SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
IS 1910 :1989
(sm g?wJT)
Indian Standard
STEEL CYLINDER PIPES WITH CONCRETE
LINING AND COATING -- SPECIFICATION
( First Revision )
-
First Reprint JUNE 1994,
UDC 621’643’2 - 034’1 - 033’37 : 628’1/‘2
@ BIS 1991
BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002
January 199 I PriceCroup 3
( Reaffirmed 1995 )
Cement and Concrete Sectional Committee, CED 2
FOREWORD
This Indian Standard (First Revision ) was adopted by the Bureau of Indian Standards on
24 November 1989, after the draft finalized by the Cement and Concrete Sectional Committee had
been approved by the Civil Engineering Division Council.
Ordinary reinforced concrete pipes being unsuitable for use in situations where relatively high
water pressures are met with, other types of pipes, such as prestressed concrete pipes, steel pipes,
cast iron pipes and asbestos cement pressure pipes, etc, are often used in such situations. One such
type is the steel cylinder pipe with concrete lining and coating and these pipes have the advantage
that they provide the required rigidity even when thin shells are used to form the steel cylinder.
Steel cylinder pipes with concrete lining and coating are used in water mains and, to a limited
extent, in the pressure sewer lines and irrigation works. When used for carrying highly acidic
sewage or industrial waste, necessary precautions should be taken to prevent exposure of steel
cylinder to the action of the sewage or industrial waste. When the pipes are likely to be in
contact with corrosive soil, proper precautions should be taken, such as coating with bitumen on
the outside, using richer mix and/or ‘using sulphate resistant mixes.
This standard covers the technical provisions relating to steel cylinder pipes with concrete lining
and coating. Specials for steel cylinder pipes with concrete lining and coating are covered in
IS 7322 : 1985.
This standard was first published in 1963 with the title ‘Steel cylinder reinforced concrete pipes’.
The present revision has been done with a view to modifying some of the requirements in the light
of experience gained in the use of this standard. This revision incorporates a number of technical
changes, the most important of them are as follows:
a>
b)
cl
4
e)
f>
Inclusion of pipes of internal diameter 800, 1 000, 1 300, 1 500 and 1 700 mm and extending
the internal diameter of pipes up to 3 000 mm;
Modification in recommendations regarding reinforcement cage;
Modification of ends of pipes for jointing;
Modification in the thickness of lining, coating and barrel thickness;
Deletion of pressure steam curing; and
Splitting of the standard into three distinct sections as follows:
Section 1 General
Section 2 Steel cylinder
Section 3 Lining and coating
In this revision the title of the standard has been modified sinre such pipes are basically steel
cylinder pipes on which lining and coating of concrete is done for better performance and
rigidity.
The composition of the committee responsible for the formulation of this standard is given in
Annex B.
For the purpose of deciding whether a particular requirement of’this standard is complied with,
the final value, observed or calculated, expressing the result of a test, shall be rounded off in
accordance with IS 2 : 1960 ‘Rules for rounding off numerical values ( reuisrd)‘. The nttmhcr of
significant places retained in the rounded off value should be the same as that of the specified
value in this standard.
Indian Standard
IS 1916 : 1989
STEEL CYLINDER PIPES WITH CONCRETE
LINING AND COATING - SPECIFICATION
( First Revision )
1 SCOPE 4 DIMENSIONS
A.1 This standard lays down the requirements
for steel cylinder pipes with concrete lining and
coating having nominal internal diameter from
200 mm to 3 000 mm for use in water mains,
sewers, irrigation works and similar situations.
NOTES
1 Such pipes shall generally be provided with:
a) plain ends
1) for butt welded joints with collar upto 700 mm
dia, and
2) for simple butt welded jointing above 800 mm
dia.
b) flanged ends; and
c) Spigot and socket ends ( conforming to relevant
Indian Standard ) for joints with rubber rings.
2 Pipes having other type of ends may be used, where
specifically required.
2 REFERENCES
2.1 The Indian Standards listed in Annex A are
necessary adjuncts to this standard.
SECTION 1 GENERAL
3 CLASSIFICATION
3.1 For the purpose of this standard, steel
cylinder pipes with concrete lining and coating
shall be classified as under:
Class Test Pressure
Class 1 0’5 Mpa ( or 50 m head )
Class 2 1’0 Mpa ( or 100 m head )
Class 3 1’5 Mpa (or 150 m head)
Class 4 2’0 Mpa ( or 200 m head )
Class 5 2’5 Mpa ( or 250 m head )
;pecial class Above 2’5 Mp,i ( or above
250 m head ), tile exact test
pressure being specified by the
purchaser
NOTE - 21s a general guide the corresponding working
pressure for these pipes may be taken as 50 percent and
b,T percent of the above values for pumping maius and
gravity mains, respectively.
1
4.1 Diameter
The internal diameter of finished pipes shall be
200, 250, 300, 350, 400, 450, 500, 600, 700, 800,
900, 1 000, 1 100, 1 200, 1 300, 1 400, 1 500,
1 600, 1 700, 1 800, 1 900, 2 000, 2 100, 2 200,
2 300, 2 400, 2 500, 2 600, 2 700, 2 800, 2 900
and 3 000 mm.
4.1.1 Tolerance on internal diameter shall be
f3 mm for pipes of diameter 300 mm and
under, and f6 mm or &I& percent of internal
diameter, whichever is less, for pipes of
diameter exceeding 300 mm.
4.2 Length
The length i.n which the pipes are to be supplied
shall be mutually agreed to between the
purchaser and manufacturer. However, the
recommended length is 6 m. The overall length
of the pipe shall not vary by more than &-I
percent of the agreed length, unless otherwise
agreed to between the purchaser and the
manufacturer.
5 WORKMANSHIP AND FINISH
5.1 The pipes with lining and coating shall be
straight and free from cracks; except craze
cracks. The ends of the pipes shall be square
with their longitudinal axis so that when placed
in a straight line in the trench no opening
between ends in contact shall e’xceed 3 mm in
pipes up to 600 mm diameter ( inclusive), and
6 mm in pipes larger than 600 mm diameter.
5.1.1 The lining and coating of the pipes shall
be smooth, dense and hard, and shall not be
coated with cement wash or other preparation
unless otherwise agreed to between thepurchaser
and the manufacturer. The lining and coating
shall be free from excessive laitance and surface
irregulalitics. Projections exceeding 3 mm
measured from the general surface of the linihg
shall be removed either by trowelling before the
lining has set, or by grinding after curing ofthe
lining.
5.1.2 In case of coating applied under pressure
by rotary brushes or by guniting the surface may
not have smooth fiuish.
IS 1916 : 1989
5.2 Defects
Defects shall be deemed to include voids, sand
and clay pockets, blisters, areas that are thin or
drummy or excessively cracked or not in contact
with the surface of the pipe and cracks into
which a flat metal filler gauge 0’8 mm thick can
be inserted to a depth of half the thickness of
lining and coating at intervals along the crack
not exceeding 75 mm. Superficial cracks shall
be deemed not to be defects.
5.2.1 Repair of Defects
Table 1 Minimum Thickness of Plates
for Steel Cylinders
( Clause 8.2 )
Internal Diameter Minimum
of Finished Pipe Thickness
( see also 4.1) of Plate
mm mm
200 IO 450 3’0
500 to 900 5’0
1 000 to 1 100 6’0
I 200 to I 500 8.0
Defects shall be repaired as soon as practicable.
Unless otherwise specified, defects shall be
repaired to the full thickness by hand trowelling.
1 600 to 1 800 10’0
1 900 to 2 200 12.0
2 300 to 2 600 14.0
2 700 to 3 000 16.0
NOTE - Other methods of repair are subject to agree-
ment between the purchaser and the manufacturer.
6 MARKING
6.1 The following information shall be clearly
marked on the each pipe:
a) Size of pipe,
b) Class of pipe,
c) Date of manufacture, and
d) Indication of the source of manufacture.
SECTION 2 STEEL CYLINDER
7 MATERIALS
7.1 The steel cylinder shall be manufactured
from steel plates conforming either to IS 226 :
1975 or to IS 2062 : 1984. Stiffening bands and
flats, where used, shall also conform either to
IS 226 : 1975 or to IS 2062 : 1984. Where the
thickness of the steel plate, the stiffening band
or flat exceeds 20 mm, only steel conforming to
