SlideShare uma empresa Scribd logo
1 de 46
Baixar para ler offline
Physical Characterization
of Glassy Materials Using
Ultrasonic Non-Destructive
Technique
Sidek Ab Aziz
Department of Physics, Faculty of Science
Universiti Putra Malaysia
43400 UPM Serdang, Selangor
Seminar on Materials Science and Technology 2013, June 24, 2013, ITMA
General Discussion
Glass
(amorphous)
Crystalline
Scope of Presentation
Free Web 2.0 Apps. http://mindmap.crazenut.org
What is a glass?
Glass - hard, brittle solid material that is normally lustrous and
transparent in appearance and shows great durability under
exposure to the natural elements.
Obsidian - super-
heated sand or rock
that rapidly cooled.
Moldavite formed by
meteorite impact (Besednice,
Bohemia)
4
obsidianites, kind of alumino-silicate
(SiO2–Al2O3) glasses containing
crystalline particles such as Fe2O3.).
Man-
Made
Glass
Principles of Glass
Formation
5
Glass (amorphous) Crystalline
The viscosity increases with undercooling until
the liquid freezes to a glass
Crystals
 ordered atomic
structures mean
smaller volumes (high
density) & lower
energies
 thermodynamically
stable phase
Glasses
 lack of long-range
order results in larger
volumes (lower
density), higher
energies;
 thermodynamically
metastable phase
Knowledge of glass
structure is important
which relates to other
Free Web 2.0 Apps. http://www.text2mindmap.com
Silicate Borate
• Glass structure has short range order but no long range
order.
• Silicate tetrahedra link up to form 3D glass network.
• Some ions such as Na will modify the network but are
not part of it.
Some structural groupings in borate glasses as indicated
from nuclear magnetic resonance experiments (Bray
1985).
Small solid circles represent boron atoms, open circles
oxygen atoms and an open circle with negative sign
indicates non-bridging oxygen.
Glass Structure
Bonding Structure of Tellurite
2D chain:
crystalline TeO2
TeO2 chains Deformation and
breaking of TeO2
chain by modifier
The structure
basic TeO2 –based glass structural unit namely, TeO4 trigonal
bipyramids (tbp) and TeO3 trigonal pyramid (tp) .
TeO4 tbp TeO3 tp
Both structure have a lone pair of electron in one of its
equatorial /axial sites.
7
Phosphate
Basic glass former,
P2O5
Effects of Mg
cation content on
the phosphate
glass
Glass Sample Preparation
www.glassforever.co.uk/howisglassmade/
glass furnace cooling
systems
8
9
Some pigments used to produce coloured glass
Compounds Colors Compounds Colors
iron oxides greens, browns selenium compounds reds
manganese oxides deep amber, amethyst,
decolorizer
carbon oxides amber/brown
cobalt oxide deep blue mix of mangnese, cobalt,
iron
black
gold chloride ruby red antimony oxides white
uranium oxides yellow green (glows!) sulfur compounds amber/brown
copper compounds light blue, red tin compounds white
lead with antimony yellow
Research Project
To produce the fiber optics and flat glasses for the
future applications
Glass Research @ UPM
 Fiber Optics are cables that are made of optical fibers that can
transmit large amounts of information at the speed of light.
(www.dictionary.com)
 Dominated by Silicate based glass
Glass
Research
@ UPM
Key
Researchers
A goal of solid-state science, which intends to give universal understandings of
macroscopic properties through simple theories on the basis of known atomic
structures.
11
Glass Research @ UPM
12
Tellurite
(TeO2)
Phosphate
(P2O5)
Borate
(B2O3)
Lithium
Chloroborate
Lead Borate
Lead Bismuth
Borate
Bismuth Borate
Zink Chloride Phosphate
Silver Phosphate
Lithium Phosphate
Lithium Chlorophosphate
Lead Magnesium
Chlorophosphate
Lead Bismuth Phosphate
Lithium Chloride Phosphate
Lithium Zink Phosphate
Lead Zink Metaphosphate
Zinc magnesium phosphate
Zinc Tellurite
Borotellurite
Zinc oxyfluorotellurite
Lead Borotellurite
Silver Borotellurite
Zinc Neodymium
Tellurite
Zinc borotellurite
Zinc oxyfluorotellurite
Ferum Tellurite
Glass research activities conducted at the Universiti Putra Malaysia.
Formation
Physical Studies
Elastic Properties
Optical
Characterization
Thermal Properties
Dielectric Properties
Research
Scope
Glass Research @ UPM
13
Tellurite
(TeO2)Phosphate
(P2O5)
Borate
(B2O3)
Selected some of the prepared binary and ternary glass samples at the Department
of Physics, Universiti Putra Malaysia.
Ag2O-B2O3
PbO-B2O3
Bi2O3-B2O3
Li2O-P2O5
PbO-B2O3
PbCl2-P2O5
LiCl-P2O5
ZnCl2-P2O5
B2O3-TeO2
ZnO-TeO2
Fe2O3-TeO2
PbO-Bi2O3-B2O3
LiCl-Li2O-P2O5
PbCl2-MgO-
P2O5
Li2O-ZnO-P2O5
PbO-ZnO-P2O5
PbO-Bi2O3-P2O5
Cu2O-CaO-P2O5
Ag2O-B2O3-TeO2
PbO- B2O3-TeO2
ZnO- B2O3-TeO2
Nb2O5- ZnO- TeO2
AlF-ZnO-TeO2
binary
ternary
Glass Oxide Former Modifier Glass Samples Researchers
Binary Oxide Glass Series
Borate (B) Silver (Ag) Ag2O-B2O3 Sidek et al. (1994)
Lead (Pb) PbO-B2O3 Azman et al. (2002)
Bismuth (Bi) Bi2O3-B2O3 Sidek et al.(2007)
Phosphate (P) Lithium (Li) Li2O-P2O5 Low et al. (1999)
Sidek et al.(2003)
Lead (Pb) PbO-B2O3 Azman et al. (2002)
Talib et al. (2003)
Lead Chloride (PbCl2) PbCl2-P2O5 Talib et al. (2003)
Lithium Chloride (LiCl) LiCl-P2O5 Loh et al. (2005)
Tellurite (Te) Boron (B) B2O3-TeO2 Halimah et al.(2005)
Sidek et al.(2006)
Zink (Zn) ZnO-TeO2 Rosmawati et al. (2008)
Sidek et al.(2009)
Ferrum (Fe) Fe2O3-TeO2 Zarifah et al. (2010)
PbO-P2O5
B2O3-TeO2
Ag2O-B2O3
Glass samples prepared by melt
quenching technique @ UPM
Glass Former Network Modifier Glass Samples Researchers
Ternary Oxide Glass Series
Borate (B) Bismuth (Bi) Lead (Pb) PbO-Bi2O3-B2O3 Sidek et al. (2005)
Hamezan et
al.(2006)
Phosphate (P) Lithium (Li) Lithium Chloride
(LiCl)
LiCl-Li2O-P2O5 Low et al. (1999)
Sidek et al.(2003)
Magnesium (Mg) Lead Chloride
(PbCl2)
PbCl2-MgO-P2O5 Sidek et al.(2004)
Zink (Zn) Lithium (Pb) Li2O-ZnO-P2O5 Sidek et al.(2005)
Zink (Zn) Lead (Pb) PbO-ZnO-P2O5 Sidek et al.(2005)
Bismuth (Bi) Lead (Pb) PbO-Bi2O3-P2O5 Sidek et al.(2006)
Calsium (Ca) Copper (Cu) Cu2O-CaO-P2O5 Talib et al. (2008)
Tellurite (Te) Boron (B) Silver (Ag) Ag2O-B2O3-TeO2 Halimah et al.
(2005)
Zink (Zn) Aluminum Floride
(AlF)
AlF-ZnO-TeO2 Sidek et al.(2009)
Boron (B) Lead (Pb) PbO- B2O3-TeO2 Iskandar et al.
(2010)
Zink (Zn) Neodymium (Nb) Nb2O5- ZnO- TeO2 Mohamed et al.
(2010)
Boron (B) Zink (Zn) ZnO- B2O3-TeO2 Ayuni et al (2011)
Selected some of the prepared ternary glass samples at the Department of Physics, Universiti Putra
Malaysia.
GeO2-PbO-Bi2O3
AgI-B2O3-TeO2
PbO-B2O3
SEM Photos XRD Pattern of Starting
Materials
TeO2 powder
TeO2 glass
ZnO Powder
TeO2-ZnO glass
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
10 20 30 40 50
2 theta
Intensity(a.u)
0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
10 20 30 40 50
2 Theta
Intensity(a.u)
0
5000
10000
15000
20000
25000
30000
35000
10 20 30 40 50
2 Theta
Intensity(a.u)
TeO2-ZnO-AlF3
glass
AlF3 (97.0%)
Powder 16
XRD patterns
100
600
1100
1600
2100
10 20 30 40 50
2 theta
Intensity(a.u)
TZ7
TZ6
TZ5
TZ4
TZ3
TZ2
TZ1
TZ0
• no discrete or continuous sharp peaks
• but broad halo at around 2 260 - 300, which reflects the characteristic of
amorphous materials.
• absence of long range atomic arrangement and the periodicity of the 3D network
in the quenched material
400
600
800
1000
1200
1400
1600
1800
10 20 30 40 50
2 theta
Intensity(a.u)
S5
S4
S3
S2
S1
TeO2)1-x (ZnO)x (x = 0.1 to 0.4 in 0.05) (TeO2)90(AlF3)10-x(ZnO)x (x = 1 to 9)
binary ternary
17
Ultrasonic System
Schematic representation of (a)
simple pulse ultrasonic system. (b)
Envelope of pulse echo train and (c)
detail of each echo as seen on
oscilloscope display
18
Ultrasonic Pulse Echo Overlap System
Pulse echo overlap system
Pulse echo overlap waveforms
Block diagram of the experimental
set up – ultrasonic wave velocity
and attenuation measurement
(Mepco Engineering College,
INDIA)
19
Ultrasonic System
Ultrasonic – MBS
8000 Ultrasonic Data
Acq. System
20
21
Important Physical Properties
Density is defined as the mass per unit
volume.
– Density is an intensive property of
matter, meaning it remains the
same regardless of sample size.
– It is considered a characteristic
property of a substance and can be
used for material’s classification
Density Measurement
(Archimedes Method)
ac
aca
a
s
ww
w  







