SlideShare uma empresa Scribd logo
1 de 38
MATHS  MATHS  
PRESENTATIONPRESENTATION
GROUP MEMBERS : DRISHTI (1838)
VANDANA (1831)
DIMPY(1833)
 Operations with Matrices
 Properties of Matrix Operations
 The Inverse of a Matrix
MATRICES
 Matrix:
A=[ aij ]=
[
a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
a31 a32 a33 ⋯ a3n
⋮ ⋮ ⋮ ⋮
am1 am2 am3 ⋯ amn
]m×n
∈ M m×n
(i, j)-th entry: aij
row: m
column: n
size: m×n
 i-th row vector
ri=[ai1 ai2 ⋯ ain ]
 j-th column vector
c j=
[
c1j
c2j
⋮
cmj
]
row matrix
column matrix
 Square matrix: m = n
 Diagonal matrix:
A=diag (d1 ,d2 ,⋯ ,dn) =
[
d1 0 … 0
0 d2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ dn
]∈M n×n
 Trace:
If A=[aij ]n×n
Then Tr ( A )=a11 +a22 +⋯+ann
Ex:
A=[1 2 3
4 5 6 ] =
[r1
r2
]
=[c1 c2 c3 ]
r1=[1 2 3 ], r2=[4 5 6 ]
c1=[1
4], c2=[2
5], c3=[3
6]
A=[1 2 3
4 5 6 ]
⇒
⇒
If A=[aij ]m×n , B=[bij ]m×n
 Equal matrix:
Then A=B if and only if aij =bij ∀ 1≤i≤m, 1≤ j≤n
 Ex 1: (Equal matrix)
A=[1 2
3 4 ] B=[a b
c d ]
If A=B
Then a=1, b=2, c=3, d=4
 Matrix addition:
If A=[aij ]m×n , B=[bij ]m×n
Then A+B=[ aij ]m×n +[ bij ]m×n=[ aij +bij ]m×n
 Ex 2: (Matrix addition)
[−1 2
0 1 ]+[ 1 3
−1 2 ]=[−1+1 2+3
0−1 1+2 ]=[0 5
−1 3 ]
[1
−3
−2]+
[−1
3
2 ]=
[1−1
−3+3
−2+2] =
[0
0
0]
 Matrix subtraction:
A−B=A+(−1)B
 Scalar multiplication:
If A=[aij ]m×n , c: scalar
 Ex 3: (Scalar multiplication and matrix subtraction)
A=
[1 2 4
−3 0 −1
2 1 2 ] B=
[2 0 0
1 −4 3
−1 3 2 ]
Find (a) 3A, (b) –B, (c) 3A – B
Then cA=[caij ]m×n
(a)
3A=3
[1 2 4
−3 0 −1
2 1 2 ]
(b)
−B=(−1)
[2 0 0
1 −4 3
−1 3 2 ]
(c)
3A−B=
[3 6 12
−9 0 −3
6 3 6 ]−
[2 0 0
1 −4 3
−1 3 2 ]
Sol:
=
[3 6 12
−9 0 −3
6 3 6 ]=
[
3(1) 3(2) 3(4)
3(−3) 3(0) 3(−1)
3(2) 3(1) 3(2) ]
=
[−2 0 0
−1 4 −3
1 −3 −2 ]
=
[ 1 6 12
−10 4 −6
7 0 4 ]
 Matrix multiplication:
If A=[aij ]m×n , B=[bij ]n× p
Then AB=[ aij ]m×n [bij ]n× p=[cij ]m×p
cij=∑
k=1
n
aik bkj =ai1 b1j +ai2 b2j+⋯+ain bnj
where
 Notes: (1) A+B = B+A, (2)AB≠BA
Size of AB
[
a11 a12 ⋯ a1n
⋮ ⋮ ⋮
ai1 ai2 ⋯ ain
⋮
an1
⋮
an2
⋯
⋮
ann
][
b11 ⋯ b1j ⋯ b1n
b21 ⋮ b2j ⋯ b2n
⋮ ⋮ ⋮ ⋮
bn1 ⋯ bnj ⋯ bnn
]=
[ci1 ci2 ⋯ cij ⋯ cin
]
A=
[−1 3
4 −2
5 0 ] B=[−3 2
−4 1 ]
 Ex 4: (Find AB)
Sol:
AB=
[
(−1)(−3)+(3)(−4) (−1)(2)+(3)(1)
(4)(−3)+(−2)(−4) (4)(2)+(−2)(1)
(5)(−3)+(0)(−4) (5)(2)+(0)(1) ]
=
[−9 1
−4 6
−15 10 ]
 Matrix form of a system of linear
equations:
{
a11 x1 +a12 x2+⋯+a1n xn =b1
a21 x1 +a22 x2+⋯+a2n xn =b2
⋮
am1 x1 +am2 x2+⋯+amn xn =bm
}=
=
=
A x b
m linear equations
Single matrix equation
Ax =b
m×nn×1 m×1[
a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn
][
x1
x2
⋮
xn
]=
[
b1
b2
⋮
bm
]
⇓
 Partitioned matrices:
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=
[A11 A12
A21 A22
]
submatrix
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=
[
r1
r2
r3
]
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=[c1 c2 c3 c4 ]
 Three basic matrix operators:
(1) matrix addition
(2) scalar multiplication
(3) matrix multiplication
 Zero matrix: 0m×n
 Identity matrix of order n: I n
Then (1) A+B = B + A
(2) A + ( B + C ) = ( A + B ) + C
(3) ( cd ) A = c ( dA )
(4) 1A = A
(5) c( A+B ) = cA + cB
(6) ( c+d ) A = cA + dA
If A,B,C ∈M m×n , c,d :scalar
 Properties of matrix addition and scalar multiplication:
If A∈Mm×n , c :scalar
Then (1) A+0m×n =A
(2) A+(− A)=0m×n
(3) cA=0m×n ⇒ c= 0 or A= 0m× n
 Notes:
(1) 0m×n: the additive identity for the set of all m×n matrices
(2) –A: the additive inverse of A
 Properties of zero matrices:
If A=
[
a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn
]∈M m×n
Then AT
=
[
a11 a21 ⋯ am1
a12 a22 ⋯ am2
⋮ ⋮ ⋮ ⋮
a1n a2n ⋯ amn
]∈ M n×m
 Transpose of a matrix :
Transpose is the interchange of rows and columns of a
given matrix.
A=[2
8] (b) A=
[1 2 3
4 5 6
7 8 9 ] (c
)
A=
[0 1
2 4
1 −1]
Sol: (a)
A=[2
8] ⇒ A
T
=[2 8 ]
(b)
A=
[1 2 3
4 5 6
7 8 9 ] ⇒ AT
=
[1 4 7
2 5 8
3 6 9 ](c
)
A=
[0 1
2 4
1 −1] ⇒ AT
=[0 2 1
1 4 −1]
(a)
 Ex 8: (Find the transpose of the following matrix)
(1) ( A
T
)
T
=A
(2 ) ( A+B)
T
=A
T
+B
T
(3) (cA)T
=c ( AT
)
(4 ) ( AB )
T
=B
T
A
T
 Properties of transposes
A square matrix A is symmetric if A = AT
 Ex:
If A=
[1 2 3
a 4 5
b c 6 ] is symmetric, find a, b, c?
A square matrix A is skew-symmetric if AT
= –A
 Skew-symmetric matrix:
Sol:
A=
[1 2 3
a 4 5
b c 6 ] AT
=
[1 a b
2 4 c
3 5 6 ] a= 2,b= 3,c= 5
A=A
T
⇒
 Symmetric matrix:
If A=
[0 1 2
a 0 3
b c 0 ] is a skew-symmetric, find a, b, c?

