SlideShare uma empresa Scribd logo
1 de 23
Community Teaching Plan: Teaching Experience Paper
1
Unsatisfactory
0.00%
2
Less than Satisfactory
75.00%
3
Satisfactory
83.00%
4
Good
94.00%
5
Excellent
100.00%
80.0 %Content
30.0 %Comprehensive Summary of Teaching Plan With
Epidemiological Rationale for Topic
Summary of community teaching plan is not identified or
missing.
Summary of community teaching plan is incomplete.
Summary of community teaching plan is offered but some
elements are vague.
Focus of community teaching is clear with a detailed summary
of each component. Rationale is not provided.
Focus of community teaching is clear, consistent with
Functional Health Patterns (FHP) assessment findings and
supported by explanation of epidemiological rationale.
50.0 %Evaluation of Teaching Experience With Discussion of
Community Response to Teaching Provided. Areas of Strength
and Areas of Improvement Described
Evaluation of teaching experience is omitted or incomplete.
Evaluation of teaching experience is unclear and/or discussion
of community response to teaching is missing.
Evaluation of teaching experience is provided with a brief
discussion of community response to teaching.
A detailed evaluation of teaching experience with discussion of
community response to teaching and areas of
strength/improvement is provided.
Comprehensive evaluation of teaching experience with
discussion of community response provided along with a
detailed description of barriers and strategies to overcome
barriers is provided.
15.0 %Organization and Effectiveness
5.0 %Thesis Development and Purpose
Paper lacks any discernible overall purpose or organizing claim.
Thesis is insufficiently developed and/or vague; purpose is not
clear.
Thesis is apparent and appropriate to purpose.
Thesis is clear and forecasts the development of the paper. It is
descriptive and reflective of the arguments and appropriate to
the purpose.
Thesis is comprehensive; contained within the thesis is the
essence of the paper. Thesis statement makes the purpose of the
paper clear.
5.0 %Paragraph Development and Transitions
Paragraphs and transitions consistently lack unity and
coherence. No apparent connections between paragraphs are
established. Transitions are inappropriate to purpose and scope.
Organization is disjointed.
Some paragraphs and transitions may lack logical progression of
ideas, unity, coherence, and/or cohesiveness. Some degree of
organization is evident.
Paragraphs are generally competent, but ideas may show some
inconsistency in organization and/or in their relationships to
each other.
A logical progression of ideas between paragraphs is apparent.
Paragraphs exhibit a unity, coherence, and cohesiveness. Topic
sentences and concluding remarks are appropriate to purpose.
There is a sophisticated construction of paragraphs and
transitions. Ideas progress and relate to each other. Paragraph
and transition construction guide the reader. Paragraph structure
is seamless.
5.0 %Mechanics of Writing (includes spelling, punctuation,
grammar, language use)
Surface errors are pervasive enough that they impede
communication of meaning. Inappropriate word choice and/or
sentence construction are used.
Frequent and repetitive mechanical errors distract the reader.
Inconsistencies in language choice (register), sentence
structure, and/or word choice are present.
Some mechanical errors or typos are present, but are not overly
distracting to the reader. Correct sentence structure and
audience-appropriate language are used.
Prose is largely free of mechanical errors, although a few may
be present. A variety of sentence structures and effective
figures of speech are used.
Writer is clearly in command of standard, written, academic
English.
5.0 %Format
2.0 %Paper Format
Template is not used appropriately or documentation format is
rarely followed correctly.
Template is used, but some elements are missing or mistaken;
lack of control with formatting is apparent.
Template is used, and formatting is correct, although some
minor errors may be present.
Template is fully used; There are virtually no errors in
formatting style.
All format elements are correct.
3.0 %Research Citations (In-text citations for paraphrasing and
direct quotes, and reference page listing and formatting, as
appropriate to assignment)
No reference page is included. No citations are used.
Reference page is present. Citations are inconsistently used.
Reference page is included and lists sources used in the paper.
Sources are appropriately documented, although some errors
may be present.
Reference page is present and fully inclusive of all cited
sources. Documentation is appropriate and style guide is usually
correct.
In-text citations and a reference page are complete. The
documentation of cited sources is free of error.
100 %Total Weightage
Lecture 4
(Sampling basics and Hypothesis test)
This week we turn from descriptive statistics to inferential
statistics and making decisions
about our populations based on the samples we have. For
example, our class case research
question is really asking if in the entire company population of
employees, do males and females
receive the same pay for doing equal work. However, we are not
analyzing the entire
population, instead we have a sample of 25 males and 25
females to work with.
This brings us to the idea of sampling – taking a small
group/sample from a larger
population. To paraphrase, not all samples are created equal.
For example, if you wanted to
study religious feelings in the United States, would you only
sample those leaving a
fundamentalist church on a Wednesday? While this is a
legitimate element of US religions, it
does not represent the entire range of religious views – it is
representative of only a portion of the
US population, and not the entire population.
The key to ensuring that sample descriptive statistics can be
used as inferential statistics –
sample results that can be used to infer the characteristics (AKA
parameters) of a population – is
have a random sample of the entire population. A random
sample is one where, at the start,
everyone in the population has the same chance of being
selected. There are numerous ways to
design a random sampling process, but these are more of a
research class concern than a
statistical class issue. For now, we just need to make certain
that the samples we use are
randomly selected rather than selected with an intent of
ensuring desired outcomes are achieved.
The issue about using samples that students often new to
statistics is that the sample
statistic values/outcomes will rarely be exactly the same as the
population parameters we are
trying to estimate. We will have, for each sample, some
sampling error, the difference between
the actual and the sample result. Researchers feel that this
sampling error is generally small
enough to use the data to make decisions about the population
(Lind, Marchel, & Wathen,
2008).
While we cannot tell for any given sample exactly what this
difference is, we can
estimate the maximum amount of the error. Later, we will look
at doing this; for now, we just
need to know that this error is incorporated into the statistical
test outcomes that we will be
studying.
Once we have our random sample (and we will assume that our
class equal pay case
sample was selected randomly), we can start with our analysis.
After developing the descriptive
statistics, we start to ask questions about them. In examining a
data set, we need to not only
identify if important differences exist or not but also to identify
reasons differences might exist.
For our equal pay question, it would be legal to pay males and
females different salaries if, for
example, one gender performed the duties better, or had more
required education, or have more
seniority, etc. Equal pay for equal work, as we are beginning to
see, is more complex than a
simple single question about salary equality. As we go thru the
class, we will be able to answer
increasingly more complex questions. For this week, we will
stay with questions about
involving ways to sort our salary results – looking for
differences might exist.
Some of these questions for this week with our equal pay case
could include:
• Could the means for both males and females be the same, and
the observed difference
be due to sampling error only?
• Could the variances for the males and female be the same
(AKA statistically equal)?
• Could salaries per grade be statistically equal?
• Could salaries per degree (undergraduate and graduate) be the
same?
• Etc.
Hypothesis Testing
As we might expect, research and statistics have a set
procedure/process on how to go
about answering these questions. The hypothesis testing
procedure is designed to ensure that
data is analyzed in a consistent and recognized fashion so
everyone can accept the outcome.
Statistical tests focus on differences – is this difference large
enough to be significant,
that is not simply a sampling error? If so, we say the difference
is statistically significant; if not,
the difference is not considered statistically significant. This
phrasing is important as it is easy to
measure a difference from some point, it is much harder to
measure “things are different.” It is
that pesky sampling error that interferes with assessing
differences directly.
Before starting the hypothesis test, we need to have a clear
research question. The
questions above are good examples, as each clearly asks if some
comparison is statistically equal
or not. Once we have a clear question – and a randomly drawn
sample – we can start the
hypothesis testing procedure. The procedure itself has five
steps:
• Step 1: State the null and alternate hypothesis
• Step 2: Form the decision rule
• Step 3: Select the appropriate statistical test
• Step 4: Perform the analysis
• Step 5: Make the decision, and translate the outcome into an
answer to the initial
research question.
Step 1. The null hypothesis is the “testable” claim about the
relationship between the
variables. It always makes the claim of no difference exists in
the populations. For the question
of male and female salary equality, it would be: Ho: Male mean
salary = Female mean salary.
If this claim is found not to be correct, then we would accept
the alternate hypothesis claim: Ha:
Male salary mean =/= (not equal) Female salary mean. (Note,
some alternate ways of phrasing
these exist, and we will cover them shortly. For now, let’s just
go with this format.)
Step 2. This step involves selecting the decision rule for
rejecting the null hypothesis
claim. This will be constant for our class – we will reject the
null hypothesis when the p-value is
equal to or less than 0.05 (this probability is called alpha).
Other common values are .1, and .01
– the more severe the consequences of being wrong if we reject
the null, the smaller the value of
alpha we select. Recall that we defined the p-value last week as
the probability of exceeding a
value, the value in this case would be the statistical outcome
from our test.
Step 3. Selecting the appropriate statistical test is the next step.