Molar volumes

M
V 
Physical Properties
Variation of density and molar volume with mol% Bi2 O3
in Bi2 O3–B2 O3 glass systems.
The increase of the density of the glasses
accompanying the addition of Bi2 O3 is probably
attributable to a change in cross-link density and
coordination numbers of Bi3+ ions.
26
26.5
27
27.5
28
28.5
29
0.55 0.6 0.65 0.7 0.75 0.8 0.85
Mole fraction of TeO2
Molarvolume(cm3
mol-1
)
4650
4700
4750
4800
4850
4900
4950
5000
Density(kgm-3
)
Density and molar volume of TeO2.B2O3 glasses
28
28.5
29
29.5
30
30.5
0.05 0.10 0.15 0.20 0.25 0.30 0.35
Pecahan Mol Ag2O
Isipadumolar(cm3
)
4800
4900
5000
5100
5200
5300
Ketumpatan(kg/m3
)
Density and molar volume of [(TeO2)x (B2O3)1-x)]1-y [Ag2O]y
22
Density and Molar Volume
3500
4500
5500
6500
7500
0 20 40 60 80
Bismuth Oxide (mol%)
Density(kgm-3)
Dependence of density on the composition of bismuth oxide
glass systems as measured by El-Adawy and Moustafa (1999)
(5 - 45 mol%), Wright et al (1977) (20 – 42.5 mol%) and
present works (40 – 70 mol%).
23
Density & Molar Volume
4700
4800
4900
5000
5100
5200
5300
5400
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4
Mole fraction of ZnO
Density(kg/m
3
)
22
24
26
28
30
32
34
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4
Mole fraction of ZnO
Molarvolume(10
-6
m
3
mol
-1
)
•Similar behaviour as El-
Mallawany (1993).
•Addition of ZnO causes some
type of structural
rearrangement of the atoms
(Hoppe et al. (2004).
•Possibility for the alteration of
the geometrical configuration
upon substitution of ZnO into
the tellurite glassy network.
24
Density & Molar Volume
4700
4800
4900
5000
5100
5200
5300
5400
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4
Mole fraction of ZnO
Density(kg/m
3
)
22
24
26
28
30
32
34
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4
Mole fraction of ZnO
Molarvolume(10
-6
m
3
mol
-1
)
•The increase in density indicates zinc ions enter
the glassy network
•The decreases in the molar volume was due to the
decrease in the bond length or inter-atomic spacing
between the atoms
• The stretching force constant (216 N/m – 217.5
N/m) of the bonds increase resulting in a more
compact and dense glass.
• Atomic Radius (Shelby, 2005).
•R(Zn2+)(0.074 nm) << R(Te2+)(0.097 nm)
•there is no anomalous structural change (non-linear
behaviour)
25
Elastic constants of the glasses
Longitudinal modulus
Shear modulus
Bulk modulus
Poisson’s ratio
Young’s modulus
Debye Temperature
2
lVL 
2
sVG 







22
3
4
sl VVK 
 
 22
22
2
2
sl
sl
VV
VV



 
22
222
43
sl
sls
VV
VVV
E




mDt V
M
Np
k
h 3
1
4
9










3
1
33
12










lS
m
VV
V
26
27
[(TeO2)65(B2O3)35]1–y[Ag2O]y glasses
(Halimah et al. 2010)
Pure and WO3 dopedCeO2–PbO–B2O3 glasses
(Singh & Singh 2011)
Figure 17 Density and molar volume of selected glass samples.
Table 6 Measured density (ρ), molar volume (V), longitudinal ultrasonic velocity (vl), shear
ultrasonic velocity (vs), elastic moduli, Poisson's ratio (σ), and fractal dimension (d = 4G/K )
and (E/G) ratio of (TeO2)90(AlF3)10-x(ZnO)x glasses (Sidek et al. 2009).
Elastic modulus of zinc oxyfluorotellurite glasses
Ultrasonic Wave Velocity
Compositional dependence of the velocity of
longitudinal and shear acoustic waves in Bi2
O3–B2 O3 glass systems.
Both increase at first with increasing Bi2 O3
mol% up to a maximum at 25 mol% Bi2 O3
and then decrease as the Bi2 O3 mol%
increases further.
1000
1500
2000
2500
3000
3500
4000
0.05 0.10 0.15 0.20 0.25 0.30 0.35
Pecahan mol of Ag2O
Halajuultrasonik(m/s)
Compositional dependence of the velocity of longitudinal and
shear acoustic waves in [(TeO2)x (B2O3)1-x)]1-y [Ag2O]y glass
1500
2000
2500
3000
3500
4000
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4
Mole fraction of ZnO
Velocity(m/s) Longitudinal
Longitudinal
Shear
Shear
Compositional dependence of the
velocity of longitudinal and shear
acoustic waves in [(ZnO)(TeO2) glass
28
Ultrasonic Wave Velocity
Lead Magnesium Chloride
Phosphate Glass
29
Elastic Modulus
Dependence of longitudinal modulus on
the composition of Bi2 O3–B2 O3 glass
systems.
One reason for this difference may come from the
volume effect, in that C44 expresses the resistance
of the body to deformation where no change in
volume is involved, while C11 expresses the
resistance where compressions and expansions
are involved.
10
20
30
40
50
60
70
0.05 0.10 0.15 0.20 0.25 0.30 0.35
Pecahan mol Ag2O
Moduluskenyal(GPa)
L
E
K
G
Compositional dependence of the longitudinal and shear modulus of
[(TeO2)x (B2O3)1-x)]1-y [Ag2O]y glass
30
Elastic Moduli
15
20
25
30
35
40
45
50
55
60
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4
Mole fractionofZnO
ElasticModuli(GPa)
Longitudinal Modulus, L
Young’s Modulus, E
Bulk Modulus, K
Shear Modulus, G
31
Elastic Properties
Mole fraction, x 0.3 0.4 0.45 0.5 0.6
Elastic stiffness (GPa)
C11
C44
C12
48.9
18.0
12.9
48.8
18.0
12.7
47.5
17.4
12.7
47.3
17.5
12.3
47.3
17.2
13.0
Young's modulus, E
(GPa)
43.5 43.5 42.2 42.2 41.8
Bulk modulus, B (GPa) 24.9 24.7 24.3 24.0 24.4
Poisson's ratio,  0.208 0.207 0.211 0.207 0.215
Fractal dimension 2.90 2.92 2.87 2.92 2.82
Molar volume, V
(cm3/mole)
34.2 33.8 34.2 33.9 33.3
Number of atoms per
volume (x1028
atoms/m3)
9.67 8.90 8.37 8.00 7.24
Debye Temperature (K) 291 275 263 255 238
The room temperature elastic properties
of (PbO)x(P2O5)1-x glasses
Mole fraction, y 0.04 0.06 0.07 0.1
Elastic stiffness (GPa)
longitudinal, c11
shear, c44
c12
50.4
17.1
16.3
44.3
16.0
12.3
43.0
15.9
11.2
35.7
14.8
6.03
Young's modulus, E
(GPa)
42.4 39.0 38.4 33.9
Bulk modulus, B (GPa) 27.6 23.0 21.8 15.9
Poisson's ratio,  0.244 0.217 0.206 0.145
Fractal dimension 2.47 2.79 2.92 3.73
Molar volume, V
(cm3/mole)
33.5 33.5 33.3 33.4
Number of atoms per
volume (x1028
atoms/m3)
9.60 9.65 9.72 9.78
Debye Temperature (K) 276 266 264 251
Room temperature elastic properties of
(PbCl2)y(PbO.2P2O5)1-y glasses
32
Elastic Properties
33
34
Elastic properties of ZnO-TeO2 glasses (Sidek et al. 2010)
1500
2000
2500
3000
3500
4000
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Mole fraction of ZnO
Velocity(m/s)
15
20
25
30
35
40
45
50
55
60
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Mole fraction of ZnO
ElasticModuli(GPa)
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Mole fraction of ZnO
Poisson'sRatio
3.1
3.3
3.5
3.7
3.9
4.1
4.3
4.5
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Mole fraction of ZnO
Microhardness(GPa)
Shear
Longitudinal
L
E
K
G
Ultrasonic velocities
Elastic moduli
Poisson’s ratio
Micro-hardness
35
Elastic moduli of selected binary glassy materials.
Elastic Moduli (GPa)

