SlideShare uma empresa Scribd logo
1 de 15
Baixar para ler offline
Gerd Keiser, Optical Fiber Communications, McGraw-Hill, 4th
ed., 2011 Problem Solutions for Chapter 2
2.1
E  1 00co s 2 1 08 t  3 0 ex  2 0co s 21 08t  5 0 ey
 4 0co s 21 08 t  2 10 ez
2.2 The general form is:
y = (amplitude) cos(t - kz) = A cos [2(t - z/)]. Therefore
(a) amplitude = 8 m
(b) wavelength: 1/ = 0.8 m
-1
so that  = 1.25 m
(c)  = 2(2) = 4
(d) At time t = 0 and position z = 4 m we have
y = 8 cos [2(-0.8 m
-1
)(4 m)]
= 8 cos [2(-3.2)] = 2.472
2.3 x1 = a1 cos (t - 1) and x2 = a2 cos (t - 2)
Adding x1 and x2 yields
x1 + x2 = a1 [cos t cos 1 + sin t sin 1]
+ a2 [cos t cos 2 + sin t sin 2]
= [a1 cos 1 + a2 cos 2] cos t + [a1 sin 1 + a2 sin
2] sin t Since the a's and the 's are constants, we can set
a1 cos 1 + a2 cos 2 = A cos  (1)
a1 sin 1 + a2 sin 2 = A sin  (2)
provided that constant values of A and exist which satisfy these
equations. To verify this, first we square both sides and add:
1
A
2
(sin
2
 + cos
2
) = a
2 2
1  cos
2
1 1 sin
+
2 2
 cos
2
2 + 2a1a2 (sin 1 sin 2a2 sin 2
or
A
2
= a 2  a 2 + 2a a cos ( -  )
1 2 1 2 1 2
Dividing (2) by (1) gives
tan  =
a
1
sin   a
2
sin 
1 2
a cos   a cos 
1 21 2
Thus we can write
x = x1 + x2 = A cos  cos t + A sin
2.4 First expand Eq. (2.3) as
Ey
= cos (t - kz) cos  - sin (t - kz) sin 
E0 y
Subtract from this the expression
E x
cos  = cos (t - kz) cos 
E0 x
to yield
Ey
-
Ex
cos  = - sin (t - kz) sin 
E
0 y
E
0x
+ cos 1 cos 2)
 sin t = A cos(t - )
(2.4-1)
(2.4-2)
Using the relation cos
2
 + sin
2
 = 1, we use Eq. (2.2) to write
sin
2
(t - kz) = [1 - cos
2
(t - kz)] =
 E 
1 
2
x

 
E 
 0x 
(2.4-3)
Squaring both sides of Eq. (2.4-2) and substituting it into Eq. (2.4-3) yields
2
E y
E
0 y
 E x
E0x
2
cos 

=
 E
1  x

E
 0x
2






sin
2

Expanding the left-hand side and rearranging terms yields
 2
 2
 E  E  E E  

x 
+
y 
- 2
x  y
E 0x  E 0y  E 0x E 0y
2.5 Plot of Eq. (2.7).
2.6 Linearly polarized wave.
2.7
Air: n = 1.0
33  33 
Glass 90 




cos  = sin
2

(a) Apply Snell's law
n1 cos 1 = n2 cos 2
where n1 = 1, 1 = 33,and 2 = 90 - 33 = 57
 n2 =
cos 33
= 1.540
cos 57
(b) The critical angle is found from
n
glass
sin
glass
= n
air
sin
air
with air = 90 and nair = 1.0
critical = arcsin
1
= arcsin
1
= 40.5
n
g lass 1.540
3
4
2.8
Air r
Water