We start with a question
about mean equality, so we will be using the T-test – the most
appropriate test to determine if
two population means are equal based upon sample results.
Step 4. Performing the analysis comes next. Fortunately for us,
we can do all the
arithmetic involved with Excel. We will go over how to select
and run the appropriate T-test
below.
Step 5. Interpret the test results, making a decision on rejecting
or not rejecting the null
hypothesis, and using this outcome to answer the research
question is the final step. Excel output
tables provide all the information we need to make our decision
in this step.
Step 1: Setting up the hypothesis statements
In setting up a hypothesis test for looking at the male and
female means, there are
actually three questions we could ask and associated hypothesis
statements in step 1.
1. Are male and female mean salaries equal?
a. Ho: Male mean salary = Female mean salary
b. Ha: Male mean salary =/= Female mean salary
2. Is the male mean salary equal to or greater than the Female
mean salary?
a. Ho: Male mean salary => Female mean salary
b. Ha: Male mean salary < Female mean salary
3. Is the male salary equal to or less than the female mean
salary?
a. Ho: Male mean salary <= Female mean salary
b. Ha: Male mean salary > Female mean salary
While they appear similar each answers a different question. We
cannot, for example,
take the first question, determine the means are not equal and
then say that, for example, the
male mean is greater than the female mean because the sample
results show this. Our statistical
test did not test for this condition. If we are interested in a
directional difference, we need to use
a directional set of hypothesis statements as shown in
statements 2 and 3 above.
Rules. There are several rules or guidelines in developing the
hypothesis statements for
any statistical test.
1. The variables must be listed in the same order in both claims.
2. The null hypothesis must always contain the equal (=) sign.
3. The null can contain an equal (=), equal to or less than (<=)
or equal to or greater than
(=>) claim.
4. The null and alternate hypothesis statement must, between
them, account for all
possible actual comparisons outcomes. So, if the null has the
equal (=) claim, the
alternate must contain the not equal (=/= or ≠) statement. If the
null has the equal or
less than (<= or ≤) claim, the alternate must contain the greater
than (>) claim.
Finally, if the null has the equal to or greater (=> or ≥) claim,
the null must contain
the less than (<) claim.
Deciding which pair of statements to use depends on the
research question being asked –
which is why we always start with the question. Look at the
research question being asked; does
it contain words indicating a simple equality (means are equal,
the same, etc.) or inequality (not
equal, different, etc.), if so we have the first example Ho:
variable 1 mean = variable 2 mean, Ha:
variable 1 mean =/= variable 2 mean.
If the research question implies a directional difference (larger,
greater, exceeds,
increased, etc. or smaller, less than, reduced, etc.) then it is
often easier to use the question to
frame the alternate hypothesis and back into the null. For
example, the question is the male
mean salary greater than the female mean salary would lead to
an alternate of exactly what was
said (Ha: Male salary mean > Female salary mean) and the
opposite null (Male salary mean <=
Female salary mean).
Step 2: Decision Rule
Once we have our hypothesis statements, we move on to
deciding the level of evidence
that will cause us to reject the null hypothesis. Note, we always
test the null hypothesis, since
that is where our claim of equality lies. And, our decision is
either reject the null or fail to reject
the null. If the latter, we are saying that the alternate hypothesis
statement is the more accurate
description of the relationship between the two variable
population means. We never accept the
alternate.
When we perform a statistical test; we are in essence asking if,
based on the evidence we
have is, the difference we observe be large enough to have been
caused by something other than
chance or is it due to sampling error?
A statistical test gives us a statistic as a result. We know the
shape of the statistical
distribution for each type of test, therefore we can easily find
the probability of exceeding this
test value. Remember we called this the p-value.
Now all we need to decide is what is an acceptable level of
chance – that is, when would
the outcome be so rare that we would not expect to see it purely
by chance sampling error alone?
Most researchers agree that if the p-value is 5% (.05) or less
than, then chance is not the cause of
the observed difference, something else must be responsible.
This decision point is called alpha.
Other values of alpha frequently used are 10% (often used in
marketing tests) and 1% (frequently
used in medical studies). The smaller the chosen alpha is, the
more serious the error is in
rejecting the null when we should not have.
For our analysis, we will use an alpha of .05 for all our tests.
Final Point
You may have noticed that we have two basic types of
hypothesis statements – those
testing equality and those testing directional differences. This
leads to two different types of
statistical tests – the two-tail and the one-tail. In the one-tail
test, the entire value of alpha is
focused on the distribution tail – either the right or left tail
depending upon the phrasing of the
alternate hypothesis. A neat hint, the arrow head in the alternate
hypothesis shows which tail the
result needs to be in to reject the null.
In the case of the two-tail test (equality), we do not care if one
variable is bigger or
smaller than the other, only that they differ. This means that the
rejection statistic could be in
either tail, the right or left. Since the reject region is split into
two areas, we need to split alpha
into these areas – so with a two-tail test, we use alpha/2 as the
comparison with our p-value (e.g.,
0.05/2 = 0.025). The example in Lecture 5 will review this in
more detail.
References
Lind, D. A., Marchel, W. G., & Wathen, S. A. (2008).
Statistical Techniques in Business &
Finance. (13th Ed.) Boston: McGraw-Hill Irwin.
Lecture 5
The T-Test
In the previous lecture, we introduced the hypothesis testing
procedure, and developed
the first two steps of a statistical test to determine if male and
female mean salaries could be
equal in the population – where our differences were caused
simply by sampling errors. This
lecture continues with this example by completing the final
three steps. It also introduces our
first statistical test, the t-test for mean equality.
Last week we looked at the normal curve and noted several of
its characteristics, such as
mean = median = mode, symmetrical around the mean, curve
height drops off the further the
score gets from the mean (meaning scores further from the mean
are less likely to occur). Our
first statistical test, the t-test, is based on a population that is
distributed normally. The t-test is
used when we do not have the population variance value – this
is the situation every time we use
a sample to make decisions about their related populations.
While the t-test has several different versions, we will focus on
the most commonly used
form – the two sample test for mean equality assuming equal
variance. When we are testing
measures for mean equality, it is fairly rare for the variances to
be much difference, and the
observed difference is often merely sample error. (In Lecture 6,
we will revisit this assumption.)
The logic of the test is that the difference between mean values
divided by a measure of
this difference’s variation will provide a t statistic that is
distributed normally, with the mean
equaling 0 and the standard deviation equaling 1. This outcome
can then be tested to see what
the likelihood is that we would get a value this large or larger
purely by chance – our old friend
the p-value. If this p-value exceeds our decision criteria, alpha,
then we reject the null
hypothesis claim of no difference (Lind, Marchel, & Wathen,
2008).
Setting up the t-test
Before selecting any test from Excel, the data needs to be set
up. For the t-test, there are
a couple of steps needed. First, copy the data you want to first
set up the data. In our question
about male and female salaries, copy the gender variable
column from the data page to a new
worksheet page (the recommendation is on the week 2 tab) and
paste it to the right of the
questions (such as in column T), then copy and paste the salary
values and paste them next to the
gender data. Next, sort both columns by the gender column –
this will give you the salary data
sorted by gender. Then, in column V place the label/word
Males, and in column W place the
label Females. Now copy the male salaries and paste them under
the Male label, and do the
same for the female salaries and the female label. The data is
now set up for easy entry into the
T-test data entry section.
The t-test is found in the Analysis Toolpak that was loaded into
your Excel program last
week. To find it, click on the Data button in the top ribbon, then
on the Data Analysis link in the
Analyze box at the right, then scroll down to the T-test: Two-
Sample Assuming Equal Variances.
For assistance in setting up the t-test, please see the discussion
in the Week 2 Excel Help lecture.
Interpreting the T-test Output
The t-test output contains a lot of information, and not all of it
is needed to interpret the
result. The important elements of the t-test outcome will be
shown with an example for our
research case question.
Equal Pay Example - continued
In Lecture 4 we set up the first couple of steps for our testing of
the research question: Do
males and females receive equal pay for equal work? Our first
examination of the data we have
for answering this question involves determining if the average
salaries are the same.
Here is the completed hypothesis test for the question: Is the
male average salary equal to
the female average salary?
Step 1. Ho: Male mean salary = female mean salary
Ha: Male mean salary ≠ female mean salary
Step 2. Reject the null if the p-value is < (less than) alpha = .05.
Step 3. The selected test is the Two-Sample T-test assuming
equal variances.
Step 4. The test results are below. The screen shot shows output
table.
Step 5. Interpretation and conclusions.
The first step is to ensure we have all of the correct data. We
see that we have 25 males
and females in the Observations row, and that the respective
means are equal to what we earlier
calculated.
The calculated t statistic is 2.74 (rounded). We have two ways
to determine if our result
rejects or fails to reject the null hypothesis; both involve the
two-tail rows, as we have a two tail
test (equal or not equal hypothesis statements). The first is a
comparison of the t-values – if the
critical t of 2.74 (rounded) is greater than the T-Critical two-tail
value of 2.01, we reject the null
hypothesis. The second way is to compare the p-value with our