IS 2062 : 1984 shall be used.
7.2 Electrodes for Welding
The electrodes used for welding of steel plates
shall conform to IS 814 ( Part 2) : 1974.
8 DESIGN
8.1 General
9 MANUFACTURE
9.1 The steel cylinder shall be formed by
shaping and welding together steel plates of
specified thickness. Either lap welding or butt
welding shall be adopted for all longitudinal
and circumferential welds. All welds shall be
made down-hand by the manual welding or
automatic shielded arc welding process. Welding
shall be done so that there shall be thorough
fusion and complete penetration. Prior to
welding, .the plates shall be fitted closely and
during welding they shall be held firmly. For
guidance on metal arc welding, reference may
be made to IS 816 : 1969.
9.2 The ends of the steel cylinder shall be square
with its longitudinal axis.
10 HYDROSTATIC TEST
10.1 Each steel cylinder shall be subjected, be-
fore concreting, to hydrostatic test under a water
pressure equivalent to the test pressure given
in 3.1. The steel cylinder shall be kept under
pressure by pumping water for a period of not
less than one minute, and while under pressure,
the cylinder shall be moderately hammered with
a 1 kg hammer throughout its length. The steel
cylinder shall withstand the pressure test without
showing any leakage. Cylinders vhich show
leakage may be rewelded at the points of
leakage and subjected to a repeat hydrostatic
test and may be accepted if it does not show any
leakage.
Steel cylinder shall be designed such that the SECTION 3 LINING AND COATlNG
maximum tensile stress in steel under the speci-
fied hydrostatic test pressure does not exceed 11 MATERIALS
200 Mpa, assuming that no tension is taken up
by the concrete. 11.1 Reinforcement
8.2 The thickness of the plate used for steel All cage reinforcement used in the pipe shall
cylinder shall be not less than the thickness conform to 1S 432 ( Part 1 ) :, 1982 or IS 432
specified in Table 1. ( Part 2 ) : 1982.
2
IS 1916: 1989
11.2 Cement 13 MANUFACTURE
The cement for concrete or mortar used in the
lining and coating of steel cylinder pipes shall
conform to IS 269 : 1989 or IS 455 : 1989 or
IS 1489 : 1976 or IS 8041 : 1990 or IS 8043 : 1978
or IS 8112 : 1989 or IS 6909 : 1990 or IS 6452 :
1989 or IS 12269 : 1987 or IS 12330 : 1988.
11.3 Aggregates
The aggregates used shall conform to IS 383 :
1970. The maximum size of aggregate shall be
one-third the thickness of concrete covering the
steel cylinder either outside or inside.
11.4 Concrete and Mortar
The concrete mix shall have a minimum cement
content of 450 kg/m3 and a characteristic com-
pressive strength of 25 N/mms at 28 days. If
mortar is used, it shall have a minimum cement
content of 600 kg/m3 and a characteristic com-
pressive strength of 25 N/mm2 at 28 days.
NOTES
1 Compressive strength test of concrete shall be conduc-
ted on 150 mm cubes in accordance with IS 516 : 1959
and compressive strength test of mortar shall be conduc-
ted on 70’6 mm cubes in accordance with IS 4631
( Part 6) : 1988.
2 The water-cement ratio shall be the least that will
produce a workable mix. No limit has been set for the
water-cement ratio because the optimum ratio depends
on the mix proportions, the diameter of the pipe to be
lined and coated, and the method of applying concrete
or mortar to t!be pipe.
12 THICKNESS AND COVER
12.1 Lining and Coating Thickness
The minimum thickness of lining and coating
shall be as given in Table 2.
Table 2 Minimum Thickness of
Lining and Coating
13.1 Cage Reinforcement
Minimum reinforcement in the coating shall be
three percent of the quantity of steel cylinder of
minimum plate thickness given in Table 1. The
reinforcement shall be wire, wound spirally or
wire fabric. The coating shall be applied before
any rusting occurs to the reinforcement. Long;-
tudinal reinforcement is required in case coating
is done by vibration.
13.1.1 wire
Anchoring of,ends and splices in the wire shall
be by welding or by other suitable means. The
wire reinforcement may be given a tension
of 50 to 75 Mpa while wrapping on the shell
before the coating is applied.
13.1.2 M7ireFabric
Splices shall be made by welding or other
suitable means. The fab.ric shall be wrapped on
the shell by tack welding.
13.2 Mixing of Concrete or Mortar
The concrete or mortar for lining and coating
shall be mixed in mechanical mixers. Mixing
shall be continued until there is a uniform
distribution of the materials and the mass is
uniform in colour and consistency but in no case
shall the mixing be done for less than two
minutes.
13.3 Lining and Coating
‘Lining shall always be done at the manufacture’s
works. Whilst coating shall be done later either
at the manufacturer’s works or at site.
13.3.1 Lining shall be done by spinning or
spinning combined with vibrations or vibrations.
13.3.2 Preparation of Steel Surface
Ioternal
Diameter of
Finished Pipe
mm
200 to 300
350 to 400
450 to 3 000
12.2 Cover
Minimum
Thickness of
Lining
mm
15
20
25
At the time of application of the concrete or
Minimum
mortar, the surface of the pipe shall be clean.
Thickness of Loose rust, loose millscale, dirt, debris. oil, grease
Coating and other detrimental materials shall be removed
mm by manual, mechanical or chemical means. If
25
chemicals deleterious to steel or cement are used
to clean the steel surface, such chemicals shall
25 be removed at the completion of cleaning
25 process.
13.3.3 Coating shall not commence before the
expiry of three days after the completion of the
lining unless otherwise it is established that the
The clear cover to the reinforcement whether
lining has attained a works cube strength of not
steel cylinder or cage shall not be less than 9 mm
less than 10 Mpa earlier than this period. During
for lining and 12 mm for coating.
this entire period the lining shall be under
curing. The coating shall be either vibrated or
3
IS 1916 : 1989
applied under pressure by rotary brushes or
guniting.
13.3.4 In case any portion of the pipe is to be
left exposed without lining and coating, the
same shall be mutually agreed to between the
purchaser and the manufacturer.
NOTE-After field welding of the joint, the exposed
portions of adjacent pipes shall be protected by placing
wire fabric with tack welds and applying cement mortar
by hand.
3.4 Curing
After completiqn of concreting, the concrete or
mortar shall be kept wet by any suitable means
such as immersion in water, covering by wet
gunny bags or by mechanical sprinklers for a
period of not less than 14 days when cement
conforming to IS 269 : 1989, IS 455 : 1989,
IS 1489 : 1976, IS 8043 : i978 and IS 6909 : 1990
is used; not less. than 7 days when cement
conforming to IS 8041 : 1990 and IS 8112 : 1989
is used; not less than 3 days when cement con-
forming to IS 6452 : 1989 and IS 12269 : 1989 is
used and not less than 21 days when cement
conforming to IS 12330 : 1988 is used.
13.4.1 Steam Curin
Non-pressure steam curing may be permitted
provided the requirements of non-pressure
steam curing are fulfilled.
IS NO.
226 : 1975
269 : 1989
383 : 1970
432
( Part 1 ) : 1982
432
( Part 2 ) : 1982
455 : 1989
516 : 1939
814
( Part 2 ) : 1974
ANNEX A
( Clause 2.1 )
LIST OF REFERRED INDIAN
Title
Specification for structural
steel ( standard quality ) (fifth
revision )
Specification for 33 grade
ordinary Portland cement
(fourth revision )
Specification for coarse and
fine aggregates from natural
sources for concrete (second
revision )
Specification for mild steel and
medium tensile steel bars and
hard-drawn steel wire for
concrete reinforcement : Part 1
Mild steel and medium tensile
steel bars ( third revision )
Specification for mild steel and
medium tensile steel bars and
hard-drawn steel wire for
concrete reinforcement : Part 2
Hard-drawn steel wire (third
revision )
Specification for Portland slag
cement (fourth revision )
Method of test for strength of
concrete
Specification for covered elec-
trodes for metal arc welding
of structural steels: Part 2
Welding sheets (fourth revision )
STANDARDS
IS No.
816 : 1969
1489 : 1976
2062 : 1984
4031
( Part 6) : 1988
6452 : 1989
6909 : 1990
8041 : 1990
8043 : 1978
8112 : 1989
12269 : 1987
12330 : 1988
Title
Code of practice for use of
metal arc welding for general
construction in mild steel (first
revision )
Specification for Portland
Pozzolana cement ( second
revision )
Specification for weldable