12 cm
Find c from Snell's law n1 sin 1 = n2 sin c = 1
When n2 = 1.33, then c = 48.75
Find r from tan c =
r
, which yields r = 13.7 cm.
12 cm
2.9
45 
Using Snell's law nglass sin c = nalcohol sin 90
where c = 45 we have
n
glass
= 1.45
= 2.05sin 45
2.10 critical= arcsin
n pure
= arcsin
n
doped
1.450
1.460
= 83.3
2.11 Need to show that n1 cos 2  n 2 cos 1  0 . Use Snell’s Law and the relationship
tan 
sin 
cos 
5
2 2
2.12 (a) Use either NA = n1  n2
or
NA  n1 2= n1
2(n1  n2
n
1
1/ 2
= 0.242
)
= 0.243
(b) A = arcsin (NA/n) = arcsin 0.242
 1.0 
= 14
1  n 2  1 1.00
2.13 (a) From Eq. (2.21) the critical angle is c  sin    sin   41

n

1.50  1 

 (c) The number of angles (modes) gets larger as the wavelength decreases.
2 2 1/ 2 2 2
 (12.14 NA = n1  n2 = n1  n1
= n1
2 1 / 2
2 
Since  << 1, 
2
<< ; 
2.15 (a) Solve Eq. (2.34a) for jH:
)2 1/ 2
NA
 n1 
2
jH = j 

Er - 1 Hz
r 
Substituting into Eq. (2.33b) we have
j  Er +


E
rz
= 
Solve for Er and let
 Er  1 H j
z 
  r 
q
2
= 
2
 - 
2
to obtain Eq. (2.35a).
(b) Solve Eq. (2.34b) for jHr:
jHr = -j

E -
1 Hz
Substituting into Eq. (2.33a) we have r
6
1 E  
j  E +
z
= - j E
r  
Solve for E and let q
2
= 
2

(c) Solve Eq. (2.34a) for jEr:
 1 H z 
 r
- 
2
to obtain Eq. (2.35b).
1 1  H
z
jEr =

 jrH Substituting into Eq. (2.33b) we haver  
 1  EH
z z
 jrH + = jH
 r  r
Solve for H and let q
2
= 
2
 - 
2
to obtain Eq. (2.35d).
(d) Solve Eq. (2.34b) for jE
jE= -
1 

H z 
jHr
r 
1 E  H - jHr 
z

z
r   r
Solve for Hr to obtain Eq. (2.35c).
Substituting into Eq. (2.33a) we have
(e) Substitute Eqs. (2.35c) and (2.35d) into Eq. (2.34c)
j 1  Hz Ez   Hz Ez

-  r    
= jE
z2 
q r  r  r r 

r  
Upon differentiating and multiplying by jq
2
/ we obtain Eq. (2.36).
7
(f) Substitute Eqs. (2.35a) and (2.35b) into Eq. (2.33c)
j 1  Ez Hz  Ez Hz

  
= -jHz- 2   r   
q r  r   r r  
r  
 
Upon differentiating and multiplying by jq
2
/ we obtain Eq. (2.37).
2.16 For  = 0, from Eqs. (2.42) and (2.43) we have
Ez = AJ0(ur) e
j(t z ) and Hz = BJ0(ur) e
j(t z )
We want to find the coefficients A and B. From Eq. (2.47) and
(2.51), respectively, we have
C =
J
K


(ua)
(wa)
A and D =
J
K



(ua)
(wa)
B
Substitute these into Eq. (2.50) to find B in terms of A:
A
j 1

a
 2
u

1
w2
=
B 
J' (ua)  K' (wa)  
 (ua) wK(wa)uJ
  
For  = 0, the right-hand side must be zero. Also for  = 0, either Eq. (2.55a) or (2.56a)
holds. Suppose Eq. (2.56a) holds, so that the term in square brackets on the right-hand
side in the above equation is not zero. Then we must have that B = 0, which from Eq.
(2.43) means that Hz = 0. Thus Eq. (2.56) corresponds to TM0m modes.
For the other case, substitute Eqs. (2.47) and (2.51) into Eq. (2.52):
0 = 1 B jJ (ua)  A uJ' (ua)

u2
  a 1 
8
+
1  jJ (ua)  A wK' (wa)J (ua) B
 
  
w
2
a
2
K (wa) 
With k 2
1
= 
2
1 and k 2
2
= 
2
2 rewrite this as
B =
 
ja  1 


1 1

  w u
2 2 
(k1
2
J + k2
2
K) A
where J and K are defined in Eq. (2.54). If for  = 0 the term in square
brackets on the right-hand side is non-zero, that is, if Eq. (2.56a) does not hold,
then we must have that A = 0, which from Eq. (2.42) means that Ez = 0. Thus
Eq. (2.55) corresponds to TE0m modes.
2.17 From Eq. (2.23) we have
 =
n2
 n2
1
2n12
2
=
1 1