criteria of alpha = .05.
Remember, since this is a two-tail test, the alpha for each tail is
half of the overall alpha or .025.
If the p-value (shown as P(T<=t) two -tail value of 0.0085 is
less than our one tail alpha (.025)
then we reject the null hypothesis. Note: at times Excel will
report the p-value in an E format,
such as 3.45E-04. This is called an Exponent format, and is the
same as 3.45 * 10-04. This
means move the decimal point 4 places to the left, making
3.45E-04 = 0.000345. Virtually any
p-value reported with an E-xx form will be less than our alpha
of 0.05 (which would be 5E-02).
Since we rejected the null hypothesis in both approaches (and
both will always provide
the same outcome), we can answer our question with: No - the
male and female mean salaries are
not equal.
Note that for this set of data, we would have rejected the null
for a one-tail test if and
only if the null hypothesis had been: Male mean salary is <=
Female mean salary and the
alternate was Male mean salary is > Female mean salary. The
arrow in the alternate points to the
positive/right tail and that is where the calculated t-statistic is.
So, even if the p-value is smaller
than alpha in a one tail test, we need to ensure the t-statistic is
in the correct tail for rejection.
References
Lind, D. A., Marchel, W. G., & Wathen, S. A. (2008).
Statistical Techniques in Business &
Finance. (13th Ed.) Boston: McGraw-Hill Irwin.
Lecture 6
(Additional information on t-tests and hypothesis testing)
Lecture 5 focused on perhaps the most common of the t-tests,
the two sample assuming
equal variance. There are other versions as well; Excel lists two
others, the two sample assuming
unequal variance and the paired t-test. We will end with some
comments about rejecting the null
hypothesis.
Choosing between the t-test options
As the names imply each of the three forms of the t-test deal
with different types of data
sets. The simplest distinction is between the equal and unequal
variance tests. Both require that
the data be at least interval in nature, come from a normally
distributed population, and be
independent of each other – that is, collected from different
subjects.
The F-test for variance.
To determine if the population variances of two groups are
statistically equal – in order to
correctly choose the equal variance version of the t-test – we
use the F statistic, which is
calculated by dividing one variance by the other variance. If the
outcome is less than 1.0, the
rejection region is in the left tail; if the value is greater than
1.0, the rejection region is in the
right tail. In either case, Excel provides the information we
need.
To perform a hypothesis test for variance equality we use
Excel’s F-Test Two-Sample for
Variances found in the Data Analysis section under the Data
tab. The test set-up is very similar
to that of the t-test, entering data ranges, checking Labels box if
they are included in the data
ranges, and identifying the start of the output range. The only
unique element in this test is the
identification of our alpha level.
Since we are testing for equality of variances, we have a two
sample test and the rejection
region is again in both tails. This means that our rejection
region in each tail is 0.25. The F-test
identifies the p-value for the tail the result is in, but does not
give us a one and two tail value,
only the one tail value. So, compare the calculated p-value
against .025 to make the rejection
decision. If the p-value is greater than this, we fail to reject the
null; if smaller, we reject the null
of equal variances.
Excel Example. To test for equality between the male and
female salaries in the
population, we set up the following hypothesis test.
Research question: Are the male and female population
variances for salary equal?
Step 1: Ho: Male salary variance = Female salary variance
Ha: Male salary variance ≠ Female salary variance
Step 2: Reject Ho if p-value is less than Alpha = 0.025 for one
tail.
Step 3: Selected test is the F-test for variance
Step 4: Conduct the test
Step 5: Conclusion and interpretation. The test resulted in an F-
value less than 1.0, so the
statistic is in the left tail. Had we put Females as the first
variable we would have gotten a right
tail F-value greater than 1.0. This has no bearing on the
decision. The F value is larger than the
critical F (which is the value for a 1-tail probability of 0.25 – as
that was entered for the alpha
value).
So, since our p-value (.44 rounded) is > .025 and/or our F (0.94
rounded) is greater than
our F Critical, we fail to reject the null hypothesis of no
differences in variance. The correct ttest
would be the two-sample T-test assuming equal variances.
Other T-tests.
We mentioned that Excel has three versions of the t-test. The
equal and unequal variance
versions are set up in the same way and produce very similar
output tables. The only difference
is that the equal variance version provides an estimate of the
common variation called pooled
variance while this row is missing in the unequal variance
version.
A third form of the t-test is the T-Test: Paired Two Sample for
Means. A key
requirement for the other versions of the t-test is that the data
are independent – that means the
data are collected on different groups. In the paired t-test, we
generally collect two measures on
each subject. An example of paired data would be a pre- and
post-test given to students in a
statistics class. Another example, using our class case study
would the comparing the salary and
midpoint for each employee – both are measured in dollars and
taken from each person. An
example of NON-pared data, would the grades of males and
females at the end of a statistics
class. The paired t-test is set up in the same way as the other
two versions. It provides the
correlation (a measure of how closely one variable changes
when another does – to be covered
later in the class) coefficient as part of its output.
An Excel Trick. You may have noticed that all of the Excel t-
tests are for two samples,
yet at times we might want to perform a one-sample test, for
example quality control might want
to test a sample against a quality standard to see if things have
changed or not. Excel does not
expressly allow this. BUT, we can do a one-sample test using
Excel.
The reason is a bit technical, but boils down to the fact that the
two-sample unequal
variance formula will reduce to the one-sample formula when
one of the variables has a variance
equal to 0. So using the unequal variance t-test, we enter the
variable we are interested – such as
salary – as variable one and the hypothesized value we are
testing against – such as 45 for our
case – as variable two, ensuring that we have the same number
of variables in each column.
Here is an example of this outcome.
Research question: Is the female population salary mean = 45?
Step 1: Ho: Female salary mean = 45
Ha: Female salary mean ≠ 45
Step 2: Reject the null hypothesis is less than Alpha = 0.05
Step 3: Selected test is the two sample unequal variance t-test
Step 4: Conduct the test
Step 5: Conclusions and Interpretation. Since the two tail p-
value is greater than (>) .025
and/or the absolute value of the t-statistic is less than the
critical two tail t value, we fail to reject
the null hypothesis. Our research question answer is that, based
upon this sample, the overall
female salary average could equal 45.
Miscellaneous Issues on Hypothesis Testing
Errors. Statistical tests are based on probabilities, there is a
possibility that we could
make the wrong decision in either rejecting or failing to reject
the null hypothesis. Rejecting the
null hypothesis when it is true is called a Type I error.
Accepting (failing to reject) the null when
it is false is called a Type II error.
Both errors are minimized somewhat by increasing the sample
size we work with. A type
I error is generally considered the more severe of the two
(imagine saying a new medicine works
when it does not), and is managed by the selection of our alpha
value – the smaller the alpha, the
harder it is to reject the null hypothesis (or, put another way,
the more evidence is needed to
convince us to reject the null). Managing the Type II error
probability is slightly more
complicated and is dealt with in more advanced statistics class.
Choosing an alpha of .05 for
most test situations has been found to provide a good balance
between these two errors.
Reason for Rejection. While we are not spending time on the
formulas behind our
statistical outcomes, there is one general issue with virtually all
statistical tests. A larger sample
size makes it easier to reject the null hypothesis. What is a non-
statistically significant outcome
based upon a sample size of 25, could very easily be found
significant with a sample size of, for
example, 25,000. This is one reason to be cautious of very large
sample studies – far from
meaning the results are better, it could mean the rejection of the
null was due to the sample size
and not the variables that were being tested.
The effect size measure helps us investigate the cause of
rejecting the null. The name is
somewhat misleading to those just learning about it; it does
NOT mean the size of the difference
being tested. The significance of that difference is tested with
our statistical test. What it does
measure is the effect the variables had on the rejection (that is,
is the outcome practically
significant and one we should make decisions using) versus the
impact of the sample size on the
rejection (meaning the result is not particularly meaningful in
the real world).
For the two-sample t-test, either equal or unequal variance, the
effect size is measured by
Cohen’s D. Unfortunately, Excel does not yet provide this
calculation automatically, however it
is fairly easy to generate.
Cohen’s D = (absolute value of the difference between the
means)/the standard deviation of both
samples combined.
Note: the total standard deviation is not given in the t-test
outputs, and is not the same as the
square root of the pooled variance estimate. To get this value,
use the fx function stdev.s on the
entire data set – both samples at the same time.
Interpreting the effect size outcome is fairly simple. Effect sizes
are generally between 0
and 1. A large effect (a value around .8 or larger) means the
variables and their interactions
caused the rejection of the null, and the result has a lot of
practical significance for decision
making. A small effect (a value around .2 or less) means the
sample size was more responsible
for the rejection decision than the variable outcomes. The
medium effect (values around .5) are
harder to interpret and would suggest additional study (Tanner
& Youssef-Morgan, 2013).
References
Lind, D. A., Marchel, W. G., & Wathen, S. A. (2008).
Statistical Techniques in Business &
Finance. (13th Ed.) Boston: McGraw-Hill Irwin.
Tanner, D. E. & Youssef-Morgan, C. M. (2013). Statistics for
Managers. San Deigeo, CA:
Bridgepoint Education.
Community Teaching Plan Teaching Experience Paper 1Unsatisf.docx