structural steel ( third revision )
Methods of physical tests for
hydraulic cement : Part 6
Determination of compressive
strength of hydraulic cement
( other than masonry cement )
( Jirst revision)
Specification for high alumina
cement for structural use (Jirst
revision )
Specification for supersulpha-
ted cement ( jirst revision )
Specification for rapid harden-
ing Portland c<ment (second
revision )
Specification for hydrophobic
Portland cement ( jrst revision )
Specification for 43 grade
ordinary Portland cement
( jksl revision )
Specification for 53 grade
ordinary Portland cement
Specification fo1 sulphate
I esisting Portland cement
4
IS 1916 : 1989
ANNEX B
( Foreword )
COMPOSITION OF THE TECHNICAL COMMITTEE
Cement and Concrete Sectional Committee, CED 2
Chairman Reprtstnling
DB H. C. VISVESVA~AYA In personal capacity (All-10 South Extension II, Ring Road,
NC= Delhi 110049 )
Members
SERI H. BHATTAC~ARYA
DR A. K. CHATTEHJEE
SRRI S. H. SUBKAMANIAN ( Ahrna~r )
CRIEB ENQINEEB ( DEHCNS )
SUPE~IN~IXNLJIN~ ENGINEER ( S & S ) ( Allcrnalt )
CHIEF ENQINEER, NAVAGAY DAF.I
Orissa Cement Limited, New Delhi
Associated Cement Companies Ltd, Bombay
Central Public Works Department, New Delhi
SUPPBINTENDINO ENGINEER, QCC ( Alkrnalt )
Sardar Sarovar Narmada Nigam Ltd, Gandhinagar
CHIEF ENGINEER ( RESEARCH-CUM-DIHECT~R ) Irrigation and Power Research Institute, Amritsar
RESEARCH OFFICER ( CONCHETE TECKNOLOGX-) ( Alttrnatc )
DIRECTOR
JOINT D~~~ECTOI~( Alternate )
A. P. Engineering Research Laboratocies, Hyderabad
DIREOTOX ( CMDD  ( N & W)
DEPUTY DCRECTOR ( CMDD) ( NW & S ) ( .4lltrnalt )
Central Water Commission, New Delhi
SERI K. 11. GA~Q~AL
SHI~I V. Pattabhi ( Alfrrndt )
Hyderabad Industries Ltd, Hyderabad
SHRI V. K. GHANNRAH
SHRI S. GOPINATII
Structural Engineering Resrarch Centre ( CSIR ), Ghaziabad
SHCI R. TAXILAKAI~AN ( Alternate )
India Cements Ltd, Madras
San1 S. K. GUHA T~IA~UI~T 4
SHRI S. P. SANKARANANAYANAN ( Alltrnalc )
DR IRSIIAD MASOOD
JJINT DIIIHCTOR STANIUBIB ( H & S ) ( Cl&I)
Gannon Dunkerley & Co Ltd, Bombay
Central Building Research Institute ( CSIR ), Rnorkee
Research, Designs & Standards Organization ( Ministry of
JOINT DIXIECTOR STANDARDS ( B & S ) ( CR-II ) ( Afltrnatc )
Railwa’ys ), Lucknow
S~LRI N. G. JOSHI
SRRI P. D. KELXAR ( Alltrnalt)
Indian Hume Pipes Co Ltd, Bomba
SARI D. K. KANUXQ~ National Test House, Calcutta
SHRI B. K. MEENA ( Allrmak )
SERI R. L. KIPOOR Ministry of Transport, Deptt of Surface Transport ( Roads
SHRI R. K. SAXENA ( Allcrnatt )
Wmg ), New Delhi
SHRI P. KRIIIXNAMUHTHY
SIIRI S. C~AKRAVA~THY ( Altsrnatt )
Larsen and Tollbro Limitrd, Bombay
San1 G. K. MAJUYDAR Hospital SIrvices Consultancy Corporation ( India ) Ltd,
New Delhi
SI~HI S. 0. RAXQAXI ( dlfcrnnfc)
SRRI P. N. MEI~TA
SIIRI J. S. SANQAXEI~IA ( Aktrnatt )
Geological SI:rv,,y of India, Calcutta
~~EM~~X-SE~RETARY Central Board of Irrigation and Power, New Delhi
DIRE(.TOR ( CIVIL ) ( Aktrnalt )
Dn A. K. Mullick National Council for Ccmrnt and Ii&ding Material, New
Delhi
DK S. C. AHLU~ALIA ( Alttrnatt )
SH~I NIRMAL SINQII Develooment Commissioner for Cement Industrv I Ministrv
SIIXI S. S. MIOLANI ( Alternate)
SHIZI R. C. P.RATE
LI-COT. 1~. K. SINCII ( Alltrnalc )
Sun1 H. S. l’ASRI(‘HA
SHWI Y. R. PICOI,~,
of industry )
, .
Engineer-in-Chief’s Branch, Army Headquarters
Hindustan Prefab Ltd, New Delhi
Central Road Research Institute ( CSIR ), New Delhi
SIIICI S. S. SE~I~RA ( Alttmafr )
SHIII Y. R. PIIUI.L Indian Roads Conaress. New Drlhi
SIII:I K. 6. THANDEVAN f Alhnah j
.
SHRI G. RAsll,AS
Da hi. RAMAIAH
DIG A. G. AMa~~t.4va R to ( Alto-natr )
Directorate General 01 Supplirs and Disposals, Nrw Delhi
Structural Engin.:ering Rrscarch Centre ( CSlR ), Madras
RIZPI~ESI~:NTA*~IVF:
SHRI A. U. RIJHSIN~IIANI
Builders Atsociation of India. Bombay
Cement Corporation of India, New Delhi
S1rn1 c. s. SJlAlXM.4 ( AItrrnaft )
SHIII J. SEN GU~TA
SH~I A. K. LAL ( Allemolt )
SHRI T. N. SIJB~A RAO
SHRI S. A. Reddi ( .Nttmalc )
National Buildings Organization, New Delhi
Gammon India Limited, Bombay
SUPICRINTEXIJINQ ENQINF~R ( DESIGNS ) l’llblic Works Department, Govrrnment IIf Tamilnadu
EXECUTIVE: EXGINEER ( S. M. R. DIVISION ) ( .dlltmaft )
5
IS 1916 : 1989
Ssnx S. B. SDRX
SARI N. CEANDRASBKABAN ( Alttrnatr)
DR H. C. V~evttsvr~~~r
SHB~ D. c. CXAT’IcUPkDl (Abemotr)
SHRI C. RAMAN,
Director ( Civil Engg )
Central Soil and Materials Research Station, New Delhi
Institution of Engineers ( India), Calcutta
Direcror General, BIS (Ex-o&s Mm&r)
SHB~ N. C. BANDYOIADHYAY
Joint Director ( Civil Engg ), BIS
Concrete Pipes Subcommittee, CED 2 : 6
celwew
SHB~ N. G. JOSBI Indian Hume Pipe Company Limited, Bombay
M&S
Saul B. SANKABABUB~UXONIP AYTAB
SHBI S. N. BUJU
Smxl T. N. UBOVEJA ( Affmutr )
SABDAB BHAOWAHT SINOH
Kerala Premo Pipe Factory Ltd. Quilon
Director General of Supplies and Disposals, New Delhi
Concrete Pipe Manufacturm Association of India, New
Delhi
SaRl H. S. M~t4Iti ( Altnnuk )
CHirF ENOINB~~ ( S~WZBA~E PROJXCT ) ( R & D )
Salrr J. D. PRIDEUs ( Al:rrnotc)
SHB~ A. W. DLSIIPANDE
Sam B. V. KALE ( ANmU)
Sam P. S. GUFTA
SEBI V~DEIJB BHASKAB (Ahrno1r )
SEBI G. R. HABIDAS
JOXNT DIPXOTOB ( STAND&am8 ) ( B & S/CB-I )
JOWT DIEWTOB ( STANDARDS ) ( B & S/CR11 ) (
SEBI P. D. KELKAR
SEBI H. S. PASBIC~A
DB C. RAJKVYAR
SEBI S. S. RAMBAX~YANI
Sam S.P~ASASB ( Altematr )
SHB~ G~PAL SADASEIV SHIBALKAB
Municipal Corporation of Greater Bombay, Bombay
National Environment4 Engineering Research Institute,
Nagpur
Haryana Cement & Concrete Pipes and Polcr Manufacturers
Association, Faridabad
Gammon India Ltd. Bombay
Research. Desipns and Standards Organization. Lucknow
Altrrnats ) - -
Indian Hume Pipe Company Ltd, Bombay
Hindustan Prefab Ltd. New Dalhr
National Council for Cement and Building Materlak, New
Delhi
Municipal Corporation of Delhi, Delhi
Spun Pipa Manufacturer’r Association of Mabarashtra,
Pune
SERI MUKUND NAMDI~OPOB~ ( Altrrnetr )
h-&L v. P. SINOJi Engineer-in-Chief’s Branch, Army Headquarters, New
Delhi
SIIBI SVCIIA SINOH (Ahma )
SVPERINTRND~KOSvnrcyan or WOBRS ( NZ )
SUIZPCY~H OF WORKS ( NZ ) ( AtirrMts)
SHRI V. M. TALATI
SHRI A. V. TALATI ( AltrrnoIc )
DR B. VSNKAT~C~WABLV
SIIBI J. SHANMVOABVNDABAY ( Altemutc )
Central Public Workr Department, New Delhi
Spun;2 da$ Construction Co ( Barods) Private Ltd,
a
Structural Engineering Raearch Centre ( CSlR ), Madras
6
Bureau of Idiu Strndrrdr
BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to
promote harmonious development of the activities of standardization, marking and quality
certification of goods and attending to! connected matters in the country.
Copyrigbt
BIS has the copyright of all its publications, No part of these publications may be reproduced
in any form without the prior permission in writing of BXS. This does not preclude the free use,
in the course of implementing the standard, of necessary details, such as symbols and sizes, type
or grade designations. Enquiries relating to copyright be addressed to the Director
( Publications ), BIS.
Revision of Indian Standards
Indian Standards are reviewed periodically and revised,
any, are issued from time to time.
when necessary and amendments, if
Users of Indian Standards should ascertain that they are in
possession of the latest amendments or edition.
sent to BIS giving the following reference:
Comments on this Indian Standard may be
Dot : No. CED 2 ( 4204 )
Amendments Issued Since Poblication
Amend No. Date of Issue Text Affected
..
-
BUREAU OF INDIAN STANDARDS
Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones : 331 01 31, 331 13 75 Telegrams : Manaksanstha
( Common to all Offices )
Regional Offices : Telephone
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg 331 01 31
NEW DELHI 110002 331 13 75
Eastern : l/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola 37 84 99, 37 85 61,
CALCUTTA 700054 37 86 26, 37 86 62
Northern : SC0 445-446, Sector 35-C, CHANDIGARH 160036
Southern : C. I. T. Campus, lV Cross Road, MADRAS 600113
I5353 3823 43,84 53 16 40,
I 235235 0215 19,16, 235235 0423 42,15
Western : Manakalaya, E9 MIDC, Marol, Andheri ( East ) 632 92 95, 632 78 58,
BOMBAY 400093 632 78 91, 632 78 92
Branches : AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE,
FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD. JAIPUR, KANPUR,
LUCKNOW, PATNA, THIRUVANANTHAPURAM.
Reprography Unit, BIS, New Delhi, India