Note:
AAT
is symmetric
Pf: (AAT
)T
=( AT
)T
AT
=AAT
AA∴
T
is symmetric
Sol:
A=
[0 1 2
a 0 3
b c 0 ] −AT
=
[0 −a −b
−1 0 −c
−2 −3 0 ]
A=−A
T
a=−1,b=−2,c=−3⇒
 Ex:
ab = ba (Commutative law for multiplication)
(1)If m≠ p, then AB is defined ,BA is undefined .
(3)If m=p=n,then AB∈M m×m ,BA∈ M m×m
(2)If m=p, m≠n, then AB∈M m×m ,BA∈ M n×n (Sizes are not the
same)
(Sizes are the same, but matrices are not equal)
 Real number:
 Matrix:
AB≠BA
m×nn× p
Three
situations:
A=[1 3
2 −1] B=[2 −1
0 2 ]
Sol:
AB=[1 3
2 −1 ][2 −1
0 2 ]=[2 5
4 −4 ]
 Note: AB≠BA
BA=[2 −1
0 2 ][1 3
2 −1]=[0 7
4 −2 ]
 Ex 4:
Sow that AB and BA are not equal for the matrices.
and
(Cancellation is not
valid)
ac=bc, c≠0
⇒ a=b (Cancellation law)
 Matrix:
AC=BC C ≠0
(1) If C is invertible, then A = B
 Real number:
A≠B(2) If C is not invertible, then
26
/61
A=[1 3
0 1 ], B=[2 4
2 3 ], C=[ 1 −2
−1 2 ]
Sol:
AC=[1 3
0 1 ][ 1 −2
−1 2 ]=[−2 4
−1 2 ]
So AC=BC
But A≠B
BC=[2 4
2 3 ][ 1 −2
−1 2 ]=[−2 4
−1 2 ]
 Ex 5: (An example in which cancellation is not valid)
Show that AC=BC
Elementary Linear Algebra: Section 2.2, p.65
A∈M n×n
If there exists a matrix B∈ M n× n such that AB=BA=In ,