Mais conteúdo relacionado

Semelhante a Community Teaching Plan Teaching Experience Paper 1Unsatisf.docx

Attitude, Legislation, and Litigation 1 Unsatisf.docx
Attitude, Legislation, and Litigation 1 Unsatisf.docxAttitude, Legislation, and Litigation 1 Unsatisf.docx
Attitude, Legislation, and Litigation 1 Unsatisf.docxikirkton
 
Apply Ethical framework in.docx
Apply Ethical framework in.docxApply Ethical framework in.docx
Apply Ethical framework in.docxwrite22
 
Rough Draft Quantitative Research Critique and Ethical Considerati.docx
Rough Draft Quantitative Research Critique and Ethical Considerati.docxRough Draft Quantitative Research Critique and Ethical Considerati.docx
Rough Draft Quantitative Research Critique and Ethical Considerati.docxSUBHI7
 
Requirements of a Managed Care Executive Essay.pdf
Requirements of a Managed Care Executive Essay.pdfRequirements of a Managed Care Executive Essay.pdf
Requirements of a Managed Care Executive Essay.pdf4934bk
 
Rough Draft Qualitative Research Critique and Ethical Consideratio.docx
Rough Draft Qualitative Research Critique and Ethical Consideratio.docxRough Draft Qualitative Research Critique and Ethical Consideratio.docx
Rough Draft Qualitative Research Critique and Ethical Consideratio.docxSUBHI7
 
Gibbs’ CycleGibbs’ cycle is a reflective model which helps you.docx
Gibbs’ CycleGibbs’ cycle is a reflective model which helps you.docxGibbs’ CycleGibbs’ cycle is a reflective model which helps you.docx
Gibbs’ CycleGibbs’ cycle is a reflective model which helps you.docxshericehewat
 
VARK Analysis Paper.docx
VARK Analysis Paper.docxVARK Analysis Paper.docx
VARK Analysis Paper.docxwrite5
 
Identify a research or article that focuses.docx
Identify a research or article that focuses.docxIdentify a research or article that focuses.docx
Identify a research or article that focuses.docxwrite4
 
Strategic Management and Organizational Change 1Unsatisfacto.docx
Strategic Management and Organizational Change 1Unsatisfacto.docxStrategic Management and Organizational Change 1Unsatisfacto.docx
Strategic Management and Organizational Change 1Unsatisfacto.docxdessiechisomjj4
 
SOCI 4387 Capstone Seminar Spring 2020 Due date Sa.docx
SOCI 4387 Capstone Seminar       Spring 2020 Due date Sa.docxSOCI 4387 Capstone Seminar       Spring 2020 Due date Sa.docx
SOCI 4387 Capstone Seminar Spring 2020 Due date Sa.docxrosemariebrayshaw
 
Rubic_Print_FormatCourse CodeClass CodeNRS-429VNNRS-429VN-O505VARK.docx
Rubic_Print_FormatCourse CodeClass CodeNRS-429VNNRS-429VN-O505VARK.docxRubic_Print_FormatCourse CodeClass CodeNRS-429VNNRS-429VN-O505VARK.docx
Rubic_Print_FormatCourse CodeClass CodeNRS-429VNNRS-429VN-O505VARK.docxdaniely50
 
Top of Form 1VARK Analysis Paper 1Unsatisf.docx
Top of Form 1VARK Analysis Paper 1Unsatisf.docxTop of Form 1VARK Analysis Paper 1Unsatisf.docx
Top of Form 1VARK Analysis Paper 1Unsatisf.docxturveycharlyn
 
Family Health AssessmentSelect a family to complete a family healt.docx
Family Health AssessmentSelect a family to complete a family healt.docxFamily Health AssessmentSelect a family to complete a family healt.docx
Family Health AssessmentSelect a family to complete a family healt.docxPOLY33
 
Benchmark - Evidence-Based Practice Project—Paper on Diabetes .docx
Benchmark - Evidence-Based Practice Project—Paper on Diabetes .docxBenchmark - Evidence-Based Practice Project—Paper on Diabetes .docx
Benchmark - Evidence-Based Practice Project—Paper on Diabetes .docxlascellesjaimie
 

Semelhante a Community Teaching Plan Teaching Experience Paper 1Unsatisf.docx (16)

Attitude, Legislation, and Litigation 1 Unsatisf.docx
Attitude, Legislation, and Litigation 1 Unsatisf.docxAttitude, Legislation, and Litigation 1 Unsatisf.docx
Attitude, Legislation, and Litigation 1 Unsatisf.docx
 
Apply Ethical framework in.docx
Apply Ethical framework in.docxApply Ethical framework in.docx
Apply Ethical framework in.docx
 
Rough Draft Quantitative Research Critique and Ethical Considerati.docx
Rough Draft Quantitative Research Critique and Ethical Considerati.docxRough Draft Quantitative Research Critique and Ethical Considerati.docx
Rough Draft Quantitative Research Critique and Ethical Considerati.docx
 
Requirements of a Managed Care Executive Essay.pdf
Requirements of a Managed Care Executive Essay.pdfRequirements of a Managed Care Executive Essay.pdf
Requirements of a Managed Care Executive Essay.pdf
 
Rough Draft Qualitative Research Critique and Ethical Consideratio.docx
Rough Draft Qualitative Research Critique and Ethical Consideratio.docxRough Draft Qualitative Research Critique and Ethical Consideratio.docx
Rough Draft Qualitative Research Critique and Ethical Consideratio.docx
 
DetailsComplete .docx
DetailsComplete .docxDetailsComplete .docx
DetailsComplete .docx
 
DetailsComplete.docx
DetailsComplete.docxDetailsComplete.docx
DetailsComplete.docx
 
Gibbs’ CycleGibbs’ cycle is a reflective model which helps you.docx
Gibbs’ CycleGibbs’ cycle is a reflective model which helps you.docxGibbs’ CycleGibbs’ cycle is a reflective model which helps you.docx
Gibbs’ CycleGibbs’ cycle is a reflective model which helps you.docx
 
VARK Analysis Paper.docx
VARK Analysis Paper.docxVARK Analysis Paper.docx
VARK Analysis Paper.docx
 
Identify a research or article that focuses.docx
Identify a research or article that focuses.docxIdentify a research or article that focuses.docx
Identify a research or article that focuses.docx
 
Strategic Management and Organizational Change 1Unsatisfacto.docx
Strategic Management and Organizational Change 1Unsatisfacto.docxStrategic Management and Organizational Change 1Unsatisfacto.docx
Strategic Management and Organizational Change 1Unsatisfacto.docx
 
SOCI 4387 Capstone Seminar Spring 2020 Due date Sa.docx
SOCI 4387 Capstone Seminar       Spring 2020 Due date Sa.docxSOCI 4387 Capstone Seminar       Spring 2020 Due date Sa.docx
SOCI 4387 Capstone Seminar Spring 2020 Due date Sa.docx
 
Rubic_Print_FormatCourse CodeClass CodeNRS-429VNNRS-429VN-O505VARK.docx
Rubic_Print_FormatCourse CodeClass CodeNRS-429VNNRS-429VN-O505VARK.docxRubic_Print_FormatCourse CodeClass CodeNRS-429VNNRS-429VN-O505VARK.docx
Rubic_Print_FormatCourse CodeClass CodeNRS-429VNNRS-429VN-O505VARK.docx
 
Top of Form 1VARK Analysis Paper 1Unsatisf.docx
Top of Form 1VARK Analysis Paper 1Unsatisf.docxTop of Form 1VARK Analysis Paper 1Unsatisf.docx
Top of Form 1VARK Analysis Paper 1Unsatisf.docx
 
Family Health AssessmentSelect a family to complete a family healt.docx
Family Health AssessmentSelect a family to complete a family healt.docxFamily Health AssessmentSelect a family to complete a family healt.docx
Family Health AssessmentSelect a family to complete a family healt.docx
 
Benchmark - Evidence-Based Practice Project—Paper on Diabetes .docx
Benchmark - Evidence-Based Practice Project—Paper on Diabetes .docxBenchmark - Evidence-Based Practice Project—Paper on Diabetes .docx
Benchmark - Evidence-Based Practice Project—Paper on Diabetes .docx
 

Mais de donnajames55

KATIES POST The crisis case I chose to discuss this week is th.docx
KATIES POST The crisis case I chose to discuss this week is th.docxKATIES POST The crisis case I chose to discuss this week is th.docx
KATIES POST The crisis case I chose to discuss this week is th.docxdonnajames55
 
Kate Chopins concise The Story of an Hour.  What does Joseph.docx
Kate Chopins concise The Story of an Hour.  What does Joseph.docxKate Chopins concise The Story of an Hour.  What does Joseph.docx
Kate Chopins concise The Story of an Hour.  What does Joseph.docxdonnajames55
 
Kadyr AkovaCosc 1437D. KirkEnemy.javaimport java.util..docx
Kadyr AkovaCosc 1437D. KirkEnemy.javaimport java.util..docxKadyr AkovaCosc 1437D. KirkEnemy.javaimport java.util..docx
Kadyr AkovaCosc 1437D. KirkEnemy.javaimport java.util..docxdonnajames55
 
K-2nd Grade3rd-5th Grade6th-8th GradeMajor Concepts,.docx
K-2nd Grade3rd-5th Grade6th-8th GradeMajor Concepts,.docxK-2nd Grade3rd-5th Grade6th-8th GradeMajor Concepts,.docx
K-2nd Grade3rd-5th Grade6th-8th GradeMajor Concepts,.docxdonnajames55
 