Material Density L G K E References
15Sm2O3-85P2O5 3.280 66.42 23.63 34.91 57.84 0.224 Sidek et al. (1988)
15La2O3-85P2O5 3.413 67.63 23.05 36.90 57.23 0.241 Sidek et al. (1988)
15Nd2O3-85P2O5 3.233 70.50 24.80 37.40 60.90 0.229 Senin et al. (1993)
15Bi2O3-85P2O5 4.418 56.8 19.2 31.2 47.9 0.244 Sidek et al. (2011)
20Ho2O3-80P2O5 3.327 73.1 24.7 40.1 Senin et al. (1996)
20Nd2O3-80P2O5 3.358 67.4 24.1 35.3 58.8 0.22 Sidek et al. (1993)
20Sm2O3-80P2O5 3.326 63.1 23.4 31.9 56.5 0.20 Sidek et al. (1993)
20Ce2O3-80P2O5 3.254 74.4 25.0 41.1 62.3 0.23 Sidek et al. (1993)
14Ag2O-86B2O3 2.850 44.15 13.37 26.32 Saunders et al. (1987)
20PbO-80B2O3 3.801 45.4 14.70 25.90 43.0 0.262 Azman et al. (2002)
40PbO-B2O3 4.852 76.09 25.15 42.54 63.04 0.253 Sidek et al. (2003)
40Bi2O3-B2O3 5.262 74.67 27.70 37.75 66.75 0.205 Sidek et al. (2003)
30PbO-70B2O3 4.019 71.40 22.80 41.00 57.60 0.265 Azman et al. (2002)
30PbO-70P2O5 4.135 47.30 15.70 24.00 39.20 0.252 Azman et al. (2002)
26Tb2O3-74P2O5 3.578 76.2 25.4 42.00 64.0 0.246 Senin et al. (1994)
26Ce2O3-74P2O5 3.234 72.5 24.00 40.60 60.00 0.233 Saunders et al. (2001)
26Pr2O3-74P2O5 3.338 74.3 24.3 41.9 61.1 0.257 Senin et al. (2000)
33Ag2O-67B2O3 4.030 72.18 19.17 46.61 Saunders et al. (1987)
30ZnO-70TeO2 5.211 56.06 19.39 30.21 47.92 0.236 Rosmawati et al. (2008)
36
Elastic moduli of selected binary glassy materials (cont)
33ZnCl2-67TeO2 4.63 50.8 15.10 30.6 39.0 0.289 El-Mallawany et al.
(1998)
30V2O5-70TeO2 4.564 44.1 11.5 28.8 30.5 0.289 El-Mallawany et al.
(1998)
30B2O3-70TeO2 4.89 63.62 23.33 32.51 56.48 0.21 Halimah et al. (2007)
30B2O3-70TeO2 4.78 0.21 Sidek et al.(2006)
TeO2 (pure glass) 5.101 56.40 19.90 Sidek et al. (1989)
TeO2 (pure glass) 5.105 59.1 20.6 31.7 50.7 0.233 El-Mallawany et al.
(1998)
TeO2 (pure crystal) 6.02 56.0 27.2 Arlt & Schweppe (1968)
P2O5 (pure glass) 2.52 12.1 Bridge et al. (1984)
SiO2 (pure glass) 2.203 30.7 Borgadus et al. (1965)
So far silicate based glasses are
practically well employed by
engineers for optoelectronic
devices development and
application.
However silicate glass has some
disadvantages. As an alternative, more
researchers are now preferred tellurite
based glass to be used as a host matrix in
laser applications.
We also found that tellurite is the best
glass host due to low melting temperature
and in absence of hygroscopic properties
as compared to borate and phosphate
based glasses.
Potential Application
of Glassy Materials
CD memory device
Optical switching device
Non-linear optical
devices
Electrochemical devices
Laser host
Infra-Red Fiber Optics
37
38
Next-generation
large-scale panels
Glass substrates for LCDs
Next-generation large-scale panels by
contributing to form various functional films on
glass substrates.
39
…you could see what
was in the fridge
without opening it?
…you could have a
fish tank which is self
cleaning?
Self cleaning glass
40
When water hits
a hydrophilic
surface, it
flattens and
spreads out to
form a thin sheet.
Hydrophilic
surface
=wetting
Water spreads
HYDROPHOBIC
(WATER HATING)
When water hits a
hydrophobic
surface, it beads.
Hydrophobic
surface
= beading
Water
beads
HYDROPHILIC
(WATER LOVING)
Poor wetting
(beading)
Contact
angle > 90°
Good wetting
Contact angle < 90°
When water hits a
hydrophilic surface, it
flattens and spreads
out to form a thin
sheet.
Hydrophilic surface
=wetting
Water spreads
HYDROPHOBIC
(WATER HATING)
When water hits a
hydrophobic
surface, it beads.
Hydrophobic
surface
= beading
Water
beads
HYDROPHILIC
(WATER LOVING)
Poor wetting
(beading)
Contact
angle > 90°
Good wetting
Contact angle < 90°
41
SELF CLEANING GLASS
THE LOTUS LEAF EFFECT
The leaves of Lotus plants have
the unique ability to avoid
getting dirty.
They are coated with wax
crystals around 1 nanometre in
diameter and have a special
rough surface.
Droplets falling onto the leaves
form beads and roll off taking
dirt with them, meaning the
leaves are self-cleaning.
Sometimes referred to as
“The Lotus Leaf effect”
Scientists have mimicked nature
at the nanoscale to create glass
surfaces that are ‘self-cleaning’
like the Lotus leaf.
No more scrubbing of shower
screens!
Self cleaning glass Normal glass
No more Spiderman
window cleaner!
42
SELF CLEANING GLASS
HOW DOES IT WORK?
Glass is coated with a layer of
nanocrystalline titanium dioxide
(TiO2).
The titanium dioxide reacts to the
ultraviolet (UV) component of sunlight
causing a gradual break down and
loosening of dirt.
This is known as the
‘photocatalytic’ stage
The reaction also causes the glass surface
to become super hydrophilic. This forces
water to spread across the surface like a
sheet, rather than beading, thereby
washing away the loosened
debris on the surface of
The glass as it falls.
This is the ‘hydrophilic’
stage.
APPLYING A MONOLAYER TO GLASS
GLASS NANO COATINGS
OptiView Anti-reflective glass made by
Australian company Pilkington.
Switchable glass changes from transparent to opaque.
A nano-layer of a rod-like particle suspension is placed between two
layers of glass.
Under normal conditions, the suspended particles are arranged in
random orientations and tend to absorb light, so that the glass
panel looks frosted or opaque.
But when a voltage is applied, the suspended particles align and let
light pass, turning the glass clear.
SWITCHABLE GLASS
CONCLUSION
Glass is one of the most versatile and most
fascinating materials
Their uniqueness in physical, optical, thermal,
mechanical and chemical properties offer an
almost unlimited range of applications.
Ultrasonic system has been employed to
characterize their elastic properties.
Extensive series of investigation using borate,
phosphate and tellurite based glasses have
been carried out to study the effect of certain
oxides into those glass formers in terms of
physical properties such as density, molar
volumes and elasticity.