Note:
A matrix that does not have an inverse is called
noninvertible (or singular).
Consider
Then (1) A is invertible (or nonsingular)
(2) B is the inverse of A
 Inverse matrix:
If B and C are both inverses of the matrix A, then B = C.
Pf: AB=I
C (AB)=CI
(CA)B=C
IB=C
B=C
Consequently, the inverse of a matrix is unique.

Notes:(1) The inverse of A is denoted by A
−1
(2) AA
−1
=A
−1
A=I
 Thm 2.7: (The inverse of a matrix is unique)
[A ∣ I ]⃗Gauss-Jordan Elimination [I ∣ A−1
]
 Ex 2: (Find the inverse of the matrix)
A=[ 1 4
−1 −3 ]
Sol:
AX=I
[ 1 4
−1 −3 ][x11 x12
x21 x22
]=[1 0
0 1 ]
[ x11+4x21 x12+4x22
−x11−3x21 −x12−3x22
]=[1 0
0 1 ]
 Find the inverse of a matrix by Gauss-Jordan
Elimination:
(1)⇒[ 1 4 ⋮ 1
−1 −3 ⋮ 0 ]⃗
r12
(1)
, r21
(−4)
[1 0 ⋮ −3
0 1 ⋮ 1 ]
(2)⇒[1 4 ⋮ 0
−1 −3 ⋮ 1 ]⃗
r12
(1)
, r21
(−4)
[1 0 ⋮ −4
0 1 ⋮ 1 ]
⇒ x11=−3, x21=1
⇒ x12=−4, x22=1
X=A−1
=
[x11 x12
x21 x22
]=[−3 −4
1 1 ] ( AX=I=AA-1
)
Thus
⇒
x11 + 4x21 1
−x11 − 3x21 0
(1)
x12 + 4x22 0
−x12 − 3x22 1
(2)
⃗r12
(1)
,r
21
(−4)
[1 0 ⋮ −3 −4
0 1 ⋮ 1 1 ]¿ A I I A−1
¿¿¿
If A can’t be row reduced to I, then A is singular.
 Note:
A=
[1 −1 0
1 0 −1
−6 2 3 ]
⃗R2−R1
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
−6 2 3 ⋮ 0 0 1]
Sol:
[A ⋮ I ] =
[1 −1 0
1 0 −1
−6 2 3
⋮
⋮
⋮
1 0 0
0 1 0
0 0 1 ]
⃗R3+6R1
[1 −1 0
0 1 −1
0 −4 3
⋮
⋮
⋮
1 0 0
−1 1 0
6 0 1 ]
⃗−R3
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
0 0 1 ⋮ −2 −4 −1 ]⃗R3+4R2
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
0 0 −1 ⋮ 2 4 1 ]
 Ex 3: (Find the inverse of the following matrix)
⃗R2+R3
[1 −1 0 ⋮ 1 0 0
0 1 0 ⋮ −3 −3 −1
0 0 1 ⋮ −2 −4 −1 ] ⃗R1+R2
[1 0 0 ⋮ −2 −3 −1
0 1 0 ⋮ −3 −3 −1
0 0 1 ⋮ −1 −4 −1 ]
So the matrix A is invertible, and its inverse is
A−1
=
[−2 −3 −1
−3 −3 −1
−2 −4 −1 ]
= [I ⋮ A−1
]
 Check:
AA−1
=A−1
A=I
(1) A
0
=I
(2) A
k
=AA⋯A⏟
k factors
(k> 0)
(3) Ar
⋅As
=Ar+s
r,s:integers
( A
r
)
s
=A
rs
(4) D=
[
d1 0 ⋯ 0
0 d2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ dn
]⇒ Dk
=
[
d1
k
0 ⋯ 0
0 d2
k
⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ dn
k ]
 Power of a square matrix:
If A is an invertible matrix, k is a positive integer, and c is a scalar
not equal to zero, then
(1) A
−1
is invertible and ( A
−1
)
−1
=A
(2) Ak
is invertible and ( Ak
)−1
=A−1
A−1
⋯A−1
⏟
k factors
=( A−1
)k
=A−k
(3) c A is invertible and (cA)−1
=
1
c
A−1
,c≠0
(4)A
T
is invertible and ( A
T
)
−1
=(A
−1
)
T
 Thm 2.8 : (Properties of inverse matrices)
 Thm 2.9: (The inverse of a product)
If A and B are invertible matrices of size n, then AB is invertible and
(AB)
−1
=B
−1
A
−1
If AB is invertible, then its inverse is unique.
So (AB)−1
=B−1
A−1
Pf:
(AB)(B−1
A−1
)=A( BB−1
) A−1
=A(I )A−1
=( AI) A−1
=AA−1
=I
(B
−1
A
−1
)( AB)=B
−1
( A
−1
A)B=B
−1
(I )B=B
−1
( IB)=B
−1
B=I