Mais conteúdo relacionado

Mais procurados

report of open web girder (railway)
report of open web girder (railway)report of open web girder (railway)
report of open web girder (railway)Alankar jaiswal
 
How to buy Steel TMT Bars?
How to buy Steel TMT Bars?How to buy Steel TMT Bars?
How to buy Steel TMT Bars?Sukriti Bhanawat
 
Wis5 welding symbols 05
Wis5 welding symbols 05Wis5 welding symbols 05
Wis5 welding symbols 05Thang Do Minh
 
Strength and Ductility of TMT Bars
Strength and Ductility of TMT BarsStrength and Ductility of TMT Bars
Strength and Ductility of TMT BarsShyam Steel TMT Bar
 
2014-05-12 255 138th Street NYCTA Structural Drawings
2014-05-12 255 138th Street NYCTA Structural Drawings2014-05-12 255 138th Street NYCTA Structural Drawings
2014-05-12 255 138th Street NYCTA Structural DrawingsTodd Mordoh
 
Visual inspection on weldments By Kingston R
Visual inspection on weldments  By Kingston RVisual inspection on weldments  By Kingston R
Visual inspection on weldments By Kingston RKingston Rivington
 
Fero Strata product brochure 2013_friction_bolts
Fero Strata product brochure 2013_friction_boltsFero Strata product brochure 2013_friction_bolts
Fero Strata product brochure 2013_friction_boltsBrian Patience
 
industrial training report on composite girder and aggregate testing
industrial  training report on composite girder and aggregate testingindustrial  training report on composite girder and aggregate testing
industrial training report on composite girder and aggregate testingganesh sharma
 
Fero Strata product brochure 2013_strata-support-plates
Fero Strata product brochure 2013_strata-support-platesFero Strata product brochure 2013_strata-support-plates
Fero Strata product brochure 2013_strata-support-platesBrian Patience
 
Fabrication of steel plate girder
Fabrication of steel plate girderFabrication of steel plate girder
Fabrication of steel plate girderRajesh Maurya
 
Twi welding training_6
Twi welding training_6Twi welding training_6
Twi welding training_6Alif Elhasani
 
Types of TMT bars.
Types of TMT bars.Types of TMT bars.
Types of TMT bars.SRMBSteel
 

Mais procurados (20)

report of open web girder (railway)
report of open web girder (railway)report of open web girder (railway)
report of open web girder (railway)
 
How to buy Steel TMT Bars?
How to buy Steel TMT Bars?How to buy Steel TMT Bars?
How to buy Steel TMT Bars?
 
