํ‘ํฝ>ํพ+1 ํ‘ ํ‘ขํ‘2ํฝโ‰คํ‘<2ํฝ+1 1โˆ’ ํ‘› ํ‘โˆ’2ํฝ+1 ํ‘“,ํ‘คํ‘›(.) ํ‘คํ‘› (ํ‘ฅ)ํ‘ ํ‘›=2ํฝ =ํฝ1+ํฝ2+ํฝ3 say. (3.2) Using Lemma 3.1, we have ํฝ1=ํ‘ ํ‘ขํ‘1โ‰คํ‘<2ํ‘˜+1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› (.) ํ‘คํ‘›(ํ‘ฅ) 2ํ‘˜+1โˆ’1 ํ‘›=0 โ‰คํ‘ ํ‘ขํ‘1โ‰คํ‘<2ํ‘˜+1 ํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› (.) ํ‘คํ‘›(ํ‘ฅ)0=ํ‘›โ‰ค2ํพ+1โˆ’1 โ‰ค ํ‘“,ํ‘คํ‘›(.) 2ํพ+1โˆ’1 ํ‘›=0 ํ‘คํ‘› (ํ‘ฅ) โ‰ค ํ‘“,ํ‘คํ‘›(.) ํ‘คํ‘›(ํ‘ฅ) โˆž ํœ’[โˆ’ํ‘,ํ‘] (ํ‘ฅ) โ‰ค ํ‘“0 ํ‘ ํ‘คํ‘› ํ‘ž 2ํพ+1โˆ’1 ํ‘›=0 ํ‘คํ‘› (ํ‘ฅ) โˆž ํœ’[โˆ’ํ‘,ํ‘] ํ‘ฅ . (3.3) Next, ํฝ2= ํ‘ ํ‘ขํ‘ํฝ>ํพ+1 1โˆ’ ํ‘› ํ‘+1 2ํฝโˆ’1 ํ‘›=2ํพ+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) โ‰ค ํ‘ ํ‘ขํ‘ ํฝ>ํ‘˜+1max ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ)2ํ‘˜+1=ํ‘›โ‰ค2ํฝโˆ’1 . Also ํ‘ ํ‘ขํ‘ ํฝ>ํ‘˜+1 (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ)2ํฝโˆ’1 ํ‘›=2ํ‘˜+1 ํ‘ƒ โ‰ค supํ‘šํ‘Žํ‘ฅ ํฝ>ํ‘˜+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘2ํ‘˜+1=ํ‘›โ‰ค2ํฝโˆ’1 โ‰คํถ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ โˆž ํ‘›=0 =ํถ ํ‘“0 ํ‘. (3.4) Consider ํฝ3, ํฝ3= ํ‘ ํ‘ขํ‘ 2ํฝโ‰คํ‘<2ํฝ+1 (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ โ‰ค ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ 2ํพโˆ’1 ํ‘—=0, so it suffices to prove that ํ‘ ํ‘ขํ‘ ํ‘—>ํ‘˜+1 ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ ํ‘ โ‰คํถ ํ‘“0 ํ‘ for ํ‘—=0,1,2,โ€ฆ,2ํ‘˜โˆ’1. Fix ํฝ>ํพ+1 ,0โ‰คํ‘—โ‰ค22ํ‘˜โˆ’1 and 2ํฝ+ํ‘—2ํฝํพโ‰คํ‘<2ํฝ+ ํ‘—+1 2ํฝโˆ’ํพ. Write,
  • 7. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 106 | P a g e ํ‘—,3= (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ . Using lemma 3.2, we have ํ‘—,3 = (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘Š ํ‘›โˆ’2ํฝโˆ’ํ‘—2ํฝโˆ’ํพ(ํ‘ 2โˆ’ ํฝโˆ’ํพ ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ ํ‘ค2ํ‘˜+ํ‘—(2ํฝโˆ’ํพํ‘ฅโˆ’ํ‘ ) 2ํฝโˆ’ํพโˆ’1 ํ‘ =0 . Define ํนํ‘ ํ‘ก = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘Šํ‘›โˆ’2ํฝโˆ’ํ‘—2ํฝโˆ’ํพ, ํ‘ก , ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ and ํน ํ‘ก = ํ‘ ํ‘ขํ‘ ํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ ํนํ‘ ํ‘ก . We have ํ‘—โ€ฒ 3 = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ , โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ , โ‰ค ํน(ํ‘ 2โˆ’(ํฝโˆ’ํพ) ํ‘ค2ํ‘˜+ํ‘—((2ํฝโˆ’ํพ)ํ‘ฅโˆ’ํ‘ ) 2ํฝโˆ’ํพโˆ’1 ํ‘†=0, and using the compact support of the wavelet packets, ํ‘—โ€ฒ 3 = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ , โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ โ‰ค ํ‘ค2ํ‘˜+ํ‘— โˆž ํน(([2ํฝโˆ’ํพํ‘€+1 ํ‘™=โˆ’ํ‘€ํ‘ฅ]+ํ‘™)2โˆ’(ํฝโˆ’ํพ)). Note that F is constant on dyadic interval of type [ํ‘™2โˆ’(ํ‘—โˆ’ํ‘˜),(ํ‘™+1)2โˆ’(ํ‘—โˆ’ํ‘˜)) and taking ฮ”ํ‘™=(( 