Note:
(A1 A2 A3⋯An )
−1
=An
−1
⋯A3
−1
A2
−1
A1
−1
 Thm 2.10 (Cancellation properties)
If C is an invertible matrix, then the following properties hold:
(1) If AC=BC, then A=B (Right cancellation property)
(2) If CA=CB, then A=B (Left cancellation property)
Pf:
AC=BC
(AC )C−1
=(BC)C−1
A(CC−1
)=B(CC−1
)
AI=BI
A=B
(C is invertible, so C
-1
exists)

Note:If C is not invertible, then cancellation is not valid.
 Thm 2.11: (Systems of equations with unique solutions)
If A is an invertible matrix, then the system of linear equations
Ax = b has a unique solution given by
x=A
−1
b
Pf:
( A is nonsingular)
Ax=b
A−1
Ax=A−1
b
Ix=A−1
b
x=A−1
b
This solution is unique.
If x1 and x2 were two solutions of equation Ax=b .
then Ax1 =b=Ax2
⇒ x1=x2 (Left cancellation property)

Mais conteúdo relacionado

Mais procurados

MATRICES
MATRICESMATRICES
MATRICESdaferro
 
Introduction of matrix
Introduction of matrixIntroduction of matrix
Introduction of matrixPankaj Das
 
System of linear inequalities
System of linear inequalitiesSystem of linear inequalities
System of linear inequalitiesmstf mstf
 
Lesson 5: Matrix Algebra (slides)
Lesson 5: Matrix Algebra (slides)Lesson 5: Matrix Algebra (slides)
Lesson 5: Matrix Algebra (slides)Matthew Leingang
 
presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrixNikhi Jain
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsoscar
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsKum Visal
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and DeterminantsNirmalaSolapur
 
Solving Systems of Linear Inequalities
Solving Systems of Linear InequalitiesSolving Systems of Linear Inequalities
Solving Systems of Linear Inequalitiesswartzje
 
Matrices and Determinants
Matrices and DeterminantsMatrices and Determinants
Matrices and DeterminantsSOMASUNDARAM T
 
Equations of Straight Lines
Equations of Straight LinesEquations of Straight Lines
Equations of Straight Linesitutor
 
Linear Equation in one variable - Class 8 th Maths
Linear Equation in one variable - Class 8 th MathsLinear Equation in one variable - Class 8 th Maths
Linear Equation in one variable - Class 8 th MathsAmit Choube
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equationsswartzje
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equationssaahil kshatriya
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptDrazzer_Dhruv
 
Graphs of linear equation
Graphs of linear equationGraphs of linear equation
Graphs of linear equationJunila Tejada
 

Mais procurados (20)

MATRICES
MATRICESMATRICES
MATRICES
 
Matrix Algebra seminar ppt
Matrix Algebra seminar pptMatrix Algebra seminar ppt
Matrix Algebra seminar ppt
 
Systems of linear equations; matrices
Systems of linear equations; matricesSystems of linear equations; matrices
Systems of linear equations; matrices
 
Introduction of matrix
Introduction of matrixIntroduction of matrix
Introduction of matrix
 
System of linear inequalities
System of linear inequalitiesSystem of linear inequalities
System of linear inequalities
 
Lesson 5: Matrix Algebra (slides)
Lesson 5: Matrix Algebra (slides)Lesson 5: Matrix Algebra (slides)
Lesson 5: Matrix Algebra (slides)
 
presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrix
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
EXPONENTS AND RADICALS
EXPONENTS AND RADICALSEXPONENTS AND RADICALS
EXPONENTS AND RADICALS
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
 
Solving Systems of Linear Inequalities
Solving Systems of Linear InequalitiesSolving Systems of Linear Inequalities
Solving Systems of Linear Inequalities
 
Matrices and Determinants
Matrices and DeterminantsMatrices and Determinants
Matrices and Determinants
 
Equations of Straight Lines
Equations of Straight LinesEquations of Straight Lines
Equations of Straight Lines
 
