SlideShare uma empresa Scribd logo
1 de 18
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
Unidad N°2: Cinemática. Movimiento Rectilíneo Uniforme y Uniformemente
Variado. Leyes de Newton. Principio de Conservación de la Energía. Cantidad de
Movimiento. Sistema de unidades. Momento de Inercia
Movimiento
MOVIMIENTO
En todas partes hay movimiento. La parte de la Física que estudia
científicamente los movimientos de los cuerpos es la Cinemática.
Comencemos suponiendo que un chico está parado esperando cruzar la calle y
pasa un micro, éste puede afirmar que el vehículo se está moviendo dado que
primero se acerca de él, pasa por delante y luego se aleja de él. Pero un
pasajero que viaja en ése móvil podría decir que el peatón primero se acercó,
pasó frente a él y luego se alejó. En ese caso, ninguno de los dos está
equivocado, cada uno está diciendo lo que percibe, es decir, cada uno
establece que el otro se mueve respecto de él. El pasajero del micro está en movimiento para
el peatón y éste en movimiento para el que está adentro del vehículo.
Esto significa que el movimiento es relativo, es decir que depende del lugar desde el cual se lo
describe. Por lo tanto, es necesario indicar respecto de qué cuerpo está en movimiento y tal
referencia puede estar ubicada en cualquier objeto que se elija.
Pero como el micro puede moverse en un sentido o en otro de la calle, es conveniente aclarar
hacia dónde se mueve y por eso, tomar al peatón como punto de referencia no alcanza. No
basta decir que el vehículo se aleja, habría
que indicar hacia dónde lo hace. Para
solucionar esta situación se puede pensar que
asociado a la calle donde se encuentra el
peatón, existe un sistema de referencia con
un origen, la persona, y una convención para
determinar los sentidos, por ejemplo positivo
hacia donde el micro de mueve. Este sistema
de referencia se representa con ejes
cartesianos.
De esta manera si un cuerpo se encuentra primero en la posición X= 20m y luego en la posición
X= 30m, se movió 10m en el sentido tomado como positivo respecto del cuerpo fijo en el origen
del eje X.
Un sistema de referencia es una representación con ejes cartesianos que nos
permite establecer un punto fijo, respecto del cuál podremos determinar y
caracterizar el movimiento de un cuerpo.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
TRAYECTORIA Y DESPLAZAMIENTO
Todos los días, para ir a la escuela, te movés desde una posición inicial (tu casa) hasta
una posición final (la escuela). Sin importar que vayas caminando, en colectivo, en auto o en
bicicleta, siempre cambiás de posición. La distancia se recorre en línea recta desde la posición
inicial hasta la posición final se llama desplazamiento. Sin embargo, es muy probable que, en
realidad, no te muevas en línea recta, sino que rodees algunas cosas, atravieses calles, bordees
una plaza, etc. El camino que se realiza para ir desde la posición inicial hasta la posición final se
denomina trayectoria. Por lo tanto, si bien entre dos posiciones hay un solo desplazamiento,
puede haber muchas trayectorias.
Supongamos que queremos ir desde el punto A hacia el
punto B, cada cuadrícula equivale a 1m. La distancia en
línea recta entre A y B es el desplazamiento y en este
ejemplo vale 6m. Si vamos en línea recta, la trayectoria
es de 6m y equivale al desplazamiento, en tanto que, si
para ir desde A hasta B, pasamos por C y por D, la
trayectoria es de 10m.Dado que la trayectoria es una
línea, puede tener distintas formas, y estas formas nos
permiten reconocer distintos tipos de movimiento. Por ejemplo,
si el objeto tiene una trayectoria en línea recta, diremos que el
movimiento es rectilíneo; si tiene una trayectoria en línea curva,
el movimiento será curvilíneo. Dentro de las trayectorias
curvilíneas, pueden encontrarse:
 Trayectorias circulares. Por ejemplo, una nena sentada
en una calesita en movimiento describe una trayectoria
circular alrededor del centro de la calesita.
 Trayectorias elípticas. La línea que describen los
planetas cuando se trasladan alrededor del Sol
representan una trayectoria elíptica.
 Trayectorias parabólicas. Cuando se arroja un objeto
con inclinación, por ejemplo, una bala disparada por un
cañón, la trayectoria que describe es parabólica.
 Trayectorias irregulares. El vuelo de un mosquito es un
ejemplo de esta trayectoria.
¿La trayectoria cambia con el sistema de referencia?
Ya vimos que para determinar si un cuerpo está en movimiento
es necesario elegir un sistema de referencia. También
estudiamos los diferentes tipos de trayectorias que un cuerpo puede describir a medida que se
mueve.
Ahora bien, la trayectoria o
dibujo que un cuerpo va haciendo
en su camino también dependerá
del sistema de referencia
elegido. Pensemos en un avión.
Supongamos que alguien puede
dejar caer un objeto desde éste.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
Para un pasajero que lo ve desde el avión, el objeto caerá en línea recta (suponiendo que
el rozamiento con el aire es despreciable), es decir que tendrá una trayectoria
rectilínea. Pero para un observador que se encuentra en la superficie de la Tierra, el objeto
describirá una parábola, es decir, tendrá una trayectoria curvilínea.
ACTIVIDADES (ANTES DE LA CLASE)
1. Elabora una definición de: movimiento.
2. ¿Por qué es necesario un sistema de referencia para
determinar un movimiento?
3. ¿Qué diferencia hay entre desplazamiento y
trayectoria?
4. ¿Cambia la trayectoria si cambiamos el sistema de
referencia?
Velocidad
RAPIDEZ
Además de describir el cambio de posición y la
trayectoria de un móvil, muchas veces nos resulta
especialmente útil saber el tiempo que dura su
movimiento. Conocer el valor del tiempo nos proporciona
información para completar la descripción del
movimiento. Por ejemplo, si un atleta tarda 10s en correr
100m y otro corre la misma distancia en 9,8s, el tiempo
nos indica que el segundo atleta es más rápido que el
primero.
La rapidez indica cuán ligero se mueve un objeto y se
define como la distancia recorrida en un intervalo de
tiempo. Matemáticamente:
| 𝑣| =
𝑠
𝑡
La distancia “s” recorrida se expresa en unidades de longitud, y el tiempo transcurrido “t”, en
unidades de tiempo. Para describir la rapidez podemos utilizar cualquier combinación de
unidades de longitud y de tiempo. Por ejemplo, en el caso de los corredores, la rapidez se mide
en metros por segundo [m/s], pero para un vehículo suele expresarse en kilómetros por hora
[km/h]. Si una partícula se desplaza con una rapidez de 10 m/s significa que en cada segundo
recorre una distancia de 10m, y cuando un auto se mueve a 90 km/h significa que lo hace de
manera tal que en cada hora recorre una distancia de 90 Km.
Pero un móvil, por ejemplo un auto, no se desplaza siempre con la misma rapidez: avanza con
cierta rapidez, se detiene, vuelve a arrancar. La rapidez en un instante determinado se llama
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
rapidez instantánea (la que indica el velocímetro de los autos). También puede
definirse, para la totalidad del trayecto, lo que se llama rapidez media, que se calcula
así:
𝑣 𝑚 =
| 𝑣1
| ∙ 𝑡1 + | 𝑣2
| ∙ 𝑡2 + | 𝑣3
| ∙ 𝑡3 + ⋯+ | 𝑣𝑛
| ∙ 𝑡 𝑛
𝑡
Donde v1 es la velocidad que el móvil tenía durante un tiempo t1, v2 es la velocidad que el móvil
tenía durante un tiempo t2 y así sucesivamente, la cantidad de veces que el móvil haya
cambiado de velocidad, y t es el tiempo total del recorrido y está dado por la suma de cada uno
de los tiempos. También podríamos haber escrito:
𝑣 𝑚 =
𝑠1 + 𝑠2 + 𝑠3 + ⋯ + 𝑠 𝑛
𝑡
Donde s1 es la distancia recorrida en el tiempo t1 a la velocidad v1, s2 la distancia recorrida en
el tiempo t2 a la velocidad v2, así siguiendo.
VELOCIDAD
En la vida cotidiana se emplean los términos “rapidez” y “velocidad”
como sinónimos, pero en física nos son lo mismo. Cuando se dice que
un móvil se desplaza a 100 km/h, se está hablando de su rapidez;
pero si se dice que se desplaza a 100 km/h, en dirección horizontal y
hacia la izquierda, se está hablando de su velocidad. La rapidez indica
cuán ligero se mueve un móvil y la velocidad cuán ligero se desplaza y
en que dirección y sentido lo hace. Mientras que la rapidez es una
magnitud escalar, la velocidad es una magnitud vectorial. La rapidez
es el módulo o intensidad de la velocidad. Veámos el ejemplo de la
figura, podemos encontrar que dos automóviles viajando a la misma rapidez (100 km/h), tienen
velocidades diferentes dado que sus direcciones son diferentes.
ACTIVIDADES (ANTES DE LA CLASE)
1. ¿Qué es la rapidez? ¿Cómo se calcula?
2. ¿Qué diferencia hay entre velocidad y rapidez?
3. ¿Qué es la rapidez instantánea?
4. ¿Qué es la rapidez media?
Movimiento Rectilíneo Uniforme
DEFINICIÓN
El movimiento rectilíneo uniforme es el que posee un móvil que describe una trayectoria
rectilínea y recorre distancias iguales en tiempos iguales. Supongamos que un auto se desplaza
sobre una trayectoria recta y con las siguientes características:
 En el primer minuto recorre 600m.
 En el segundo minuto recorre 600m más, es decir, que suma 1200m en total.
 En el tercer minuto hizo otros 600m (1800m en total) y así sucesivamente.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
En un primer momento A, la rapidez del móvil es:
| 𝑣𝐴
| =
600𝑚
1 𝑚𝑖𝑛
= 600
𝑚
𝑚𝑖𝑛
En un segundo momento B, se tiene:
| 𝑣 𝐵
| =
1200𝑚
2 𝑚𝑖𝑛
= 600
𝑚
𝑚𝑖𝑛
En un tercer momento C, se tiene:
| 𝑣 𝐶
| =
1800𝑚
3 𝑚𝑖𝑛
= 600
𝑚
𝑚𝑖𝑛
En forma más general:
En todos los puntos de la trayectoria la velocidad es igual. Si dibujamos a la velocidad en
función del tiempo, esto es en un gráfico de ejes cartesianos con la velocidad en las ordenadas
y el tiempo en el eje de las abscisas, veremos algo así:
De este gráfico podemos concluir que:
Por otro lado, si el móvil recorre 600m en 1 min, 1200m en 2 min, 1800m en 3 min, tenemos que
a doble, triple tiempo corresponde doble, triple espacio, y viceversa. Esto se puede graficar
t [min] e [m] v [m/min] Pto de la trayectoria
0 0 600 O
1 600 600 A
2 1200 600 B
3 1800 600 C
4 2400 600 D
5 3000 600 E
En el Movimiento Rectilíneo Uniforme la velocidad es constante.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
considerando en el eje de las abscisas (X) el eje de los tiempos y el eje de las ordenadas
(Y) como el eje de los espacios o distancias recorridas:
De aquí se desprende la segunda Ley del M.R.U.
ACTIVIDADES (ANTES DE LA CLASE)
1. ¿Qué significa la sigla M.R.U?
2. ¿Cómo es el M.R.U? Enuncia y explica sus leyes.
3. ¿Qué tipo de trayectoria sigue este movimiento?
4. ¿Por qué decimos que este tipo de movimiento es uniforme? Explica.
Problemas de encuentro
DEFINICIÓN
Los problemas de encuentro son los que involucran dos o más móviles que se desplazan con
M.R.U y de su lugar de partida y tiempo después o al mismo tiempo, sale otro en sentido
contrario, de manera tal que se encuentran en el camino. Éstos compartirán posición y tiempo
cuando se encuentren
Existen dos formas de resolver estos problemas, el método gráfico y el método analítico:
MÉTODO GRÁFICO
Estudiémoslo mediante un ejemplo: Un automóvil A parte de Neuquén con una velocidad de 60
km/h hacia la ciudad de Zapala y al mismo tiempo, otro automóvil B parte de Zapala hacia
Neuquén con una rapidez de 90 km/h. Si, entre Zapala y Neuquén hay 180 km de distancia, ¿A
qué distancia de Neuquén se encontrarán? ¿Qué tiempo habrá transcurrido?
