SlideShare uma empresa Scribd logo
1 de 5
Baixar para ler offline
Full Paper
AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013

Performance evaluation of Magnetic circuit for M.R.
Fluid Damper using F.E.M.
1

Md. Sadak Ali Khan1, A.Suresh2, N.Seetha Ramaiah 3

Associate professor, Dept of Mech. Engg., M.J.C.E.T., Road No: 3, Banajara Hills, Hyderabad-34
Email:salikhanmm@gmail.com
2
Principal, Sreyas Institute of Engineering and Technology, Thatti Annaram (V), Bandlaguda, Nagole, Hyderabad - 065
Email:s4akella@gmail.com
3
Professor, Dept of Mech. Engg. , M.J.C.E.T., Road No: 3, Banajara Hills, Hyderabad-34 Email:sitaram1881@gmail.com
Abstract : The primary purpose of this study is to evaluate and
understand the performance of the Magnetic -Rheological
(MR) damper. It is known that its performance depends upon
the magnetic and hydraulic circuit design. These dampers
are generally used to control the vibrations in various
applications. This work deals with design of an MR damper
for which mathematical model is developed. A finite element
model is built to analyze and investigate the performance of
2-D axi-symmetric MR damper. Various configurations of
damper piston with different number of turns and pole lengths
are simulated. Further, the piston ends of the selected
configuration are modified and investigated. The input current
to the coil and the piston velocity are varied to evaluate the
resulting change in magnetic Field Intensity (H) and damping
Force. The simulation results of the various configurations of
damper show that the performance of filleted piston ends is
superior to that of other configurations for the same magnitude
of coil current and piston velocity.

excitations. Jansen and Dyke [4] evaluated the performance
of number of semi active control algorithms that are used
with multiple MR dampers. Spencer and Dyke et.al. [5]
Proposed a new model to effectively as semi-active control
device for producing a controllable damping force portray
the nonlinear behavior of MR fluid damper. N. Seetharamaih
and khan et al. [6] design and developed the prototype of
small capacity MR damper. Lai and W.H Liao [7] have found
that MR fluid damper can be used. Henri Gavin Jesse Hoagg
et.al [8] have made a comparison between ER and MR devices
in the context of electrical power requirements. Zekeriya parlak
Tahsin and Ismail,Calli [9] designed an optimization method
that was carried out for the objectives of target damper force
and maximum magnetic flux density of an MR damper.
The main objective of this paper is to evaluate the different models of MR damper using ANSYS software.

Index terms: Magneto-rheological (MR) fluid, MR damper,
Magnetic flux density, Magnetic field intensity.

NOMENCLATURE

I. INTRODUCTION
During the past decade, many researchers have shown
keen interest in the development of damper which utilize
magneto- rheological fluid (MRF). Magneto- rheological (MR)
fluid is a fascinating material, composed of micro-sized
magnetic particles suspended in a liquid, such as
hydrocarbon oil or silicone oil. The rheological properties of
MR fluid are rapidly and reversibly altered when an external
magnetic field is applied. When current is passed through
the coil, the suspended particles in the MR fluid become
magnetized and align themselves like chains in the direction
of the magnetic field. The formation of these particle chains
restricts the movement of the MR fluid, thereby increasing
its yield stress. The saturation current for the standard MR
fluid, 132 DG is 2.0A as provided by Lords Corporation.
Designs that take advantage of MR fluids are potentially
simpler and more reliable than conventional electromechanical
devices. Maher Yahya Salloom and Samad [1] designed an
MR valve for which simulation was carried out by magnetic
finite element software (FEMMR). Sodeyama and Suzuki et.al
[2] have developed and tested an MR damper which provided
maximum damping force.of 300kN. H.yoshioka, j.c. Ramallo
et.al.[3]constructed and tested a base isolated two-degree
freedom building model subjected to simulated ground motion
which is effective for both far- field and near- field earthquake
1
© 2013 AMAE
DOI: 01.IJPIE.4.1.1204

Ap
: piston cross section area
d
: spool length
dcyl,d sh, : diameters of the cylinder and shaft
respectively
e
: house thickness
Η
: fluid viscosity in the absence of the
field, C
I
: current
L, g, W : length, gap and width of the flow
channel between the fixed poles
N
: number of turns
Q
: volumetric flow rate
Vp
: velocity of the piston
τ
: shear stress,
τy
: field-dependent yield stress,
:
ΔPη
viscous component of pressure drop
ΔPτ.
: yield stress component of pressure
drop




: Fluid shear rate

1P
1C
1F
MFD

: one stage coil with plain ends
: one stage coil with chamfered ends
: one stage coil with filleted ends
: Magnetic Flux density
Full Paper
AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013
II. METHODOLOGY
The damper design is done based on the fact that
mechanical energy required for yielding of MR fluid increases
with increase in applied magnetic field intensity. In the
presence of magnetic field, the MR fluid follows Bingham’s
Plastic flow model, given by the equation


      y (H )

  y

The above equation is used to design a device which
works on the basis of MR fluid. The total pressure drop in
the damper is evaluated by summing the viscous component
and yield stress component which is approximated as

P 

12 QL C y L

, where
g 3W
g
Figure 1. Schematic of

MR damper

 0.6091

  0.0006 
Q  ApV p
Ap 

  ( d cyl  2 g ) 2  d sh 2 


4

W   ( d cyl  g )

the value of the parameter, C ranges from a minimum of 2 (for
ΔPτ ΔPη less than ~1) to a maximum of 3 (for ΔPτ /ΔPη greater
than ~100).
In order to calculate the change in pressure on either
side of the piston within the cylinder, yield stress is required
which is obtained from the graph of yield stress vs magnetic
field intensity provided by Lord corporation for MR fluid 132 DG .
III. FINITE ELEMENT MODELING OF MR DAMPER
Figure 2. Steps for calculation of Pressure drop