Wis5 welding symbols 05
Wis5 welding symbols 05Wis5 welding symbols 05
Wis5 welding symbols 05
 
Chapter19
Chapter19Chapter19
Chapter19
 
Strength and Ductility of TMT Bars
Strength and Ductility of TMT BarsStrength and Ductility of TMT Bars
Strength and Ductility of TMT Bars
 
9417
94179417
9417
 
2014-05-12 255 138th Street NYCTA Structural Drawings
2014-05-12 255 138th Street NYCTA Structural Drawings2014-05-12 255 138th Street NYCTA Structural Drawings
2014-05-12 255 138th Street NYCTA Structural Drawings
 
Visual inspection on weldments By Kingston R
Visual inspection on weldments  By Kingston RVisual inspection on weldments  By Kingston R
Visual inspection on weldments By Kingston R
 
Welding course design
Welding course designWelding course design
Welding course design
 
Building construction materials -Steel
Building construction materials -SteelBuilding construction materials -Steel
Building construction materials -Steel
 
ASC Line Card PDF
ASC Line Card PDFASC Line Card PDF
ASC Line Card PDF
 
Fero Strata product brochure 2013_friction_bolts
Fero Strata product brochure 2013_friction_boltsFero Strata product brochure 2013_friction_bolts
Fero Strata product brochure 2013_friction_bolts
 
industrial training report on composite girder and aggregate testing
industrial  training report on composite girder and aggregate testingindustrial  training report on composite girder and aggregate testing
industrial training report on composite girder and aggregate testing
 
1875
18751875
1875
 
Fero Strata product brochure 2013_strata-support-plates
Fero Strata product brochure 2013_strata-support-platesFero Strata product brochure 2013_strata-support-plates
Fero Strata product brochure 2013_strata-support-plates
 
2062
20622062
2062
 
Fabrication of steel plate girder
Fabrication of steel plate girderFabrication of steel plate girder
Fabrication of steel plate girder
 
Twi welding training_6
Twi welding training_6Twi welding training_6
Twi welding training_6
 
21KUIKspec
21KUIKspec21KUIKspec
21KUIKspec
 
Types of TMT bars.
Types of TMT bars.Types of TMT bars.
Types of TMT bars.
 

Semelhante a Steel Cylinder Pipes Specification (20)

784
784784
784
 
458
458458
458
 
2090
20902090
2090
 
Inspection manual for piping
Inspection manual for pipingInspection manual for piping
Inspection manual for piping
 
A778
A778A778
A778
 
A111 99a(2014) standard specification for zinc-coated (galvanized) “iron” tel...
A111 99a(2014) standard specification for zinc-coated (galvanized) “iron” tel...A111 99a(2014) standard specification for zinc-coated (galvanized) “iron” tel...
A111 99a(2014) standard specification for zinc-coated (galvanized) “iron” tel...
 
Astm a409 a409-m-01(r05)
Astm a409 a409-m-01(r05)Astm a409 a409-m-01(r05)
Astm a409 a409-m-01(r05)
 
1785 1
1785 11785 1
1785 1
 
gov.bd.bnbc.2012.06.08.pdf
gov.bd.bnbc.2012.06.08.pdfgov.bd.bnbc.2012.06.08.pdf
gov.bd.bnbc.2012.06.08.pdf
 
Field welding and cutting ductile iron pipe
Field welding and cutting ductile iron pipeField welding and cutting ductile iron pipe
Field welding and cutting ductile iron pipe
 
Dos & Donts in Civil Engg-converted.pdf
Dos & Donts in Civil Engg-converted.pdfDos & Donts in Civil Engg-converted.pdf
Dos & Donts in Civil Engg-converted.pdf
 
Anchoring of monolithic_refractories_-_uk
Anchoring of monolithic_refractories_-_ukAnchoring of monolithic_refractories_-_uk
Anchoring of monolithic_refractories_-_uk
 
Astm b 88-03
Astm b  88-03Astm b  88-03
Astm b 88-03
 
Ductile deatailing
Ductile deatailingDuctile deatailing
Ductile deatailing
 
B16 c360 free-cutting brass rod, bar and shapes for use in screw machines1
B16 c360  free-cutting brass rod, bar and shapes for use in screw machines1B16 c360  free-cutting brass rod, bar and shapes for use in screw machines1
B16 c360 free-cutting brass rod, bar and shapes for use in screw machines1
 
ASTM_A36.pdf
ASTM_A36.pdfASTM_A36.pdf
ASTM_A36.pdf
 
2751
27512751
2751
 
A002
A002A002
A002
 
Bulb Flats Brochure
Bulb Flats BrochureBulb Flats Brochure
Bulb Flats Brochure
 
Astm a36
Astm a36Astm a36
Astm a36
 

Mais de Boopathi Yoganathan (20)

28-5.21 Company Profile of Pyrmaid structural consultant.pptx
28-5.21 Company Profile of Pyrmaid structural consultant.pptx28-5.21 Company Profile of Pyrmaid structural consultant.pptx
28-5.21 Company Profile of Pyrmaid structural consultant.pptx
 
Front page upto content new
Front page upto content newFront page upto content new
Front page upto content new
 
Book report new
Book report newBook report new
Book report new
 
Fem
FemFem
Fem
 
Exopy injection
Exopy injectionExopy injection
Exopy injection
 
Embedded
EmbeddedEmbedded
Embedded
 
Earthquakes seminar
Earthquakes seminarEarthquakes seminar
Earthquakes seminar
 
10334
1033410334
10334
 
10302
1030210302
10302
 
10297
1029710297
10297
 
9527 1
9527 19527 1
9527 1
 
9459
94599459
9459
 
9456
94569456
9456
 
9429
94299429
9429
 
7873
78737873
7873
 
7563
75637563
7563
 
7500
75007500
7500
 
7436 2
7436 27436 2
7436 2
 
7436 1
7436 17436 1
7436 1
 
7251
72517251
7251
 

Último

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Último (20)