Este tipo de problemas, al menos en nuestro curso, siempre los resolveremos en forma gráfica.
Para ello atiende a los siguientes pasos:
1. Construye un gráfico de ejes coordenados, en donde la distancia se encuentre sobre el
eje de las ordenadas (eje Y) y el tiempo se encuentre en el eje de las abscisas (eje X).
En el M.R.U. el espacio recorrido es directamente
proporcional al tiempo empleado.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
2. Para el eje de las ordenadas (eje Y) elige una escala de tal forma que los valores
de distancia y de velocidades sean múltiplos de la unidad elegida. Para nuestro
caso elegiremos que la unidad elegida sea 30 km; así la escala irá de 30 en 30 unidades
y los valores 180, 60 y 90 estén claramente incluidos en ella.
3. Para el eje de las abscisas (eje X) tomaremos como unidad de referencia a 1h.
4. El gráfico debe ser lo más preciso posible, por lo cuál siempre lo construiremos con
regla. ATENCIÓN: Si éste fuera demasiado grande y no entra en la hoja, tendremos
que ampliar la escala, por ejemplo haciendo que el eje de las Y vaya de 60 en 60
unidades o el eje X vaya de 2h en 2h o de 5h en 5h, según sea conveniente.
5. Ubicamos a ambas ciudades sobre el eje Y tomando una de ellas como referencia, por
ejemplo, ponemos a Neuquén en el 0 y en consecuencia Zapala estará ubicada en el
valor 180.
6. Trazamos la recta que representa la rapidez del móvil A. Sale del punto (0,0) porque
sale de Neuquén en el tiempo t=0 y como lleva una rapidez de 60 km/h, pasará por el
punto (1,60), porque pasada 1 hora recorrió 60km. Unimos ambos puntos con una recta
y la extendemos hasta la parte superior del gráfico.
7. Trazamos la recta que representa la rapidez del móvil B. Sale del punto (0,180) porque
sale de Zapala en el tiempo t=0 y como lleva una velocidad de 90 km/h, pasará por el
punto (1,90), porque pasada 1 hora recorrió 90km y recordemos que viene desde Zapala
y hacia Neuquén (sale del kilómetro 180 y se dirige hacia el kilómetro 0 según nuestro
sistema de referencia elegido). Unimos ambos puntos con una recta y la extendemos
hasta la parte inferior del gráfico. Observen que mientras la pendiente del móvil A es
ascendente sobre el gráfico, la pendiente del móvil B queda descendente por circular
en sentido contrario.
8. Ambas rectas se interceptarán en un punto O, la coordenada X de ese punto nos
indicará el tiempo en que ambos móviles se cruzan y la coordenada Y nos indicará la
distancia (respecto de Neuquén) en que se encontrarán.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
Desde el gráfico podemos inferir varias cosas:
1) Los automóviles se encuentran en 1 hora y 10 minutos aproximadamente.
2) Se encuentran a 75km de Neuquén aproximadamente.
3) El móvil A tarda 3 horas en llegar a Zapala.
4) El móvil B tarda 2 horas en llegar a Neuquén.
RTA: Los automóviles se encuentran pasadas 1 hora con 10 minutos desde que partieron y lo
hacen a 75 km de la ciudad de Neuquén.
MÉTODO ANALÍTICO
Consiste en plantear las ecuaciones de espacio para cada móvil y luego igualarlas.
Sabemos que 𝑒 = 𝑣 ∙ 𝑡. Por lo tanto, planteamos para el móvil que sale de Neuquén:
𝑒𝐴 = 60
𝑘𝑚
ℎ
∙ 𝑡
Para el móvil que sale de Zapala, la ecuación será:
𝑒 𝐵 = −90
𝑘𝑚
ℎ
∙ 𝑡 + 180𝑘𝑚
Se le suma 180 km porque parte desde Zapala (180 km adelante) y la velocidad se coloca
negativa, porque este móvil viaja en sentido contrario al otro.
Cuando se encuentren estarán en el mismo lugar, por lo tanto: eA= eB. Por lo que podemos
igualar las ecuaciones:
60
𝑘𝑚
ℎ
∙ 𝑡 == −90
𝑘𝑚
ℎ
∙ 𝑡 + 180𝑘𝑚
Despejamos “t”:
60
𝑘𝑚
ℎ
∙ 𝑡 + 90
𝑘𝑚
ℎ
∙ 𝑡 = 180𝑘𝑚
150
𝑘𝑚
ℎ
∙ 𝑡 = 180𝑘𝑚
𝑡 =
180 𝑘𝑚
150
𝑘𝑚
ℎ
𝑡 = 1,2ℎ
Para averiguar a qué distancia de Neuquén se encuentran se puede reemplazar el tiempo
hallado en cualquiera de las ecuaciones de los móviles.
𝑒𝐴 = 60
𝑘𝑚
ℎ
∙ 𝑡 = 60
𝑘𝑚
ℎ
∙ 1,2𝑘𝑚 = 72𝑘𝑚
RTA: Los móviles se encuentran a 72 km de Neuquén luego de 1 hora y 12 minutos.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
ACTIVIDADES (ANTES DE LA CLASE)
1. ¿Qué son los problemas de encuentro?
2. ¿Qué métodos existen para resolverlos?
3. ¿Deberían dar el mismo resultado los métodos? ¿por qué?
Aceleración
DEFINICIÓN
Si competimos en una
carrera, salimos de la meta
tratando de alcanzar la
máxima velocidad en el
menor tiempo posible.
Cuando viajamos en auto, en
tren, etc., notamos que la
velocidad no se mantiene
constante. Ello se debe,
entre otras causas, a las paradas para el ascenso y descenso de los pasajeros, a la disminución
de velocidad por la interposición de otros vehículos, por el mal estado del camino, etc.
En estos ejemplos se ha tenido un cambio o variación en la velocidad.
Supongamos ahora, que un móvil posee al final de la primera hora una velocidad de 30 km/h; al
final de la segunda 45 km/h; al final de la tercera, 70 km/h. Recordemos que cuando se
produce una variación en la velocidad, aparece en juego una nueva magnitud llamada
aceleración.
O bien:
𝑎 =
𝑉𝑓 − 𝑉𝑖
𝑡
Donde:
Vf es la velocidad final del tiempo t y Vi es la velocidad al inicio del tiempo t.
Ejemplo: Calculemos que pasa en el ejemplo de nuestro móvil, cuál es la aceleración entre la 1ra
y la 2da hora (tiempo transcurrido: 1h):
𝑎 =
45
𝑘𝑚
ℎ
− 30
𝐾𝑚
ℎ
1ℎ
= 15
𝑘𝑚
ℎ2
El resultado significa que: cada hora, la velocidad del móvil aumenta en 15 km/h. Si la
aceleración es negativa decimos que el móvil está desacelerando, es decir que su velocidad está
disminuyendo. Si la aceleración es positiva, el móvil está
acelerando, esto es que su velocidad está aumentando. En el dibujo
La aceleración es el cociente o razón entre la variación o
incremento de la velocidad y el tiempo transcurrido.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
tenemos un auto y un camión cuyas velocidades y tiene igual dirección y sentido
(dirección horizontal y sentido hacia la derecha), pero el auto está acelerando y por el
contrario, el camión está desacelerando; por lo tanto la aceleración del auto es positiva y la
aceleración del camión es negativa. De este ejemplo, inferimos que la aceleración es una
magnitud vectorial. Tiene un valor numérico dado por la fórmula que vimos anteriormente, tiene
un punto de aplicación en el objeto (centro de masa del auto o camión), tiene la misma dirección
que la velocidad y tiene un sentido (que será contrario a la velocidad si se está desacelerando y
será de igual sentido si se está acelerando).
Dado que la intensidad de la aceleración resulta del cociente entre intensidades de velocidad y
tiempo, su unidad de medida está dada por el cociente entre la unidad de medida de la rapidez
y la unidad de medida del tiempo, por ejemplo: [m/s: s] o lo que es lo mismo: [m/s2
]
Por otro lado, de este análisis se desprende que si un móvil viaja a velocidad constante, su
aceleración es igual a cero.
ACTIVIDADES (ANTES DE LA CLASE)
1. ¿Qué es la aceleración?
2. Cita 5 ejemplos de situaciones en donde se produzca un cambio de velocidad.
3. ¿La aceleración es una magnitud vectorial? ¿Por qué?
4. ¿Qué signo tiene el valor de la aceleración cuando frenamos?
5. ¿Cuánto vale la aceleración de un móvil que viaja a velocidad constante? ¿Por qué?
Movimiento Rectilíneo Uniformemente
Variado
DEFINICIÓN
El Movimiento Rectilíneo Uniformemente Variado (M.R.U.V) es un tipo de movimiento cuya
velocidad es variable y la aceleración es constante. Como lo dice su nombre, la trayectoria en
este tipo de movimiento es rectilínea. La palabra uniforme (una forma o misma forma) indica
que la variación de la velocidad en este tipo de movimiento es siempre la misma, la velocidad
cambia siempre en la misma proporción. Esto significa que la aceleración tiene un valor
constante.
Sabemos que la aceleración está dada por:
𝑎 =
𝑉𝑓 − 𝑉𝑖
𝑡
Si la aceleración es conocida y constante podemos calcular la velocidad final a partir de la
inicial y del tiempo transcurrido:
𝑣𝑓 = 𝑣𝑖 + 𝑎𝑡
El espacio recorrido por un móvil con M.R.U.V está dado por:
El movimiento rectilíneo uniformemente variado es aquél que, al desplazarsepor una trayectoria
rectilínea, aumenta o disminuye su velocidad en cantidades iguales en cada unidad de tiempo.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
𝑠 = 𝑣𝑖 𝑡 +
1
2
𝑎𝑡2
Supongamos que un móvil partió con una velocidad inicial de 5m/s con una aceleración constante
de 10m/s2
. Con las fórmulas anteriores podemos calcular la velocidad y el espacio recorrido al
cabo de 1 s, 2 s, 3 s, y así sucesivamente. Los resultados se expresan en el siguiente cuadro:
Si graficamos la aceleración en función del tiempo en un eje cartesiano obtendremos:
De aquí resulta que:
Si graficamos la velocidad den función del tiempo
en un eje cartesiano tendremos:
Y de este gráfico concluimos:
t [s] s [m] v [m/s] a [m/s2]
0 0 5 10
1 10 15 10
2 30 25 10
3 60 35 10
4 100 45 10
5 150 55 10
En el M.R.U.V la aceleración es constante
En el M.R.U.V la velocidad es directamente proporcional al tiempo
empleado.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
Finalmente, graficando el espacio recorrido en función del tiempo, encontramos de que existe
una relación cuadrática entre ellas:
ACTIVIDADES (ANTES DE LA CLASE)
1. ¿Qué es el Movimiento Rectilíneo Uniformemente Variado? ¿Cómo se abrevia el
nombre?
2. ¿Por qué se llama “rectilíneo”?
3. ¿A qué hace referencia la palabra “uniforme”?
4. ¿Qué relación hay entre la velocidad y el tiempo en el MRUV? ¿Y entre el espacio y el
tiempo?
Caída libre y Tiro vertical
CAÍDA LIBRE
Como ya habíamos mencionado, la resistencia del
aire no actúa de la misma manera en todos los
objetos que caen. Existe una serie de factores que
la afectan: la forma, el tamaño y la masa del objeto.
Además, se evidencia más en ciertos objetos como
plumas, hojas de árboles o papeles. Para objetos
más compactos, como una piedra o una moneda, es
mucho menor. Los objetos que encuentran mayor
resistencia del aire caen más lentamente que los
que encuentran menor resistencia. Si se dejan caer
una pluma y una bola de acero al mismo tiempo, esta
última llegará al suelo mucho antes que la pluma.
Esto se debe a la presencia del aire, que opone más resistencia a la pluma que a la bola. Pero si
se colocan la pluma y la bola en un tubo, y luego se extrae el aire (a este aparato de lo llama
“bomba de vacío”), ambos cuerpos caerán juntos durante toda la trayectoria. Todos los cuerpos
que se dejan caer desde la misma altura descienden con la misma rapidez en el vacío. La caída
en el vacío es lo que llamamos caída libre.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
La resistencia del aire se tiene en cuenta, por ejemplo, en el diseño de un paracaídas. Si
un hombre se deja caer desde un avión, la rapidez con que llega a la superficie de la
Tierra es enorme. La resistencia del aire no es suficiente para frenarlo en su caída. En cambio,
si usa paracaídas, la resistencia del aire cumple un papel importante: el hombre va frenando y,
de esta manera, cae suavemente.
Cuando un objeto cae desde cierta altura, la rapidez inicial es cero. Sin embargo, esta cambia
cuando el objeto llega al piso. El objeto parte del reposo e incrementa su rapidez (se acelera) a
medida que va cayendo. Tal suceso indica variación de rapidez. Por lo tanto el movimiento es
acelerado. Es la aceleración de la gravedad, de la que ya habíamos hablado, la que hace esto
posible. Los objetos en caída libre están sujetos, únicamente, a la acción de la gravedad.
El valor de la aceleración de la gravedad “g” cambia ligeramente en diferentes lugares sobre la