Mais conteúdo relacionado

Mais procurados

Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ajjay Kumar Gupta
 

Mais procurados (20)

Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
 
Ceramic fibers
Ceramic fibersCeramic fibers
Ceramic fibers
 
Glass Ceramics
Glass CeramicsGlass Ceramics
Glass Ceramics
 
Microwave Assisted Sol Gel Synthesis of Magnesium Oxide(Mgo)
Microwave Assisted Sol Gel Synthesis of Magnesium Oxide(Mgo)Microwave Assisted Sol Gel Synthesis of Magnesium Oxide(Mgo)
Microwave Assisted Sol Gel Synthesis of Magnesium Oxide(Mgo)
 
Lecture 07
Lecture 07Lecture 07
Lecture 07
 
Sol gel synthesis and characterization of lithium yttrium oxide
Sol gel synthesis and characterization of lithium yttrium oxideSol gel synthesis and characterization of lithium yttrium oxide
Sol gel synthesis and characterization of lithium yttrium oxide
 
Jd corrosion
Jd  corrosionJd  corrosion
Jd corrosion
 
Microscopic inspection of pure metals and solid solutions.
Microscopic inspection of pure metals and solid solutions. Microscopic inspection of pure metals and solid solutions.
Microscopic inspection of pure metals and solid solutions.
 
Ceramic materaials
  Ceramic materaials  Ceramic materaials
Ceramic materaials
 
Lecture 06
Lecture 06Lecture 06
Lecture 06
 
2015 nurulainul sls mussel
2015 nurulainul sls mussel2015 nurulainul sls mussel
2015 nurulainul sls mussel
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
International Journal of Metabolic Syndromes
International Journal of Metabolic SyndromesInternational Journal of Metabolic Syndromes
International Journal of Metabolic Syndromes
 
Biodegradation of nickel from orthodontic appliances
Biodegradation of nickel from orthodontic appliancesBiodegradation of nickel from orthodontic appliances
Biodegradation of nickel from orthodontic appliances
 
Glass industry
Glass industryGlass industry
Glass industry
 
Coating and deposition process
Coating and deposition processCoating and deposition process
Coating and deposition process
 
Plasma compaction & electrodeposition (Nanotechnology)
Plasma compaction & electrodeposition (Nanotechnology)Plasma compaction & electrodeposition (Nanotechnology)
Plasma compaction & electrodeposition (Nanotechnology)
 
Solid, liquid and gas phase synthesis of nanomaterials
Solid, liquid and gas phase synthesis of  nanomaterialsSolid, liquid and gas phase synthesis of  nanomaterials
Solid, liquid and gas phase synthesis of nanomaterials
 
Electrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano compositesElectrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano composites
 
Preparation techniques 1
Preparation techniques 1Preparation techniques 1
Preparation techniques 1
 

Destaque

Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Mai Trần
 
Bioceramics in Simulated Body Fluid
Bioceramics in Simulated Body FluidBioceramics in Simulated Body Fluid
Bioceramics in Simulated Body Fluid
yiming li
 
Research Symposium Poster_Dentsply
Research Symposium Poster_DentsplyResearch Symposium Poster_Dentsply
Research Symposium Poster_Dentsply
Brendan Eckardt
 
2016-June-15-Glass - An unsung hero of scientific revolution
2016-June-15-Glass - An unsung hero of scientific revolution2016-June-15-Glass - An unsung hero of scientific revolution
2016-June-15-Glass - An unsung hero of scientific revolution
Ashutosh Goel
 
Journal of Non-Crystalline Solids
Journal of Non-Crystalline Solids Journal of Non-Crystalline Solids
Journal of Non-Crystalline Solids
Kulwinder Kaur
 
Biomaterials and its Applications
Biomaterials and its ApplicationsBiomaterials and its Applications
Biomaterials and its Applications
Saransh Khandelwal
 

Destaque (20)

Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
 
Seminario biovidros
Seminario biovidrosSeminario biovidros
Seminario biovidros
 
CareerFusion Partners 2009
CareerFusion Partners 2009CareerFusion Partners 2009
CareerFusion Partners 2009
 
Bioceramics in Simulated Body Fluid
Bioceramics in Simulated Body FluidBioceramics in Simulated Body Fluid
Bioceramics in Simulated Body Fluid
 
Glass Science & Technology Research @ UPM
Glass Science & Technology Research @ UPMGlass Science & Technology Research @ UPM
Glass Science & Technology Research @ UPM
 
Research Symposium Poster_Dentsply
Research Symposium Poster_DentsplyResearch Symposium Poster_Dentsply
Research Symposium Poster_Dentsply
 
Glass ceramics
Glass ceramicsGlass ceramics
Glass ceramics
 
biodegradable ceramics polymer matrix composite for bio medical application
biodegradable ceramics polymer matrix composite for bio medical applicationbiodegradable ceramics polymer matrix composite for bio medical application
biodegradable ceramics polymer matrix composite for bio medical application
 
One step to forward biomaterials - copy
One step  to forward   biomaterials - copyOne step  to forward   biomaterials - copy
One step to forward biomaterials - copy
 
Dental implants and biomaterials
Dental implants and biomaterialsDental implants and biomaterials
Dental implants and biomaterials
 
Study of doped chromiun oxide nanoparticle
Study of doped chromiun oxide nanoparticleStudy of doped chromiun oxide nanoparticle
Study of doped chromiun oxide nanoparticle
 
2016-June-15-Glass - An unsung hero of scientific revolution
2016-June-15-Glass - An unsung hero of scientific revolution2016-June-15-Glass - An unsung hero of scientific revolution
2016-June-15-Glass - An unsung hero of scientific revolution
 
201 icaer ppt_sonali_v1
201 icaer ppt_sonali_v1201 icaer ppt_sonali_v1
201 icaer ppt_sonali_v1
 
Journal of Non-Crystalline Solids
Journal of Non-Crystalline Solids Journal of Non-Crystalline Solids
Journal of Non-Crystalline Solids
 
Characterization of Mn2+ ion Doped KCdBSi (K2O - CdO - B2O3 – SiO2) Glasses o...
Characterization of Mn2+ ion Doped KCdBSi (K2O - CdO - B2O3 – SiO2) Glasses o...Characterization of Mn2+ ion Doped KCdBSi (K2O - CdO - B2O3 – SiO2) Glasses o...
Characterization of Mn2+ ion Doped KCdBSi (K2O - CdO - B2O3 – SiO2) Glasses o...
 
29. alteraciones metabolicas del ca p y mg
29. alteraciones metabolicas del ca p y mg29. alteraciones metabolicas del ca p y mg
29. alteraciones metabolicas del ca p y mg
 
Doping and its effects
Doping and its effectsDoping and its effects
Doping and its effects
 
Biomaterials. Merging Materials Science with Biology.
Biomaterials. Merging Materials Science with Biology.Biomaterials. Merging Materials Science with Biology.
Biomaterials. Merging Materials Science with Biology.
 
Simona cavalu apmas2014
Simona cavalu apmas2014Simona cavalu apmas2014
Simona cavalu apmas2014
 
Biomaterials and its Applications
Biomaterials and its ApplicationsBiomaterials and its Applications
Biomaterials and its Applications
 

Semelhante a Physical characterization of glassy materials using ultrasonic non destructive

74258112-Spray-Pyrolysis.......................pptx
74258112-Spray-Pyrolysis.......................pptx74258112-Spray-Pyrolysis.......................pptx
74258112-Spray-Pyrolysis.......................pptx
mohammedomer580967
 
Ijmet 10 01_010
Ijmet 10 01_010Ijmet 10 01_010
Ijmet 10 01_010
IAEME Publication
 
ITRI Jassy Wang
ITRI Jassy WangITRI Jassy Wang
ITRI Jassy Wang
ucsb.ira
 

Semelhante a Physical characterization of glassy materials using ultrasonic non destructive (20)

Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photo...
Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photo...Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photo...
Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photo...
 