The proposed MR damper consists of a piston over which
coil is wound and an annular gap of 0.4 mm is maintained
between the piston and its housing .The piston is made up of
mild steel due to its high relative permeability. The various
dimensional features of the damper are shown in Figure 1.
In the present research work, various configurations of
damper piston with different number of turns and pole lengths
are considered to analyze a 2D axisymmetric MR damper. The
procedure adopted for the analysis of these models is given
in Figure 2. Further, the piston ends of the selected
configuration are modified and investigated. In these later
models, different shapes of piston with plain, chamfered and
filleted ends are considered as shown in Figures 3, 4 and 5
while keeping the dimensions of the piston, number of turns
of the coil and annular gap constant.
These models are analyzed to study the variation of
magnetic field intensity and magnetic flux density with respect
to the current supplied. The current is varied from 0.2A to 2A
and analysis is carried out ANSYS R 11 software. The variation
of 2D flux lines, magnetic flux density and magnetic field
© 2013 AMAE
DOI: 01.IJPIE.4.1.1204

Figure 3. Piston with plain ends

intensity for the different models at 2 amperes are shown in
Figure 6 to Figure 10.
2
Full Paper
AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013

Figure 4. Piston with chamfered ends

Figure 7. Magnetic flux density vectors

Figure 5. Piston with filleted ends

Figure 8. Magnetic field intensity

force decreases irrespective of change in the number of turns
as shown in Figure 11.
The total pole length of the plain end models is increased
and decreased by 5% and 10% of the original model. The
simulation results depicted in Figure 12 show a remarkable
decrease in the damping force across the piston.
From the above simulation results, the optimum number
of turns and total pole length of the damper is considered for
further analysis. The performance of the plain end model is
now compared with two different piston models having
chamfered and filleted ends. The simulation results of
damping force with respect to magnetic field intensity and
flow rate for 2 amp current and constant gap of 0.4 mm for
various models are shown in Figure 13 and Figure 14.

Figure 6. Flux lines around the coil

IV. SIMULATION RESULTS AND ANALYSIS
The number of turns of the plain end models are increased
and decreased by 5% and 10% of the original model. These
variations are simulated and it is observed that the damping
© 2013 AMAE
DOI: 01.IJPIE.4.1.1204

3
Full Paper
AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013

Figure 12. Force Vs Velocity for different pole lengths
Figure 9. Magnetic flux density vector sum

Figure 13. Force Vs Magnetic Field Intensity for different piston
ends
Figure 10. 3-D model of MR fluid Damper

Figure 11. Force Vs Velocity for different number of coil turns

© 2013 AMAE
DOI: 01.IJPIE.4.1.1204

Figure 14. Force Vs Velocity for different Piston ends

4
Full Paper
AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013
It is observed that as coil current increases the magnetic field
intensity increases, thereby increasing the damping force.
Maximum damping force is observed in case of filleted piston
end model. Figure 14 shows that the damping force increases
with increase of velocity of MR fluid. The maximum damping
force with respect to velocity is also found in case of filleted
piston end model.

[2] Hiroshi Sodeyama,Kohei Suzuki,Katsuaki Sunakoda
“Development of Large Capacity semi- active Seismic damper
using Magneto –Rheological Fluid”, Journal of Pressure Vessel
Technology, Vol. 126 ,pp 105-109,Feb 2004
[3] H.yoshioka , j.c. Ramallo , B.F. Spencerdol;”Smart Base
Isolation strategies Employing Magnetorheological Dampers”
Journal of engineering mechanics,pp 540-551May 2002
[4] Laura M , Jansen and Shirley J . Dyke “Semi active control
strategies for MR Dampers Comparative Study”Journal of
Engineering Mechanics, Vol. 126 , No. 8,pp795-803, August
2000
[5] B.F. Spencer Jr., S.J. Dyke, M.K. Sain and J. D. Carlson
“Phenomenological Model for Magnetorheological Damper”
Journal of engineering mechanics Vol.123, No. 3,pp230-238,
March, 1997
[6] N.Seetharamaiah, Sadak Ali Khan and K.Narayanarao, “Design
of Small Capacity MR Fluid Damper” International Journal
on Mechanical and Automobile Engineering Vol. 01, N0.1 ,
Nov. 2008-, 29-36,pp29-36, Jan2009
[7] Chun-Yu lai and W.H. Liao “Vibration Control of a Suspension
system via Magneto rheological Fluid Damper” Journal of
Vibration and Control,Vol 8, pp527-547, 2002
[8] Henri GAVIN, Jesse HOAGG and Mark DOBOSSY “Optimal
Design of MR Dampers” Smart structures for improved
Seismic performance, pp225-236, Aug2001
[9] Zekeriya parlak Tahsin, Ismail,Calli “optimal design of MR
damper via finite element analysis of fluid dynamic and magnetic
field” Journal Intelligent Mechatronics, Vol.22, pp890903,Sep2012

