REPORT SUMMARY Vibration refers to a mechanical phenomenon involving oscillations about a point. These oscillations can be of any imaginable range of amplitudes and frequencies, with each combination having its own effect. These effects can be positive and purposefully induced, but they can also be unintentional and catastrophic. It's therefore imperative to understand how to classify and model vibration. Within the classroom portion of ME 345, we discussed damped and undamped vibrations, appropriate models, and several of their properties. The purpose of Lab 3 is to give us the corresponding "hands-on" experience to cement our understanding of the theory. As it turns out, vibration can be modeled with a simple spring-mass system (spring-mass-damper system for damped vibration). In order to create a mathematical model for our simple spring-mass system, we apply Newton's second law and sum the forces about the mass. After applying some of our knowledge of differential equations, the result is a second order linear differential equation (in vector form). This can easily be converted to the scalar version, from which it's easy to glean various properties of the vibration (i.e. natural frequency, period, etc.). In the lab, we were provided with a PASCO motion sensor, USB link, ramp, and accompanying software. All of the aforementioned equipment was already assembled and connected. The ramp was set up at an angle with a stop on the elevated end and the motion sensor on the lower end. The sensor was connected to the USB link, which was in turn connected to the computer. We chose to use the Xplorer GLX software to interface with the sensor and record our data. After receiving our equipment, we gathered data on our spring's extension with a known load to derive a spring constant. We were provided with a small cart to which we attached weights to increase its mass. In order to model free vibration, we placed the cart on the track and attached it to the stop at the top of the ramp with a spring. After displacing the cart a certain distance from its equilibrium point, the cart was released and was allowed to oscillate on the track while we recorded its distance from the sensor. This was done with displacements of -20cm, -10cm, +10cm, and +20cm from the system's equilibrium point. After gathering this data for the "free" case, a magnet was attached to the front of the car, spaced as far from the track as possible. As the track is magnetic, this caused a slight damping effect, basically converting our spring-mass system to an underdamped spring-mass-damper system. After repeating the procedure for the "free" case, we moved the magnets as close to the track as possible (causing the system to become overdamped) and again repeated the procedure for the "free" case. We were finally able to determine the period, phase angle, damping coefficients, and circular and cyclical frequencies for the three systems. There were similarities and differ ...