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

Steel Cylinder Pipes Specification

  • 1. IS 1910 :1989 (sm g?wJT) Indian Standard STEEL CYLINDER PIPES WITH CONCRETE LINING AND COATING -- SPECIFICATION ( First Revision ) - First Reprint JUNE 1994, UDC 621’643’2 - 034’1 - 033’37 : 628’1/‘2 @ BIS 1991 BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002 January 199 I PriceCroup 3 ( Reaffirmed 1995 )
  • 2. Cement and Concrete Sectional Committee, CED 2 FOREWORD This Indian Standard (First Revision ) was adopted by the Bureau of Indian Standards on 24 November 1989, after the draft finalized by the Cement and Concrete Sectional Committee had been approved by the Civil Engineering Division Council. Ordinary reinforced concrete pipes being unsuitable for use in situations where relatively high water pressures are met with, other types of pipes, such as prestressed concrete pipes, steel pipes, cast iron pipes and asbestos cement pressure pipes, etc, are often used in such situations. One such type is the steel cylinder pipe with concrete lining and coating and these pipes have the advantage that they provide the required rigidity even when thin shells are used to form the steel cylinder. Steel cylinder pipes with concrete lining and coating are used in water mains and, to a limited extent, in the pressure sewer lines and irrigation works. When used for carrying highly acidic sewage or industrial waste, necessary precautions should be taken to prevent exposure of steel cylinder to the action of the sewage or industrial waste. When the pipes are likely to be in contact with corrosive soil, proper precautions should be taken, such as coating with bitumen on the outside, using richer mix and/or ‘using sulphate resistant mixes. This standard covers the technical provisions relating to steel cylinder pipes with concrete lining and coating. Specials for steel cylinder pipes with concrete lining and coating are covered in IS 7322 : 1985. This standard was first published in 1963 with the title ‘Steel cylinder reinforced concrete pipes’. The present revision has been done with a view to modifying some of the requirements in the light of experience gained in the use of this standard. This revision incorporates a number of technical changes, the most important of them are as follows: a> b) cl 4 e) f> Inclusion of pipes of internal diameter 800, 1 000, 1 300, 1 500 and 1 700 mm and extending the internal diameter of pipes up to 3 000 mm; Modification in recommendations regarding reinforcement cage; Modification of ends of pipes for jointing; Modification in the thickness of lining, coating and barrel thickness; Deletion of pressure steam curing; and Splitting of the standard into three distinct sections as follows: Section 1 General Section 2 Steel cylinder Section 3 Lining and coating In this revision the title of the standard has been modified sinre such pipes are basically steel cylinder pipes on which lining and coating of concrete is done for better performance and rigidity. The composition of the committee responsible for the formulation of this standard is given in Annex B. For the purpose of deciding whether a particular requirement of’this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values ( reuisrd)‘. The nttmhcr of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
  • 3. Indian Standard IS 1916 : 1989 STEEL CYLINDER PIPES WITH CONCRETE LINING AND COATING - SPECIFICATION ( First Revision ) 1 SCOPE 4 DIMENSIONS A.1 This standard lays down the requirements for steel cylinder pipes with concrete lining and coating having nominal internal diameter from 200 mm to 3 000 mm for use in water mains, sewers, irrigation works and similar situations. NOTES 1 Such pipes shall generally be provided with: a) plain ends 1) for butt welded joints with collar upto 700 mm dia, and 2) for simple butt welded jointing above 800 mm dia. b) flanged ends; and c) Spigot and socket ends ( conforming to relevant Indian Standard ) for joints with rubber rings. 2 Pipes having other type of ends may be used, where specifically required. 2 REFERENCES 2.1 The Indian Standards listed in Annex A are necessary adjuncts to this standard. SECTION 1 GENERAL 3 CLASSIFICATION 3.1 For the purpose of this standard, steel cylinder pipes with concrete lining and coating shall be classified as under: Class Test Pressure Class 1 0’5 Mpa ( or 50 m head ) Class 2 1’0 Mpa ( or 100 m head ) Class 3 1’5 Mpa (or 150 m head) Class 4 2’0 Mpa ( or 200 m head ) Class 5 2’5 Mpa ( or 250 m head ) ;pecial class Above 2’5 Mp,i ( or above 250 m head ), tile exact test pressure being specified by the purchaser NOTE - 21s a general guide the corresponding working pressure for these pipes may be taken as 50 percent and b,T percent of the above values for pumping maius and gravity mains, respectively. 1 4.1 Diameter The internal diameter of finished pipes shall be 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1 000, 1 100, 1 200, 1 300, 1 400, 1 500, 1 600, 1 700, 1 800, 1 900, 2 000, 2 100, 2 200, 2 300, 2 400, 2 500, 2 600, 2 700, 2 800, 2 900 and 3 000 mm. 4.1.1 Tolerance on internal diameter shall be f3 mm for pipes of diameter 300 mm and under, and f6 mm or &I& percent of internal diameter, whichever is less, for pipes of diameter exceeding 300 mm. 4.2 Length The length i.n which the pipes are to be supplied shall be mutually agreed to between the purchaser and manufacturer. However, the recommended length is 6 m. The overall length of the pipe shall not vary by more than &-I percent of the agreed length, unless otherwise agreed to between the purchaser and the manufacturer. 5 WORKMANSHIP AND FINISH 5.1 The pipes with lining and coating shall be straight and free from cracks; except craze cracks. The ends of the pipes shall be square with their longitudinal axis so that when placed in a straight line in the trench no opening between ends in contact shall e’xceed 3 mm in pipes up to 600 mm diameter ( inclusive), and 6 mm in pipes larger than 600 mm diameter. 5.1.1 The lining and coating of the pipes shall be smooth, dense and hard, and shall not be coated with cement wash or other preparation unless otherwise agreed to between thepurchaser and the manufacturer. The lining and coating shall be free from excessive laitance and surface irregulalitics. Projections exceeding 3 mm measured from the general surface of the linihg shall be removed either by trowelling before the lining has set, or by grinding after curing ofthe lining. 5.1.2 In case of coating applied under pressure by rotary brushes or by guniting the surface may not have smooth fiuish.
  • 4. IS 1916 : 1989 5.2 Defects Defects shall be deemed to include voids, sand and clay pockets, blisters, areas that are thin or drummy or excessively cracked or not in contact with the surface of the pipe and cracks into which a flat metal filler gauge 0’8 mm thick can be inserted to a depth of half the thickness of lining and coating at intervals along the crack not exceeding 75 mm. Superficial cracks shall be deemed not to be defects. 5.2.1 Repair of Defects Table 1 Minimum Thickness of Plates for Steel Cylinders ( Clause 8.2 ) Internal Diameter Minimum of Finished Pipe Thickness ( see also 4.1) of Plate mm mm 200 IO 450 3’0 500 to 900 5’0 1 000 to 1 100 6’0 I 200 to I 500 8.0 Defects shall be repaired as soon as practicable. Unless otherwise specified, defects shall be repaired to the full thickness by hand trowelling. 1 600 to 1 800 10’0 1 900 to 2 200 12.0 2 300 to 2 600 14.0 2 700 to 3 000 16.0 NOTE - Other methods of repair are subject to agree- ment between the purchaser and the manufacturer. 6 MARKING 6.1 The following information shall be clearly marked on the each pipe: a) Size of pipe, b) Class of pipe, c) Date of manufacture, and d) Indication of the source of manufacture. SECTION 2 STEEL CYLINDER 7 MATERIALS 7.1 The steel cylinder shall be manufactured from steel plates conforming either to IS 226 : 1975 or to IS 2062 : 1984. Stiffening bands and flats, where used, shall also conform either to IS 226 : 1975 or to IS 2062 : 1984. Where the thickness of the steel plate, the stiffening band or flat exceeds 20 mm, only steel conforming to IS 2062 : 1984 shall be used. 7.2 Electrodes for Welding The electrodes used for welding of steel plates shall conform to IS 814 ( Part 2) : 1974. 