JWI 505 Business Communications and Executive Presence Lect.docx
JWI 505 Business Communications and Executive Presence Lect.docxJWI 505 Business Communications and Executive Presence Lect.docx
JWI 505 Business Communications and Executive Presence Lect.docxdonnajames55
 
Just Walk on By by Brent Staples My firs.docx
Just Walk on By by Brent Staples               My firs.docxJust Walk on By by Brent Staples               My firs.docx
Just Walk on By by Brent Staples My firs.docxdonnajames55
 
Just make it simple. and not have to be good, its the first draft. .docx
Just make it simple. and not have to be good, its the first draft. .docxJust make it simple. and not have to be good, its the first draft. .docx
Just make it simple. and not have to be good, its the first draft. .docxdonnajames55
 
JUST 497 Senior Seminar and Internship ExperienceInternationa.docx
JUST 497 Senior Seminar and Internship ExperienceInternationa.docxJUST 497 Senior Seminar and Internship ExperienceInternationa.docx
JUST 497 Senior Seminar and Internship ExperienceInternationa.docxdonnajames55
 
July 2002, Vol 92, No. 7 American Journal of Public Health E.docx
July 2002, Vol 92, No. 7  American Journal of Public Health E.docxJuly 2002, Vol 92, No. 7  American Journal of Public Health E.docx
July 2002, Vol 92, No. 7 American Journal of Public Health E.docxdonnajames55
 
Journals are to be 2 pages long with an introduction, discussion and.docx
Journals are to be 2 pages long with an introduction, discussion and.docxJournals are to be 2 pages long with an introduction, discussion and.docx
Journals are to be 2 pages long with an introduction, discussion and.docxdonnajames55
 
Judgement in Managerial Decision MakingBased on examples fro.docx
Judgement in Managerial Decision MakingBased on examples fro.docxJudgement in Managerial Decision MakingBased on examples fro.docx
Judgement in Managerial Decision MakingBased on examples fro.docxdonnajames55
 
Joyce is a 34-year-old woman who has been married 10 years. She .docx
Joyce is a 34-year-old woman who has been married 10 years. She .docxJoyce is a 34-year-old woman who has been married 10 years. She .docx
Joyce is a 34-year-old woman who has been married 10 years. She .docxdonnajames55
 
Journal Write in 300-500 words about the following topic.After .docx
Journal Write in 300-500 words about the following topic.After .docxJournal Write in 300-500 words about the following topic.After .docx
Journal Write in 300-500 words about the following topic.After .docxdonnajames55
 
Journal Supervision and Management StyleWhen it comes to superv.docx
Journal Supervision and Management StyleWhen it comes to superv.docxJournal Supervision and Management StyleWhen it comes to superv.docx
Journal Supervision and Management StyleWhen it comes to superv.docxdonnajames55
 
Journal of Soc. & Psy. Sci. 2018 Volume 11 (1) 51-55 Ava.docx
Journal of Soc. & Psy. Sci. 2018 Volume 11 (1) 51-55  Ava.docxJournal of Soc. & Psy. Sci. 2018 Volume 11 (1) 51-55  Ava.docx
Journal of Soc. & Psy. Sci. 2018 Volume 11 (1) 51-55 Ava.docxdonnajames55
 
Journal of Social Work Values & Ethics, Fall 2018, Vol. 15, No.docx
Journal of Social Work Values & Ethics, Fall 2018, Vol. 15, No.docxJournal of Social Work Values & Ethics, Fall 2018, Vol. 15, No.docx
Journal of Social Work Values & Ethics, Fall 2018, Vol. 15, No.docxdonnajames55
 
Journal of Policy Practice, 9220–239, 2010 Copyright © Taylor &.docx
Journal of Policy Practice, 9220–239, 2010 Copyright © Taylor &.docxJournal of Policy Practice, 9220–239, 2010 Copyright © Taylor &.docx
Journal of Policy Practice, 9220–239, 2010 Copyright © Taylor &.docxdonnajames55
 
Journal of Personality 862, April 2018VC 2016 Wiley Perio.docx
Journal of Personality 862, April 2018VC 2016 Wiley Perio.docxJournal of Personality 862, April 2018VC 2016 Wiley Perio.docx
Journal of Personality 862, April 2018VC 2016 Wiley Perio.docxdonnajames55
 
Journal of Personality and Social Psychology1977, Vol. 35, N.docx
Journal of Personality and Social Psychology1977, Vol. 35, N.docxJournal of Personality and Social Psychology1977, Vol. 35, N.docx
Journal of Personality and Social Psychology1977, Vol. 35, N.docxdonnajames55
 
Journal of Pcnonaluy and Social Psychology1»M. Vd 47, No 6. .docx
Journal of Pcnonaluy and Social Psychology1»M. Vd 47, No 6. .docxJournal of Pcnonaluy and Social Psychology1»M. Vd 47, No 6. .docx
Journal of Pcnonaluy and Social Psychology1»M. Vd 47, No 6. .docxdonnajames55
 

Mais de donnajames55 (20)

KATIES POST The crisis case I chose to discuss this week is th.docx
KATIES POST The crisis case I chose to discuss this week is th.docxKATIES POST The crisis case I chose to discuss this week is th.docx
KATIES POST The crisis case I chose to discuss this week is th.docx
 
Kate Chopins concise The Story of an Hour.  What does Joseph.docx
Kate Chopins concise The Story of an Hour.  What does Joseph.docxKate Chopins concise The Story of an Hour.  What does Joseph.docx
Kate Chopins concise The Story of an Hour.  What does Joseph.docx
 
Kadyr AkovaCosc 1437D. KirkEnemy.javaimport java.util..docx
Kadyr AkovaCosc 1437D. KirkEnemy.javaimport java.util..docxKadyr AkovaCosc 1437D. KirkEnemy.javaimport java.util..docx
Kadyr AkovaCosc 1437D. KirkEnemy.javaimport java.util..docx
 
K-2nd Grade3rd-5th Grade6th-8th GradeMajor Concepts,.docx
K-2nd Grade3rd-5th Grade6th-8th GradeMajor Concepts,.docxK-2nd Grade3rd-5th Grade6th-8th GradeMajor Concepts,.docx
K-2nd Grade3rd-5th Grade6th-8th GradeMajor Concepts,.docx
 
JWI 505 Business Communications and Executive Presence Lect.docx
JWI 505 Business Communications and Executive Presence Lect.docxJWI 505 Business Communications and Executive Presence Lect.docx
JWI 505 Business Communications and Executive Presence Lect.docx
 
Just Walk on By by Brent Staples My firs.docx
Just Walk on By by Brent Staples               My firs.docxJust Walk on By by Brent Staples               My firs.docx
Just Walk on By by Brent Staples My firs.docx
 
Just make it simple. and not have to be good, its the first draft. .docx
Just make it simple. and not have to be good, its the first draft. .docxJust make it simple. and not have to be good, its the first draft. .docx
Just make it simple. and not have to be good, its the first draft. .docx
 
JUST 497 Senior Seminar and Internship ExperienceInternationa.docx
JUST 497 Senior Seminar and Internship ExperienceInternationa.docxJUST 497 Senior Seminar and Internship ExperienceInternationa.docx
JUST 497 Senior Seminar and Internship ExperienceInternationa.docx
 
July 2002, Vol 92, No. 7 American Journal of Public Health E.docx
July 2002, Vol 92, No. 7  American Journal of Public Health E.docxJuly 2002, Vol 92, No. 7  American Journal of Public Health E.docx
July 2002, Vol 92, No. 7 American Journal of Public Health E.docx
 
Journals are to be 2 pages long with an introduction, discussion and.docx
Journals are to be 2 pages long with an introduction, discussion and.docxJournals are to be 2 pages long with an introduction, discussion and.docx
Journals are to be 2 pages long with an introduction, discussion and.docx
 
Judgement in Managerial Decision MakingBased on examples fro.docx
Judgement in Managerial Decision MakingBased on examples fro.docxJudgement in Managerial Decision MakingBased on examples fro.docx
Judgement in Managerial Decision MakingBased on examples fro.docx
 
Joyce is a 34-year-old woman who has been married 10 years. She .docx
Joyce is a 34-year-old woman who has been married 10 years. She .docxJoyce is a 34-year-old woman who has been married 10 years. She .docx
Joyce is a 34-year-old woman who has been married 10 years. She .docx
 
Journal Write in 300-500 words about the following topic.After .docx
Journal Write in 300-500 words about the following topic.After .docxJournal Write in 300-500 words about the following topic.After .docx
Journal Write in 300-500 words about the following topic.After .docx
 
Journal Supervision and Management StyleWhen it comes to superv.docx
Journal Supervision and Management StyleWhen it comes to superv.docxJournal Supervision and Management StyleWhen it comes to superv.docx
Journal Supervision and Management StyleWhen it comes to superv.docx
 
Journal of Soc. & Psy. Sci. 2018 Volume 11 (1) 51-55 Ava.docx
Journal of Soc. & Psy. Sci. 2018 Volume 11 (1) 51-55  Ava.docxJournal of Soc. & Psy. Sci. 2018 Volume 11 (1) 51-55  Ava.docx
Journal of Soc. & Psy. Sci. 2018 Volume 11 (1) 51-55 Ava.docx
 