V. CONCLUSION
It is observed that increase or decrease in the number of
turns of coils and total pole length did not improve the performance of the damper in terms of damping force. Further
simulation results of the three different models of MR damper
with plain, chamfered and filleted ends showed that filleted
ends model gave optimum damping force with respect to
magnetic field intensity as well as velocity. The filleted ends
assisted the formation of dense magnetic flux lines thereby
increasing the flux density. This implies that higher load can
be carried by the damper even with a small capacity.
REFERENCES
[1] Maher Yahya Salloom & Zahurin Samad “Finite element
modeling and simulation of proposed design magnetorheological valve” International Journal advanced
manufacturing Technology, Vol 54 numbers 5-8,pp421 – 429,
May2011

© 2013 AMAE
DOI: 01.IJPIE.4.1.1204

5

Mais conteúdo relacionado

Mais procurados

IRJET- Investigation of Fluid Flow Characteristics for the Forced Convect...
IRJET-  	  Investigation of Fluid Flow Characteristics for the Forced Convect...IRJET-  	  Investigation of Fluid Flow Characteristics for the Forced Convect...
IRJET- Investigation of Fluid Flow Characteristics for the Forced Convect...IRJET Journal
 
Design and economical of roof trusses & purlins (comparison of limit state an...
Design and economical of roof trusses & purlins (comparison of limit state an...Design and economical of roof trusses & purlins (comparison of limit state an...
Design and economical of roof trusses & purlins (comparison of limit state an...eSAT Publishing House
 
Studies on geometrical featured metallic shell structures for inward inversion
Studies on geometrical featured metallic shell structures for inward inversionStudies on geometrical featured metallic shell structures for inward inversion
Studies on geometrical featured metallic shell structures for inward inversionIAEME Publication
 
IRJET- Study of Fluid Flow Characteristics for the Flow of Air over a Hea...
IRJET-  	  Study of Fluid Flow Characteristics for the Flow of Air over a Hea...IRJET-  	  Study of Fluid Flow Characteristics for the Flow of Air over a Hea...
IRJET- Study of Fluid Flow Characteristics for the Flow of Air over a Hea...IRJET Journal
 
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...IOSR Journals
 
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...IOSR Journals
 
Closed-Form Expressions for Moments of Two-Way Slabs under Concentrated Loads
Closed-Form Expressions for Moments of Two-Way Slabs under Concentrated LoadsClosed-Form Expressions for Moments of Two-Way Slabs under Concentrated Loads
Closed-Form Expressions for Moments of Two-Way Slabs under Concentrated LoadsIOSR Journals
 
Effect of punch profile radius and localised compression
Effect of punch profile radius and localised compressionEffect of punch profile radius and localised compression
Effect of punch profile radius and localised compressioniaemedu
 

Mais procurados (9)

IRJET- Investigation of Fluid Flow Characteristics for the Forced Convect...
IRJET-  	  Investigation of Fluid Flow Characteristics for the Forced Convect...IRJET-  	  Investigation of Fluid Flow Characteristics for the Forced Convect...
IRJET- Investigation of Fluid Flow Characteristics for the Forced Convect...
 
Design and economical of roof trusses & purlins (comparison of limit state an...
Design and economical of roof trusses & purlins (comparison of limit state an...Design and economical of roof trusses & purlins (comparison of limit state an...
Design and economical of roof trusses & purlins (comparison of limit state an...
 
Studies on geometrical featured metallic shell structures for inward inversion
Studies on geometrical featured metallic shell structures for inward inversionStudies on geometrical featured metallic shell structures for inward inversion
Studies on geometrical featured metallic shell structures for inward inversion
 
IRJET- Study of Fluid Flow Characteristics for the Flow of Air over a Hea...
IRJET-  	  Study of Fluid Flow Characteristics for the Flow of Air over a Hea...IRJET-  	  Study of Fluid Flow Characteristics for the Flow of Air over a Hea...
IRJET- Study of Fluid Flow Characteristics for the Flow of Air over a Hea...
 
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
 
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
 
Closed-Form Expressions for Moments of Two-Way Slabs under Concentrated Loads
Closed-Form Expressions for Moments of Two-Way Slabs under Concentrated LoadsClosed-Form Expressions for Moments of Two-Way Slabs under Concentrated Loads
Closed-Form Expressions for Moments of Two-Way Slabs under Concentrated Loads
 
Effect of punch profile radius and localised compression
Effect of punch profile radius and localised compressionEffect of punch profile radius and localised compression
Effect of punch profile radius and localised compression
 
D351318
D351318D351318
D351318
 

Semelhante a Performance evaluation of Magnetic circuit for M.R. Fluid Damper using F.E.M

Design, analysis, and experimental evaluation of a double coil
Design, analysis, and experimental evaluation of a double coilDesign, analysis, and experimental evaluation of a double coil
Design, analysis, and experimental evaluation of a double coilRahul Yerrawar
 
Design and Testing of Magneto Rheological Damper for Vehicle Suspension
Design and Testing of Magneto Rheological Damper for Vehicle SuspensionDesign and Testing of Magneto Rheological Damper for Vehicle Suspension
Design and Testing of Magneto Rheological Damper for Vehicle SuspensionNagesh NARASIMHA PRASAD
 
Design, Construction and Simulation of Tesla Turbine
Design, Construction and Simulation of Tesla TurbineDesign, Construction and Simulation of Tesla Turbine
Design, Construction and Simulation of Tesla TurbineDr. Amarjeet Singh
 
Design, Construction and Simulation of Tesla Turbine
Design, Construction and Simulation of Tesla TurbineDesign, Construction and Simulation of Tesla Turbine
Design, Construction and Simulation of Tesla TurbineDr. Amarjeet Singh
 