Linear Equation in one variable - Class 8 th Maths
Linear Equation in one variable - Class 8 th MathsLinear Equation in one variable - Class 8 th Maths
Linear Equation in one variable - Class 8 th Maths
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equations
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
Graphs of linear equation
Graphs of linear equationGraphs of linear equation
Graphs of linear equation
 
Introduction to matices
Introduction to maticesIntroduction to matices
Introduction to matices
 

Semelhante a Matrices - Mathematics

GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraParthDave57
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)shamimakamili
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxjyotidighole2
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And DeterminantsAngie Miller
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSRai University
 
For the following matrices, determine a cot of basis vectors for the.pdf
For the following matrices, determine a cot of basis vectors for  the.pdfFor the following matrices, determine a cot of basis vectors for  the.pdf
For the following matrices, determine a cot of basis vectors for the.pdfeyebolloptics
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma ediciónSohar Carr
 
Matrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdfMatrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdfFACTOPEDIA4
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths NoteChek Wei Tan
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integralKamel Attar
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)KarunaGupta1982
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XIIindu thakur
 

Semelhante a Matrices - Mathematics (20)

Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
 
Lemh104
Lemh104Lemh104
Lemh104
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)
 
Matrices
MatricesMatrices
Matrices
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
 
Determinants
DeterminantsDeterminants
Determinants
 
Matrices & Determinants.pdf
Matrices & Determinants.pdfMatrices & Determinants.pdf
Matrices & Determinants.pdf
 
1565 matrix01-ppt
1565 matrix01-ppt1565 matrix01-ppt
1565 matrix01-ppt
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
 
For the following matrices, determine a cot of basis vectors for the.pdf
For the following matrices, determine a cot of basis vectors for  the.pdfFor the following matrices, determine a cot of basis vectors for  the.pdf
For the following matrices, determine a cot of basis vectors for the.pdf
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 
Matrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdfMatrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdf
 
Matrix
MatrixMatrix
Matrix
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 

Mais de Drishti Bhalla

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures Drishti Bhalla
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & NetworkingDrishti Bhalla
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsDrishti Bhalla
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsDrishti Bhalla
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - JavaDrishti Bhalla
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringDrishti Bhalla
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRMDrishti Bhalla
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instructionDrishti Bhalla
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4Drishti Bhalla
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System ThreatsDrishti Bhalla
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software EngineeringDrishti Bhalla
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsDrishti Bhalla
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationDrishti Bhalla
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management SystemDrishti Bhalla
 

Mais de Drishti Bhalla (15)

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & Networking
 
Holy Rivers - Hindi
Holy Rivers - HindiHoly Rivers - Hindi
Holy Rivers - Hindi
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer Graphics
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating Systems
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - Java
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software Engineering
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRM
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instruction
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System Threats
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software Engineering
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of Algorithms
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of Computation
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management System
 