Journal of Social Work Values & Ethics, Fall 2018, Vol. 15, No.docx
Journal of Social Work Values & Ethics, Fall 2018, Vol. 15, No.docxJournal of Social Work Values & Ethics, Fall 2018, Vol. 15, No.docx
Journal of Social Work Values & Ethics, Fall 2018, Vol. 15, No.docx
 
Journal of Policy Practice, 9220–239, 2010 Copyright © Taylor &.docx
Journal of Policy Practice, 9220–239, 2010 Copyright © Taylor &.docxJournal of Policy Practice, 9220–239, 2010 Copyright © Taylor &.docx
Journal of Policy Practice, 9220–239, 2010 Copyright © Taylor &.docx
 
Journal of Personality 862, April 2018VC 2016 Wiley Perio.docx
Journal of Personality 862, April 2018VC 2016 Wiley Perio.docxJournal of Personality 862, April 2018VC 2016 Wiley Perio.docx
Journal of Personality 862, April 2018VC 2016 Wiley Perio.docx
 
Journal of Personality and Social Psychology1977, Vol. 35, N.docx
Journal of Personality and Social Psychology1977, Vol. 35, N.docxJournal of Personality and Social Psychology1977, Vol. 35, N.docx
Journal of Personality and Social Psychology1977, Vol. 35, N.docx
 
Journal of Pcnonaluy and Social Psychology1»M. Vd 47, No 6. .docx
Journal of Pcnonaluy and Social Psychology1»M. Vd 47, No 6. .docxJournal of Pcnonaluy and Social Psychology1»M. Vd 47, No 6. .docx
Journal of Pcnonaluy and Social Psychology1»M. Vd 47, No 6. .docx
 

Último

Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 

Último (20)

Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 

Community Teaching Plan Teaching Experience Paper 1Unsatisf.docx

  • 1. Community Teaching Plan: Teaching Experience Paper 1 Unsatisfactory 0.00% 2 Less than Satisfactory 75.00% 3 Satisfactory 83.00% 4 Good 94.00% 5 Excellent 100.00% 80.0 %Content 30.0 %Comprehensive Summary of Teaching Plan With Epidemiological Rationale for Topic Summary of community teaching plan is not identified or missing. Summary of community teaching plan is incomplete. Summary of community teaching plan is offered but some elements are vague. Focus of community teaching is clear with a detailed summary of each component. Rationale is not provided. Focus of community teaching is clear, consistent with Functional Health Patterns (FHP) assessment findings and supported by explanation of epidemiological rationale. 50.0 %Evaluation of Teaching Experience With Discussion of Community Response to Teaching Provided. Areas of Strength
  • 2. and Areas of Improvement Described Evaluation of teaching experience is omitted or incomplete. Evaluation of teaching experience is unclear and/or discussion of community response to teaching is missing. Evaluation of teaching experience is provided with a brief discussion of community response to teaching. A detailed evaluation of teaching experience with discussion of community response to teaching and areas of strength/improvement is provided. Comprehensive evaluation of teaching experience with discussion of community response provided along with a detailed description of barriers and strategies to overcome barriers is provided. 15.0 %Organization and Effectiveness 5.0 %Thesis Development and Purpose Paper lacks any discernible overall purpose or organizing claim. Thesis is insufficiently developed and/or vague; purpose is not clear. Thesis is apparent and appropriate to purpose. Thesis is clear and forecasts the development of the paper. It is descriptive and reflective of the arguments and appropriate to the purpose. Thesis is comprehensive; contained within the thesis is the essence of the paper. Thesis statement makes the purpose of the paper clear. 5.0 %Paragraph Development and Transitions Paragraphs and transitions consistently lack unity and coherence. No apparent connections between paragraphs are established. Transitions are inappropriate to purpose and scope. Organization is disjointed. Some paragraphs and transitions may lack logical progression of ideas, unity, coherence, and/or cohesiveness. Some degree of organization is evident.
  • 3. Paragraphs are generally competent, but ideas may show some inconsistency in organization and/or in their relationships to each other. A logical progression of ideas between paragraphs is apparent. Paragraphs exhibit a unity, coherence, and cohesiveness. Topic sentences and concluding remarks are appropriate to purpose. There is a sophisticated construction of paragraphs and transitions. Ideas progress and relate to each other. Paragraph and transition construction guide the reader. Paragraph structure is seamless. 5.0 %Mechanics of Writing (includes spelling, punctuation, grammar, language use) Surface errors are pervasive enough that they impede communication of meaning. Inappropriate word choice and/or sentence construction are used. Frequent and repetitive mechanical errors distract the reader. Inconsistencies in language choice (register), sentence structure, and/or word choice are present. Some mechanical errors or typos are present, but are not overly distracting to the reader. Correct sentence structure and audience-appropriate language are used. Prose is largely free of mechanical errors, although a few may be present. A variety of sentence structures and effective figures of speech are used. Writer is clearly in command of standard, written, academic English. 5.0 %Format 2.0 %Paper Format Template is not used appropriately or documentation format is rarely followed correctly. Template is used, but some elements are missing or mistaken; lack of control with formatting is apparent. Template is used, and formatting is correct, although some
  • 4. minor errors may be present. Template is fully used; There are virtually no errors in formatting style. All format elements are correct. 3.0 %Research Citations (In-text citations for paraphrasing and direct quotes, and reference page listing and formatting, as appropriate to assignment) No reference page is included. No citations are used. Reference page is present. Citations are inconsistently used. Reference page is included and lists sources used in the paper. Sources are appropriately documented, although some errors may be present. Reference page is present and fully inclusive of all cited sources. Documentation is appropriate and style guide is usually correct. In-text citations and a reference page are complete. The documentation of cited sources is free of error. 100 %Total Weightage Lecture 4 (Sampling basics and Hypothesis test) This week we turn from descriptive statistics to inferential statistics and making decisions about our populations based on the samples we have. For example, our class case research question is really asking if in the entire company population of employees, do males and females receive the same pay for doing equal work. However, we are not analyzing the entire population, instead we have a sample of 25 males and 25 females to work with.
  • 5. This brings us to the idea of sampling – taking a small group/sample from a larger population. To paraphrase, not all samples are created equal. For example, if you wanted to study religious feelings in the United States, would you only sample those leaving a fundamentalist church on a Wednesday? While this is a legitimate element of US religions, it does not represent the entire range of religious views – it is representative of only a portion of the US population, and not the entire population. The key to ensuring that sample descriptive statistics can be used as inferential statistics – sample results that can be used to infer the characteristics (AKA parameters) of a population – is have a random sample of the entire population. A random sample is one where, at the start, everyone in the population has the same chance of being selected. There are numerous ways to design a random sampling process, but these are more of a research class concern than a statistical class issue. For now, we just need to make certain that the samples we use are randomly selected rather than selected with an intent of ensuring desired outcomes are achieved. The issue about using samples that students often new to statistics is that the sample statistic values/outcomes will rarely be exactly the same as the population parameters we are trying to estimate. We will have, for each sample, some sampling error, the difference between the actual and the sample result. Researchers feel that this sampling error is generally small enough to use the data to make decisions about the population (Lind, Marchel, & Wathen, 2008).
  • 6. While we cannot tell for any given sample exactly what this difference is, we can estimate the maximum amount of the error. Later, we will look at doing this; for now, we just need to know that this error is incorporated into the statistical test outcomes that we will be studying. Once we have our random sample (and we will assume that our class equal pay case sample was selected randomly), we can start with our analysis. After developing the descriptive statistics, we start to ask questions about them. In examining a data set, we need to not only identify if important differences exist or not but also to identify reasons differences might exist. For our equal pay question, it would be legal to pay males and females different salaries if, for example, one gender performed the duties better, or had more required education, or have more seniority, etc. Equal pay for equal work, as we are beginning to see, is more complex than a simple single question about salary equality. As we go thru the class, we will be able to answer increasingly more complex questions. For this week, we will stay with questions about involving ways to sort our salary results – looking for differences might exist. Some of these questions for this week with our equal pay case could include: • Could the means for both males and females be the same, and the observed difference be due to sampling error only? • Could the variances for the males and female be the same (AKA statistically equal)? • Could salaries per grade be statistically equal? • Could salaries per degree (undergraduate and graduate) be the
  • 7. same? • Etc. Hypothesis Testing As we might expect, research and statistics have a set procedure/process on how to go about answering these questions. The hypothesis testing procedure is designed to ensure that data is analyzed in a consistent and recognized fashion so everyone can accept the outcome. Statistical tests focus on differences – is this difference large enough to be significant, that is not simply a sampling error? If so, we say the difference is statistically significant; if not, the difference is not considered statistically significant. This phrasing is important as it is easy to measure a difference from some point, it is much harder to measure “things are different.” It is that pesky sampling error that interferes with assessing differences directly. Before starting the hypothesis test, we need to have a clear research question. The questions above are good examples, as each clearly asks if some comparison is statistically equal or not. Once we have a clear question – and a randomly drawn sample – we can start the hypothesis testing procedure. The procedure itself has five steps: • Step 1: State the null and alternate hypothesis • Step 2: Form the decision rule • Step 3: Select the appropriate statistical test • Step 4: Perform the analysis • Step 5: Make the decision, and translate the outcome into an answer to the initial research question. Step 1. The null hypothesis is the “testable” claim about the relationship between the
  • 8. variables. It always makes the claim of no difference exists in the populations. For the question of male and female salary equality, it would be: Ho: Male mean salary = Female mean salary. If this claim is found not to be correct, then we would accept the alternate hypothesis claim: Ha: Male salary mean =/= (not equal) Female salary mean. (Note, some alternate ways of phrasing these exist, and we will cover them shortly. For now, let’s just go with this format.) Step 2. This step involves selecting the decision rule for rejecting the null hypothesis claim. This will be constant for our class – we will reject the null hypothesis when the p-value is equal to or less than 0.05 (this probability is called alpha). Other common values are .1, and .01 – the more severe the consequences of being wrong if we reject the null, the smaller the value of alpha we select. Recall that we defined the p-value last week as the probability of exceeding a value, the value in this case would be the statistical outcome from our test. Step 3. Selecting the appropriate statistical test is the next step. We start with a question about mean equality, so we will be using the T-test – the most appropriate test to determine if two population means are equal based upon sample results. Step 4. Performing the analysis comes next. Fortunately for us, we can do all the arithmetic involved with Excel. We will go over how to select and run the appropriate T-test below. Step 5. Interpret the test results, making a decision on rejecting or not rejecting the null hypothesis, and using this outcome to answer the research question is the final step. Excel output
  • 9. tables provide all the information we need to make our decision in this step. Step 1: Setting up the hypothesis statements In setting up a hypothesis test for looking at the male and female means, there are actually three questions we could ask and associated hypothesis statements in step 1. 1. Are male and female mean salaries equal? a. Ho: Male mean salary = Female mean salary b. Ha: Male mean salary =/= Female mean salary 2. Is the male mean salary equal to or greater than the Female mean salary? a. Ho: Male mean salary => Female mean salary b. Ha: Male mean salary < Female mean salary 3. Is the male salary equal to or less than the female mean salary? a. Ho: Male mean salary <= Female mean salary b. Ha: Male mean salary > Female mean salary While they appear similar each answers a different question. We cannot, for example, take the first question, determine the means are not equal and then say that, for example, the male mean is greater than the female mean because the sample results show this. Our statistical test did not test for this condition. If we are interested in a directional difference, we need to use a directional set of hypothesis statements as shown in statements 2 and 3 above. Rules. There are several rules or guidelines in developing the hypothesis statements for any statistical test. 1. The variables must be listed in the same order in both claims. 2. The null hypothesis must always contain the equal (=) sign. 3. The null can contain an equal (=), equal to or less than (<=) or equal to or greater than (=>) claim.
  • 10. 4. The null and alternate hypothesis statement must, between them, account for all possible actual comparisons outcomes. So, if the null has the equal (=) claim, the alternate must contain the not equal (=/= or ≠) statement. If the null has the equal or less than (<= or ≤) claim, the alternate must contain the greater than (>) claim. Finally, if the null has the equal to or greater (=> or ≥) claim, the null must contain the less than (<) claim. Deciding which pair of statements to use depends on the research question being asked – which is why we always start with the question. Look at the research question being asked; does it contain words indicating a simple equality (means are equal, the same, etc.) or inequality (not equal, different, etc.), if so we have the first example Ho: variable 1 mean = variable 2 mean, Ha: variable 1 mean =/= variable 2 mean. If the research question implies a directional difference (larger, greater, exceeds, increased, etc. or smaller, less than, reduced, etc.) then it is often easier to use the question to frame the alternate hypothesis and back into the null. For example, the question is the male mean salary greater than the female mean salary would lead to an alternate of exactly what was said (Ha: Male salary mean > Female salary mean) and the opposite null (Male salary mean <= Female salary mean). Step 2: Decision Rule Once we have our hypothesis statements, we move on to deciding the level of evidence that will cause us to reject the null hypothesis. Note, we always test the null hypothesis, since
  • 11. that is where our claim of equality lies. And, our decision is either reject the null or fail to reject the null. If the latter, we are saying that the alternate hypothesis statement is the more accurate description of the relationship between the two variable population means. We never accept the alternate. When we perform a statistical test; we are in essence asking if, based on the evidence we have is, the difference we observe be large enough to have been caused by something other than chance or is it due to sampling error? A statistical test gives us a statistic as a result. We know the shape of the statistical distribution for each type of test, therefore we can easily find the probability of exceeding this test value. Remember we called this the p-value. Now all we need to decide is what is an acceptable level of chance – that is, when would the outcome be so rare that we would not expect to see it purely by chance sampling error alone? Most researchers agree that if the p-value is 5% (.05) or less than, then chance is not the cause of the observed difference, something else must be responsible. This decision point is called alpha. Other values of alpha frequently used are 10% (often used in marketing tests) and 1% (frequently used in medical studies). The smaller the chosen alpha is, the more serious the error is in rejecting the null when we should not have. For our analysis, we will use an alpha of .05 for all our tests. Final Point You may have noticed that we have two basic types of hypothesis statements – those testing equality and those testing directional differences. This leads to two different types of