IRJET- Design and Fabrication of Eddy Current Damper
IRJET-  	  Design and Fabrication of Eddy Current DamperIRJET-  	  Design and Fabrication of Eddy Current Damper
IRJET- Design and Fabrication of Eddy Current DamperIRJET Journal
 
Design of Hollow-Rotor Brushless DC Motor
Design of Hollow-Rotor Brushless DC MotorDesign of Hollow-Rotor Brushless DC Motor
Design of Hollow-Rotor Brushless DC MotorIJPEDS-IAES
 
Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Anal...
Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Anal...Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Anal...
Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Anal...IJERA Editor
 
A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBER
A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBERA REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBER
A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBERijiert bestjournal
 
The design and simulation of magneto-rheological damper for automobile suspen...
The design and simulation of magneto-rheological damper for automobile suspen...The design and simulation of magneto-rheological damper for automobile suspen...
The design and simulation of magneto-rheological damper for automobile suspen...IJRES Journal
 
EFFECT OF DIFFUSER LENGTH ON PERFORMANCE CHARACTERISTICS OF ELBOW DRAFT TUBE ...
EFFECT OF DIFFUSER LENGTH ON PERFORMANCE CHARACTERISTICS OF ELBOW DRAFT TUBE ...EFFECT OF DIFFUSER LENGTH ON PERFORMANCE CHARACTERISTICS OF ELBOW DRAFT TUBE ...
EFFECT OF DIFFUSER LENGTH ON PERFORMANCE CHARACTERISTICS OF ELBOW DRAFT TUBE ...IAEME Publication
 
Paper id 42201601
Paper id 42201601Paper id 42201601
Paper id 42201601IJRAT
 

Semelhante a Performance evaluation of Magnetic circuit for M.R. Fluid Damper using F.E.M (20)

Design, analysis, and experimental evaluation of a double coil
Design, analysis, and experimental evaluation of a double coilDesign, analysis, and experimental evaluation of a double coil
Design, analysis, and experimental evaluation of a double coil
 
Design and Testing of Magneto Rheological Damper for Vehicle Suspension
Design and Testing of Magneto Rheological Damper for Vehicle SuspensionDesign and Testing of Magneto Rheological Damper for Vehicle Suspension
Design and Testing of Magneto Rheological Damper for Vehicle Suspension
 
La3618791882
La3618791882La3618791882
La3618791882
 
Design, Construction and Simulation of Tesla Turbine
Design, Construction and Simulation of Tesla TurbineDesign, Construction and Simulation of Tesla Turbine
Design, Construction and Simulation of Tesla Turbine
 
Design, Construction and Simulation of Tesla Turbine
Design, Construction and Simulation of Tesla TurbineDesign, Construction and Simulation of Tesla Turbine
Design, Construction and Simulation of Tesla Turbine
 
Design and Investigation of Outer Rotor Permanent Magnet Flux Switching Machi...
Design and Investigation of Outer Rotor Permanent Magnet Flux Switching Machi...Design and Investigation of Outer Rotor Permanent Magnet Flux Switching Machi...
Design and Investigation of Outer Rotor Permanent Magnet Flux Switching Machi...
 
Reduction in Cogging Torque and Flux per Pole in BLDC Motor by Adapting U-Cla...
Reduction in Cogging Torque and Flux per Pole in BLDC Motor by Adapting U-Cla...Reduction in Cogging Torque and Flux per Pole in BLDC Motor by Adapting U-Cla...
Reduction in Cogging Torque and Flux per Pole in BLDC Motor by Adapting U-Cla...
 
IRJET- Design and Fabrication of Eddy Current Damper
IRJET-  	  Design and Fabrication of Eddy Current DamperIRJET-  	  Design and Fabrication of Eddy Current Damper
IRJET- Design and Fabrication of Eddy Current Damper
 
Design of Hollow-Rotor Brushless DC Motor
Design of Hollow-Rotor Brushless DC MotorDesign of Hollow-Rotor Brushless DC Motor
Design of Hollow-Rotor Brushless DC Motor
 
Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Anal...
Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Anal...Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Anal...
Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Anal...
 
A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBER
A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBERA REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBER
A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBER
 
Ih3314181422
Ih3314181422Ih3314181422
Ih3314181422
 
Ih3314181422
Ih3314181422Ih3314181422
Ih3314181422
 
The design and simulation of magneto-rheological damper for automobile suspen...
The design and simulation of magneto-rheological damper for automobile suspen...The design and simulation of magneto-rheological damper for automobile suspen...
The design and simulation of magneto-rheological damper for automobile suspen...
 
Fileserve (1)
Fileserve (1)Fileserve (1)
Fileserve (1)
 
Ijmet 10 01_085
Ijmet 10 01_085Ijmet 10 01_085
Ijmet 10 01_085
 
30120140505001 2
30120140505001 230120140505001 2
30120140505001 2
 
EFFECT OF DIFFUSER LENGTH ON PERFORMANCE CHARACTERISTICS OF ELBOW DRAFT TUBE ...
EFFECT OF DIFFUSER LENGTH ON PERFORMANCE CHARACTERISTICS OF ELBOW DRAFT TUBE ...EFFECT OF DIFFUSER LENGTH ON PERFORMANCE CHARACTERISTICS OF ELBOW DRAFT TUBE ...
EFFECT OF DIFFUSER LENGTH ON PERFORMANCE CHARACTERISTICS OF ELBOW DRAFT TUBE ...
 