Último

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 

Último (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 

Matrices - Mathematics

  • 1. MATHS  MATHS   PRESENTATIONPRESENTATION GROUP MEMBERS : DRISHTI (1838) VANDANA (1831) DIMPY(1833)
  • 2.  Operations with Matrices  Properties of Matrix Operations  The Inverse of a Matrix MATRICES
  • 3.  Matrix: A=[ aij ]= [ a11 a12 a13 ⋯ a1n a21 a22 a23 ⋯ a2n a31 a32 a33 ⋯ a3n ⋮ ⋮ ⋮ ⋮ am1 am2 am3 ⋯ amn ]m×n ∈ M m×n (i, j)-th entry: aij row: m column: n size: m×n
  • 4.  i-th row vector ri=[ai1 ai2 ⋯ ain ]  j-th column vector c j= [ c1j c2j ⋮ cmj ] row matrix column matrix  Square matrix: m = n
  • 5.  Diagonal matrix: A=diag (d1 ,d2 ,⋯ ,dn) = [ d1 0 … 0 0 d2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ dn ]∈M n×n  Trace: If A=[aij ]n×n Then Tr ( A )=a11 +a22 +⋯+ann
  • 6. Ex: A=[1 2 3 4 5 6 ] = [r1 r2 ] =[c1 c2 c3 ] r1=[1 2 3 ], r2=[4 5 6 ] c1=[1 4], c2=[2 5], c3=[3 6] A=[1 2 3 4 5 6 ] ⇒ ⇒
  • 7. If A=[aij ]m×n , B=[bij ]m×n  Equal matrix: Then A=B if and only if aij =bij ∀ 1≤i≤m, 1≤ j≤n  Ex 1: (Equal matrix) A=[1 2 3 4 ] B=[a b c d ] If A=B Then a=1, b=2, c=3, d=4
  • 8.  Matrix addition: If A=[aij ]m×n , B=[bij ]m×n Then A+B=[ aij ]m×n +[ bij ]m×n=[ aij +bij ]m×n  Ex 2: (Matrix addition) [−1 2 0 1 ]+[ 1 3 −1 2 ]=[−1+1 2+3 0−1 1+2 ]=[0 5 −1 3 ] [1 −3 −2]+ [−1 3 2 ]= [1−1 −3+3 −2+2] = [0 0 0]
  • 9.  Matrix subtraction: A−B=A+(−1)B  Scalar multiplication: If A=[aij ]m×n , c: scalar  Ex 3: (Scalar multiplication and matrix subtraction) A= [1 2 4 −3 0 −1 2 1 2 ] B= [2 0 0 1 −4 3 −1 3 2 ] Find (a) 3A, (b) –B, (c) 3A – B Then cA=[caij ]m×n
  • 10. (a) 3A=3 [1 2 4 −3 0 −1 2 1 2 ] (b) −B=(−1) [2 0 0 1 −4 3 −1 3 2 ] (c) 3A−B= [3 6 12 −9 0 −3 6 3 6 ]− [2 0 0 1 −4 3 −1 3 2 ] Sol: = [3 6 12 −9 0 −3 6 3 6 ]= [ 3(1) 3(2) 3(4) 3(−3) 3(0) 3(−1) 3(2) 3(1) 3(2) ] = [−2 0 0 −1 4 −3 1 −3 −2 ] = [ 1 6 12 −10 4 −6 7 0 4 ]
  • 11.  Matrix multiplication: If A=[aij ]m×n , B=[bij ]n× p Then AB=[ aij ]m×n [bij ]n× p=[cij ]m×p cij=∑ k=1 n aik bkj =ai1 b1j +ai2 b2j+⋯+ain bnj where  Notes: (1) A+B = B+A, (2)AB≠BA Size of AB [ a11 a12 ⋯ a1n ⋮ ⋮ ⋮ ai1 ai2 ⋯ ain ⋮ an1 ⋮ an2 ⋯ ⋮ ann ][ b11 ⋯ b1j ⋯ b1n b21 ⋮ b2j ⋯ b2n ⋮ ⋮ ⋮ ⋮ bn1 ⋯ bnj ⋯ bnn ]= [ci1 ci2 ⋯ cij ⋯ cin ]
  • 12. A= [−1 3 4 −2 5 0 ] B=[−3 2 −4 1 ]  Ex 4: (Find AB) Sol: AB= [ (−1)(−3)+(3)(−4) (−1)(2)+(3)(1) (4)(−3)+(−2)(−4) (4)(2)+(−2)(1) (5)(−3)+(0)(−4) (5)(2)+(0)(1) ] = [−9 1 −4 6 −15 10 ]
  • 13.  Matrix form of a system of linear equations: { a11 x1 +a12 x2+⋯+a1n xn =b1 a21 x1 +a22 x2+⋯+a2n xn =b2 ⋮ am1 x1 +am2 x2+⋯+amn xn =bm }= = = A x b m linear equations Single matrix equation Ax =b m×nn×1 m×1[ a11 a12 ⋯ a1n a21 a22 ⋯ a2n ⋮ ⋮ ⋮ ⋮ am1 am2 ⋯ amn ][ x1 x2 ⋮ xn ]= [ b1 b2 ⋮ bm ] ⇓
  • 14.  Partitioned matrices: A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]= [A11 A12 A21 A22 ] submatrix A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]= [ r1 r2 r3 ] A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]=[c1 c2 c3 c4 ]
  • 15.  Three basic matrix operators: (1) matrix addition (2) scalar multiplication (3) matrix multiplication  Zero matrix: 0m×n  Identity matrix of order n: I n