  • 12. statistical tests – the two-tail and the one-tail. In the one-tail test, the entire value of alpha is focused on the distribution tail – either the right or left tail depending upon the phrasing of the alternate hypothesis. A neat hint, the arrow head in the alternate hypothesis shows which tail the result needs to be in to reject the null. In the case of the two-tail test (equality), we do not care if one variable is bigger or smaller than the other, only that they differ. This means that the rejection statistic could be in either tail, the right or left. Since the reject region is split into two areas, we need to split alpha into these areas – so with a two-tail test, we use alpha/2 as the comparison with our p-value (e.g., 0.05/2 = 0.025). The example in Lecture 5 will review this in more detail. References Lind, D. A., Marchel, W. G., & Wathen, S. A. (2008). Statistical Techniques in Business & Finance. (13th Ed.) Boston: McGraw-Hill Irwin. Lecture 5 The T-Test In the previous lecture, we introduced the hypothesis testing procedure, and developed the first two steps of a statistical test to determine if male and female mean salaries could be equal in the population – where our differences were caused simply by sampling errors. This lecture continues with this example by completing the final three steps. It also introduces our first statistical test, the t-test for mean equality. Last week we looked at the normal curve and noted several of
  • 13. its characteristics, such as mean = median = mode, symmetrical around the mean, curve height drops off the further the score gets from the mean (meaning scores further from the mean are less likely to occur). Our first statistical test, the t-test, is based on a population that is distributed normally. The t-test is used when we do not have the population variance value – this is the situation every time we use a sample to make decisions about their related populations. While the t-test has several different versions, we will focus on the most commonly used form – the two sample test for mean equality assuming equal variance. When we are testing measures for mean equality, it is fairly rare for the variances to be much difference, and the observed difference is often merely sample error. (In Lecture 6, we will revisit this assumption.) The logic of the test is that the difference between mean values divided by a measure of this difference’s variation will provide a t statistic that is distributed normally, with the mean equaling 0 and the standard deviation equaling 1. This outcome can then be tested to see what the likelihood is that we would get a value this large or larger purely by chance – our old friend the p-value. If this p-value exceeds our decision criteria, alpha, then we reject the null hypothesis claim of no difference (Lind, Marchel, & Wathen, 2008). Setting up the t-test Before selecting any test from Excel, the data needs to be set up. For the t-test, there are a couple of steps needed. First, copy the data you want to first set up the data. In our question about male and female salaries, copy the gender variable
  • 14. column from the data page to a new worksheet page (the recommendation is on the week 2 tab) and paste it to the right of the questions (such as in column T), then copy and paste the salary values and paste them next to the gender data. Next, sort both columns by the gender column – this will give you the salary data sorted by gender. Then, in column V place the label/word Males, and in column W place the label Females. Now copy the male salaries and paste them under the Male label, and do the same for the female salaries and the female label. The data is now set up for easy entry into the T-test data entry section. The t-test is found in the Analysis Toolpak that was loaded into your Excel program last week. To find it, click on the Data button in the top ribbon, then on the Data Analysis link in the Analyze box at the right, then scroll down to the T-test: Two- Sample Assuming Equal Variances. For assistance in setting up the t-test, please see the discussion in the Week 2 Excel Help lecture. Interpreting the T-test Output The t-test output contains a lot of information, and not all of it is needed to interpret the result. The important elements of the t-test outcome will be shown with an example for our research case question. Equal Pay Example - continued In Lecture 4 we set up the first couple of steps for our testing of the research question: Do males and females receive equal pay for equal work? Our first examination of the data we have for answering this question involves determining if the average salaries are the same. Here is the completed hypothesis test for the question: Is the
  • 15. male average salary equal to the female average salary? Step 1. Ho: Male mean salary = female mean salary Ha: Male mean salary ≠ female mean salary Step 2. Reject the null if the p-value is < (less than) alpha = .05. Step 3. The selected test is the Two-Sample T-test assuming equal variances. Step 4. The test results are below. The screen shot shows output table. Step 5. Interpretation and conclusions. The first step is to ensure we have all of the correct data. We see that we have 25 males and females in the Observations row, and that the respective means are equal to what we earlier calculated. The calculated t statistic is 2.74 (rounded). We have two ways to determine if our result rejects or fails to reject the null hypothesis; both involve the two-tail rows, as we have a two tail test (equal or not equal hypothesis statements). The first is a comparison of the t-values – if the critical t of 2.74 (rounded) is greater than the T-Critical two-tail value of 2.01, we reject the null hypothesis. The second way is to compare the p-value with our criteria of alpha = .05. Remember, since this is a two-tail test, the alpha for each tail is half of the overall alpha or .025. If the p-value (shown as P(T<=t) two -tail value of 0.0085 is less than our one tail alpha (.025) then we reject the null hypothesis. Note: at times Excel will report the p-value in an E format, such as 3.45E-04. This is called an Exponent format, and is the
  • 16. same as 3.45 * 10-04. This means move the decimal point 4 places to the left, making 3.45E-04 = 0.000345. Virtually any p-value reported with an E-xx form will be less than our alpha of 0.05 (which would be 5E-02). Since we rejected the null hypothesis in both approaches (and both will always provide the same outcome), we can answer our question with: No - the male and female mean salaries are not equal. Note that for this set of data, we would have rejected the null for a one-tail test if and only if the null hypothesis had been: Male mean salary is <= Female mean salary and the alternate was Male mean salary is > Female mean salary. The arrow in the alternate points to the positive/right tail and that is where the calculated t-statistic is. So, even if the p-value is smaller than alpha in a one tail test, we need to ensure the t-statistic is in the correct tail for rejection. References Lind, D. A., Marchel, W. G., & Wathen, S. A. (2008). Statistical Techniques in Business & Finance. (13th Ed.) Boston: McGraw-Hill Irwin. Lecture 6 (Additional information on t-tests and hypothesis testing) Lecture 5 focused on perhaps the most common of the t-tests, the two sample assuming equal variance. There are other versions as well; Excel lists two others, the two sample assuming unequal variance and the paired t-test. We will end with some comments about rejecting the null
  • 17. hypothesis. Choosing between the t-test options As the names imply each of the three forms of the t-test deal with different types of data sets. The simplest distinction is between the equal and unequal variance tests. Both require that the data be at least interval in nature, come from a normally distributed population, and be independent of each other – that is, collected from different subjects. The F-test for variance. To determine if the population variances of two groups are statistically equal – in order to correctly choose the equal variance version of the t-test – we use the F statistic, which is calculated by dividing one variance by the other variance. If the outcome is less than 1.0, the rejection region is in the left tail; if the value is greater than 1.0, the rejection region is in the right tail. In either case, Excel provides the information we need. To perform a hypothesis test for variance equality we use Excel’s F-Test Two-Sample for Variances found in the Data Analysis section under the Data tab. The test set-up is very similar to that of the t-test, entering data ranges, checking Labels box if they are included in the data ranges, and identifying the start of the output range. The only unique element in this test is the identification of our alpha level. Since we are testing for equality of variances, we have a two sample test and the rejection region is again in both tails. This means that our rejection region in each tail is 0.25. The F-test identifies the p-value for the tail the result is in, but does not give us a one and two tail value,
  • 18. only the one tail value. So, compare the calculated p-value against .025 to make the rejection decision. If the p-value is greater than this, we fail to reject the null; if smaller, we reject the null of equal variances. Excel Example. To test for equality between the male and female salaries in the population, we set up the following hypothesis test. Research question: Are the male and female population variances for salary equal? Step 1: Ho: Male salary variance = Female salary variance Ha: Male salary variance ≠ Female salary variance Step 2: Reject Ho if p-value is less than Alpha = 0.025 for one tail. Step 3: Selected test is the F-test for variance Step 4: Conduct the test Step 5: Conclusion and interpretation. The test resulted in an F- value less than 1.0, so the statistic is in the left tail. Had we put Females as the first variable we would have gotten a right tail F-value greater than 1.0. This has no bearing on the decision. The F value is larger than the critical F (which is the value for a 1-tail probability of 0.25 – as that was entered for the alpha value). So, since our p-value (.44 rounded) is > .025 and/or our F (0.94 rounded) is greater than our F Critical, we fail to reject the null hypothesis of no differences in variance. The correct ttest would be the two-sample T-test assuming equal variances. Other T-tests. We mentioned that Excel has three versions of the t-test. The
  • 19. equal and unequal variance versions are set up in the same way and produce very similar output tables. The only difference is that the equal variance version provides an estimate of the common variation called pooled variance while this row is missing in the unequal variance version. A third form of the t-test is the T-Test: Paired Two Sample for Means. A key requirement for the other versions of the t-test is that the data are independent – that means the data are collected on different groups. In the paired t-test, we generally collect two measures on each subject. An example of paired data would be a pre- and post-test given to students in a statistics class. Another example, using our class case study would the comparing the salary and midpoint for each employee – both are measured in dollars and taken from each person. An example of NON-pared data, would the grades of males and females at the end of a statistics class. The paired t-test is set up in the same way as the other two versions. It provides the correlation (a measure of how closely one variable changes when another does – to be covered later in the class) coefficient as part of its output. An Excel Trick. You may have noticed that all of the Excel t- tests are for two samples, yet at times we might want to perform a one-sample test, for example quality control might want to test a sample against a quality standard to see if things have changed or not. Excel does not expressly allow this. BUT, we can do a one-sample test using Excel. The reason is a bit technical, but boils down to the fact that the two-sample unequal
  • 20. variance formula will reduce to the one-sample formula when one of the variables has a variance equal to 0. So using the unequal variance t-test, we enter the variable we are interested – such as salary – as variable one and the hypothesized value we are testing against – such as 45 for our case – as variable two, ensuring that we have the same number of variables in each column. Here is an example of this outcome. Research question: Is the female population salary mean = 45? Step 1: Ho: Female salary mean = 45 Ha: Female salary mean ≠ 45 Step 2: Reject the null hypothesis is less than Alpha = 0.05 Step 3: Selected test is the two sample unequal variance t-test Step 4: Conduct the test Step 5: Conclusions and Interpretation. Since the two tail p- value is greater than (>) .025 and/or the absolute value of the t-statistic is less than the critical two tail t value, we fail to reject the null hypothesis. Our research question answer is that, based upon this sample, the overall female salary average could equal 45. Miscellaneous Issues on Hypothesis Testing Errors. Statistical tests are based on probabilities, there is a possibility that we could make the wrong decision in either rejecting or failing to reject the null hypothesis. Rejecting the null hypothesis when it is true is called a Type I error. Accepting (failing to reject) the null when it is false is called a Type II error. Both errors are minimized somewhat by increasing the sample size we work with. A type I error is generally considered the more severe of the two
  • 21. (imagine saying a new medicine works when it does not), and is managed by the selection of our alpha value – the smaller the alpha, the harder it is to reject the null hypothesis (or, put another way, the more evidence is needed to convince us to reject the null). Managing the Type II error probability is slightly more complicated and is dealt with in more advanced statistics class. Choosing an alpha of .05 for most test situations has been found to provide a good balance between these two errors. Reason for Rejection. While we are not spending time on the formulas behind our statistical outcomes, there is one general issue with virtually all statistical tests. A larger sample size makes it easier to reject the null hypothesis. What is a non- statistically significant outcome based upon a sample size of 25, could very easily be found significant with a sample size of, for example, 25,000. This is one reason to be cautious of very large sample studies – far from meaning the results are better, it could mean the rejection of the null was due to the sample size and not the variables that were being tested. The effect size measure helps us investigate the cause of rejecting the null. The name is somewhat misleading to those just learning about it; it does NOT mean the size of the difference being tested. The significance of that difference is tested with our statistical test. What it does measure is the effect the variables had on the rejection (that is, is the outcome practically significant and one we should make decisions using) versus the impact of the sample size on the rejection (meaning the result is not particularly meaningful in the real world).
  • 22. For the two-sample t-test, either equal or unequal variance, the effect size is measured by Cohen’s D. Unfortunately, Excel does not yet provide this calculation automatically, however it is fairly easy to generate. Cohen’s D = (absolute value of the difference between the means)/the standard deviation of both samples combined. Note: the total standard deviation is not given in the t-test outputs, and is not the same as the square root of the pooled variance estimate. To get this value, use the fx function stdev.s on the entire data set – both samples at the same time. Interpreting the effect size outcome is fairly simple. Effect sizes are generally between 0 and 1. A large effect (a value around .8 or larger) means the variables and their interactions caused the rejection of the null, and the result has a lot of practical significance for decision making. A small effect (a value around .2 or less) means the sample size was more responsible for the rejection decision than the variable outcomes. The medium effect (values around .5) are harder to interpret and would suggest additional study (Tanner & Youssef-Morgan, 2013). References Lind, D. A., Marchel, W. G., & Wathen, S. A. (2008). Statistical Techniques in Business & Finance. (13th Ed.) Boston: McGraw-Hill Irwin. Tanner, D. E. & Youssef-Morgan, C. M. (2013). Statistics for Managers. San Deigeo, CA: Bridgepoint Education.