Paper id 42201601
Paper id 42201601Paper id 42201601
Paper id 42201601
 
Winding Arrangement of a New Type Hollow Rotor BLDC Motor
Winding Arrangement of a New Type Hollow Rotor BLDC MotorWinding Arrangement of a New Type Hollow Rotor BLDC Motor
Winding Arrangement of a New Type Hollow Rotor BLDC Motor
 

Mais de IDES Editor

Power System State Estimation - A Review
Power System State Estimation - A ReviewPower System State Estimation - A Review
Power System State Estimation - A ReviewIDES Editor
 
Artificial Intelligence Technique based Reactive Power Planning Incorporating...
Artificial Intelligence Technique based Reactive Power Planning Incorporating...Artificial Intelligence Technique based Reactive Power Planning Incorporating...
Artificial Intelligence Technique based Reactive Power Planning Incorporating...IDES Editor
 
Design and Performance Analysis of Genetic based PID-PSS with SVC in a Multi-...
Design and Performance Analysis of Genetic based PID-PSS with SVC in a Multi-...Design and Performance Analysis of Genetic based PID-PSS with SVC in a Multi-...
Design and Performance Analysis of Genetic based PID-PSS with SVC in a Multi-...IDES Editor
 
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...IDES Editor
 
Line Losses in the 14-Bus Power System Network using UPFC
Line Losses in the 14-Bus Power System Network using UPFCLine Losses in the 14-Bus Power System Network using UPFC
Line Losses in the 14-Bus Power System Network using UPFCIDES Editor
 
Study of Structural Behaviour of Gravity Dam with Various Features of Gallery...
Study of Structural Behaviour of Gravity Dam with Various Features of Gallery...Study of Structural Behaviour of Gravity Dam with Various Features of Gallery...
Study of Structural Behaviour of Gravity Dam with Various Features of Gallery...IDES Editor
 
Assessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric ModelingAssessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric ModelingIDES Editor
 
Secure Multi-Party Negotiation: An Analysis for Electronic Payments in Mobile...
Secure Multi-Party Negotiation: An Analysis for Electronic Payments in Mobile...Secure Multi-Party Negotiation: An Analysis for Electronic Payments in Mobile...
Secure Multi-Party Negotiation: An Analysis for Electronic Payments in Mobile...IDES Editor
 
Selfish Node Isolation & Incentivation using Progressive Thresholds
Selfish Node Isolation & Incentivation using Progressive ThresholdsSelfish Node Isolation & Incentivation using Progressive Thresholds
Selfish Node Isolation & Incentivation using Progressive ThresholdsIDES Editor
 
Various OSI Layer Attacks and Countermeasure to Enhance the Performance of WS...
Various OSI Layer Attacks and Countermeasure to Enhance the Performance of WS...Various OSI Layer Attacks and Countermeasure to Enhance the Performance of WS...
Various OSI Layer Attacks and Countermeasure to Enhance the Performance of WS...IDES Editor
 
Responsive Parameter based an AntiWorm Approach to Prevent Wormhole Attack in...
Responsive Parameter based an AntiWorm Approach to Prevent Wormhole Attack in...Responsive Parameter based an AntiWorm Approach to Prevent Wormhole Attack in...
Responsive Parameter based an AntiWorm Approach to Prevent Wormhole Attack in...IDES Editor
 
Cloud Security and Data Integrity with Client Accountability Framework
Cloud Security and Data Integrity with Client Accountability FrameworkCloud Security and Data Integrity with Client Accountability Framework
Cloud Security and Data Integrity with Client Accountability FrameworkIDES Editor
 
Genetic Algorithm based Layered Detection and Defense of HTTP Botnet
Genetic Algorithm based Layered Detection and Defense of HTTP BotnetGenetic Algorithm based Layered Detection and Defense of HTTP Botnet
Genetic Algorithm based Layered Detection and Defense of HTTP BotnetIDES Editor
 
Enhancing Data Storage Security in Cloud Computing Through Steganography
Enhancing Data Storage Security in Cloud Computing Through SteganographyEnhancing Data Storage Security in Cloud Computing Through Steganography
Enhancing Data Storage Security in Cloud Computing Through SteganographyIDES Editor
 
Low Energy Routing for WSN’s
Low Energy Routing for WSN’sLow Energy Routing for WSN’s
Low Energy Routing for WSN’sIDES Editor
 
Permutation of Pixels within the Shares of Visual Cryptography using KBRP for...
Permutation of Pixels within the Shares of Visual Cryptography using KBRP for...Permutation of Pixels within the Shares of Visual Cryptography using KBRP for...
Permutation of Pixels within the Shares of Visual Cryptography using KBRP for...IDES Editor
 
Rotman Lens Performance Analysis
Rotman Lens Performance AnalysisRotman Lens Performance Analysis
Rotman Lens Performance AnalysisIDES Editor
 
Band Clustering for the Lossless Compression of AVIRIS Hyperspectral Images
Band Clustering for the Lossless Compression of AVIRIS Hyperspectral ImagesBand Clustering for the Lossless Compression of AVIRIS Hyperspectral Images
Band Clustering for the Lossless Compression of AVIRIS Hyperspectral ImagesIDES Editor
 
Microelectronic Circuit Analogous to Hydrogen Bonding Network in Active Site ...
Microelectronic Circuit Analogous to Hydrogen Bonding Network in Active Site ...Microelectronic Circuit Analogous to Hydrogen Bonding Network in Active Site ...
Microelectronic Circuit Analogous to Hydrogen Bonding Network in Active Site ...IDES Editor
 
Texture Unit based Monocular Real-world Scene Classification using SOM and KN...
Texture Unit based Monocular Real-world Scene Classification using SOM and KN...Texture Unit based Monocular Real-world Scene Classification using SOM and KN...
Texture Unit based Monocular Real-world Scene Classification using SOM and KN...IDES Editor
 

Mais de IDES Editor (20)

Power System State Estimation - A Review
Power System State Estimation - A ReviewPower System State Estimation - A Review
Power System State Estimation - A Review
 
Artificial Intelligence Technique based Reactive Power Planning Incorporating...
Artificial Intelligence Technique based Reactive Power Planning Incorporating...Artificial Intelligence Technique based Reactive Power Planning Incorporating...
Artificial Intelligence Technique based Reactive Power Planning Incorporating...
 