FabricationofThin FilmUsing Modified Physical Vapor Deposition (PVD) Module
FabricationofThin FilmUsing Modified Physical Vapor Deposition (PVD) ModuleFabricationofThin FilmUsing Modified Physical Vapor Deposition (PVD) Module
FabricationofThin FilmUsing Modified Physical Vapor Deposition (PVD) Module
 
Infrared Spectral and EPR Studies of Mn2+ Ions Doped K2O - CdO - B2O3 - SiO2 ...
Infrared Spectral and EPR Studies of Mn2+ Ions Doped K2O - CdO - B2O3 - SiO2 ...Infrared Spectral and EPR Studies of Mn2+ Ions Doped K2O - CdO - B2O3 - SiO2 ...
Infrared Spectral and EPR Studies of Mn2+ Ions Doped K2O - CdO - B2O3 - SiO2 ...
 
Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719
 
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
 
Deposition and Characterization of Sisal Fiber Composite Prepare By Iron Oxid...
Deposition and Characterization of Sisal Fiber Composite Prepare By Iron Oxid...Deposition and Characterization of Sisal Fiber Composite Prepare By Iron Oxid...
Deposition and Characterization of Sisal Fiber Composite Prepare By Iron Oxid...
 
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
 
74258112-Spray-Pyrolysis.......................pptx
74258112-Spray-Pyrolysis.......................pptx74258112-Spray-Pyrolysis.......................pptx
74258112-Spray-Pyrolysis.......................pptx
 
Influence of Manganese doping on Structural, optical and ethanol sensing of S...
Influence of Manganese doping on Structural, optical and ethanol sensing of S...Influence of Manganese doping on Structural, optical and ethanol sensing of S...
Influence of Manganese doping on Structural, optical and ethanol sensing of S...
 
Spectroscopic studies on Mn2+ ions doped Cadmium Aluminum Fluoro Lead Borate ...
Spectroscopic studies on Mn2+ ions doped Cadmium Aluminum Fluoro Lead Borate ...Spectroscopic studies on Mn2+ ions doped Cadmium Aluminum Fluoro Lead Borate ...
Spectroscopic studies on Mn2+ ions doped Cadmium Aluminum Fluoro Lead Borate ...
 
Nano Technology & Nano Materials
Nano Technology & Nano MaterialsNano Technology & Nano Materials
Nano Technology & Nano Materials
 
Growth of Nano Scale and Optical Properties of Indium Oxide Thin Films
Growth of Nano Scale and Optical Properties of Indium Oxide Thin FilmsGrowth of Nano Scale and Optical Properties of Indium Oxide Thin Films
Growth of Nano Scale and Optical Properties of Indium Oxide Thin Films
 
By-Products of Steel Industry as a Complementary Material in Construction
By-Products of Steel Industry as a Complementary Material in ConstructionBy-Products of Steel Industry as a Complementary Material in Construction
By-Products of Steel Industry as a Complementary Material in Construction
 
Spectroscopic Studies on Cu2+: B2O3 - Cdo - Pbo - AlF3 Glass
Spectroscopic Studies on Cu2+: B2O3 - Cdo - Pbo - AlF3 GlassSpectroscopic Studies on Cu2+: B2O3 - Cdo - Pbo - AlF3 Glass
Spectroscopic Studies on Cu2+: B2O3 - Cdo - Pbo - AlF3 Glass
 
sol gel method by Mr AMAN PATHANIApptx
sol gel method by  Mr AMAN PATHANIApptxsol gel method by  Mr AMAN PATHANIApptx
sol gel method by Mr AMAN PATHANIApptx
 
Ijmet 10 01_010
Ijmet 10 01_010Ijmet 10 01_010
Ijmet 10 01_010
 
ITRI Jassy Wang
ITRI Jassy WangITRI Jassy Wang
ITRI Jassy Wang
 
Chap 1 final
Chap 1 finalChap 1 final
Chap 1 final
 
gaafar2009.pdf
gaafar2009.pdfgaafar2009.pdf
gaafar2009.pdf
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
 

Mais de Sidek Aziz

Aplikasi Praktikal Web 2.0 Untuk Pembelajaran Pengajaran
Aplikasi Praktikal Web 2.0 Untuk Pembelajaran PengajaranAplikasi Praktikal Web 2.0 Untuk Pembelajaran Pengajaran
Aplikasi Praktikal Web 2.0 Untuk Pembelajaran Pengajaran
Sidek Aziz
 
Bmeipta2 mei 2014 uum
Bmeipta2 mei 2014 uumBmeipta2 mei 2014 uum
Bmeipta2 mei 2014 uum
Sidek Aziz
 

Mais de Sidek Aziz (20)

Modul Pesyuma
Modul Pesyuma   Modul Pesyuma
Modul Pesyuma
 
eBuku Aplikasi Praktikal web 2.0 untuk pembejaran Pengajaran
eBuku Aplikasi Praktikal web 2.0 untuk pembejaran PengajaraneBuku Aplikasi Praktikal web 2.0 untuk pembejaran Pengajaran
eBuku Aplikasi Praktikal web 2.0 untuk pembejaran Pengajaran
 
2015 nazirah sls eggshell
2015 nazirah sls eggshell2015 nazirah sls eggshell
2015 nazirah sls eggshell
 
2015 alwani sls cockle
2015 alwani sls cockle2015 alwani sls cockle
2015 alwani sls cockle
 
2015 afifah sls snail
2015 afifah sls  snail2015 afifah sls  snail
2015 afifah sls snail
 
Previu Kandungan dan Contoh Aktiviti Jawi
Previu Kandungan dan Contoh Aktiviti Jawi Previu Kandungan dan Contoh Aktiviti Jawi
Previu Kandungan dan Contoh Aktiviti Jawi
 
Kembara Internasional 2015 Vol 1
Kembara Internasional 2015 Vol 1Kembara Internasional 2015 Vol 1
Kembara Internasional 2015 Vol 1
 
Aplikasi Praktikal Web 2.0 Untuk Pembelajaran Pengajaran
Aplikasi Praktikal Web 2.0 Untuk Pembelajaran PengajaranAplikasi Praktikal Web 2.0 Untuk Pembelajaran Pengajaran
Aplikasi Praktikal Web 2.0 Untuk Pembelajaran Pengajaran
 
Ctlhe07 monograf 1
Ctlhe07 monograf 1Ctlhe07 monograf 1
Ctlhe07 monograf 1
 
AKEPT SOTL Programme Book 2014
AKEPT SOTL Programme Book 2014AKEPT SOTL Programme Book 2014
AKEPT SOTL Programme Book 2014
 
PERSEPSI PELAJAR PRASISWAZAH SAINS TERHADAP FAKTOR PENYUMBANG KECEMERLANGAN A...
PERSEPSI PELAJAR PRASISWAZAH SAINS TERHADAP FAKTOR PENYUMBANG KECEMERLANGAN A...PERSEPSI PELAJAR PRASISWAZAH SAINS TERHADAP FAKTOR PENYUMBANG KECEMERLANGAN A...
PERSEPSI PELAJAR PRASISWAZAH SAINS TERHADAP FAKTOR PENYUMBANG KECEMERLANGAN A...
 