superficie de la Tierra, pero la variación es tan pequeña que puede ignorarse. Y si la
consideramos constante, la caída libre es un caso especial del M.R.U.V donde la velocidad inicial
siempre es cero 𝑣𝑖 = 0 y la aceleración es la aceleración de la gravedad | 𝑎| = 𝑔. Por lo tanto se
utilizan las mismas ecuaciones que en el M.R.U.V sólo que con las consideraciones ya
mencionadas.
Debido a esto las ecuaciones del M.R.U.V. se transformarán en:
𝑠 =
1
2
∙ 𝑔 ∙ 𝑡2
Ya que, como: 𝑣𝑖 = 0 → 𝑣𝑖 ∙ 𝑡 = 0.
𝑣𝑓 = 𝑔 ∙ 𝑡
Ya que: 𝑣𝑖 = 0 y 𝑎 = 𝑔
Es importante que definíamos un sistema de referencia claro para poder expresar la velocidad
y la aceleración (magnitudes vectoriales); si “positivo” hacia arriba, hacia abajo la magnitud
será negativa. En los casos de caída libre, como la gravedad es hacia abajo, debe ser negativa,
de ahí el signo negativo de su valor y en consecuencia el signo de la velocidad (que indica
sentido hacia abajo). Lo mismo ocurre con el espacio recorrido, que es hacia abajo.
TIRO VERTICAL
Cuando lanzas una pelota hacia arriba, el movimiento total puede descomponerse en dos: el de
subida y el de bajada. Al lanzar la pelota, le das una rapidez inicial. Mientras sube, la rapidez
va disminuyendo hasta que, en el punto más alto de su trayectoria, la pelota se detiene por un
instante antes de comenzar a bajar. Su rapidez en ese punto de su trayectoria
es cero. En el movimiento de descenso, la rapidez inicial de la pelota es cero y
luego, conforme pasa el tiempo, aumenta. Éste último tramo del movimiento
(cuando la pelota cae) podemos considerarlo como una caída libre y el primer
tramo (cuando la pelota sube) se llama tiro vertical.
Ambos son movimientos con aceleración constante g, es decir que, el tiro
vertical es otro caso especial del M.R.U.V. Pero mientras que en el segundo
La caída libre es un caso especial del M.R.U.V
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
tramo, la rapidez aumenta, el movimiento es acelerado, en el primero, el movimiento es
desacelerado porque la rapidez disminuye.
En consecuencia, las ecuaciones del Tiro Vertical son:
𝑠 = 𝑣𝑖 ∙ 𝑡 +
1
2
∙ 𝑔 ∙ 𝑡2
0 = 𝑣𝑖 + 𝑔 ∙ 𝑡
Porque: 𝑣𝑓 = 0.
ACTIVIDADES (ANTES DE LA CLASE)
1. ¿Cuándo se tiene una caída libre?
2. ¿Cuándo tenemos un caso de tiro vertical?
3. ¿Qué tipo de movimiento son la caída libre y el tiro vertical? ¿Por qué?
4. En caída libre, ¿la aceleración y la velocidad tienen signos opuestos? ¿Por qué? ¿Y en el
caso del tiro vertical?
Tiro Oblicuo
DEFINICIÓN
Denominamos Tiro Oblicuo a aquel movimiento cuya
velocidad tiene dos componentes, una vertical 𝑣𝑦 y
otra horizontal 𝑣𝑥 . Cuando pateamos una pelota o
cuando se dispara un cañón, la velocidad del objeto
tiene una dirección inclinada respecto de la
horizontal. Si descomponemos el vector velocidad
según las direcciones X (horizontal) e Y (vertical),
encontramos que una de ellas, la vertical, está
afectada por la aceleración de la gravedad debido
al peso del objeto móvil; en tanto que, la otra componente de velocidad se mantiene constante.
Si el cuerpo es lanzado con una velocidad 𝑣 con una inclinación 𝜑. Sus componentes ortogonales
se calculan como:
𝑣 𝑥0 = 𝑣 ∙ cos 𝜑
𝑣 𝑦0 = 𝑣 ∙ sin 𝜑
En la dirección horizontal el móvil no sufre aceleraciones, por lo que 𝑣𝑥 será siempre igual y de
aquí en más la notaremos simplemente 𝑣𝑥 , por lo tanto su movimiento es del tipo MRU. Sin
embargo, en la dirección vertical, la velocidad varía a causa de la aceleración de la gravedad y
en consecuencia se tiene un movimiento del tipo MRUV.
La componente Y de la velocidad variará en función del tiempo como en cualquier caso MRUV de
la siguiente manera:
𝑣 𝑦 (𝑓𝑖𝑛𝑎𝑙) = 𝑣 𝑦 (𝑖𝑛𝑖𝑐𝑖𝑎𝑙) − 𝑔 ∙ 𝑡
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
Donde “g” es la aceleración de la gravedad.
Y 𝑣 𝑦 (𝑖𝑛𝑖𝑐𝑖𝑎𝑙) es la velocidad vertical con la que sale 𝑣 𝑦0. Luego:
𝑣𝑦 = 𝑣 𝑦0 − 𝑔 ∙ 𝑡
Y reemplazando vy0 por lo que vale:
𝑣𝑦 = 𝑣 ∙ sin 𝜑 − 𝑔 ∙ 𝑡
DESPLAZAMIENTO DEL PROYECTIL
Para conocer la posición exacta del proyectil en cierto instante “t” se deben averiguar sus
coordenadas en X y en Y, es decir sus espacios recorridos horizontal y verticalmente. Como el
movimiento horizontal es MRU y el vertical es MRUV, utilizamos las ecuaciones de espacio en
ambos tipos de movimiento:
𝑒 𝑥 = 𝑣𝑥 ∙ 𝑡 = (𝑣 ∙ cos 𝜑) ∙ 𝑡
𝑒 𝑦 = 𝑣𝑦 ∙ 𝑡 −
1
2
∙ 𝑔 ∙ 𝑡2
= ( 𝑣 ∙ sin 𝜑) ∙ 𝑡 −
1
2
∙ 𝑔 ∙ 𝑡2
ACTIVIDADES (ANTES DE LA CLASE)
1. ¿Qué es el Tiro Oblicuo?
2. ¿Por qué se puede independizar el movimiento (descomponer la velocidad) en dos direcciones?
3. ¿De qué tipo es el movimiento horizontal? ¿Por qué?
4. ¿De qué tipo es el movimiento vertical? ¿Por qué?
Dinámica
CONCEPTO
Los objetos no se mueven porque sí, tampoco
cambian su velocidad sin haber una causa que lo
permita. Al estudio de las causas que producen el
movimiento de los cuerpos se le llama dinámica. La
dinámica es una rama de la física y en ella
estudiamos como las fuerzas producen el
movimiento de los objetos. Para comprender cómo
las fuerzas producen los movimientos,
enunciaremos y estudiaremos las Leyes de
Newton.
PRIMERA LEY DE NEWTON O PRINCIPIO DE
INERCIA
La inercia es la resistencia que presenta un objeto a los cambios en su estado de movimiento.
Es decir, un objeto que se encuentra en reposo tenderá a seguir en reposo; un objeto que se
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
encuentra a velocidad constante tenderá a seguir en este estado de movimiento en un
sistema de referencia considerado fijo.
Formalmente, el principio de inercia sostiene que:
Esta Ley
enuncia
que, para
que un
cuerpo que estaba en reposo se mueva o para
que un cuerpo que se mueve con M.R.U cambie de
velocidad, se necesita que sobre él aparezca una
fuerza externa neta. Esto significa que el
objeto debe estar sometido a un sistema de
fuerzas que posea una resultante distinta de
cero. Si el cuerpo, estuviera sometido a un
sistema de fuerzas con resultante nula, el cuerpo continuaría en reposo o con su misma
velocidad, es decir, que nada lo perturbaría.
El otro concepto importante que se desprende de este enunciado es la idea de inercia, que ya la
habíamos explicado la Unidad Nº1.
Un ejemplo cotidiano en el que se manifiesta esta ley se percibe al viajar en colectivo. Cuando
el colectivo frena de golpe, los pasajeros tienden a seguir desplazándose hacia delante. Una
persona que observa lo sucedido de pie en la calle, puede apreciar claramente que los pasajeros
se desplazan conjuntamente con el colectivo, con su misma velocidad. Cuando frena, como no
están adheridos firmemente al suelo, los pasajeros continúan moviéndose con la velocidad
anterior (la misma que traía el colectivo antes de frenar). En otras palabras, por la inercia los
pasajeros tienden a conservar su estado de movimiento.
Otro caso interesante donde se verifica la ley de la inercia se observa cuando un automóvil
toma una curva a una rapidez considerable. Un pasajero dentro del vehículo siente una fuerza
que lo empuja lateralmente. La explicación, para un observador situado en la vereda, es que el
pasajero tiende a seguir en línea recta y a velocidad constante, pero la puerta del auto no se lo
permite, obligándolo a girar juntamente con él.
SEGUNDA LEY DE NEWTON O PRINCIPIO DE MASA
Cuando se empuja un auto que no arranca, éste adquiere una rapidez cada vez mayor. La
aceleración tiene, además, el mismo sentido que la fuerza aplicada. En general, un cuerpo
acelera cuando se aplica una fuerza neta sobre él. La rapidez aumenta si la fuerza aplicada
tiene el mismo sentido que la velocidad, mientras que su rapidez disminuye si la fuerza se
opone a la velocidad.
La Segunda Ley de Newton, conocida como principio de masa, sostiene que:
Supongamos que tenemos tres objetos con la misma masa M. Si
les aplicamos fuerzas de distintas magnitudes, los objetos
Todo cuerpo continuará en su estado de reposo o de velocidad constante en
línea recta (M.R.U) mientras sobre él no actúe una fuerza externa (neta) que lo
haga cambiar en su estado de movimiento.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
sufrirán distintas aceleraciones. A mayor fuerza aplicada, mayor aceleración; y a menor
fuerza aplicada, menor aceleración.
Cuando vimos el ejemplo del tren y el hombre en bicicleta en la Unidad Nº1, concluimos que la
inercia de un cuerpo está directamente relacionada con la
cantidad de materia o masa que posee. A mayor masa, el
cuerpo presentará mayor inercia.
Supongamos que tenemos tres camiones de diferentes masas
y a los tres les aplicamos la misma fuerza externa neta; por su
inercia, el más difícil de mover (o de acelerar) será el de
mayor masa, en este caso el camión con masa m3. Esto
significa que la relación entre la aceleración y la masa
es inversamente proporcional. Esto es, que a mayor masa, menor
aceleración; y a menor masa, mayor aceleración.
Estas relaciones entre aceleración y fuerza y aceleración y masa se puede expresar
matemáticamente como:
𝑎⃗ =
𝐹⃗
𝑚
Tanto la aceleración como la fuerza son magnitudes vectoriales (por eso los hemos simbolizado
con una flechita por encima), pero la masa es una magnitud escalar; por lo tanto, la fórmula
indica que la aceleración tiene la misma dirección y sentido que la fuerza aplicada.
TERC
ERA
LEY
DE NEWTON O PRINCIPIO DE INTERACCIÓN
Newton entendió que las fuerzas provienen de las interacciones entre los cuerpos, en cuyos
casos existen de a pares, aunque sobre objetos diferentes.
La atracción gravitacional es una interacción entre dos cuerpos debida a sus
masas, sean planetas o bolitas. Por ser una interacción, cada cuerpo
experimenta una fuerza. El Sol atrae a la Tierra y a la vez la Tierra atrae al
Sol. La Tierra atrae a la Luna y a la vez la Luna atrae a la Tierra. La Tierra
atrae a la manzana y la manzana atrae a la Tierra.
La Tercera Ley de Newton, también conocida como principio de acción y reacción dice:
La
fuerza que ejerce el cuerpo A sobre el cuerpo B, se representa sobre el cuerpo B, porque es el
La aceleración deun cuerpo es directamente proporcional a la fuerza neta que actúa sobre él
e inversamente proporcional a su masa.
Siempre que un cuerpo A ejerce una fuerza sobre un cuerpo B, entonces el cuerpo B
también ejerce una fuerza sobre el cuerpo A, de igual intensidad pero de sentido
contrario.
UNIDAD N°2 Física
TécnicoSuperiorenSeguridad,HigieneMedioAmbiente.
Prof.González,Carolina
cuerpo sobre el que actúa. La otra fuerza proveniente de la interacción entre ambos
cuerpos, en cambio, la ejerce el cuerpo B sobre el cuerpo A; por lo tanto, se la
representa sobre el cuerpo A.
FAB significa: “fuerza sobre el objeto A ejercida por el objeto B”. De la misma manera, FBA
significa: “fuerza sobre el objeto B ejercida por el objeto A”.
Esta Ley se manifiesta constantemente. Por ejemplo, el nadador ejerce una fuerza sobre el
agua empujándola hacia atrás. Simultáneamente, el agua ejerce una fuerza sobre él, que lo
impulsa hacia delante; o la rana cuando salta desde una hoja sobre el agua, ésta se va para
atrás; o la pelota que rebota contra la pared.
ACTIVIDADES (ANTES DE LA CLASE)
1. ¿Qué estudia la dinámica?
2. ¿Qué es lo que hace que los objetos se muevan?
3. ¿Qué dice la Primera Ley de Newton? Cita 3 ejemplos de situaciones reales en las que
se aplique esta Ley.
4. ¿Qué dice el Principio de Masa?
5. Piensa y contesta: ¿Por qué al caminar por el piso no nos hundimos? ¿A qué Ley de
Newton obedece esto? Explica.