  • 16. Then (1) A+B = B + A (2) A + ( B + C ) = ( A + B ) + C (3) ( cd ) A = c ( dA ) (4) 1A = A (5) c( A+B ) = cA + cB (6) ( c+d ) A = cA + dA If A,B,C ∈M m×n , c,d :scalar  Properties of matrix addition and scalar multiplication:
  • 17. If A∈Mm×n , c :scalar Then (1) A+0m×n =A (2) A+(− A)=0m×n (3) cA=0m×n ⇒ c= 0 or A= 0m× n  Notes: (1) 0m×n: the additive identity for the set of all m×n matrices (2) –A: the additive inverse of A  Properties of zero matrices:
  • 18. If A= [ a11 a12 ⋯ a1n a21 a22 ⋯ a2n ⋮ ⋮ ⋮ ⋮ am1 am2 ⋯ amn ]∈M m×n Then AT = [ a11 a21 ⋯ am1 a12 a22 ⋯ am2 ⋮ ⋮ ⋮ ⋮ a1n a2n ⋯ amn ]∈ M n×m  Transpose of a matrix : Transpose is the interchange of rows and columns of a given matrix.
  • 19. A=[2 8] (b) A= [1 2 3 4 5 6 7 8 9 ] (c ) A= [0 1 2 4 1 −1] Sol: (a) A=[2 8] ⇒ A T =[2 8 ] (b) A= [1 2 3 4 5 6 7 8 9 ] ⇒ AT = [1 4 7 2 5 8 3 6 9 ](c ) A= [0 1 2 4 1 −1] ⇒ AT =[0 2 1 1 4 −1] (a)  Ex 8: (Find the transpose of the following matrix)
  • 20. (1) ( A T ) T =A (2 ) ( A+B) T =A T +B T (3) (cA)T =c ( AT ) (4 ) ( AB ) T =B T A T  Properties of transposes
  • 21. A square matrix A is symmetric if A = AT  Ex: If A= [1 2 3 a 4 5 b c 6 ] is symmetric, find a, b, c? A square matrix A is skew-symmetric if AT = –A  Skew-symmetric matrix: Sol: A= [1 2 3 a 4 5 b c 6 ] AT = [1 a b 2 4 c 3 5 6 ] a= 2,b= 3,c= 5 A=A T ⇒  Symmetric matrix:
  • 22. If A= [0 1 2 a 0 3 b c 0 ] is a skew-symmetric, find a, b, c?  Note: AAT is symmetric Pf: (AAT )T =( AT )T AT =AAT AA∴ T is symmetric Sol: A= [0 1 2 a 0 3 b c 0 ] −AT = [0 −a −b −1 0 −c −2 −3 0 ] A=−A T a=−1,b=−2,c=−3⇒  Ex:
  • 23. ab = ba (Commutative law for multiplication) (1)If m≠ p, then AB is defined ,BA is undefined . (3)If m=p=n,then AB∈M m×m ,BA∈ M m×m (2)If m=p, m≠n, then AB∈M m×m ,BA∈ M n×n (Sizes are not the same) (Sizes are the same, but matrices are not equal)  Real number:  Matrix: AB≠BA m×nn× p Three situations:
  • 24. A=[1 3 2 −1] B=[2 −1 0 2 ] Sol: AB=[1 3 2 −1 ][2 −1 0 2 ]=[2 5 4 −4 ]  Note: AB≠BA BA=[2 −1 0 2 ][1 3 2 −1]=[0 7 4 −2 ]  Ex 4: Sow that AB and BA are not equal for the matrices. and
  • 25. (Cancellation is not valid) ac=bc, c≠0 ⇒ a=b (Cancellation law)  Matrix: AC=BC C ≠0 (1) If C is invertible, then A = B  Real number: A≠B(2) If C is not invertible, then
  • 26. 26 /61 A=[1 3 0 1 ], B=[2 4 2 3 ], C=[ 1 −2 −1 2 ] Sol: AC=[1 3 0 1 ][ 1 −2 −1 2 ]=[−2 4 −1 2 ] So AC=BC But A≠B BC=[2 4 2 3 ][ 1 −2 −1 2 ]=[−2 4 −1 2 ]  Ex 5: (An example in which cancellation is not valid) Show that AC=BC Elementary Linear Algebra: Section 2.2, p.65
  • 27. A∈M n×n If there exists a matrix B∈ M n× n such that AB=BA=In ,  Note: A matrix that does not have an inverse is called noninvertible (or singular). Consider Then (1) A is invertible (or nonsingular) (2) B is the inverse of A  Inverse matrix:
  • 28. If B and C are both inverses of the matrix A, then B = C. Pf: AB=I C (AB)=CI (CA)B=C IB=C B=C Consequently, the inverse of a matrix is unique.  Notes:(1) The inverse of A is denoted by A −1 (2) AA −1 =A −1 A=I  Thm 2.7: (The inverse of a matrix is unique)