8 DESIGN 8.1 General 9 MANUFACTURE 9.1 The steel cylinder shall be formed by shaping and welding together steel plates of specified thickness. Either lap welding or butt welding shall be adopted for all longitudinal and circumferential welds. All welds shall be made down-hand by the manual welding or automatic shielded arc welding process. Welding shall be done so that there shall be thorough fusion and complete penetration. Prior to welding, .the plates shall be fitted closely and during welding they shall be held firmly. For guidance on metal arc welding, reference may be made to IS 816 : 1969. 9.2 The ends of the steel cylinder shall be square with its longitudinal axis. 10 HYDROSTATIC TEST 10.1 Each steel cylinder shall be subjected, be- fore concreting, to hydrostatic test under a water pressure equivalent to the test pressure given in 3.1. The steel cylinder shall be kept under pressure by pumping water for a period of not less than one minute, and while under pressure, the cylinder shall be moderately hammered with a 1 kg hammer throughout its length. The steel cylinder shall withstand the pressure test without showing any leakage. Cylinders vhich show leakage may be rewelded at the points of leakage and subjected to a repeat hydrostatic test and may be accepted if it does not show any leakage. Steel cylinder shall be designed such that the SECTION 3 LINING AND COATlNG maximum tensile stress in steel under the speci- fied hydrostatic test pressure does not exceed 11 MATERIALS 200 Mpa, assuming that no tension is taken up by the concrete. 11.1 Reinforcement 8.2 The thickness of the plate used for steel All cage reinforcement used in the pipe shall cylinder shall be not less than the thickness conform to 1S 432 ( Part 1 ) :, 1982 or IS 432 specified in Table 1. ( Part 2 ) : 1982. 2
  • 5. IS 1916: 1989 11.2 Cement 13 MANUFACTURE The cement for concrete or mortar used in the lining and coating of steel cylinder pipes shall conform to IS 269 : 1989 or IS 455 : 1989 or IS 1489 : 1976 or IS 8041 : 1990 or IS 8043 : 1978 or IS 8112 : 1989 or IS 6909 : 1990 or IS 6452 : 1989 or IS 12269 : 1987 or IS 12330 : 1988. 11.3 Aggregates The aggregates used shall conform to IS 383 : 1970. The maximum size of aggregate shall be one-third the thickness of concrete covering the steel cylinder either outside or inside. 11.4 Concrete and Mortar The concrete mix shall have a minimum cement content of 450 kg/m3 and a characteristic com- pressive strength of 25 N/mms at 28 days. If mortar is used, it shall have a minimum cement content of 600 kg/m3 and a characteristic com- pressive strength of 25 N/mm2 at 28 days. NOTES 1 Compressive strength test of concrete shall be conduc- ted on 150 mm cubes in accordance with IS 516 : 1959 and compressive strength test of mortar shall be conduc- ted on 70’6 mm cubes in accordance with IS 4631 ( Part 6) : 1988. 2 The water-cement ratio shall be the least that will produce a workable mix. No limit has been set for the water-cement ratio because the optimum ratio depends on the mix proportions, the diameter of the pipe to be lined and coated, and the method of applying concrete or mortar to t!be pipe. 12 THICKNESS AND COVER 12.1 Lining and Coating Thickness The minimum thickness of lining and coating shall be as given in Table 2. Table 2 Minimum Thickness of Lining and Coating 13.1 Cage Reinforcement Minimum reinforcement in the coating shall be three percent of the quantity of steel cylinder of minimum plate thickness given in Table 1. The reinforcement shall be wire, wound spirally or wire fabric. The coating shall be applied before any rusting occurs to the reinforcement. Long;- tudinal reinforcement is required in case coating is done by vibration. 13.1.1 wire Anchoring of,ends and splices in the wire shall be by welding or by other suitable means. The wire reinforcement may be given a tension of 50 to 75 Mpa while wrapping on the shell before the coating is applied. 13.1.2 M7ireFabric Splices shall be made by welding or other suitable means. The fab.ric shall be wrapped on the shell by tack welding. 13.2 Mixing of Concrete or Mortar The concrete or mortar for lining and coating shall be mixed in mechanical mixers. Mixing shall be continued until there is a uniform distribution of the materials and the mass is uniform in colour and consistency but in no case shall the mixing be done for less than two minutes. 13.3 Lining and Coating ‘Lining shall always be done at the manufacture’s works. Whilst coating shall be done later either at the manufacturer’s works or at site. 13.3.1 Lining shall be done by spinning or spinning combined with vibrations or vibrations. 13.3.2 Preparation of Steel Surface Ioternal Diameter of Finished Pipe mm 200 to 300 350 to 400 450 to 3 000 12.2 Cover Minimum Thickness of Lining mm 15 20 25 At the time of application of the concrete or Minimum mortar, the surface of the pipe shall be clean. Thickness of Loose rust, loose millscale, dirt, debris. oil, grease Coating and other detrimental materials shall be removed mm by manual, mechanical or chemical means. If 25 chemicals deleterious to steel or cement are used to clean the steel surface, such chemicals shall 25 be removed at the completion of cleaning 25 process. 13.3.3 Coating shall not commence before the expiry of three days after the completion of the lining unless otherwise it is established that the The clear cover to the reinforcement whether lining has attained a works cube strength of not steel cylinder or cage shall not be less than 9 mm less than 10 Mpa earlier than this period. During for lining and 12 mm for coating. this entire period the lining shall be under curing. The coating shall be either vibrated or 3
  • 6. IS 1916 : 1989 applied under pressure by rotary brushes or guniting. 13.3.4 In case any portion of the pipe is to be left exposed without lining and coating, the same shall be mutually agreed to between the purchaser and the manufacturer. NOTE-After field welding of the joint, the exposed portions of adjacent pipes shall be protected by placing wire fabric with tack welds and applying cement mortar by hand. 3.4 Curing After completiqn of concreting, the concrete or mortar shall be kept wet by any suitable means such as immersion in water, covering by wet gunny bags or by mechanical sprinklers for a period of not less than 14 days when cement conforming to IS 269 : 1989, IS 455 : 1989, IS 1489 : 1976, IS 8043 : i978 and IS 6909 : 1990 is used; not less. than 7 days when cement conforming to IS 8041 : 1990 and IS 8112 : 1989 is used; not less than 3 days when cement con- forming to IS 6452 : 1989 and IS 12269 : 1989 is used and not less than 21 days when cement conforming to IS 12330 : 1988 is used. 13.4.1 Steam Curin Non-pressure steam curing may be permitted provided the requirements of non-pressure steam curing are fulfilled. IS NO. 226 : 1975 269 : 1989 383 : 1970 432 ( Part 1 ) : 1982 432 ( Part 2 ) : 1982 455 : 1989 516 : 1939 814 ( Part 2 ) : 1974 ANNEX A ( Clause 2.1 ) LIST OF REFERRED INDIAN Title Specification for structural steel ( standard quality ) (fifth revision ) Specification for 33 grade ordinary Portland cement (fourth revision ) Specification for coarse and fine aggregates from natural sources for concrete (second revision ) Specification for mild steel and medium tensile steel bars and hard-drawn steel wire for concrete reinforcement : Part 1 Mild steel and medium tensile steel bars ( third revision ) Specification for mild steel and medium tensile steel bars and hard-drawn steel wire for concrete reinforcement : Part 2 Hard-drawn steel wire (third revision ) Specification for Portland slag cement (fourth revision ) Method of test for strength of concrete Specification for covered elec- trodes for metal arc welding of structural steels: Part 2 Welding sheets (fourth revision ) STANDARDS IS No. 816 : 1969 1489 : 1976 2062 : 1984 4031 ( Part 6) : 1988 6452 : 1989 6909 : 1990 8041 : 1990 8043 : 1978 8112 : 1989 12269 : 1987 12330 : 1988 Title Code of practice for use of metal arc welding for general construction in mild steel (first revision ) Specification for Portland Pozzolana cement ( second revision ) Specification for weldable structural steel ( third revision ) Methods of physical tests for hydraulic cement : Part 6 Determination of compressive strength of hydraulic cement ( other than masonry cement ) ( Jirst revision) Specification for high alumina cement for structural use (Jirst revision ) Specification for supersulpha- ted cement ( jirst revision ) Specification for rapid harden- ing Portland c<ment (second revision ) Specification for hydrophobic Portland cement ( jrst revision ) Specification for 43 grade ordinary Portland cement ( jksl revision ) Specification for 53 grade ordinary Portland cement Specification fo1 sulphate I esisting Portland cement 4