2
n 2
2
n 2
1


 << 1 implies n1  n2
Thus using Eq. (2.46), which states that n2k = k2  k1 = n1k, we have
2
k 2
 k 2 2
k 2
 k 2
2
n
2
 n
2 1 1
2.18 (a) From Eqs. (2.59) and (2.61) we have
M 
2
2
2
a2
n12  n22 
2 
2
2
a2
NA2
M 1/ 2  1000 1/ 2
0.85m
a  




 30.25m


NA 2

0.22
9
Therefore, D = 2a =60.5 m
(b)
2 2
M 
2 30.25m 2
 414  0.2
1.32m 2
(c) At 1550 nm, M = 300
2.19 From Eq. (2.58),
V =
2 (25 m)
0.82 m
(1.48)2 
2 1/
(1.46) 
2
= 46.5
Using Eq. (2.61)M  V
2
/2 =1081 at 820 nm.
Similarly, M = 417 at 1320 nm and M = 303 at 1550 nm. From Eq. (2.72)
Pclad
 P


total

4
3
M-1/2
=
4 100%
3 1080
= 4.1%
at 820 nm. Similarly, (Pclad/P)total = 6.6% at 1320 nm and 7.8% at 1550 nm.
2.20 (a) At 1320 nm we have from Eqs. (2.23) and (2.57) that V = 25 and M = 312.
(b) From Eq. (2.72) the power flow in the cladding is
7.5%. 2.21 (a) For single-mode operation, we need V  2.40.
Solving Eq. (2.58) for the core radius a
V 2 2 1/ 2 2.4 0(1.3 2m)
ma = n  n = = 6.55 
1 2  22
2 (1.4 80)  (1.4 78) 2 1/ 2
(b) From Eq. (2.23)
NA =

2 n
1
n 
2 1/ 2
2 =
 2
(1.480) 2
1/ 2
 (1.478) 
= 0.077
(c) From Eq. (2.23), NA = n sin A. When n = 1.0 then
10
A = arcsin NA =
 n 
arcsin
0.077
 1.0
 
= 4.4
2.22 n2 = 2
 NA
2
=
2 2
= 1.427n1 (1.458) (0.3)
a =
V
=
(1.30)(75)
= 52 m
2NA 2(0.3)
2.23 For small values of  we can write V 
2 a
n1 2

For a = 5 m we have  0.002, so that at 0.82 m
V 
2 (5
0.82
m)
m
1.45 2(0.002) = 3.514
Thus the fiber is no longer single-mode. From Figs. 2.18 and 2.19 we see that
the LP01 and the LP11 modes exist in the fiber at 0.82 m.
2.25 From Eq. (2.77), Lp = 2

=

n
y
 n
x
For Lp = 10 cm
For Lp = 2 m
Thus
ny - nx =
ny - nx =
1.3 10 6
101
m
1.3 106
2 m
m
m
= 1.310
-5
= 6.510
-7
6.510
-7
ny - nx 1.310
-5
2.26
We want to plot n(r) from n2 to n1. From Eq. (2.78)
n(r) = n1 1 2(r / a)
1 / 2
= 1.48 1 0.02(r / 25)
1 / 2
11
n2 is found from Eq. (2.79): n2 = n1(1 - ) =
1.465 2.27 From Eq. (2.81)
 2 2 2
 2an 2
M    1 
a k n 2  2   
1
where
 =
n 1  n 2
n
1
= 0.0135
At  = 820 nm, M = 543 and at  = 1300 nm, M = 216.
For a step index fiber we can use Eq. (2.61)
M
step 
V2
2
=
1 2a 2
 
n2  n2 2   
1 2
At  = 820 nm, Mstep = 1078 and at  = 1300 nm, Mstep = 429.
Alternatively, we can let  in Eq. (2-81):
M
step
=
2an1 2
 = 
1086 at 820 nm