2ํฝโˆ’ํพํ‘ฅ+ํ‘™ 2โˆ’ ํฝโˆ’ํพ , 2ํฝโˆ’ํพํ‘ฅ+(ํ‘™+1) 2โˆ’ ํฝโˆ’ํพ ), we have ํ‘—โ€ฒ 3 = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ โ‰ค ํ‘ค2ํ‘˜+ํ‘— โˆž ฮ”ํ‘™ โˆ’1 ํน ํ‘ก ํ‘‘ํ‘ก ฮ”ํ‘™ ํ‘€+1 ํ‘™=โˆ’ํ‘€ . We need an estimate of F that does not depend on J . Note that for k, 0โ‰คํ‘˜<2ํฝโˆ’ํพ , using (2.3) ํ‘Š2ํฝ+ํ‘—2ํฝโˆ’ํพ ํ‘ก ํ‘Šํ‘˜ ํ‘ก =ํ‘Š2ํฝ+ํ‘—2ํฝโˆ’ํพ+ํ‘˜ ํ‘ก , since the binary expansions of 2ํฝ+ํ‘—2ํฝโˆ’ํพ and of k have no 1โ€™s in common. Hence, ํนํ‘ ํ‘ก = ํ‘Š2ํฝ+ํ‘—2ํฝโˆ’ํพ ํ‘ก ํนํ‘ ํ‘ก = 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘Šํ‘› ํ‘ก ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ
  • 8. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 107 | P a g e โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘Šํ‘› ํ‘ก ํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ . Using lemma (3.4) , we have F(t)โ‰ค2 ํบํ‘”ํ‘œ ํ‘ก . Thus, 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ โ‰ค2 ํ‘ค2ํ‘˜+ํ‘— โˆž ฮ”ํ‘™ โˆ’1 ํบํ‘”0 ํ‘ก ํ‘‘ํ‘ก ฮ”ํ‘™ ํ‘€+1 ํ‘™=โˆ’ํ‘€ . Let ฮ”ํ‘™ โˆ— be the smallest dyadic interval containing ฮ”ํ‘™ and ํ‘ฅ , and note that ฮ”ํ‘™ โˆ— โ‰ค(ํ‘€+1) ฮ”ํ‘™ since ํ‘ฅโˆˆ ฮ”0โˆ’ํท . We have 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ โ‰คํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ โ‰ค2 ํ‘ค2ํ‘˜+ํ‘— โˆž ฮ”ํ‘™ โˆ’1 ํบํ‘”0 ํ‘ก ํ‘‘ํ‘ก ฮ”ํ‘™ ํ‘€+1 ํ‘™=โˆ’ํ‘€ โ‰ค4 ํ‘ค2ํ‘˜+ํ‘— โˆž(ํ‘€+1)2 ํ‘€โˆ— ํบํ‘”0 ํ‘ฅ (3.5) Where ํ‘€โˆ— is the maximal operator of Hardy and Little wood . The right hand side of (3.5) neither depend on N nor J so we may conclude that ํฝ3โ‰ค ํ‘ ํ‘ขํ‘ ํฝ>ํพ+1 ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ (1โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํพ 2ํพโˆ’1 ํ‘—=0 โ‰ค ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ ํ‘šํ‘Žํ‘ฅ ํ‘“,ํ‘คํ‘› . ํ‘คํ‘› ํ‘ฅ 2ํฝ+ํ‘—2ํฝโˆ’ํพ=ํ‘›<ํ‘ 2ํ‘˜โˆ’1 ํ‘—=0 โ‰ค4 ํ‘ค2ํ‘˜+ํ‘— โˆž(ํ‘€+1)2 ํ‘€โˆ— ํบํ‘”0 ํ‘ฅ ,ํ‘Ž.ํ‘’.. (3.6) Using (Sjํ‘œ lin [9]), ํ‘€โˆ— and G both of strong type (p,p), hence both are bounded. ํ‘ ํ‘ขํ‘ ํฝ>ํพ+1ํฝ3 ํ‘ƒ โ‰ค ํ‘ ํ‘ขํ‘ ํฝ>ํพ+1 ํ‘ ํ‘ขํ‘ 2ํฝ+ํ‘—2ํฝโˆ’ํพโ‰คํ‘<2ํฝ+(ํ‘—+1)2ํฝโˆ’ํพ (1 ํ‘ ํ‘›=2ํฝ+ํ‘—2ํฝโˆ’ํ‘˜ 2ํพโˆ’1 ํ‘—=0โˆ’ ํ‘› ํ‘+1) ํ‘“,ํ‘คํ‘› . ํ‘คํ‘›(ํ‘ฅ) ํ‘ โ‰คํถ ํ‘”0 ํ‘ โ‰คํถ1 ํ‘“0 ํ‘, ํ‘—=0,1,2,3,โ€ฆ,2ํพ-1. Thus the Theorem 3.1 is completely established. 3.3 proof of the Theorem 3.2 Let ํ‘“โˆˆํฟํ‘ 0,1 , and choose Mโˆˆโ„• such that supp(ํ‘คํ‘›)โŠ‚[โˆ’ํ‘€,ํ‘€] for nโ‰ฅ0. Then ํ”พํ‘ํ‘“ ํ‘ฅ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘ค ํ‘› ํ‘ค ํ‘›(ํ‘ฅ) ํ‘ ํ‘›=0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“, ํ‘คํ‘›(.โˆ’ํ‘˜1)ํ‘€+1 ํ‘˜1=โˆ’ํ‘€ ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜2)ํ‘€+1 ํ‘˜2=โˆ’ํ‘€ ํ‘ํ‘› =0