Design and Performance Analysis of Genetic based PID-PSS with SVC in a Multi-...
Design and Performance Analysis of Genetic based PID-PSS with SVC in a Multi-...Design and Performance Analysis of Genetic based PID-PSS with SVC in a Multi-...
Design and Performance Analysis of Genetic based PID-PSS with SVC in a Multi-...
 
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
 
Line Losses in the 14-Bus Power System Network using UPFC
Line Losses in the 14-Bus Power System Network using UPFCLine Losses in the 14-Bus Power System Network using UPFC
Line Losses in the 14-Bus Power System Network using UPFC
 
Study of Structural Behaviour of Gravity Dam with Various Features of Gallery...
Study of Structural Behaviour of Gravity Dam with Various Features of Gallery...Study of Structural Behaviour of Gravity Dam with Various Features of Gallery...
Study of Structural Behaviour of Gravity Dam with Various Features of Gallery...
 
Assessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric ModelingAssessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric Modeling
 
Secure Multi-Party Negotiation: An Analysis for Electronic Payments in Mobile...
Secure Multi-Party Negotiation: An Analysis for Electronic Payments in Mobile...Secure Multi-Party Negotiation: An Analysis for Electronic Payments in Mobile...
Secure Multi-Party Negotiation: An Analysis for Electronic Payments in Mobile...
 
Selfish Node Isolation & Incentivation using Progressive Thresholds
Selfish Node Isolation & Incentivation using Progressive ThresholdsSelfish Node Isolation & Incentivation using Progressive Thresholds
Selfish Node Isolation & Incentivation using Progressive Thresholds
 
Various OSI Layer Attacks and Countermeasure to Enhance the Performance of WS...
Various OSI Layer Attacks and Countermeasure to Enhance the Performance of WS...Various OSI Layer Attacks and Countermeasure to Enhance the Performance of WS...
Various OSI Layer Attacks and Countermeasure to Enhance the Performance of WS...
 
Responsive Parameter based an AntiWorm Approach to Prevent Wormhole Attack in...
Responsive Parameter based an AntiWorm Approach to Prevent Wormhole Attack in...Responsive Parameter based an AntiWorm Approach to Prevent Wormhole Attack in...
Responsive Parameter based an AntiWorm Approach to Prevent Wormhole Attack in...
 
Cloud Security and Data Integrity with Client Accountability Framework
Cloud Security and Data Integrity with Client Accountability FrameworkCloud Security and Data Integrity with Client Accountability Framework
Cloud Security and Data Integrity with Client Accountability Framework
 
Genetic Algorithm based Layered Detection and Defense of HTTP Botnet
Genetic Algorithm based Layered Detection and Defense of HTTP BotnetGenetic Algorithm based Layered Detection and Defense of HTTP Botnet
Genetic Algorithm based Layered Detection and Defense of HTTP Botnet
 
Enhancing Data Storage Security in Cloud Computing Through Steganography
Enhancing Data Storage Security in Cloud Computing Through SteganographyEnhancing Data Storage Security in Cloud Computing Through Steganography
Enhancing Data Storage Security in Cloud Computing Through Steganography
 
Low Energy Routing for WSN’s
Low Energy Routing for WSN’sLow Energy Routing for WSN’s
Low Energy Routing for WSN’s
 
Permutation of Pixels within the Shares of Visual Cryptography using KBRP for...
Permutation of Pixels within the Shares of Visual Cryptography using KBRP for...Permutation of Pixels within the Shares of Visual Cryptography using KBRP for...
Permutation of Pixels within the Shares of Visual Cryptography using KBRP for...
 
Rotman Lens Performance Analysis
Rotman Lens Performance AnalysisRotman Lens Performance Analysis
Rotman Lens Performance Analysis
 
Band Clustering for the Lossless Compression of AVIRIS Hyperspectral Images
Band Clustering for the Lossless Compression of AVIRIS Hyperspectral ImagesBand Clustering for the Lossless Compression of AVIRIS Hyperspectral Images
Band Clustering for the Lossless Compression of AVIRIS Hyperspectral Images
 
Microelectronic Circuit Analogous to Hydrogen Bonding Network in Active Site ...
Microelectronic Circuit Analogous to Hydrogen Bonding Network in Active Site ...Microelectronic Circuit Analogous to Hydrogen Bonding Network in Active Site ...
Microelectronic Circuit Analogous to Hydrogen Bonding Network in Active Site ...
 
Texture Unit based Monocular Real-world Scene Classification using SOM and KN...
Texture Unit based Monocular Real-world Scene Classification using SOM and KN...Texture Unit based Monocular Real-world Scene Classification using SOM and KN...
Texture Unit based Monocular Real-world Scene Classification using SOM and KN...
 