432 at 1300 nm
2.28 Using Eq. (2.23) we have
(a) NA =

2
n
1

n 
2 1/ 2
2 =
 2
(1.60) 
2 1/
(1.49) 
2
= 0.58

2 2

1/ 2
= 0.39(b) NA = (1.458)  (1.405)
2.29 (a) From the Principle of the Conservation of Mass, the volume of a
preform rod section of length Lpreform and cross-sectional area A must equal the
volume of the fiber drawn from this section. The preform section of length
Lpreform is drawn into a fiber of length Lfiber in a time t. If S is the preform feed
speed, then Lpreform = St. Similarly, if s is the fiber drawing speed, then Lfiber = st.
Thus, if D and d are the preform and fiber diameters, respectively, then
Preform volume = Lpreform(D/2)
2
= St (D/2)
2
12
and
Equating these yields
D
St 2
Fiber volume = Lfiber (d/2)
2
= st (d/2)
2
2 d 2 D 2
    
 = st   or s = S 
d

2
(b) S = s
d 2
D 
= 1.2 m/s
0.125 mm
 9 mm
2

= 1.39 cm/min
2.30 Consider the following geometries of the preform and its corresponding fiber:
25 m
R
4 mm
62.5 m
3 mm
FIBER
PREFORM
We want to find the thickness of the deposited layer (3 mm - R). This can be
done by comparing the ratios of the preform core-to-cladding cross-sectional
areas and the fiber core-to-cladding cross-sectional areas:
A
A
preform core
preform clad
=
A
A
fiber core
fiber clad
or
2 2
)(3  R
2 2
)(4  3
=
 (25)2
 (62.5)2  (25)2 
from which we have
R =


7(25)2 1/ 2
= 2.77 mm9
2 2 
(62.5)  (25) 
13
Thus, the thickness = 3 mm - 2.77 mm = 0.23 mm.
2.31 (a) The volume of a 1-km-long 50-m diameter fiber core is
V = r
2
L =  (2.510
-3
cm)
2
(10
5
cm) = 1.96 cm
3
The mass M equals the density  times the volume V:
M = V = (2.6 gm/cm
3
)(1.96 cm
3
) = 5.1 gm
(b) If R is the deposition rate, then the deposition time t is
t =
M
=
5.1 gm
= 10.2 min
R 0.5 gm / min
2.32 Solving Eq. (2.82) for  yields
 K 2
 =  where Y =  for surface flaws.Y
Thus
 =
(20 N / mm 3/ 2
)2
(70 MN/ m
2 2
)
= 2.6010
-4
mm = 0.26 m
2.33 (a) To find the time to failure, we substitute Eq. (2.82) into Eq. (2.86)
and integrate (assuming that  is independent of time):
 f
  b / 2 d
i
t
= AY
b

b 
0
dt
which yields
1
1 
or
t =
b1
f
 b / 2
1
i
 b/ 2
 = AYbbt
2
2 f b i
 b)/ 2 2 b)/ 2(2 (
(b  2)A(Y)
(b) Rewriting the above expression in terms of K instead of yields
14
2  2 b
Kf
2 b 
t =
Ki 


(b  2)A(Y)
b     
Y Y 
2K
2 b
b 2 b 2

i
if K orb i << K f
(b  2)A(Y)
K 2 b
 K 2 b
i f
15

Mais conteúdo relacionado

Mais procurados

Mais procurados (16)

Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functions
 
A05330107
A05330107A05330107
A05330107
 
Velocity of Neutrino
Velocity of NeutrinoVelocity of Neutrino
Velocity of Neutrino
 
Aipmt 2015 answer key & solutions
Aipmt 2015 answer key & solutionsAipmt 2015 answer key & solutions
Aipmt 2015 answer key & solutions
 
Sub1567
Sub1567Sub1567
Sub1567
 
Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2
 
Fiitjee Paper 2
Fiitjee Paper 2Fiitjee Paper 2
Fiitjee Paper 2
 
Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1
 
M.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum MechanicsM.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum Mechanics
 
Fiitjee- Paper 1
Fiitjee- Paper 1Fiitjee- Paper 1
Fiitjee- Paper 1
 
INJSO-2014-Solutions
INJSO-2014-SolutionsINJSO-2014-Solutions
INJSO-2014-Solutions
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
Solutions of Maxwell Equation for a Lattice System with Meissner Effect
Solutions of Maxwell Equation for a Lattice System with Meissner EffectSolutions of Maxwell Equation for a Lattice System with Meissner Effect
Solutions of Maxwell Equation for a Lattice System with Meissner Effect
 