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Elementos del movimiento
Elementos del movimientoElementos del movimiento
Elementos del movimiento
 
Mru semana02
Mru semana02Mru semana02
Mru semana02
 
Mov. uniformemente acelerado
Mov. uniformemente aceleradoMov. uniformemente acelerado
Mov. uniformemente acelerado
 
Taller mru
Taller mruTaller mru
Taller mru
 
Lectura teorica de caida libre
Lectura teorica de caida libreLectura teorica de caida libre
Lectura teorica de caida libre
 
Examen mrua
Examen mruaExamen mrua
Examen mrua
 
Taller 1.3 física grado séptimo (1)
Taller 1.3 física grado séptimo (1)Taller 1.3 física grado séptimo (1)
Taller 1.3 física grado séptimo (1)
 
Ej cinematica 3 eso
Ej cinematica 3 esoEj cinematica 3 eso
Ej cinematica 3 eso
 
Prueba m.r.u.v
Prueba m.r.u.vPrueba m.r.u.v
Prueba m.r.u.v
 
Mruv para-sexto-de-primaria
Mruv para-sexto-de-primariaMruv para-sexto-de-primaria
Mruv para-sexto-de-primaria
 
Ejercicios de mru
Ejercicios de mruEjercicios de mru
Ejercicios de mru
 
Velocidad y Rapidez (Ciencias II)
Velocidad y Rapidez (Ciencias II)Velocidad y Rapidez (Ciencias II)
Velocidad y Rapidez (Ciencias II)
 
TALLER DE EJERCICIOS DE MRUV - MCLV
TALLER DE EJERCICIOS DE MRUV - MCLVTALLER DE EJERCICIOS DE MRUV - MCLV
TALLER DE EJERCICIOS DE MRUV - MCLV
 
Prueba de ciencias naturales grado 5 calendario a
Prueba de ciencias naturales   grado 5 calendario aPrueba de ciencias naturales   grado 5 calendario a
Prueba de ciencias naturales grado 5 calendario a
 
Cuadernillo de ciencia y tecnologia energia demo
Cuadernillo de ciencia y tecnologia energia demoCuadernillo de ciencia y tecnologia energia demo
Cuadernillo de ciencia y tecnologia energia demo
 
Ronald Estela Urbina Cinematica 4º
Ronald Estela Urbina Cinematica 4ºRonald Estela Urbina Cinematica 4º
Ronald Estela Urbina Cinematica 4º
 
Ejercicios de m.r.u.
Ejercicios  de  m.r.u.Ejercicios  de  m.r.u.
Ejercicios de m.r.u.
 
Taller 2.3 física grado séptimo
Taller 2.3 física grado séptimoTaller 2.3 física grado séptimo
Taller 2.3 física grado séptimo
 
Distancia y desplazamiento
Distancia y desplazamientoDistancia y desplazamiento
Distancia y desplazamiento
 
Movimiento rectilineo uniforme (mru)
Movimiento rectilineo uniforme (mru)Movimiento rectilineo uniforme (mru)
Movimiento rectilineo uniforme (mru)
 

Destaque

Bi and data mining with Oracle
Bi and data mining with OracleBi and data mining with Oracle
Bi and data mining with Oracleghanadbashi
 
FRACCIONAMIENTOS CASAS OMNI
FRACCIONAMIENTOS CASAS OMNIFRACCIONAMIENTOS CASAS OMNI
FRACCIONAMIENTOS CASAS OMNICasas Omni
 
Setting up and pre use checks on oxy gas equipment
Setting up and pre use checks on oxy gas equipmentSetting up and pre use checks on oxy gas equipment
Setting up and pre use checks on oxy gas equipmentAlan Bassett
 
sugandh singh (1).doc[1] (2) (1)
sugandh singh (1).doc[1] (2) (1)sugandh singh (1).doc[1] (2) (1)
sugandh singh (1).doc[1] (2) (1)Sugandh Singh
 
World Championships Ranking Montreal 2014
World Championships Ranking Montreal 2014World Championships Ranking Montreal 2014
World Championships Ranking Montreal 2014Paul Barry
 
Казус по Международна Икономика
Казус по Международна ИкономикаКазус по Международна Икономика
Казус по Международна ИкономикаKristiana Marasheva
 
Курсов проект по Финанси
Курсов проект по ФинансиКурсов проект по Финанси
Курсов проект по ФинансиKristiana Marasheva
 
Konspeky III variant
Konspeky III variantKonspeky III variant
Konspeky III variantazstudent
 
Казус по Регионална икономика
Казус по Регионална икономикаКазус по Регионална икономика
Казус по Регионална икономикаKristiana Marasheva
 
E-Iran in perspective
E-Iran in perspectiveE-Iran in perspective
E-Iran in perspectiveArabNet ME
 
Rbt tahun 5 bahagian b
Rbt tahun 5 bahagian bRbt tahun 5 bahagian b
Rbt tahun 5 bahagian bejatboy
 
Instruction manual pages
Instruction manual pagesInstruction manual pages
Instruction manual pageslexi24216
 
Big Data and Machine Learning Workshop - Day 6 @ UTACM
Big Data and Machine Learning Workshop - Day 6 @ UTACMBig Data and Machine Learning Workshop - Day 6 @ UTACM
Big Data and Machine Learning Workshop - Day 6 @ UTACMAmir Sedighi
 

Destaque (18)

Bi and data mining with Oracle
Bi and data mining with OracleBi and data mining with Oracle
Bi and data mining with Oracle
 
آشنایی با درس حجیم آزاد آنلاین (ماک)
آشنایی با درس حجیم آزاد آنلاین (ماک)آشنایی با درس حجیم آزاد آنلاین (ماک)
آشنایی با درس حجیم آزاد آنلاین (ماک)
 
FRACCIONAMIENTOS CASAS OMNI
FRACCIONAMIENTOS CASAS OMNIFRACCIONAMIENTOS CASAS OMNI
FRACCIONAMIENTOS CASAS OMNI
 
Setting up and pre use checks on oxy gas equipment
Setting up and pre use checks on oxy gas equipmentSetting up and pre use checks on oxy gas equipment
Setting up and pre use checks on oxy gas equipment
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
 
sugandh singh (1).doc[1] (2) (1)
sugandh singh (1).doc[1] (2) (1)sugandh singh (1).doc[1] (2) (1)
sugandh singh (1).doc[1] (2) (1)
 