Último

Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 

Último (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 

Performance evaluation of Magnetic circuit for M.R. Fluid Damper using F.E.M

  • 1. Full Paper AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013 Performance evaluation of Magnetic circuit for M.R. Fluid Damper using F.E.M. 1 Md. Sadak Ali Khan1, A.Suresh2, N.Seetha Ramaiah 3 Associate professor, Dept of Mech. Engg., M.J.C.E.T., Road No: 3, Banajara Hills, Hyderabad-34 Email:salikhanmm@gmail.com 2 Principal, Sreyas Institute of Engineering and Technology, Thatti Annaram (V), Bandlaguda, Nagole, Hyderabad - 065 Email:s4akella@gmail.com 3 Professor, Dept of Mech. Engg. , M.J.C.E.T., Road No: 3, Banajara Hills, Hyderabad-34 Email:sitaram1881@gmail.com Abstract : The primary purpose of this study is to evaluate and understand the performance of the Magnetic -Rheological (MR) damper. It is known that its performance depends upon the magnetic and hydraulic circuit design. These dampers are generally used to control the vibrations in various applications. This work deals with design of an MR damper for which mathematical model is developed. A finite element model is built to analyze and investigate the performance of 2-D axi-symmetric MR damper. Various configurations of damper piston with different number of turns and pole lengths are simulated. Further, the piston ends of the selected configuration are modified and investigated. The input current to the coil and the piston velocity are varied to evaluate the resulting change in magnetic Field Intensity (H) and damping Force. The simulation results of the various configurations of damper show that the performance of filleted piston ends is superior to that of other configurations for the same magnitude of coil current and piston velocity. excitations. Jansen and Dyke [4] evaluated the performance of number of semi active control algorithms that are used with multiple MR dampers. Spencer and Dyke et.al. [5] Proposed a new model to effectively as semi-active control device for producing a controllable damping force portray the nonlinear behavior of MR fluid damper. N. Seetharamaih and khan et al. [6] design and developed the prototype of small capacity MR damper. Lai and W.H Liao [7] have found that MR fluid damper can be used. Henri Gavin Jesse Hoagg et.al [8] have made a comparison between ER and MR devices in the context of electrical power requirements. Zekeriya parlak Tahsin and Ismail,Calli [9] designed an optimization method that was carried out for the objectives of target damper force and maximum magnetic flux density of an MR damper. The main objective of this paper is to evaluate the different models of MR damper using ANSYS software. Index terms: Magneto-rheological (MR) fluid, MR damper, Magnetic flux density, Magnetic field intensity. NOMENCLATURE I. INTRODUCTION During the past decade, many researchers have shown keen interest in the development of damper which utilize magneto- rheological fluid (MRF). Magneto- rheological (MR) fluid is a fascinating material, composed of micro-sized magnetic particles suspended in a liquid, such as hydrocarbon oil or silicone oil. The rheological properties of MR fluid are rapidly and reversibly altered when an external magnetic field is applied. When current is passed through the coil, the suspended particles in the MR fluid become magnetized and align themselves like chains in the direction of the magnetic field. The formation of these particle chains restricts the movement of the MR fluid, thereby increasing its yield stress. The saturation current for the standard MR fluid, 132 DG is 2.0A as provided by Lords Corporation. Designs that take advantage of MR fluids are potentially simpler and more reliable than conventional electromechanical devices. Maher Yahya Salloom and Samad [1] designed an MR valve for which simulation was carried out by magnetic finite element software (FEMMR). Sodeyama and Suzuki et.al [2] have developed and tested an MR damper which provided maximum damping force.of 300kN. H.yoshioka, j.c. Ramallo et.al.[3]constructed and tested a base isolated two-degree freedom building model subjected to simulated ground motion which is effective for both far- field and near- field earthquake 1 © 2013 AMAE DOI: 01.IJPIE.4.1.1204 Ap : piston cross section area d : spool length dcyl,d sh, : diameters of the cylinder and shaft respectively e : house thickness Η : fluid viscosity in the absence of the field, C I : current L, g, W : length, gap and width of the flow channel between the fixed poles N : number of turns Q : volumetric flow rate Vp : velocity of the piston τ : shear stress, τy : field-dependent yield stress, : ΔPη viscous component of pressure drop ΔPτ. : yield stress component of pressure drop   : Fluid shear rate 1P 1C 1F MFD : one stage coil with plain ends : one stage coil with chamfered ends : one stage coil with filleted ends : Magnetic Flux density
  • 2. Full Paper AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013 II. METHODOLOGY The damper design is done based on the fact that mechanical energy required for yielding of MR fluid increases with increase in applied magnetic field intensity. In the presence of magnetic field, the MR fluid follows Bingham’s Plastic flow model, given by the equation        y (H )   y The above equation is used to design a device which works on the basis of MR fluid. The total pressure drop in the damper is evaluated by summing the viscous component and yield stress component which is approximated as P  12 QL C y L  , where g 3W g Figure 1. Schematic of MR damper  0.6091   0.0006  Q  ApV p Ap    ( d cyl  2 g ) 2  d sh 2    4 W   ( d cyl  g ) the value of the parameter, C ranges from a minimum of 2 (for ΔPτ ΔPη less than ~1) to a maximum of 3 (for ΔPτ /ΔPη greater than ~100). In order to calculate the change in pressure on either side of the piston within the cylinder, yield stress is required which is obtained from the graph of yield stress