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
Solution homework2
Solution homework2Solution homework2
Solution homework2
 

Semelhante a Question answers Optical Fiber Communications 4th Edition by Keiser

Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutionsPatrickMumba7
 
T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1askiitians
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Antwoorden fourier and laplace transforms, manual solutions
Antwoorden   fourier and laplace transforms, manual solutionsAntwoorden   fourier and laplace transforms, manual solutions
Antwoorden fourier and laplace transforms, manual solutionsHildemar Alvarez
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationDev Singh
 
Resposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoResposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoKarine Felix
 
(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdfRajuSingh806014
 
centroid & moment of inertia
centroid & moment of inertiacentroid & moment of inertia
centroid & moment of inertiasachin chaurasia
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfWhitney Anderson
 

Semelhante a Question answers Optical Fiber Communications 4th Edition by Keiser (17)

Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
 
T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Antwoorden fourier and laplace transforms, manual solutions
Antwoorden   fourier and laplace transforms, manual solutionsAntwoorden   fourier and laplace transforms, manual solutions
Antwoorden fourier and laplace transforms, manual solutions
 
Maths ms
Maths msMaths ms
Maths ms
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Solution 3 i ph o 35
Solution 3 i ph o 35Solution 3 i ph o 35
Solution 3 i ph o 35
 
Ch35 ssm
Ch35 ssmCh35 ssm
Ch35 ssm
 
mathematics part-2.docx
mathematics part-2.docxmathematics part-2.docx
mathematics part-2.docx
 
Solution i ph o 17
Solution i ph o 17Solution i ph o 17
Solution i ph o 17
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
Resposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoResposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-edição
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf
 
centroid & moment of inertia
centroid & moment of inertiacentroid & moment of inertia
centroid & moment of inertia
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
final19
final19final19
final19
 

Último

How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 

Último (20)