OMNI
OMNIOMNI
OMNI
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled Presentation
 
World Championships Ranking Montreal 2014
World Championships Ranking Montreal 2014World Championships Ranking Montreal 2014
World Championships Ranking Montreal 2014
 
Казус по Международна Икономика
Казус по Международна ИкономикаКазус по Международна Икономика
Казус по Международна Икономика
 
41. line of fire
41. line of fire41. line of fire
41. line of fire
 
Курсов проект по Финанси
Курсов проект по ФинансиКурсов проект по Финанси
Курсов проект по Финанси
 
Konspeky III variant
Konspeky III variantKonspeky III variant
Konspeky III variant
 
Казус по Регионална икономика
Казус по Регионална икономикаКазус по Регионална икономика
Казус по Регионална икономика
 
E-Iran in perspective
E-Iran in perspectiveE-Iran in perspective
E-Iran in perspective
 
Rbt tahun 5 bahagian b
Rbt tahun 5 bahagian bRbt tahun 5 bahagian b
Rbt tahun 5 bahagian b
 
Instruction manual pages
Instruction manual pagesInstruction manual pages
Instruction manual pages
 
Big Data and Machine Learning Workshop - Day 6 @ UTACM
Big Data and Machine Learning Workshop - Day 6 @ UTACMBig Data and Machine Learning Workshop - Day 6 @ UTACM
Big Data and Machine Learning Workshop - Day 6 @ UTACM
 

Semelhante a Mov Rectilíneo Uniforme y Leyes Newton (20)

Guia de 4 de Física
Guia de 4 de FísicaGuia de 4 de Física
Guia de 4 de Física
 
Fuerzas y movimiento
Fuerzas y movimientoFuerzas y movimiento
Fuerzas y movimiento
 
Fisica
FisicaFisica
Fisica
 
Sebastian rubiano
Sebastian rubianoSebastian rubiano
Sebastian rubiano
 
Fisica
FisicaFisica
Fisica
 
Cinematica
CinematicaCinematica
Cinematica
 
Cinematica
CinematicaCinematica
Cinematica
 
Apuntes-cinemática-4º-ESO-2020-alumnos.pdf
Apuntes-cinemática-4º-ESO-2020-alumnos.pdfApuntes-cinemática-4º-ESO-2020-alumnos.pdf
Apuntes-cinemática-4º-ESO-2020-alumnos.pdf
 
Unidad n°2 fisica
Unidad n°2 fisicaUnidad n°2 fisica
Unidad n°2 fisica
 
Guía MRU
Guía MRUGuía MRU
Guía MRU
 
Movimiento
MovimientoMovimiento
Movimiento
 
Fisicagt
FisicagtFisicagt
Fisicagt
 
Movimiento
MovimientoMovimiento
Movimiento
 
Movimiento rectilíneo
Movimiento rectilíneoMovimiento rectilíneo
Movimiento rectilíneo
 
PRESENTACIÓN EL MOVIMIENTO.pptx
PRESENTACIÓN EL MOVIMIENTO.pptxPRESENTACIÓN EL MOVIMIENTO.pptx
PRESENTACIÓN EL MOVIMIENTO.pptx
 
07 movimiento
07 movimiento07 movimiento
07 movimiento
 
El movimiento
El movimientoEl movimiento
El movimiento
 
Movimiento 120225134111-phpapp02
Movimiento 120225134111-phpapp02Movimiento 120225134111-phpapp02
Movimiento 120225134111-phpapp02
 
Ud1 cinematica
Ud1 cinematicaUd1 cinematica
Ud1 cinematica
 
Ud1 cinematica
Ud1 cinematicaUd1 cinematica
Ud1 cinematica
 

Mais de Alejandra Gonzalez (20)

Unidad n° 6 Fisica
Unidad n° 6 FisicaUnidad n° 6 Fisica
Unidad n° 6 Fisica
 
Unidad n° 6 Fisica
Unidad n° 6 FisicaUnidad n° 6 Fisica
Unidad n° 6 Fisica
 
Unidad n°5 2 parte
Unidad n°5 2 parteUnidad n°5 2 parte
Unidad n°5 2 parte
 
Trabajo practico n°6 Fisica
Trabajo practico n°6 FisicaTrabajo practico n°6 Fisica
Trabajo practico n°6 Fisica
 
Unidad n° 6 Fisica
Unidad n° 6 FisicaUnidad n° 6 Fisica
Unidad n° 6 Fisica
 
Trabajo grupal obligatorio unidad n°6
Trabajo grupal obligatorio unidad n°6Trabajo grupal obligatorio unidad n°6
Trabajo grupal obligatorio unidad n°6
 
Trabajo practico n°5 Fisica
Trabajo practico n°5 FisicaTrabajo practico n°5 Fisica
Trabajo practico n°5 Fisica
 
Unidad n°5 FISICA
Unidad n°5 FISICAUnidad n°5 FISICA
Unidad n°5 FISICA
 
Unidad N ° 5 Fisica
Unidad N ° 5 FisicaUnidad N ° 5 Fisica
Unidad N ° 5 Fisica
 
Unidad n°4 Fisica
Unidad n°4 FisicaUnidad n°4 Fisica
Unidad n°4 Fisica
 
Unidad n°4 calorimetria
Unidad n°4 calorimetriaUnidad n°4 calorimetria
Unidad n°4 calorimetria
 
Trabajo practico N° 5 Quimica
Trabajo practico N° 5 QuimicaTrabajo practico N° 5 Quimica
Trabajo practico N° 5 Quimica
 
Unidad n° 5 Quimica
Unidad n° 5 QuimicaUnidad n° 5 Quimica
Unidad n° 5 Quimica
 
Trabajo practico n°3 quimica
Trabajo practico n°3 quimicaTrabajo practico n°3 quimica
Trabajo practico n°3 quimica
 
Unidad N° 3 Quimica
Unidad N° 3 QuimicaUnidad N° 3 Quimica
Unidad N° 3 Quimica
 
1°presentacion 2da unidad
1°presentacion 2da unidad1°presentacion 2da unidad
1°presentacion 2da unidad
 
Unidad n°3 quimica
Unidad n°3 quimicaUnidad n°3 quimica
Unidad n°3 quimica
 
Unidad n°4 fisica
Unidad n°4 fisicaUnidad n°4 fisica
Unidad n°4 fisica
 
Programa fisica cei
Programa fisica ceiPrograma fisica cei
Programa fisica cei
 
Unidad n°2 quimica
Unidad n°2 quimicaUnidad n°2 quimica
Unidad n°2 quimica
 

Último

Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
celula, tipos, teoria celular, energia y dinamica
celula, tipos, teoria celular, energia y dinamicacelula, tipos, teoria celular, energia y dinamica
celula, tipos, teoria celular, energia y dinamicaFlor Idalia Espinoza Ortega
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 

Último (20)

Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
celula, tipos, teoria celular, energia y dinamica
celula, tipos, teoria celular, energia y dinamicacelula, tipos, teoria celular, energia y dinamica
celula, tipos, teoria celular, energia y dinamica
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 