  • 29. [A ∣ I ]⃗Gauss-Jordan Elimination [I ∣ A−1 ]  Ex 2: (Find the inverse of the matrix) A=[ 1 4 −1 −3 ] Sol: AX=I [ 1 4 −1 −3 ][x11 x12 x21 x22 ]=[1 0 0 1 ] [ x11+4x21 x12+4x22 −x11−3x21 −x12−3x22 ]=[1 0 0 1 ]  Find the inverse of a matrix by Gauss-Jordan Elimination:
  • 30. (1)⇒[ 1 4 ⋮ 1 −1 −3 ⋮ 0 ]⃗ r12 (1) , r21 (−4) [1 0 ⋮ −3 0 1 ⋮ 1 ] (2)⇒[1 4 ⋮ 0 −1 −3 ⋮ 1 ]⃗ r12 (1) , r21 (−4) [1 0 ⋮ −4 0 1 ⋮ 1 ] ⇒ x11=−3, x21=1 ⇒ x12=−4, x22=1 X=A−1 = [x11 x12 x21 x22 ]=[−3 −4 1 1 ] ( AX=I=AA-1 ) Thus ⇒ x11 + 4x21 1 −x11 − 3x21 0 (1) x12 + 4x22 0 −x12 − 3x22 1 (2)
  • 31. ⃗r12 (1) ,r 21 (−4) [1 0 ⋮ −3 −4 0 1 ⋮ 1 1 ]¿ A I I A−1 ¿¿¿ If A can’t be row reduced to I, then A is singular.  Note:
  • 32. A= [1 −1 0 1 0 −1 −6 2 3 ] ⃗R2−R1 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 −6 2 3 ⋮ 0 0 1] Sol: [A ⋮ I ] = [1 −1 0 1 0 −1 −6 2 3 ⋮ ⋮ ⋮ 1 0 0 0 1 0 0 0 1 ] ⃗R3+6R1 [1 −1 0 0 1 −1 0 −4 3 ⋮ ⋮ ⋮ 1 0 0 −1 1 0 6 0 1 ] ⃗−R3 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 0 0 1 ⋮ −2 −4 −1 ]⃗R3+4R2 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 0 0 −1 ⋮ 2 4 1 ]  Ex 3: (Find the inverse of the following matrix)
  • 33. ⃗R2+R3 [1 −1 0 ⋮ 1 0 0 0 1 0 ⋮ −3 −3 −1 0 0 1 ⋮ −2 −4 −1 ] ⃗R1+R2 [1 0 0 ⋮ −2 −3 −1 0 1 0 ⋮ −3 −3 −1 0 0 1 ⋮ −1 −4 −1 ] So the matrix A is invertible, and its inverse is A−1 = [−2 −3 −1 −3 −3 −1 −2 −4 −1 ] = [I ⋮ A−1 ]  Check: AA−1 =A−1 A=I
  • 34. (1) A 0 =I (2) A k =AA⋯A⏟ k factors (k> 0) (3) Ar ⋅As =Ar+s r,s:integers ( A r ) s =A rs (4) D= [ d1 0 ⋯ 0 0 d2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ dn ]⇒ Dk = [ d1 k 0 ⋯ 0 0 d2 k ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ dn k ]  Power of a square matrix:
  • 35. If A is an invertible matrix, k is a positive integer, and c is a scalar not equal to zero, then (1) A −1 is invertible and ( A −1 ) −1 =A (2) Ak is invertible and ( Ak )−1 =A−1 A−1 ⋯A−1 ⏟ k factors =( A−1 )k =A−k (3) c A is invertible and (cA)−1 = 1 c A−1 ,c≠0 (4)A T is invertible and ( A T ) −1 =(A −1 ) T  Thm 2.8 : (Properties of inverse matrices)
  • 36.  Thm 2.9: (The inverse of a product) If A and B are invertible matrices of size n, then AB is invertible and (AB) −1 =B −1 A −1 If AB is invertible, then its inverse is unique. So (AB)−1 =B−1 A−1 Pf: (AB)(B−1 A−1 )=A( BB−1 ) A−1 =A(I )A−1 =( AI) A−1 =AA−1 =I (B −1 A −1 )( AB)=B −1 ( A −1 A)B=B −1 (I )B=B −1 ( IB)=B −1 B=I  Note: (A1 A2 A3⋯An ) −1 =An −1 ⋯A3 −1 A2 −1 A1 −1
  • 37.  Thm 2.10 (Cancellation properties) If C is an invertible matrix, then the following properties hold: (1) If AC=BC, then A=B (Right cancellation property) (2) If CA=CB, then A=B (Left cancellation property) Pf: AC=BC (AC )C−1 =(BC)C−1 A(CC−1 )=B(CC−1 ) AI=BI A=B (C is invertible, so C -1 exists)  Note:If C is not invertible, then cancellation is not valid.
  • 38.  Thm 2.11: (Systems of equations with unique solutions) If A is an invertible matrix, then the system of linear equations Ax = b has a unique solution given by x=A −1 b Pf: ( A is nonsingular) Ax=b A−1 Ax=A−1 b Ix=A−1 b x=A−1 b This solution is unique. If x1 and x2 were two solutions of equation Ax=b . then Ax1 =b=Ax2 ⇒ x1=x2 (Left cancellation property)