How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 

Question answers Optical Fiber Communications 4th Edition by Keiser

  • 1. Gerd Keiser, Optical Fiber Communications, McGraw-Hill, 4th ed., 2011 Problem Solutions for Chapter 2 2.1 E  1 00co s 2 1 08 t  3 0 ex  2 0co s 21 08t  5 0 ey  4 0co s 21 08 t  2 10 ez 2.2 The general form is: y = (amplitude) cos(t - kz) = A cos [2(t - z/)]. Therefore (a) amplitude = 8 m (b) wavelength: 1/ = 0.8 m -1 so that  = 1.25 m (c)  = 2(2) = 4 (d) At time t = 0 and position z = 4 m we have y = 8 cos [2(-0.8 m -1 )(4 m)] = 8 cos [2(-3.2)] = 2.472 2.3 x1 = a1 cos (t - 1) and x2 = a2 cos (t - 2) Adding x1 and x2 yields x1 + x2 = a1 [cos t cos 1 + sin t sin 1] + a2 [cos t cos 2 + sin t sin 2] = [a1 cos 1 + a2 cos 2] cos t + [a1 sin 1 + a2 sin 2] sin t Since the a's and the 's are constants, we can set a1 cos 1 + a2 cos 2 = A cos  (1) a1 sin 1 + a2 sin 2 = A sin  (2) provided that constant values of A and exist which satisfy these equations. To verify this, first we square both sides and add: 1
  • 2. A 2 (sin 2  + cos 2 ) = a 2 2 1  cos 2 1 1 sin + 2 2  cos 2 2 + 2a1a2 (sin 1 sin 2a2 sin 2 or A 2 = a 2  a 2 + 2a a cos ( -  ) 1 2 1 2 1 2 Dividing (2) by (1) gives tan  = a 1 sin   a 2 sin  1 2 a cos   a cos  1 21 2 Thus we can write x = x1 + x2 = A cos  cos t + A sin 2.4 First expand Eq. (2.3) as Ey = cos (t - kz) cos  - sin (t - kz) sin  E0 y Subtract from this the expression E x cos  = cos (t - kz) cos  E0 x to yield Ey - Ex cos  = - sin (t - kz) sin  E 0 y E 0x + cos 1 cos 2)  sin t = A cos(t - ) (2.4-1) (2.4-2) Using the relation cos 2  + sin 2  = 1, we use Eq. (2.2) to write sin 2 (t - kz) = [1 - cos 2 (t - kz)] =  E  1  2 x    E   0x  (2.4-3) Squaring both sides of Eq. (2.4-2) and substituting it into Eq. (2.4-3) yields 2
  • 3. E y E 0 y  E x E0x 2 cos   =  E 1  x  E  0x 2       sin 2  Expanding the left-hand side and rearranging terms yields  2  2  E  E  E E    x  + y  - 2 x  y E 0x  E 0y  E 0x E 0y 2.5 Plot of Eq. (2.7). 2.6 Linearly polarized wave. 2.7 Air: n = 1.0 33  33  Glass 90      cos  = sin 2  (a) Apply Snell's law n1 cos 1 = n2 cos 2 where n1 = 1, 1 = 33,and 2 = 90 - 33 = 57  n2 = cos 33 = 1.540 cos 57 (b) The critical angle is found from n glass sin glass = n air sin air with air = 90 and nair = 1.0 critical = arcsin 1 = arcsin 1 = 40.5 n g lass 1.540 3
  • 4. 4
  • 5. 2.8 Air r Water  12 cm Find c from Snell's law n1 sin 1 = n2 sin c = 1 When n2 = 1.33, then c = 48.75 Find r from tan c = r , which yields r = 13.7 cm. 12 cm 2.9 45  Using Snell's law nglass sin c = nalcohol sin 90 where c = 45 we have n glass = 1.45 = 2.05sin 45 2.10 critical= arcsin n pure = arcsin n doped 1.450 1.460 = 83.3 2.11 Need to show that n1 cos 2  n 2 cos 1  0 . Use Snell’s Law and the relationship tan  sin  cos  5
  • 6. 2 2 2.12 (a) Use either NA = n1  n2 or NA  n1 2= n1 2(n1  n2 n 1 1/ 2 = 0.242 ) = 0.243 (b) A = arcsin (NA/n) = arcsin 0.242  1.0  = 14 1  n 2  1 1.00 2.13 (a) From Eq. (2.21) the critical angle is c  sin    sin   41  n  1.50  1    (c) The number of angles (modes) gets larger as the wavelength decreases. 2 2 1/ 2 2 2  (12.14 NA = n1  n2 = n1  n1 = n1 2 1 / 2 2  Since  << 1,  2 << ;  2.15 (a) Solve Eq. (2.34a) for jH: )2 1/ 2 NA  n1  2 jH = j   Er - 1 Hz r  Substituting into Eq. (2.33b) we have j  Er +   E rz =  Solve for Er and let  Er  1 H j z    r  q 2 =  2  -  2 to obtain Eq. (2.35a). (b) Solve Eq. (2.34b) for jHr: jHr = -j  E - 1 Hz Substituting into Eq. (2.33a) we have r 6