Mov Rectilíneo Uniforme y Leyes Newton

  • 1. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina Unidad N°2: Cinemática. Movimiento Rectilíneo Uniforme y Uniformemente Variado. Leyes de Newton. Principio de Conservación de la Energía. Cantidad de Movimiento. Sistema de unidades. Momento de Inercia Movimiento MOVIMIENTO En todas partes hay movimiento. La parte de la Física que estudia científicamente los movimientos de los cuerpos es la Cinemática. Comencemos suponiendo que un chico está parado esperando cruzar la calle y pasa un micro, éste puede afirmar que el vehículo se está moviendo dado que primero se acerca de él, pasa por delante y luego se aleja de él. Pero un pasajero que viaja en ése móvil podría decir que el peatón primero se acercó, pasó frente a él y luego se alejó. En ese caso, ninguno de los dos está equivocado, cada uno está diciendo lo que percibe, es decir, cada uno establece que el otro se mueve respecto de él. El pasajero del micro está en movimiento para el peatón y éste en movimiento para el que está adentro del vehículo. Esto significa que el movimiento es relativo, es decir que depende del lugar desde el cual se lo describe. Por lo tanto, es necesario indicar respecto de qué cuerpo está en movimiento y tal referencia puede estar ubicada en cualquier objeto que se elija. Pero como el micro puede moverse en un sentido o en otro de la calle, es conveniente aclarar hacia dónde se mueve y por eso, tomar al peatón como punto de referencia no alcanza. No basta decir que el vehículo se aleja, habría que indicar hacia dónde lo hace. Para solucionar esta situación se puede pensar que asociado a la calle donde se encuentra el peatón, existe un sistema de referencia con un origen, la persona, y una convención para determinar los sentidos, por ejemplo positivo hacia donde el micro de mueve. Este sistema de referencia se representa con ejes cartesianos. De esta manera si un cuerpo se encuentra primero en la posición X= 20m y luego en la posición X= 30m, se movió 10m en el sentido tomado como positivo respecto del cuerpo fijo en el origen del eje X. Un sistema de referencia es una representación con ejes cartesianos que nos permite establecer un punto fijo, respecto del cuál podremos determinar y caracterizar el movimiento de un cuerpo.
  • 2. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina TRAYECTORIA Y DESPLAZAMIENTO Todos los días, para ir a la escuela, te movés desde una posición inicial (tu casa) hasta una posición final (la escuela). Sin importar que vayas caminando, en colectivo, en auto o en bicicleta, siempre cambiás de posición. La distancia se recorre en línea recta desde la posición inicial hasta la posición final se llama desplazamiento. Sin embargo, es muy probable que, en realidad, no te muevas en línea recta, sino que rodees algunas cosas, atravieses calles, bordees una plaza, etc. El camino que se realiza para ir desde la posición inicial hasta la posición final se denomina trayectoria. Por lo tanto, si bien entre dos posiciones hay un solo desplazamiento, puede haber muchas trayectorias. Supongamos que queremos ir desde el punto A hacia el punto B, cada cuadrícula equivale a 1m. La distancia en línea recta entre A y B es el desplazamiento y en este ejemplo vale 6m. Si vamos en línea recta, la trayectoria es de 6m y equivale al desplazamiento, en tanto que, si para ir desde A hasta B, pasamos por C y por D, la trayectoria es de 10m.Dado que la trayectoria es una línea, puede tener distintas formas, y estas formas nos permiten reconocer distintos tipos de movimiento. Por ejemplo, si el objeto tiene una trayectoria en línea recta, diremos que el movimiento es rectilíneo; si tiene una trayectoria en línea curva, el movimiento será curvilíneo. Dentro de las trayectorias curvilíneas, pueden encontrarse:  Trayectorias circulares. Por ejemplo, una nena sentada en una calesita en movimiento describe una trayectoria circular alrededor del centro de la calesita.  Trayectorias elípticas. La línea que describen los planetas cuando se trasladan alrededor del Sol representan una trayectoria elíptica.  Trayectorias parabólicas. Cuando se arroja un objeto con inclinación, por ejemplo, una bala disparada por un cañón, la trayectoria que describe es parabólica.  Trayectorias irregulares. El vuelo de un mosquito es un ejemplo de esta trayectoria. ¿La trayectoria cambia con el sistema de referencia? Ya vimos que para determinar si un cuerpo está en movimiento es necesario elegir un sistema de referencia. También estudiamos los diferentes tipos de trayectorias que un cuerpo puede describir a medida que se mueve. Ahora bien, la trayectoria o dibujo que un cuerpo va haciendo en su camino también dependerá del sistema de referencia elegido. Pensemos en un avión. Supongamos que alguien puede dejar caer un objeto desde éste.
  • 3. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina Para un pasajero que lo ve desde el avión, el objeto caerá en línea recta (suponiendo que el rozamiento con el aire es despreciable), es decir que tendrá una trayectoria rectilínea. Pero para un observador que se encuentra en la superficie de la Tierra, el objeto describirá una parábola, es decir, tendrá una trayectoria curvilínea. ACTIVIDADES (ANTES DE LA CLASE) 1. Elabora una definición de: movimiento. 2. ¿Por qué es necesario un sistema de referencia para determinar un movimiento? 3. ¿Qué diferencia hay entre desplazamiento y trayectoria? 4. ¿Cambia la trayectoria si cambiamos el sistema de referencia? Velocidad RAPIDEZ Además de describir el cambio de posición y la trayectoria de un móvil, muchas veces nos resulta especialmente útil saber el tiempo que dura su movimiento. Conocer el valor del tiempo nos proporciona información para completar la descripción del movimiento. Por ejemplo, si un atleta tarda 10s en correr 100m y otro corre la misma distancia en 9,8s, el tiempo nos indica que el segundo atleta es más rápido que el primero. La rapidez indica cuán ligero se mueve un objeto y se define como la distancia recorrida en un intervalo de tiempo. Matemáticamente: | 𝑣| = 𝑠 𝑡 La distancia “s” recorrida se expresa en unidades de longitud, y el tiempo transcurrido “t”, en unidades de tiempo. Para describir la rapidez podemos utilizar cualquier combinación de unidades de longitud y de tiempo. Por ejemplo, en el caso de los corredores, la rapidez se mide en metros por segundo [m/s], pero para un vehículo suele expresarse en kilómetros por hora [km/h]. Si una partícula se desplaza con una rapidez de 10 m/s significa que en cada segundo recorre una distancia de 10m, y cuando un auto se mueve a 90 km/h significa que lo hace de manera tal que en cada hora recorre una distancia de 90 Km. Pero un móvil, por ejemplo un auto, no se desplaza siempre con la misma rapidez: avanza con cierta rapidez, se detiene, vuelve a arrancar. La rapidez en un instante determinado se llama
  • 4. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina rapidez instantánea (la que indica el velocímetro de los autos). También puede definirse, para la totalidad del trayecto, lo que se llama rapidez media, que se calcula así: 𝑣 𝑚 = | 𝑣1 | ∙ 𝑡1 + | 𝑣2 | ∙ 𝑡2 + | 𝑣3 | ∙ 𝑡3 + ⋯+ | 𝑣𝑛 | ∙ 𝑡 𝑛 𝑡 Donde v1 es la velocidad que el móvil tenía durante un tiempo t1, v2 es la velocidad que el móvil tenía durante un tiempo t2 y así sucesivamente, la cantidad de veces que el móvil haya cambiado de velocidad, y t es el tiempo total del recorrido y está dado por la suma de cada uno de los tiempos. También podríamos haber escrito: 𝑣 𝑚 = 𝑠1 + 𝑠2 + 𝑠3 + ⋯ + 𝑠 𝑛 𝑡 Donde s1 es la distancia recorrida en el tiempo t1 a la velocidad v1, s2 la distancia recorrida en el tiempo t2 a la velocidad v2, así siguiendo. VELOCIDAD En la vida cotidiana se emplean los términos “rapidez” y “velocidad” como sinónimos, pero en física nos son lo mismo. Cuando se dice que un móvil se desplaza a 100 km/h, se está hablando de su rapidez; pero si se dice que se desplaza a 100 km/h, en dirección horizontal y hacia la izquierda, se está hablando de su velocidad. La rapidez indica cuán ligero se mueve un móvil y la velocidad cuán ligero se desplaza y en que dirección y sentido lo hace. Mientras que la rapidez es una magnitud escalar, la velocidad es una magnitud vectorial. La rapidez es el módulo o intensidad de la velocidad. Veámos el ejemplo de la figura, podemos encontrar que dos automóviles viajando a la misma rapidez (100 km/h), tienen velocidades diferentes dado que sus direcciones son diferentes. ACTIVIDADES (ANTES DE LA CLASE) 1. ¿Qué es la rapidez? ¿Cómo se calcula? 2. ¿Qué diferencia hay entre velocidad y rapidez? 3. ¿Qué es la rapidez instantánea? 4. ¿Qué es la rapidez media? Movimiento Rectilíneo Uniforme DEFINICIÓN El movimiento rectilíneo uniforme es el que posee un móvil que describe una trayectoria rectilínea y recorre distancias iguales en tiempos iguales. Supongamos que un auto se desplaza sobre una trayectoria recta y con las siguientes características:  En el primer minuto recorre 600m.  En el segundo minuto recorre 600m más, es decir, que suma 1200m en total.  En el tercer minuto hizo otros 600m (1800m en total) y así sucesivamente.
  • 5. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina En un primer momento A, la rapidez del móvil es: | 𝑣𝐴 | = 600𝑚 1 𝑚𝑖𝑛 = 600 𝑚 𝑚𝑖𝑛 En un segundo momento B, se tiene: | 𝑣 𝐵 | = 1200𝑚 2 𝑚𝑖𝑛 = 600 𝑚 𝑚𝑖𝑛 En un tercer momento C, se tiene: | 𝑣 𝐶 | = 1800𝑚 3 𝑚𝑖𝑛 = 600 𝑚 𝑚𝑖𝑛 En forma más general: En todos los puntos de la trayectoria la velocidad es igual. Si dibujamos a la velocidad en función del tiempo, esto es en un gráfico de ejes cartesianos con la velocidad en las ordenadas y el tiempo en el eje de las abscisas, veremos algo así: De este gráfico podemos concluir que: Por otro lado, si el móvil recorre 600m en 1 min, 1200m en 2 min, 1800m en 3 min, tenemos que a doble, triple tiempo corresponde doble, triple espacio, y viceversa. Esto se puede graficar t [min] e [m] v [m/min] Pto de la trayectoria 0 0 600 O 1 600 600 A 2 1200 600 B 3 1800 600 C 4 2400 600 D 5 3000 600 E En el Movimiento Rectilíneo Uniforme la velocidad es constante.
  • 6. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina considerando en el eje de las abscisas (X) el eje de los tiempos y el eje de las ordenadas (Y) como el eje de los espacios o distancias recorridas: De aquí se desprende la segunda Ley del M.R.U. ACTIVIDADES (ANTES DE LA CLASE) 1. ¿Qué significa la sigla M.R.U? 2. ¿Cómo es el M.R.U? Enuncia y explica sus leyes. 3. ¿Qué tipo de trayectoria sigue este movimiento? 4. ¿Por qué decimos que este tipo de movimiento es uniforme? Explica. Problemas de encuentro DEFINICIÓN Los problemas de encuentro son los que involucran dos o más móviles que se desplazan con M.R.U y de su lugar de partida y tiempo después o al mismo tiempo, sale otro en sentido contrario, de manera tal que se encuentran en el camino. Éstos compartirán posición y tiempo cuando se encuentren Existen dos formas de resolver estos problemas, el método gráfico y el método analítico: MÉTODO GRÁFICO Estudiémoslo mediante un ejemplo: Un automóvil A parte de Neuquén con una velocidad de 60 km/h hacia la ciudad de Zapala y al mismo tiempo, otro automóvil B parte de Zapala hacia Neuquén con una rapidez de 90 km/h. Si, entre Zapala y Neuquén hay 180 km de distancia, ¿A qué distancia de Neuquén se encontrarán? ¿Qué tiempo habrá transcurrido? Este tipo de problemas, al menos en nuestro curso, siempre los resolveremos en forma gráfica. Para ello atiende a los siguientes pasos: 1. Construye un gráfico de ejes coordenados, en donde la distancia se encuentre sobre el eje de las ordenadas (eje Y) y el tiempo se encuentre en el eje de las abscisas (eje X). En el M.R.U. el espacio recorrido es directamente proporcional al tiempo empleado.