  • 7. IS 1916 : 1989 ANNEX B ( Foreword ) COMPOSITION OF THE TECHNICAL COMMITTEE Cement and Concrete Sectional Committee, CED 2 Chairman Reprtstnling DB H. C. VISVESVA~AYA In personal capacity (All-10 South Extension II, Ring Road, NC= Delhi 110049 ) Members SERI H. BHATTAC~ARYA DR A. K. CHATTEHJEE SRRI S. H. SUBKAMANIAN ( Ahrna~r ) CRIEB ENQINEEB ( DEHCNS ) SUPE~IN~IXNLJIN~ ENGINEER ( S & S ) ( Allcrnalt ) CHIEF ENQINEER, NAVAGAY DAF.I Orissa Cement Limited, New Delhi Associated Cement Companies Ltd, Bombay Central Public Works Department, New Delhi SUPPBINTENDINO ENGINEER, QCC ( Alkrnalt ) Sardar Sarovar Narmada Nigam Ltd, Gandhinagar CHIEF ENGINEER ( RESEARCH-CUM-DIHECT~R ) Irrigation and Power Research Institute, Amritsar RESEARCH OFFICER ( CONCHETE TECKNOLOGX-) ( Alttrnatc ) DIRECTOR JOINT D~~~ECTOI~( Alternate ) A. P. Engineering Research Laboratocies, Hyderabad DIREOTOX ( CMDD ( N & W) DEPUTY DCRECTOR ( CMDD) ( NW & S ) ( .4lltrnalt ) Central Water Commission, New Delhi SERI K. 11. GA~Q~AL SHI~I V. Pattabhi ( Alfrrndt ) Hyderabad Industries Ltd, Hyderabad SHRI V. K. GHANNRAH SHRI S. GOPINATII Structural Engineering Resrarch Centre ( CSIR ), Ghaziabad SHCI R. TAXILAKAI~AN ( Alternate ) India Cements Ltd, Madras San1 S. K. GUHA T~IA~UI~T 4 SHRI S. P. SANKARANANAYANAN ( Alltrnalc ) DR IRSIIAD MASOOD JJINT DIIIHCTOR STANIUBIB ( H & S ) ( Cl&I) Gannon Dunkerley & Co Ltd, Bombay Central Building Research Institute ( CSIR ), Rnorkee Research, Designs & Standards Organization ( Ministry of JOINT DIXIECTOR STANDARDS ( B & S ) ( CR-II ) ( Afltrnatc ) Railwa’ys ), Lucknow S~LRI N. G. JOSHI SRRI P. D. KELXAR ( Alltrnalt) Indian Hume Pipes Co Ltd, Bomba SARI D. K. KANUXQ~ National Test House, Calcutta SHRI B. K. MEENA ( Allrmak ) SERI R. L. KIPOOR Ministry of Transport, Deptt of Surface Transport ( Roads SHRI R. K. SAXENA ( Allcrnatt ) Wmg ), New Delhi SHRI P. KRIIIXNAMUHTHY SIIRI S. C~AKRAVA~THY ( Altsrnatt ) Larsen and Tollbro Limitrd, Bombay San1 G. K. MAJUYDAR Hospital SIrvices Consultancy Corporation ( India ) Ltd, New Delhi SI~HI S. 0. RAXQAXI ( dlfcrnnfc) SRRI P. N. MEI~TA SIIRI J. S. SANQAXEI~IA ( Aktrnatt ) Geological SI:rv,,y of India, Calcutta ~~EM~~X-SE~RETARY Central Board of Irrigation and Power, New Delhi DIRE(.TOR ( CIVIL ) ( Aktrnalt ) Dn A. K. Mullick National Council for Ccmrnt and Ii&ding Material, New Delhi DK S. C. AHLU~ALIA ( Alttrnatt ) SH~I NIRMAL SINQII Develooment Commissioner for Cement Industrv I Ministrv SIIXI S. S. MIOLANI ( Alternate) SHIZI R. C. P.RATE LI-COT. 1~. K. SINCII ( Alltrnalc ) Sun1 H. S. l’ASRI(‘HA SHWI Y. R. PICOI,~, of industry ) , . Engineer-in-Chief’s Branch, Army Headquarters Hindustan Prefab Ltd, New Delhi Central Road Research Institute ( CSIR ), New Delhi SIIICI S. S. SE~I~RA ( Alttmafr ) SHIII Y. R. PIIUI.L Indian Roads Conaress. New Drlhi SIII:I K. 6. THANDEVAN f Alhnah j . SHRI G. RAsll,AS Da hi. RAMAIAH DIG A. G. AMa~~t.4va R to ( Alto-natr ) Directorate General 01 Supplirs and Disposals, Nrw Delhi Structural Engin.:ering Rrscarch Centre ( CSlR ), Madras RIZPI~ESI~:NTA*~IVF: SHRI A. U. RIJHSIN~IIANI Builders Atsociation of India. Bombay Cement Corporation of India, New Delhi S1rn1 c. s. SJlAlXM.4 ( AItrrnaft ) SHIII J. SEN GU~TA SH~I A. K. LAL ( Allemolt ) SHRI T. N. SIJB~A RAO SHRI S. A. Reddi ( .Nttmalc ) National Buildings Organization, New Delhi Gammon India Limited, Bombay SUPICRINTEXIJINQ ENQINF~R ( DESIGNS ) l’llblic Works Department, Govrrnment IIf Tamilnadu EXECUTIVE: EXGINEER ( S. M. R. DIVISION ) ( .dlltmaft ) 5
  • 8. IS 1916 : 1989 Ssnx S. B. SDRX SARI N. CEANDRASBKABAN ( Alttrnatr) DR H. C. V~evttsvr~~~r SHB~ D. c. CXAT’IcUPkDl (Abemotr) SHRI C. RAMAN, Director ( Civil Engg ) Central Soil and Materials Research Station, New Delhi Institution of Engineers ( India), Calcutta Direcror General, BIS (Ex-o&s Mm&r) SHB~ N. C. BANDYOIADHYAY Joint Director ( Civil Engg ), BIS Concrete Pipes Subcommittee, CED 2 : 6 celwew SHB~ N. G. JOSBI Indian Hume Pipe Company Limited, Bombay M&S Saul B. SANKABABUB~UXONIP AYTAB SHBI S. N. BUJU Smxl T. N. UBOVEJA ( Affmutr ) SABDAB BHAOWAHT SINOH Kerala Premo Pipe Factory Ltd. Quilon Director General of Supplies and Disposals, New Delhi Concrete Pipe Manufacturm Association of India, New Delhi SaRl H. S. M~t4Iti ( Altnnuk ) CHirF ENOINB~~ ( S~WZBA~E PROJXCT ) ( R & D ) Salrr J. D. PRIDEUs ( Al:rrnotc) SHB~ A. W. DLSIIPANDE Sam B. V. KALE ( ANmU) Sam P. S. GUFTA SEBI V~DEIJB BHASKAB (Ahrno1r ) SEBI G. R. HABIDAS JOXNT DIPXOTOB ( STAND&am8 ) ( B & S/CB-I ) JOWT DIEWTOB ( STANDARDS ) ( B & S/CR11 ) ( SEBI P. D. KELKAR SEBI H. S. PASBIC~A DB C. RAJKVYAR SEBI S. S. RAMBAX~YANI Sam S.P~ASASB ( Altematr ) SHB~ G~PAL SADASEIV SHIBALKAB Municipal Corporation of Greater Bombay, Bombay National Environment4 Engineering Research Institute, Nagpur Haryana Cement & Concrete Pipes and Polcr Manufacturers Association, Faridabad Gammon India Ltd. Bombay Research. Desipns and Standards Organization. Lucknow Altrrnats ) - - Indian Hume Pipe Company Ltd, Bombay Hindustan Prefab Ltd. New Dalhr National Council for Cement and Building Materlak, New Delhi Municipal Corporation of Delhi, Delhi Spun Pipa Manufacturer’r Association of Mabarashtra, Pune SERI MUKUND NAMDI~OPOB~ ( Altrrnetr ) h-&L v. P. SINOJi Engineer-in-Chief’s Branch, Army Headquarters, New Delhi SIIBI SVCIIA SINOH (Ahma ) SVPERINTRND~KOSvnrcyan or WOBRS ( NZ ) SUIZPCY~H OF WORKS ( NZ ) ( AtirrMts) SHRI V. M. TALATI SHRI A. V. TALATI ( AltrrnoIc ) DR B. VSNKAT~C~WABLV SIIBI J. SHANMVOABVNDABAY ( Altemutc ) Central Public Workr Department, New Delhi Spun;2 da$ Construction Co ( Barods) Private Ltd, a Structural Engineering Raearch Centre ( CSlR ), Madras 6
  • 9. Bureau of Idiu Strndrrdr BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to! connected matters in the country. Copyrigbt BIS has the copyright of all its publications, No part of these publications may be reproduced in any form without the prior permission in writing of BXS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director ( Publications ), BIS. Revision of Indian Standards Indian Standards are reviewed periodically and revised, any, are issued from time to time. when necessary and amendments, if Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition. sent to BIS giving the following reference: Comments on this Indian Standard may be Dot : No. CED 2 ( 4204 ) Amendments Issued Since Poblication Amend No. Date of Issue Text Affected .. - BUREAU OF INDIAN STANDARDS Headquarters: Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002 Telephones : 331 01 31, 331 13 75 Telegrams : Manaksanstha ( Common to all Offices ) Regional Offices : Telephone Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg 331 01 31 NEW DELHI 110002 331 13 75 Eastern : l/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola 37 84 99, 37 85 61, CALCUTTA 700054 37 86 26, 37 86 62 Northern : SC0 445-446, Sector 35-C, CHANDIGARH 160036 Southern : C. I. T. Campus, lV Cross Road, MADRAS 600113 I5353 3823 43,84 53 16 40, I 235235 0215 19,16, 235235 0423 42,15 Western : Manakalaya, E9 MIDC, Marol, Andheri ( East ) 632 92 95, 632 78 58, BOMBAY 400093 632 78 91, 632 78 92 Branches : AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD. JAIPUR, KANPUR, LUCKNOW, PATNA, THIRUVANANTHAPURAM. Reprography Unit, BIS, New Delhi, India