  • 7. 1 E   j  E + z = - j E r   Solve for E and let q 2 =  2  (c) Solve Eq. (2.34a) for jEr:  1 H z   r -  2 to obtain Eq. (2.35b). 1 1  H z jEr =   jrH Substituting into Eq. (2.33b) we haver    1  EH z z  jrH + = jH  r  r Solve for H and let q 2 =  2  -  2 to obtain Eq. (2.35d). (d) Solve Eq. (2.34b) for jE jE= - 1   H z  jHr r  1 E  H - jHr  z  z r   r Solve for Hr to obtain Eq. (2.35c). Substituting into Eq. (2.33a) we have (e) Substitute Eqs. (2.35c) and (2.35d) into Eq. (2.34c) j 1  Hz Ez   Hz Ez  -  r     = jE z2  q r  r  r r   r   Upon differentiating and multiplying by jq 2 / we obtain Eq. (2.36). 7
  • 8. (f) Substitute Eqs. (2.35a) and (2.35b) into Eq. (2.33c) j 1  Ez Hz  Ez Hz     = -jHz- 2   r    q r  r   r r   r     Upon differentiating and multiplying by jq 2 / we obtain Eq. (2.37). 2.16 For  = 0, from Eqs. (2.42) and (2.43) we have Ez = AJ0(ur) e j(t z ) and Hz = BJ0(ur) e j(t z ) We want to find the coefficients A and B. From Eq. (2.47) and (2.51), respectively, we have C = J K   (ua) (wa) A and D = J K    (ua) (wa) B Substitute these into Eq. (2.50) to find B in terms of A: A j 1  a  2 u  1 w2 = B  J' (ua)  K' (wa)    (ua) wK(wa)uJ    For  = 0, the right-hand side must be zero. Also for  = 0, either Eq. (2.55a) or (2.56a) holds. Suppose Eq. (2.56a) holds, so that the term in square brackets on the right-hand side in the above equation is not zero. Then we must have that B = 0, which from Eq. (2.43) means that Hz = 0. Thus Eq. (2.56) corresponds to TM0m modes. For the other case, substitute Eqs. (2.47) and (2.51) into Eq. (2.52): 0 = 1 B jJ (ua)  A uJ' (ua)  u2   a 1  8
  • 9. + 1  jJ (ua)  A wK' (wa)J (ua) B      w 2 a 2 K (wa)  With k 2 1 =  2 1 and k 2 2 =  2 2 rewrite this as B =   ja  1    1 1    w u 2 2  (k1 2 J + k2 2 K) A where J and K are defined in Eq. (2.54). If for  = 0 the term in square brackets on the right-hand side is non-zero, that is, if Eq. (2.56a) does not hold, then we must have that A = 0, which from Eq. (2.42) means that Ez = 0. Thus Eq. (2.55) corresponds to TE0m modes. 2.17 From Eq. (2.23) we have  = n2  n2 1 2n12 2 = 1 1  2 n 2 2 n 2 1    << 1 implies n1  n2 Thus using Eq. (2.46), which states that n2k = k2  k1 = n1k, we have 2 k 2  k 2 2 k 2  k 2 2 n 2  n 2 1 1 2.18 (a) From Eqs. (2.59) and (2.61) we have M  2 2 2 a2 n12  n22  2  2 2 a2 NA2 M 1/ 2  1000 1/ 2 0.85m a        30.25m   NA 2  0.22 9
  • 10. Therefore, D = 2a =60.5 m (b) 2 2 M  2 30.25m 2  414  0.2 1.32m 2 (c) At 1550 nm, M = 300 2.19 From Eq. (2.58), V = 2 (25 m) 0.82 m (1.48)2  2 1/ (1.46)  2 = 46.5 Using Eq. (2.61)M  V 2 /2 =1081 at 820 nm. Similarly, M = 417 at 1320 nm and M = 303 at 1550 nm. From Eq. (2.72) Pclad  P   total  4 3 M-1/2 = 4 100% 3 1080 = 4.1% at 820 nm. Similarly, (Pclad/P)total = 6.6% at 1320 nm and 7.8% at 1550 nm. 2.20 (a) At 1320 nm we have from Eqs. (2.23) and (2.57) that V = 25 and M = 312. (b) From Eq. (2.72) the power flow in the cladding is 7.5%. 2.21 (a) For single-mode operation, we need V  2.40. Solving Eq. (2.58) for the core radius a V 2 2 1/ 2 2.4 0(1.3 2m) ma = n  n = = 6.55  1 2  22 2 (1.4 80)  (1.4 78) 2 1/ 2 (b) From Eq. (2.23) NA =  2 n 1 n  2 1/ 2 2 =  2 (1.480) 2 1/ 2  (1.478)  = 0.077 (c) From Eq. (2.23), NA = n sin A. When n = 1.0 then 10