Wood@mintec13
Wood@mintec13Wood@mintec13
Wood@mintec13
 
Bmeipta2 mei 2014 uum
Bmeipta2 mei 2014 uumBmeipta2 mei 2014 uum
Bmeipta2 mei 2014 uum
 
Saa@akept
Saa@akeptSaa@akept
Saa@akept
 
WOOD Research @ UPM
WOOD Research @ UPMWOOD Research @ UPM
WOOD Research @ UPM
 
Mmap 4 teaching and Learning @ CADEe UPM
Mmap 4 teaching and Learning @ CADEe UPMMmap 4 teaching and Learning @ CADEe UPM
Mmap 4 teaching and Learning @ CADEe UPM
 
Lambaian Tanah Suci MADINAH
Lambaian Tanah Suci MADINAH Lambaian Tanah Suci MADINAH
Lambaian Tanah Suci MADINAH
 
Fundamental science congress 2013
Fundamental science congress 2013Fundamental science congress 2013
Fundamental science congress 2013
 
E buku desktopwer 2013
E buku desktopwer 2013E buku desktopwer 2013
E buku desktopwer 2013
 
APLIKASI WEB 2.0 PETA MINDA DALAM PEMBELAJARAN FIZIK UNIVERSITI: SATU KAJIAN KES
APLIKASI WEB 2.0 PETA MINDA DALAM PEMBELAJARAN FIZIK UNIVERSITI: SATU KAJIAN KESAPLIKASI WEB 2.0 PETA MINDA DALAM PEMBELAJARAN FIZIK UNIVERSITI: SATU KAJIAN KES
APLIKASI WEB 2.0 PETA MINDA DALAM PEMBELAJARAN FIZIK UNIVERSITI: SATU KAJIAN KES
 

Último

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Último (20)

Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

Physical characterization of glassy materials using ultrasonic non destructive

  • 1. Physical Characterization of Glassy Materials Using Ultrasonic Non-Destructive Technique Sidek Ab Aziz Department of Physics, Faculty of Science Universiti Putra Malaysia 43400 UPM Serdang, Selangor Seminar on Materials Science and Technology 2013, June 24, 2013, ITMA
  • 3. Scope of Presentation Free Web 2.0 Apps. http://mindmap.crazenut.org
  • 4. What is a glass? Glass - hard, brittle solid material that is normally lustrous and transparent in appearance and shows great durability under exposure to the natural elements. Obsidian - super- heated sand or rock that rapidly cooled. Moldavite formed by meteorite impact (Besednice, Bohemia) 4 obsidianites, kind of alumino-silicate (SiO2–Al2O3) glasses containing crystalline particles such as Fe2O3.). Man- Made Glass
  • 5. Principles of Glass Formation 5 Glass (amorphous) Crystalline The viscosity increases with undercooling until the liquid freezes to a glass Crystals  ordered atomic structures mean smaller volumes (high density) & lower energies  thermodynamically stable phase Glasses  lack of long-range order results in larger volumes (lower density), higher energies;  thermodynamically metastable phase Knowledge of glass structure is important which relates to other Free Web 2.0 Apps. http://www.text2mindmap.com
  • 6. Silicate Borate • Glass structure has short range order but no long range order. • Silicate tetrahedra link up to form 3D glass network. • Some ions such as Na will modify the network but are not part of it. Some structural groupings in borate glasses as indicated from nuclear magnetic resonance experiments (Bray 1985). Small solid circles represent boron atoms, open circles oxygen atoms and an open circle with negative sign indicates non-bridging oxygen. Glass Structure
  • 7. Bonding Structure of Tellurite 2D chain: crystalline TeO2 TeO2 chains Deformation and breaking of TeO2 chain by modifier The structure basic TeO2 –based glass structural unit namely, TeO4 trigonal bipyramids (tbp) and TeO3 trigonal pyramid (tp) . TeO4 tbp TeO3 tp Both structure have a lone pair of electron in one of its equatorial /axial sites. 7 Phosphate Basic glass former, P2O5 Effects of Mg cation content on the phosphate glass
  • 9. 9 Some pigments used to produce coloured glass Compounds Colors Compounds Colors iron oxides greens, browns selenium compounds reds manganese oxides deep amber, amethyst, decolorizer carbon oxides amber/brown cobalt oxide deep blue mix of mangnese, cobalt, iron black gold chloride ruby red antimony oxides white uranium oxides yellow green (glows!) sulfur compounds amber/brown copper compounds light blue, red tin compounds white lead with antimony yellow
  • 10. Research Project To produce the fiber optics and flat glasses for the future applications Glass Research @ UPM  Fiber Optics are cables that are made of optical fibers that can transmit large amounts of information at the speed of light. (www.dictionary.com)  Dominated by Silicate based glass
  • 11. Glass Research @ UPM Key Researchers A goal of solid-state science, which intends to give universal understandings of macroscopic properties through simple theories on the basis of known atomic structures. 11
  • 12. Glass Research @ UPM 12 Tellurite (TeO2) Phosphate (P2O5) Borate (B2O3) Lithium Chloroborate Lead Borate Lead Bismuth Borate Bismuth Borate Zink Chloride Phosphate Silver Phosphate Lithium Phosphate Lithium Chlorophosphate Lead Magnesium Chlorophosphate Lead Bismuth Phosphate Lithium Chloride Phosphate Lithium Zink Phosphate Lead Zink Metaphosphate Zinc magnesium phosphate Zinc Tellurite Borotellurite Zinc oxyfluorotellurite Lead Borotellurite Silver Borotellurite Zinc Neodymium Tellurite Zinc borotellurite Zinc oxyfluorotellurite Ferum Tellurite Glass research activities conducted at the Universiti Putra Malaysia. Formation Physical Studies Elastic Properties Optical Characterization Thermal Properties Dielectric Properties Research Scope
  • 13. Glass Research @ UPM 13 Tellurite (TeO2)Phosphate (P2O5) Borate (B2O3) Selected some of the prepared binary and ternary glass samples at the Department of Physics, Universiti Putra Malaysia. Ag2O-B2O3 PbO-B2O3 Bi2O3-B2O3 Li2O-P2O5 PbO-B2O3 PbCl2-P2O5 LiCl-P2O5 ZnCl2-P2O5 B2O3-TeO2 ZnO-TeO2 Fe2O3-TeO2 PbO-Bi2O3-B2O3 LiCl-Li2O-P2O5 PbCl2-MgO- P2O5 Li2O-ZnO-P2O5 PbO-ZnO-P2O5 PbO-Bi2O3-P2O5 Cu2O-CaO-P2O5 Ag2O-B2O3-TeO2 PbO- B2O3-TeO2 ZnO- B2O3-TeO2 Nb2O5- ZnO- TeO2 AlF-ZnO-TeO2 binary ternary
  • 14. Glass Oxide Former Modifier Glass Samples Researchers Binary Oxide Glass Series Borate (B) Silver (Ag) Ag2O-B2O3 Sidek et al. (1994) Lead (Pb) PbO-B2O3 Azman et al. (2002) Bismuth (Bi) Bi2O3-B2O3 Sidek et al.(2007) Phosphate (P) Lithium (Li) Li2O-P2O5 Low et al. (1999) Sidek et al.(2003) Lead (Pb) PbO-B2O3 Azman et al. (2002) Talib et al. (2003) Lead Chloride (PbCl2) PbCl2-P2O5 Talib et al. (2003) Lithium Chloride (LiCl) LiCl-P2O5 Loh et al. (2005) Tellurite (Te) Boron (B) B2O3-TeO2 Halimah et al.(2005) Sidek et al.(2006) Zink (Zn) ZnO-TeO2 Rosmawati et al. (2008) Sidek et al.(2009) Ferrum (Fe) Fe2O3-TeO2 Zarifah et al. (2010) PbO-P2O5 B2O3-TeO2 Ag2O-B2O3 Glass samples prepared by melt quenching technique @ UPM
  • 15. Glass Former Network Modifier Glass Samples Researchers Ternary Oxide Glass Series Borate (B) Bismuth (Bi) Lead (Pb) PbO-Bi2O3-B2O3 Sidek et al. (2005) Hamezan et al.(2006) Phosphate (P) Lithium (Li) Lithium Chloride (LiCl) LiCl-Li2O-P2O5 Low et al. (1999) Sidek et al.(2003) Magnesium (Mg) Lead Chloride (PbCl2) PbCl2-MgO-P2O5 Sidek et al.(2004) Zink (Zn) Lithium (Pb) Li2O-ZnO-P2O5 Sidek et al.(2005) Zink (Zn) Lead (Pb) PbO-ZnO-P2O5 Sidek et al.(2005) Bismuth (Bi) Lead (Pb) PbO-Bi2O3-P2O5 Sidek et al.(2006) Calsium (Ca) Copper (Cu) Cu2O-CaO-P2O5 Talib et al. (2008) Tellurite (Te) Boron (B) Silver (Ag) Ag2O-B2O3-TeO2 Halimah et al. (2005) Zink (Zn) Aluminum Floride (AlF) AlF-ZnO-TeO2 Sidek et al.(2009) Boron (B) Lead (Pb) PbO- B2O3-TeO2 Iskandar et al. (2010) Zink (Zn) Neodymium (Nb) Nb2O5- ZnO- TeO2 Mohamed et al. (2010) Boron (B) Zink (Zn) ZnO- B2O3-TeO2 Ayuni et al (2011) Selected some of the prepared ternary glass samples at the Department of Physics, Universiti Putra Malaysia. GeO2-PbO-Bi2O3 AgI-B2O3-TeO2 PbO-B2O3
  • 16. SEM Photos XRD Pattern of Starting Materials TeO2 powder TeO2 glass ZnO Powder TeO2-ZnO glass 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 10 20 30 40 50 2 theta Intensity(a.u) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 10 20 30 40 50 2 Theta Intensity(a.u) 0 5000 10000 15000 20000 25000 30000 35000 10 20 30 40 50 2 Theta Intensity(a.u) TeO2-ZnO-AlF3 glass AlF3 (97.0%) Powder 16
  • 17. XRD patterns 100 600 1100 1600 2100 10 20 30 40 50 2 theta Intensity(a.u) TZ7 TZ6 TZ5 TZ4 TZ3 TZ2 TZ1 TZ0 • no discrete or continuous sharp peaks • but broad halo at around 2 260 - 300, which reflects the characteristic of amorphous materials. • absence of long range atomic arrangement and the periodicity of the 3D network in the quenched material 400 600 800 1000 1200 1400 1600 1800 10 20 30 40 50 2 theta Intensity(a.u) S5 S4 S3 S2 S1 TeO2)1-x (ZnO)x (x = 0.1 to 0.4 in 0.05) (TeO2)90(AlF3)10-x(ZnO)x (x = 1 to 9) binary ternary 17
  • 18. Ultrasonic System Schematic representation of (a) simple pulse ultrasonic system. (b) Envelope of pulse echo train and (c) detail of each echo as seen on oscilloscope display 18
  • 19. Ultrasonic Pulse Echo Overlap System Pulse echo overlap system Pulse echo overlap waveforms Block diagram of the experimental set up – ultrasonic wave velocity and attenuation measurement (Mepco Engineering College, INDIA) 19
  • 20. Ultrasonic System Ultrasonic – MBS 8000 Ultrasonic Data Acq. System 20
  • 21. 21 Important Physical Properties Density is defined as the mass per unit volume. – Density is an intensive property of matter, meaning it remains the same regardless of sample size. – It is considered a characteristic property of a substance and can be used for material’s classification Density Measurement (Archimedes Method) ac aca a s ww w          Molar volumes  M V 
  • 22. Physical Properties Variation of density and molar volume with mol% Bi2 O3 in Bi2 O3–B2 O3 glass systems. The increase of the density of the glasses accompanying the addition of Bi2 O3 is probably attributable to a change in cross-link density and coordination numbers of Bi3+ ions. 26 26.5 27 27.5 28 28.5 29 0.55 0.6 0.65 0.7 0.75 0.8 0.85 Mole fraction of TeO2 Molarvolume(cm3 mol-1 ) 4650 4700 4750 4800 4850 4900 4950 5000 Density(kgm-3 ) Density and molar volume of TeO2.B2O3 glasses 28 28.5 29 29.5 30 30.5 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Pecahan Mol Ag2O Isipadumolar(cm3 ) 4800 4900 5000 5100 5200 5300 Ketumpatan(kg/m3 ) Density and molar volume of [(TeO2)x (B2O3)1-x)]1-y [Ag2O]y 22
  • 23. Density and Molar Volume 3500 4500 5500 6500 7500 0 20 40 60 80 Bismuth Oxide (mol%) Density(kgm-3) Dependence of density on the composition of bismuth oxide glass systems as measured by El-Adawy and Moustafa (1999) (5 - 45 mol%), Wright et al (1977) (20 – 42.5 mol%) and present works (40 – 70 mol%). 23
  • 24. Density & Molar Volume 4700 4800 4900 5000 5100 5200 5300 5400 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 Mole fraction of ZnO Density(kg/m 3 ) 22 24 26 28 30 32 34 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 Mole fraction of ZnO Molarvolume(10 -6 m 3 mol -1 ) •Similar behaviour as El- Mallawany (1993). •Addition of ZnO causes some type of structural rearrangement of the atoms (Hoppe et al. (2004). •Possibility for the alteration of the geometrical configuration upon substitution of ZnO into the tellurite glassy network. 24
  • 25. Density & Molar Volume 4700 4800 4900 5000 5100 5200 5300 5400 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 Mole fraction of ZnO Density(kg/m 3 ) 22 24 26 28 30 32 34 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 Mole fraction of ZnO Molarvolume(10 -6 m 3 mol -1 ) •The increase in density indicates zinc ions enter the glassy network •The decreases in the molar volume was due to the decrease in the bond length or inter-atomic spacing between the atoms • The stretching force constant (216 N/m – 217.5 N/m) of the bonds increase resulting in a more compact and dense glass. • Atomic Radius (Shelby, 2005). •R(Zn2+)(0.074 nm) << R(Te2+)(0.097 nm) •there is no anomalous structural change (non-linear behaviour) 25