  • 7. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina 2. Para el eje de las ordenadas (eje Y) elige una escala de tal forma que los valores de distancia y de velocidades sean múltiplos de la unidad elegida. Para nuestro caso elegiremos que la unidad elegida sea 30 km; así la escala irá de 30 en 30 unidades y los valores 180, 60 y 90 estén claramente incluidos en ella. 3. Para el eje de las abscisas (eje X) tomaremos como unidad de referencia a 1h. 4. El gráfico debe ser lo más preciso posible, por lo cuál siempre lo construiremos con regla. ATENCIÓN: Si éste fuera demasiado grande y no entra en la hoja, tendremos que ampliar la escala, por ejemplo haciendo que el eje de las Y vaya de 60 en 60 unidades o el eje X vaya de 2h en 2h o de 5h en 5h, según sea conveniente. 5. Ubicamos a ambas ciudades sobre el eje Y tomando una de ellas como referencia, por ejemplo, ponemos a Neuquén en el 0 y en consecuencia Zapala estará ubicada en el valor 180. 6. Trazamos la recta que representa la rapidez del móvil A. Sale del punto (0,0) porque sale de Neuquén en el tiempo t=0 y como lleva una rapidez de 60 km/h, pasará por el punto (1,60), porque pasada 1 hora recorrió 60km. Unimos ambos puntos con una recta y la extendemos hasta la parte superior del gráfico. 7. Trazamos la recta que representa la rapidez del móvil B. Sale del punto (0,180) porque sale de Zapala en el tiempo t=0 y como lleva una velocidad de 90 km/h, pasará por el punto (1,90), porque pasada 1 hora recorrió 90km y recordemos que viene desde Zapala y hacia Neuquén (sale del kilómetro 180 y se dirige hacia el kilómetro 0 según nuestro sistema de referencia elegido). Unimos ambos puntos con una recta y la extendemos hasta la parte inferior del gráfico. Observen que mientras la pendiente del móvil A es ascendente sobre el gráfico, la pendiente del móvil B queda descendente por circular en sentido contrario. 8. Ambas rectas se interceptarán en un punto O, la coordenada X de ese punto nos indicará el tiempo en que ambos móviles se cruzan y la coordenada Y nos indicará la distancia (respecto de Neuquén) en que se encontrarán.
  • 8. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina Desde el gráfico podemos inferir varias cosas: 1) Los automóviles se encuentran en 1 hora y 10 minutos aproximadamente. 2) Se encuentran a 75km de Neuquén aproximadamente. 3) El móvil A tarda 3 horas en llegar a Zapala. 4) El móvil B tarda 2 horas en llegar a Neuquén. RTA: Los automóviles se encuentran pasadas 1 hora con 10 minutos desde que partieron y lo hacen a 75 km de la ciudad de Neuquén. MÉTODO ANALÍTICO Consiste en plantear las ecuaciones de espacio para cada móvil y luego igualarlas. Sabemos que 𝑒 = 𝑣 ∙ 𝑡. Por lo tanto, planteamos para el móvil que sale de Neuquén: 𝑒𝐴 = 60 𝑘𝑚 ℎ ∙ 𝑡 Para el móvil que sale de Zapala, la ecuación será: 𝑒 𝐵 = −90 𝑘𝑚 ℎ ∙ 𝑡 + 180𝑘𝑚 Se le suma 180 km porque parte desde Zapala (180 km adelante) y la velocidad se coloca negativa, porque este móvil viaja en sentido contrario al otro. Cuando se encuentren estarán en el mismo lugar, por lo tanto: eA= eB. Por lo que podemos igualar las ecuaciones: 60 𝑘𝑚 ℎ ∙ 𝑡 == −90 𝑘𝑚 ℎ ∙ 𝑡 + 180𝑘𝑚 Despejamos “t”: 60 𝑘𝑚 ℎ ∙ 𝑡 + 90 𝑘𝑚 ℎ ∙ 𝑡 = 180𝑘𝑚 150 𝑘𝑚 ℎ ∙ 𝑡 = 180𝑘𝑚 𝑡 = 180 𝑘𝑚 150 𝑘𝑚 ℎ 𝑡 = 1,2ℎ Para averiguar a qué distancia de Neuquén se encuentran se puede reemplazar el tiempo hallado en cualquiera de las ecuaciones de los móviles. 𝑒𝐴 = 60 𝑘𝑚 ℎ ∙ 𝑡 = 60 𝑘𝑚 ℎ ∙ 1,2𝑘𝑚 = 72𝑘𝑚 RTA: Los móviles se encuentran a 72 km de Neuquén luego de 1 hora y 12 minutos.
  • 9. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina ACTIVIDADES (ANTES DE LA CLASE) 1. ¿Qué son los problemas de encuentro? 2. ¿Qué métodos existen para resolverlos? 3. ¿Deberían dar el mismo resultado los métodos? ¿por qué? Aceleración DEFINICIÓN Si competimos en una carrera, salimos de la meta tratando de alcanzar la máxima velocidad en el menor tiempo posible. Cuando viajamos en auto, en tren, etc., notamos que la velocidad no se mantiene constante. Ello se debe, entre otras causas, a las paradas para el ascenso y descenso de los pasajeros, a la disminución de velocidad por la interposición de otros vehículos, por el mal estado del camino, etc. En estos ejemplos se ha tenido un cambio o variación en la velocidad. Supongamos ahora, que un móvil posee al final de la primera hora una velocidad de 30 km/h; al final de la segunda 45 km/h; al final de la tercera, 70 km/h. Recordemos que cuando se produce una variación en la velocidad, aparece en juego una nueva magnitud llamada aceleración. O bien: 𝑎 = 𝑉𝑓 − 𝑉𝑖 𝑡 Donde: Vf es la velocidad final del tiempo t y Vi es la velocidad al inicio del tiempo t. Ejemplo: Calculemos que pasa en el ejemplo de nuestro móvil, cuál es la aceleración entre la 1ra y la 2da hora (tiempo transcurrido: 1h): 𝑎 = 45 𝑘𝑚 ℎ − 30 𝐾𝑚 ℎ 1ℎ = 15 𝑘𝑚 ℎ2 El resultado significa que: cada hora, la velocidad del móvil aumenta en 15 km/h. Si la aceleración es negativa decimos que el móvil está desacelerando, es decir que su velocidad está disminuyendo. Si la aceleración es positiva, el móvil está acelerando, esto es que su velocidad está aumentando. En el dibujo La aceleración es el cociente o razón entre la variación o incremento de la velocidad y el tiempo transcurrido.
  • 10. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina tenemos un auto y un camión cuyas velocidades y tiene igual dirección y sentido (dirección horizontal y sentido hacia la derecha), pero el auto está acelerando y por el contrario, el camión está desacelerando; por lo tanto la aceleración del auto es positiva y la aceleración del camión es negativa. De este ejemplo, inferimos que la aceleración es una magnitud vectorial. Tiene un valor numérico dado por la fórmula que vimos anteriormente, tiene un punto de aplicación en el objeto (centro de masa del auto o camión), tiene la misma dirección que la velocidad y tiene un sentido (que será contrario a la velocidad si se está desacelerando y será de igual sentido si se está acelerando). Dado que la intensidad de la aceleración resulta del cociente entre intensidades de velocidad y tiempo, su unidad de medida está dada por el cociente entre la unidad de medida de la rapidez y la unidad de medida del tiempo, por ejemplo: [m/s: s] o lo que es lo mismo: [m/s2 ] Por otro lado, de este análisis se desprende que si un móvil viaja a velocidad constante, su aceleración es igual a cero. ACTIVIDADES (ANTES DE LA CLASE) 1. ¿Qué es la aceleración? 2. Cita 5 ejemplos de situaciones en donde se produzca un cambio de velocidad. 3. ¿La aceleración es una magnitud vectorial? ¿Por qué? 4. ¿Qué signo tiene el valor de la aceleración cuando frenamos? 5. ¿Cuánto vale la aceleración de un móvil que viaja a velocidad constante? ¿Por qué? Movimiento Rectilíneo Uniformemente Variado DEFINICIÓN El Movimiento Rectilíneo Uniformemente Variado (M.R.U.V) es un tipo de movimiento cuya velocidad es variable y la aceleración es constante. Como lo dice su nombre, la trayectoria en este tipo de movimiento es rectilínea. La palabra uniforme (una forma o misma forma) indica que la variación de la velocidad en este tipo de movimiento es siempre la misma, la velocidad cambia siempre en la misma proporción. Esto significa que la aceleración tiene un valor constante. Sabemos que la aceleración está dada por: 𝑎 = 𝑉𝑓 − 𝑉𝑖 𝑡 Si la aceleración es conocida y constante podemos calcular la velocidad final a partir de la inicial y del tiempo transcurrido: 𝑣𝑓 = 𝑣𝑖 + 𝑎𝑡 El espacio recorrido por un móvil con M.R.U.V está dado por: El movimiento rectilíneo uniformemente variado es aquél que, al desplazarsepor una trayectoria rectilínea, aumenta o disminuye su velocidad en cantidades iguales en cada unidad de tiempo.
  • 11. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina 𝑠 = 𝑣𝑖 𝑡 + 1 2 𝑎𝑡2 Supongamos que un móvil partió con una velocidad inicial de 5m/s con una aceleración constante de 10m/s2 . Con las fórmulas anteriores podemos calcular la velocidad y el espacio recorrido al cabo de 1 s, 2 s, 3 s, y así sucesivamente. Los resultados se expresan en el siguiente cuadro: Si graficamos la aceleración en función del tiempo en un eje cartesiano obtendremos: De aquí resulta que: Si graficamos la velocidad den función del tiempo en un eje cartesiano tendremos: Y de este gráfico concluimos: t [s] s [m] v [m/s] a [m/s2] 0 0 5 10 1 10 15 10 2 30 25 10 3 60 35 10 4 100 45 10 5 150 55 10 En el M.R.U.V la aceleración es constante En el M.R.U.V la velocidad es directamente proporcional al tiempo empleado.
  • 12. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina Finalmente, graficando el espacio recorrido en función del tiempo, encontramos de que existe una relación cuadrática entre ellas: ACTIVIDADES (ANTES DE LA CLASE) 1. ¿Qué es el Movimiento Rectilíneo Uniformemente Variado? ¿Cómo se abrevia el nombre? 2. ¿Por qué se llama “rectilíneo”? 3. ¿A qué hace referencia la palabra “uniforme”? 4. ¿Qué relación hay entre la velocidad y el tiempo en el MRUV? ¿Y entre el espacio y el tiempo? Caída libre y Tiro vertical CAÍDA LIBRE Como ya habíamos mencionado, la resistencia del aire no actúa de la misma manera en todos los objetos que caen. Existe una serie de factores que la afectan: la forma, el tamaño y la masa del objeto. Además, se evidencia más en ciertos objetos como plumas, hojas de árboles o papeles. Para objetos más compactos, como una piedra o una moneda, es mucho menor. Los objetos que encuentran mayor resistencia del aire caen más lentamente que los que encuentran menor resistencia. Si se dejan caer una pluma y una bola de acero al mismo tiempo, esta última llegará al suelo mucho antes que la pluma. Esto se debe a la presencia del aire, que opone más resistencia a la pluma que a la bola. Pero si se colocan la pluma y la bola en un tubo, y luego se extrae el aire (a este aparato de lo llama “bomba de vacío”), ambos cuerpos caerán juntos durante toda la trayectoria. Todos los cuerpos que se dejan caer desde la misma altura descienden con la misma rapidez en el vacío. La caída en el vacío es lo que llamamos caída libre.