vs magnetic field intensity provided by Lord corporation for MR fluid 132 DG . III. FINITE ELEMENT MODELING OF MR DAMPER Figure 2. Steps for calculation of Pressure drop The proposed MR damper consists of a piston over which coil is wound and an annular gap of 0.4 mm is maintained between the piston and its housing .The piston is made up of mild steel due to its high relative permeability. The various dimensional features of the damper are shown in Figure 1. In the present research work, various configurations of damper piston with different number of turns and pole lengths are considered to analyze a 2D axisymmetric MR damper. The procedure adopted for the analysis of these models is given in Figure 2. Further, the piston ends of the selected configuration are modified and investigated. In these later models, different shapes of piston with plain, chamfered and filleted ends are considered as shown in Figures 3, 4 and 5 while keeping the dimensions of the piston, number of turns of the coil and annular gap constant. These models are analyzed to study the variation of magnetic field intensity and magnetic flux density with respect to the current supplied. The current is varied from 0.2A to 2A and analysis is carried out ANSYS R 11 software. The variation of 2D flux lines, magnetic flux density and magnetic field © 2013 AMAE DOI: 01.IJPIE.4.1.1204 Figure 3. Piston with plain ends intensity for the different models at 2 amperes are shown in Figure 6 to Figure 10. 2
  • 3. Full Paper AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013 Figure 4. Piston with chamfered ends Figure 7. Magnetic flux density vectors Figure 5. Piston with filleted ends Figure 8. Magnetic field intensity force decreases irrespective of change in the number of turns as shown in Figure 11. The total pole length of the plain end models is increased and decreased by 5% and 10% of the original model. The simulation results depicted in Figure 12 show a remarkable decrease in the damping force across the piston. From the above simulation results, the optimum number of turns and total pole length of the damper is considered for further analysis. The performance of the plain end model is now compared with two different piston models having chamfered and filleted ends. The simulation results of damping force with respect to magnetic field intensity and flow rate for 2 amp current and constant gap of 0.4 mm for various models are shown in Figure 13 and Figure 14. Figure 6. Flux lines around the coil IV. SIMULATION RESULTS AND ANALYSIS The number of turns of the plain end models are increased and decreased by 5% and 10% of the original model. These variations are simulated and it is observed that the damping © 2013 AMAE DOI: 01.IJPIE.4.1.1204 3
  • 4. Full Paper AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013 Figure 12. Force Vs Velocity for different pole lengths Figure 9. Magnetic flux density vector sum Figure 13. Force Vs Magnetic Field Intensity for different piston ends Figure 10. 3-D model of MR fluid Damper Figure 11. Force Vs Velocity for different number of coil turns © 2013 AMAE DOI: 01.IJPIE.4.1.1204 Figure 14. Force Vs Velocity for different Piston ends 4
  • 5. Full Paper AMAE Int. J. on Production and Industrial Engineering, Vol. 4, No. 1, June 2013 It is observed that as coil current increases the magnetic field intensity increases, thereby increasing the damping force. Maximum damping force is observed in case of filleted piston end model. Figure 14 shows that the damping force increases with increase of velocity of MR fluid. The maximum damping force with respect to velocity is also found in case of filleted piston end model. [2] Hiroshi Sodeyama,Kohei Suzuki,Katsuaki Sunakoda “Development of Large Capacity semi- active Seismic damper using Magneto –Rheological Fluid”, Journal of Pressure Vessel Technology, Vol. 126 ,pp 105-109,Feb 2004 [3] H.yoshioka , j.c. Ramallo , B.F. Spencerdol;”Smart Base Isolation strategies Employing Magnetorheological Dampers” Journal of engineering mechanics,pp 540-551May 2002 [4] Laura M , Jansen and Shirley J . Dyke “Semi active control strategies for MR Dampers Comparative Study”Journal of Engineering Mechanics, Vol. 126 , No. 8,pp795-803, August 2000 [5] B.F. Spencer Jr., S.J. Dyke, M.K. Sain and J. D. Carlson “Phenomenological Model for Magnetorheological Damper” Journal of engineering mechanics Vol.123, No. 3,pp230-238, March, 1997 [6] N.Seetharamaiah, Sadak Ali Khan and K.Narayanarao, “Design of Small Capacity MR Fluid Damper” International Journal on Mechanical and Automobile Engineering Vol. 01, N0.1 , Nov. 2008-, 29-36,pp29-36, Jan2009 [7] Chun-Yu lai and W.H. Liao “Vibration Control of a Suspension system via Magneto rheological Fluid Damper” Journal of Vibration and Control,Vol 8, pp527-547, 2002 [8] Henri GAVIN, Jesse HOAGG and Mark DOBOSSY “Optimal Design of MR Dampers” Smart structures for improved Seismic performance, pp225-236, Aug2001 [9] Zekeriya parlak Tahsin, Ismail,Calli “optimal design of MR damper via finite element analysis of fluid dynamic and magnetic field” Journal Intelligent Mechatronics, Vol.22, pp890903,Sep2012 V. CONCLUSION It is observed that increase or decrease in the number of turns of coils and total pole length did not improve the performance of the damper in terms of damping force. Further simulation results of the three different models of MR damper with plain, chamfered and filleted ends showed that filleted ends model gave optimum damping force with respect to magnetic field intensity as well as velocity. The filleted ends assisted the formation of dense magnetic flux lines thereby increasing the flux density. This implies that higher load can be carried by the damper even with a small capacity. REFERENCES [1] Maher Yahya Salloom & Zahurin Samad “Finite element modeling and simulation of proposed design magnetorheological valve” International Journal advanced manufacturing Technology, Vol 54 numbers 5-8,pp421 – 429, May2011 © 2013 AMAE DOI: 01.IJPIE.4.1.1204 5