  • 11. A = arcsin NA =  n  arcsin 0.077  1.0   = 4.4 2.22 n2 = 2  NA 2 = 2 2 = 1.427n1 (1.458) (0.3) a = V = (1.30)(75) = 52 m 2NA 2(0.3) 2.23 For small values of  we can write V  2 a n1 2  For a = 5 m we have  0.002, so that at 0.82 m V  2 (5 0.82 m) m 1.45 2(0.002) = 3.514 Thus the fiber is no longer single-mode. From Figs. 2.18 and 2.19 we see that the LP01 and the LP11 modes exist in the fiber at 0.82 m. 2.25 From Eq. (2.77), Lp = 2  =  n y  n x For Lp = 10 cm For Lp = 2 m Thus ny - nx = ny - nx = 1.3 10 6 101 m 1.3 106 2 m m m = 1.310 -5 = 6.510 -7 6.510 -7 ny - nx 1.310 -5 2.26 We want to plot n(r) from n2 to n1. From Eq. (2.78) n(r) = n1 1 2(r / a) 1 / 2 = 1.48 1 0.02(r / 25) 1 / 2 11
  • 12. n2 is found from Eq. (2.79): n2 = n1(1 - ) = 1.465 2.27 From Eq. (2.81)  2 2 2  2an 2 M    1  a k n 2  2    1 where  = n 1  n 2 n 1 = 0.0135 At  = 820 nm, M = 543 and at  = 1300 nm, M = 216. For a step index fiber we can use Eq. (2.61) M step  V2 2 = 1 2a 2   n2  n2 2    1 2 At  = 820 nm, Mstep = 1078 and at  = 1300 nm, Mstep = 429. Alternatively, we can let  in Eq. (2-81): M step = 2an1 2  =  1086 at 820 nm  432 at 1300 nm 2.28 Using Eq. (2.23) we have (a) NA =  2 n 1  n  2 1/ 2 2 =  2 (1.60)  2 1/ (1.49)  2 = 0.58  2 2  1/ 2 = 0.39(b) NA = (1.458)  (1.405) 2.29 (a) From the Principle of the Conservation of Mass, the volume of a preform rod section of length Lpreform and cross-sectional area A must equal the volume of the fiber drawn from this section. The preform section of length Lpreform is drawn into a fiber of length Lfiber in a time t. If S is the preform feed speed, then Lpreform = St. Similarly, if s is the fiber drawing speed, then Lfiber = st. Thus, if D and d are the preform and fiber diameters, respectively, then Preform volume = Lpreform(D/2) 2 = St (D/2) 2 12
  • 13. and Equating these yields D St 2 Fiber volume = Lfiber (d/2) 2 = st (d/2) 2 2 d 2 D 2       = st   or s = S  d  2 (b) S = s d 2 D  = 1.2 m/s 0.125 mm  9 mm 2  = 1.39 cm/min 2.30 Consider the following geometries of the preform and its corresponding fiber: 25 m R 4 mm 62.5 m 3 mm FIBER PREFORM We want to find the thickness of the deposited layer (3 mm - R). This can be done by comparing the ratios of the preform core-to-cladding cross-sectional areas and the fiber core-to-cladding cross-sectional areas: A A preform core preform clad = A A fiber core fiber clad or 2 2 )(3  R 2 2 )(4  3 =  (25)2  (62.5)2  (25)2  from which we have R =   7(25)2 1/ 2 = 2.77 mm9 2 2  (62.5)  (25)  13
  • 14. Thus, the thickness = 3 mm - 2.77 mm = 0.23 mm. 2.31 (a) The volume of a 1-km-long 50-m diameter fiber core is V = r 2 L =  (2.510 -3 cm) 2 (10 5 cm) = 1.96 cm 3 The mass M equals the density  times the volume V: M = V = (2.6 gm/cm 3 )(1.96 cm 3 ) = 5.1 gm (b) If R is the deposition rate, then the deposition time t is t = M = 5.1 gm = 10.2 min R 0.5 gm / min 2.32 Solving Eq. (2.82) for  yields  K 2  =  where Y =  for surface flaws.Y Thus  = (20 N / mm 3/ 2 )2 (70 MN/ m 2 2 ) = 2.6010 -4 mm = 0.26 m 2.33 (a) To find the time to failure, we substitute Eq. (2.82) into Eq. (2.86) and integrate (assuming that  is independent of time):  f   b / 2 d i t = AY b  b  0 dt which yields 1 1  or t = b1 f  b / 2 1 i  b/ 2  = AYbbt 2 2 f b i  b)/ 2 2 b)/ 2(2 ( (b  2)A(Y) (b) Rewriting the above expression in terms of K instead of yields 14
  • 15. 2  2 b Kf 2 b  t = Ki    (b  2)A(Y) b      Y Y  2K 2 b b 2 b 2  i if K orb i << K f (b  2)A(Y) K 2 b  K 2 b i f 15