  • 26. Elastic constants of the glasses Longitudinal modulus Shear modulus Bulk modulus Poisson’s ratio Young’s modulus Debye Temperature 2 lVL  2 sVG         22 3 4 sl VVK     22 22 2 2 sl sl VV VV      22 222 43 sl sls VV VVV E     mDt V M Np k h 3 1 4 9           3 1 33 12           lS m VV V 26
  • 27. 27 [(TeO2)65(B2O3)35]1–y[Ag2O]y glasses (Halimah et al. 2010) Pure and WO3 dopedCeO2–PbO–B2O3 glasses (Singh & Singh 2011) Figure 17 Density and molar volume of selected glass samples. Table 6 Measured density (ρ), molar volume (V), longitudinal ultrasonic velocity (vl), shear ultrasonic velocity (vs), elastic moduli, Poisson's ratio (σ), and fractal dimension (d = 4G/K ) and (E/G) ratio of (TeO2)90(AlF3)10-x(ZnO)x glasses (Sidek et al. 2009). Elastic modulus of zinc oxyfluorotellurite glasses
  • 28. Ultrasonic Wave Velocity Compositional dependence of the velocity of longitudinal and shear acoustic waves in Bi2 O3–B2 O3 glass systems. Both increase at first with increasing Bi2 O3 mol% up to a maximum at 25 mol% Bi2 O3 and then decrease as the Bi2 O3 mol% increases further. 1000 1500 2000 2500 3000 3500 4000 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Pecahan mol of Ag2O Halajuultrasonik(m/s) Compositional dependence of the velocity of longitudinal and shear acoustic waves in [(TeO2)x (B2O3)1-x)]1-y [Ag2O]y glass 1500 2000 2500 3000 3500 4000 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 Mole fraction of ZnO Velocity(m/s) Longitudinal Longitudinal Shear Shear Compositional dependence of the velocity of longitudinal and shear acoustic waves in [(ZnO)(TeO2) glass 28
  • 29. Ultrasonic Wave Velocity Lead Magnesium Chloride Phosphate Glass 29
  • 30. Elastic Modulus Dependence of longitudinal modulus on the composition of Bi2 O3–B2 O3 glass systems. One reason for this difference may come from the volume effect, in that C44 expresses the resistance of the body to deformation where no change in volume is involved, while C11 expresses the resistance where compressions and expansions are involved. 10 20 30 40 50 60 70 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Pecahan mol Ag2O Moduluskenyal(GPa) L E K G Compositional dependence of the longitudinal and shear modulus of [(TeO2)x (B2O3)1-x)]1-y [Ag2O]y glass 30
  • 31. Elastic Moduli 15 20 25 30 35 40 45 50 55 60 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 Mole fractionofZnO ElasticModuli(GPa) Longitudinal Modulus, L Young’s Modulus, E Bulk Modulus, K Shear Modulus, G 31
  • 32. Elastic Properties Mole fraction, x 0.3 0.4 0.45 0.5 0.6 Elastic stiffness (GPa) C11 C44 C12 48.9 18.0 12.9 48.8 18.0 12.7 47.5 17.4 12.7 47.3 17.5 12.3 47.3 17.2 13.0 Young's modulus, E (GPa) 43.5 43.5 42.2 42.2 41.8 Bulk modulus, B (GPa) 24.9 24.7 24.3 24.0 24.4 Poisson's ratio,  0.208 0.207 0.211 0.207 0.215 Fractal dimension 2.90 2.92 2.87 2.92 2.82 Molar volume, V (cm3/mole) 34.2 33.8 34.2 33.9 33.3 Number of atoms per volume (x1028 atoms/m3) 9.67 8.90 8.37 8.00 7.24 Debye Temperature (K) 291 275 263 255 238 The room temperature elastic properties of (PbO)x(P2O5)1-x glasses Mole fraction, y 0.04 0.06 0.07 0.1 Elastic stiffness (GPa) longitudinal, c11 shear, c44 c12 50.4 17.1 16.3 44.3 16.0 12.3 43.0 15.9 11.2 35.7 14.8 6.03 Young's modulus, E (GPa) 42.4 39.0 38.4 33.9 Bulk modulus, B (GPa) 27.6 23.0 21.8 15.9 Poisson's ratio,  0.244 0.217 0.206 0.145 Fractal dimension 2.47 2.79 2.92 3.73 Molar volume, V (cm3/mole) 33.5 33.5 33.3 33.4 Number of atoms per volume (x1028 atoms/m3) 9.60 9.65 9.72 9.78 Debye Temperature (K) 276 266 264 251 Room temperature elastic properties of (PbCl2)y(PbO.2P2O5)1-y glasses 32
  • 34. 34 Elastic properties of ZnO-TeO2 glasses (Sidek et al. 2010) 1500 2000 2500 3000 3500 4000 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Mole fraction of ZnO Velocity(m/s) 15 20 25 30 35 40 45 50 55 60 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Mole fraction of ZnO ElasticModuli(GPa) 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Mole fraction of ZnO Poisson'sRatio 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Mole fraction of ZnO Microhardness(GPa) Shear Longitudinal L E K G Ultrasonic velocities Elastic moduli Poisson’s ratio Micro-hardness
  • 35. 35 Elastic moduli of selected binary glassy materials. Elastic Moduli (GPa)  Material Density L G K E References 15Sm2O3-85P2O5 3.280 66.42 23.63 34.91 57.84 0.224 Sidek et al. (1988) 15La2O3-85P2O5 3.413 67.63 23.05 36.90 57.23 0.241 Sidek et al. (1988) 15Nd2O3-85P2O5 3.233 70.50 24.80 37.40 60.90 0.229 Senin et al. (1993) 15Bi2O3-85P2O5 4.418 56.8 19.2 31.2 47.9 0.244 Sidek et al. (2011) 20Ho2O3-80P2O5 3.327 73.1 24.7 40.1 Senin et al. (1996) 20Nd2O3-80P2O5 3.358 67.4 24.1 35.3 58.8 0.22 Sidek et al. (1993) 20Sm2O3-80P2O5 3.326 63.1 23.4 31.9 56.5 0.20 Sidek et al. (1993) 20Ce2O3-80P2O5 3.254 74.4 25.0 41.1 62.3 0.23 Sidek et al. (1993) 14Ag2O-86B2O3 2.850 44.15 13.37 26.32 Saunders et al. (1987) 20PbO-80B2O3 3.801 45.4 14.70 25.90 43.0 0.262 Azman et al. (2002) 40PbO-B2O3 4.852 76.09 25.15 42.54 63.04 0.253 Sidek et al. (2003) 40Bi2O3-B2O3 5.262 74.67 27.70 37.75 66.75 0.205 Sidek et al. (2003) 30PbO-70B2O3 4.019 71.40 22.80 41.00 57.60 0.265 Azman et al. (2002) 30PbO-70P2O5 4.135 47.30 15.70 24.00 39.20 0.252 Azman et al. (2002) 26Tb2O3-74P2O5 3.578 76.2 25.4 42.00 64.0 0.246 Senin et al. (1994) 26Ce2O3-74P2O5 3.234 72.5 24.00 40.60 60.00 0.233 Saunders et al. (2001) 26Pr2O3-74P2O5 3.338 74.3 24.3 41.9 61.1 0.257 Senin et al. (2000) 33Ag2O-67B2O3 4.030 72.18 19.17 46.61 Saunders et al. (1987) 30ZnO-70TeO2 5.211 56.06 19.39 30.21 47.92 0.236 Rosmawati et al. (2008)
  • 36. 36 Elastic moduli of selected binary glassy materials (cont) 33ZnCl2-67TeO2 4.63 50.8 15.10 30.6 39.0 0.289 El-Mallawany et al. (1998) 30V2O5-70TeO2 4.564 44.1 11.5 28.8 30.5 0.289 El-Mallawany et al. (1998) 30B2O3-70TeO2 4.89 63.62 23.33 32.51 56.48 0.21 Halimah et al. (2007) 30B2O3-70TeO2 4.78 0.21 Sidek et al.(2006) TeO2 (pure glass) 5.101 56.40 19.90 Sidek et al. (1989) TeO2 (pure glass) 5.105 59.1 20.6 31.7 50.7 0.233 El-Mallawany et al. (1998) TeO2 (pure crystal) 6.02 56.0 27.2 Arlt & Schweppe (1968) P2O5 (pure glass) 2.52 12.1 Bridge et al. (1984) SiO2 (pure glass) 2.203 30.7 Borgadus et al. (1965) So far silicate based glasses are practically well employed by engineers for optoelectronic devices development and application. However silicate glass has some disadvantages. As an alternative, more researchers are now preferred tellurite based glass to be used as a host matrix in laser applications. We also found that tellurite is the best glass host due to low melting temperature and in absence of hygroscopic properties as compared to borate and phosphate based glasses.
  • 37. Potential Application of Glassy Materials CD memory device Optical switching device Non-linear optical devices Electrochemical devices Laser host Infra-Red Fiber Optics 37
  • 38. 38
  • 39. Next-generation large-scale panels Glass substrates for LCDs Next-generation large-scale panels by contributing to form various functional films on glass substrates. 39
  • 40. …you could see what was in the fridge without opening it? …you could have a fish tank which is self cleaning? Self cleaning glass 40 When water hits a hydrophilic surface, it flattens and spreads out to form a thin sheet. Hydrophilic surface =wetting Water spreads HYDROPHOBIC (WATER HATING) When water hits a hydrophobic surface, it beads. Hydrophobic surface = beading Water beads HYDROPHILIC (WATER LOVING) Poor wetting (beading) Contact angle > 90° Good wetting Contact angle < 90°
  • 41. When water hits a hydrophilic surface, it flattens and spreads out to form a thin sheet. Hydrophilic surface =wetting Water spreads HYDROPHOBIC (WATER HATING) When water hits a hydrophobic surface, it beads. Hydrophobic surface = beading Water beads HYDROPHILIC (WATER LOVING) Poor wetting (beading) Contact angle > 90° Good wetting Contact angle < 90° 41
  • 42. SELF CLEANING GLASS THE LOTUS LEAF EFFECT The leaves of Lotus plants have the unique ability to avoid getting dirty. They are coated with wax crystals around 1 nanometre in diameter and have a special rough surface. Droplets falling onto the leaves form beads and roll off taking dirt with them, meaning the leaves are self-cleaning. Sometimes referred to as “The Lotus Leaf effect” Scientists have mimicked nature at the nanoscale to create glass surfaces that are ‘self-cleaning’ like the Lotus leaf. No more scrubbing of shower screens! Self cleaning glass Normal glass No more Spiderman window cleaner! 42
  • 43. SELF CLEANING GLASS HOW DOES IT WORK? Glass is coated with a layer of nanocrystalline titanium dioxide (TiO2). The titanium dioxide reacts to the ultraviolet (UV) component of sunlight causing a gradual break down and loosening of dirt. This is known as the ‘photocatalytic’ stage The reaction also causes the glass surface to become super hydrophilic. This forces water to spread across the surface like a sheet, rather than beading, thereby washing away the loosened debris on the surface of The glass as it falls. This is the ‘hydrophilic’ stage.
  • 44. APPLYING A MONOLAYER TO GLASS GLASS NANO COATINGS OptiView Anti-reflective glass made by Australian company Pilkington. Switchable glass changes from transparent to opaque. A nano-layer of a rod-like particle suspension is placed between two layers of glass. Under normal conditions, the suspended particles are arranged in random orientations and tend to absorb light, so that the glass panel looks frosted or opaque. But when a voltage is applied, the suspended particles align and let light pass, turning the glass clear. SWITCHABLE GLASS
  • 45.
  • 46. CONCLUSION Glass is one of the most versatile and most fascinating materials Their uniqueness in physical, optical, thermal, mechanical and chemical properties offer an almost unlimited range of applications. Ultrasonic system has been employed to characterize their elastic properties. Extensive series of investigation using borate, phosphate and tellurite based glasses have been carried out to study the effect of certain oxides into those glass formers in terms of physical properties such as density, molar volumes and elasticity.