  • 13. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina La resistencia del aire se tiene en cuenta, por ejemplo, en el diseño de un paracaídas. Si un hombre se deja caer desde un avión, la rapidez con que llega a la superficie de la Tierra es enorme. La resistencia del aire no es suficiente para frenarlo en su caída. En cambio, si usa paracaídas, la resistencia del aire cumple un papel importante: el hombre va frenando y, de esta manera, cae suavemente. Cuando un objeto cae desde cierta altura, la rapidez inicial es cero. Sin embargo, esta cambia cuando el objeto llega al piso. El objeto parte del reposo e incrementa su rapidez (se acelera) a medida que va cayendo. Tal suceso indica variación de rapidez. Por lo tanto el movimiento es acelerado. Es la aceleración de la gravedad, de la que ya habíamos hablado, la que hace esto posible. Los objetos en caída libre están sujetos, únicamente, a la acción de la gravedad. El valor de la aceleración de la gravedad “g” cambia ligeramente en diferentes lugares sobre la superficie de la Tierra, pero la variación es tan pequeña que puede ignorarse. Y si la consideramos constante, la caída libre es un caso especial del M.R.U.V donde la velocidad inicial siempre es cero 𝑣𝑖 = 0 y la aceleración es la aceleración de la gravedad | 𝑎| = 𝑔. Por lo tanto se utilizan las mismas ecuaciones que en el M.R.U.V sólo que con las consideraciones ya mencionadas. Debido a esto las ecuaciones del M.R.U.V. se transformarán en: 𝑠 = 1 2 ∙ 𝑔 ∙ 𝑡2 Ya que, como: 𝑣𝑖 = 0 → 𝑣𝑖 ∙ 𝑡 = 0. 𝑣𝑓 = 𝑔 ∙ 𝑡 Ya que: 𝑣𝑖 = 0 y 𝑎 = 𝑔 Es importante que definíamos un sistema de referencia claro para poder expresar la velocidad y la aceleración (magnitudes vectoriales); si “positivo” hacia arriba, hacia abajo la magnitud será negativa. En los casos de caída libre, como la gravedad es hacia abajo, debe ser negativa, de ahí el signo negativo de su valor y en consecuencia el signo de la velocidad (que indica sentido hacia abajo). Lo mismo ocurre con el espacio recorrido, que es hacia abajo. TIRO VERTICAL Cuando lanzas una pelota hacia arriba, el movimiento total puede descomponerse en dos: el de subida y el de bajada. Al lanzar la pelota, le das una rapidez inicial. Mientras sube, la rapidez va disminuyendo hasta que, en el punto más alto de su trayectoria, la pelota se detiene por un instante antes de comenzar a bajar. Su rapidez en ese punto de su trayectoria es cero. En el movimiento de descenso, la rapidez inicial de la pelota es cero y luego, conforme pasa el tiempo, aumenta. Éste último tramo del movimiento (cuando la pelota cae) podemos considerarlo como una caída libre y el primer tramo (cuando la pelota sube) se llama tiro vertical. Ambos son movimientos con aceleración constante g, es decir que, el tiro vertical es otro caso especial del M.R.U.V. Pero mientras que en el segundo La caída libre es un caso especial del M.R.U.V
  • 14. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina tramo, la rapidez aumenta, el movimiento es acelerado, en el primero, el movimiento es desacelerado porque la rapidez disminuye. En consecuencia, las ecuaciones del Tiro Vertical son: 𝑠 = 𝑣𝑖 ∙ 𝑡 + 1 2 ∙ 𝑔 ∙ 𝑡2 0 = 𝑣𝑖 + 𝑔 ∙ 𝑡 Porque: 𝑣𝑓 = 0. ACTIVIDADES (ANTES DE LA CLASE) 1. ¿Cuándo se tiene una caída libre? 2. ¿Cuándo tenemos un caso de tiro vertical? 3. ¿Qué tipo de movimiento son la caída libre y el tiro vertical? ¿Por qué? 4. En caída libre, ¿la aceleración y la velocidad tienen signos opuestos? ¿Por qué? ¿Y en el caso del tiro vertical? Tiro Oblicuo DEFINICIÓN Denominamos Tiro Oblicuo a aquel movimiento cuya velocidad tiene dos componentes, una vertical 𝑣𝑦 y otra horizontal 𝑣𝑥 . Cuando pateamos una pelota o cuando se dispara un cañón, la velocidad del objeto tiene una dirección inclinada respecto de la horizontal. Si descomponemos el vector velocidad según las direcciones X (horizontal) e Y (vertical), encontramos que una de ellas, la vertical, está afectada por la aceleración de la gravedad debido al peso del objeto móvil; en tanto que, la otra componente de velocidad se mantiene constante. Si el cuerpo es lanzado con una velocidad 𝑣 con una inclinación 𝜑. Sus componentes ortogonales se calculan como: 𝑣 𝑥0 = 𝑣 ∙ cos 𝜑 𝑣 𝑦0 = 𝑣 ∙ sin 𝜑 En la dirección horizontal el móvil no sufre aceleraciones, por lo que 𝑣𝑥 será siempre igual y de aquí en más la notaremos simplemente 𝑣𝑥 , por lo tanto su movimiento es del tipo MRU. Sin embargo, en la dirección vertical, la velocidad varía a causa de la aceleración de la gravedad y en consecuencia se tiene un movimiento del tipo MRUV. La componente Y de la velocidad variará en función del tiempo como en cualquier caso MRUV de la siguiente manera: 𝑣 𝑦 (𝑓𝑖𝑛𝑎𝑙) = 𝑣 𝑦 (𝑖𝑛𝑖𝑐𝑖𝑎𝑙) − 𝑔 ∙ 𝑡
  • 15. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina Donde “g” es la aceleración de la gravedad. Y 𝑣 𝑦 (𝑖𝑛𝑖𝑐𝑖𝑎𝑙) es la velocidad vertical con la que sale 𝑣 𝑦0. Luego: 𝑣𝑦 = 𝑣 𝑦0 − 𝑔 ∙ 𝑡 Y reemplazando vy0 por lo que vale: 𝑣𝑦 = 𝑣 ∙ sin 𝜑 − 𝑔 ∙ 𝑡 DESPLAZAMIENTO DEL PROYECTIL Para conocer la posición exacta del proyectil en cierto instante “t” se deben averiguar sus coordenadas en X y en Y, es decir sus espacios recorridos horizontal y verticalmente. Como el movimiento horizontal es MRU y el vertical es MRUV, utilizamos las ecuaciones de espacio en ambos tipos de movimiento: 𝑒 𝑥 = 𝑣𝑥 ∙ 𝑡 = (𝑣 ∙ cos 𝜑) ∙ 𝑡 𝑒 𝑦 = 𝑣𝑦 ∙ 𝑡 − 1 2 ∙ 𝑔 ∙ 𝑡2 = ( 𝑣 ∙ sin 𝜑) ∙ 𝑡 − 1 2 ∙ 𝑔 ∙ 𝑡2 ACTIVIDADES (ANTES DE LA CLASE) 1. ¿Qué es el Tiro Oblicuo? 2. ¿Por qué se puede independizar el movimiento (descomponer la velocidad) en dos direcciones? 3. ¿De qué tipo es el movimiento horizontal? ¿Por qué? 4. ¿De qué tipo es el movimiento vertical? ¿Por qué? Dinámica CONCEPTO Los objetos no se mueven porque sí, tampoco cambian su velocidad sin haber una causa que lo permita. Al estudio de las causas que producen el movimiento de los cuerpos se le llama dinámica. La dinámica es una rama de la física y en ella estudiamos como las fuerzas producen el movimiento de los objetos. Para comprender cómo las fuerzas producen los movimientos, enunciaremos y estudiaremos las Leyes de Newton. PRIMERA LEY DE NEWTON O PRINCIPIO DE INERCIA La inercia es la resistencia que presenta un objeto a los cambios en su estado de movimiento. Es decir, un objeto que se encuentra en reposo tenderá a seguir en reposo; un objeto que se
  • 16. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina encuentra a velocidad constante tenderá a seguir en este estado de movimiento en un sistema de referencia considerado fijo. Formalmente, el principio de inercia sostiene que: Esta Ley enuncia que, para que un cuerpo que estaba en reposo se mueva o para que un cuerpo que se mueve con M.R.U cambie de velocidad, se necesita que sobre él aparezca una fuerza externa neta. Esto significa que el objeto debe estar sometido a un sistema de fuerzas que posea una resultante distinta de cero. Si el cuerpo, estuviera sometido a un sistema de fuerzas con resultante nula, el cuerpo continuaría en reposo o con su misma velocidad, es decir, que nada lo perturbaría. El otro concepto importante que se desprende de este enunciado es la idea de inercia, que ya la habíamos explicado la Unidad Nº1. Un ejemplo cotidiano en el que se manifiesta esta ley se percibe al viajar en colectivo. Cuando el colectivo frena de golpe, los pasajeros tienden a seguir desplazándose hacia delante. Una persona que observa lo sucedido de pie en la calle, puede apreciar claramente que los pasajeros se desplazan conjuntamente con el colectivo, con su misma velocidad. Cuando frena, como no están adheridos firmemente al suelo, los pasajeros continúan moviéndose con la velocidad anterior (la misma que traía el colectivo antes de frenar). En otras palabras, por la inercia los pasajeros tienden a conservar su estado de movimiento. Otro caso interesante donde se verifica la ley de la inercia se observa cuando un automóvil toma una curva a una rapidez considerable. Un pasajero dentro del vehículo siente una fuerza que lo empuja lateralmente. La explicación, para un observador situado en la vereda, es que el pasajero tiende a seguir en línea recta y a velocidad constante, pero la puerta del auto no se lo permite, obligándolo a girar juntamente con él. SEGUNDA LEY DE NEWTON O PRINCIPIO DE MASA Cuando se empuja un auto que no arranca, éste adquiere una rapidez cada vez mayor. La aceleración tiene, además, el mismo sentido que la fuerza aplicada. En general, un cuerpo acelera cuando se aplica una fuerza neta sobre él. La rapidez aumenta si la fuerza aplicada tiene el mismo sentido que la velocidad, mientras que su rapidez disminuye si la fuerza se opone a la velocidad. La Segunda Ley de Newton, conocida como principio de masa, sostiene que: Supongamos que tenemos tres objetos con la misma masa M. Si les aplicamos fuerzas de distintas magnitudes, los objetos Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta (M.R.U) mientras sobre él no actúe una fuerza externa (neta) que lo haga cambiar en su estado de movimiento.
  • 17. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina sufrirán distintas aceleraciones. A mayor fuerza aplicada, mayor aceleración; y a menor fuerza aplicada, menor aceleración. Cuando vimos el ejemplo del tren y el hombre en bicicleta en la Unidad Nº1, concluimos que la inercia de un cuerpo está directamente relacionada con la cantidad de materia o masa que posee. A mayor masa, el cuerpo presentará mayor inercia. Supongamos que tenemos tres camiones de diferentes masas y a los tres les aplicamos la misma fuerza externa neta; por su inercia, el más difícil de mover (o de acelerar) será el de mayor masa, en este caso el camión con masa m3. Esto significa que la relación entre la aceleración y la masa es inversamente proporcional. Esto es, que a mayor masa, menor aceleración; y a menor masa, mayor aceleración. Estas relaciones entre aceleración y fuerza y aceleración y masa se puede expresar matemáticamente como: 𝑎⃗ = 𝐹⃗ 𝑚 Tanto la aceleración como la fuerza son magnitudes vectoriales (por eso los hemos simbolizado con una flechita por encima), pero la masa es una magnitud escalar; por lo tanto, la fórmula indica que la aceleración tiene la misma dirección y sentido que la fuerza aplicada. TERC ERA LEY DE NEWTON O PRINCIPIO DE INTERACCIÓN Newton entendió que las fuerzas provienen de las interacciones entre los cuerpos, en cuyos casos existen de a pares, aunque sobre objetos diferentes. La atracción gravitacional es una interacción entre dos cuerpos debida a sus masas, sean planetas o bolitas. Por ser una interacción, cada cuerpo experimenta una fuerza. El Sol atrae a la Tierra y a la vez la Tierra atrae al Sol. La Tierra atrae a la Luna y a la vez la Luna atrae a la Tierra. La Tierra atrae a la manzana y la manzana atrae a la Tierra. La Tercera Ley de Newton, también conocida como principio de acción y reacción dice: La fuerza que ejerce el cuerpo A sobre el cuerpo B, se representa sobre el cuerpo B, porque es el La aceleración deun cuerpo es directamente proporcional a la fuerza neta que actúa sobre él e inversamente proporcional a su masa. Siempre que un cuerpo A ejerce una fuerza sobre un cuerpo B, entonces el cuerpo B también ejerce una fuerza sobre el cuerpo A, de igual intensidad pero de sentido contrario.
  • 18. UNIDAD N°2 Física TécnicoSuperiorenSeguridad,HigieneMedioAmbiente. Prof.González,Carolina cuerpo sobre el que actúa. La otra fuerza proveniente de la interacción entre ambos cuerpos, en cambio, la ejerce el cuerpo B sobre el cuerpo A; por lo tanto, se la representa sobre el cuerpo A. FAB significa: “fuerza sobre el objeto A ejercida por el objeto B”. De la misma manera, FBA significa: “fuerza sobre el objeto B ejercida por el objeto A”. Esta Ley se manifiesta constantemente. Por ejemplo, el nadador ejerce una fuerza sobre el agua empujándola hacia atrás. Simultáneamente, el agua ejerce una fuerza sobre él, que lo impulsa hacia delante; o la rana cuando salta desde una hoja sobre el agua, ésta se va para atrás; o la pelota que rebota contra la pared. ACTIVIDADES (ANTES DE LA CLASE) 1. ¿Qué estudia la dinámica? 2. ¿Qué es lo que hace que los objetos se muevan? 3. ¿Qué dice la Primera Ley de Newton? Cita 3 ejemplos de situaciones reales en las que se aplique esta Ley. 4. ¿Qué dice el Principio de Masa? 5. Piensa y contesta: ¿Por qué al caminar por el piso no nos hundimos? ¿A qué Ley de Newton obedece esto? Explica.