  • 9. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 108 | P a g e = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜1) ํ‘€+1 ํ‘˜1=โˆ’ํ‘€ ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜2)ํ‘€+1 ํ‘˜2=โˆ’ํ‘€ ํ‘ํ‘› =0 = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“,ํ‘คํ‘›(.โˆ’ํ‘˜1) ํ‘ํ‘› =0ํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜2) ํ‘€+1 ํ‘˜2=โˆ’ํ‘€ ํ‘€+1 ํ‘˜1=โˆ’ํ‘€ = ํ‘ ํ‘ขํ‘ ํ‘โ‰ฅ1 1โˆ’ ํ‘› ํ‘+1 ํ‘“ ํ‘ฆ ํ‘คํ‘› ํ‘ฆโˆ’ํ‘˜1 ํ‘‘ํ‘ฆํ‘คํ‘›(ํ‘ฅโˆ’ํ‘˜2) 10 ํ‘ํ‘› =0 ํ‘€+1 ํ‘˜2=โˆ’ํ‘€ ํ‘€+1 ํ‘˜1=โˆ’ํ‘€ Following the proof of theorem 3.1, it can be proved that the generalized Carleson operator ํ”พํ‘ for the periodic Walsh type wavelet packet expansions converges a.e.. IV. Acknowledgments Shyam Lal, one of the author, is thankful to DST - CIMS for encouragement to this work. Susheel Kumar, one of the authors, is grateful to C.S.I.R. (India) in the form of Junior Research Fellowship vide Ref. No. 19-06/2011 (i)EU-IV Dated:03-10-2011 for this research work. Authors are grateful to the referee for his valuable suggestions and comments for the improvement of this paper. References [1] Billard, P., Sur la convergence Presque partout des series de Fourier-Walshdes fontions de lโ€™espace ํฟ2(0,1), Studia Math, 28:363-388, 1967. [2] Bromwich, T. J .I โ€™A., An introduction to the theory of infinite Series, The University press, Macmillan and Co; Limited, London, 1908. [3] Carleson, L. , โ€œOn convergence and growth of partial sums of Fourier seriesโ€ , Acta Mathematica 116(1): 135157, (1966). [4] Golubov , B., Efimov, A. And Skvortson, V., Walsh Series and Transforms, Dordrcct: Kluwer Academic Publishers Group ,Theory and application, Translated Form the 1987 Russian Original by W.R.. Wade, 1991. [5] Hardy, G. H., Divergent Series, Oxford at the Clarendon Press, 1949. [6-a] Meyer .Y. Wavelets and Operators. Cambridge University Press, 1992. [6] Morten. N. Walsh Type Wavelet Packet Expansions. [7] Paley R. E. A. C., A remarkable system of orthogonal functions. Proc. Lond. Math. Soc., 34:241279, 1932. [8] Schipp, F., Wade, W. R. and Simon, P., Walsh Series, Bristol: AdamHilger Ltd. An Introduction to Dyadic Harmonic Analysis, with the Collaboration of J. P_al, 1990. [9] Sjํ‘œ lin P., An inequality of paley and convergence a.e. of Walsh-FourierSeries, Arkiv fํ‘œ r Matematik, 7:551-570, 1969. [10] Titchmarsh, E.C., The Theory of functions, Second Edition, OxfordUniversity Press, (1939). [11] Wickerhauser, M. V. and Hess,N. Wavelets and Time-Frequency Analysis, Proceedings of the IEEE, 84:4(1996), 523-540. [12] Zygmund A., Trigonometric Series Volume I, Cambridge UniversityPress, 1959.