SlideShare uma empresa Scribd logo
1 de 16
Baixar para ler offline
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
DOI: 10.5121/antj.2018.4201 1
ON OPTIMIZATION OF MANUFACTURING OF
FIELD EFFECT HETEROTRANSISTORS
FRAMEWORK A SINGLE STAGE MULTIPATH
OPERATIONAL AMPLIFIER, TO INCREASE
THEIR DENSITY
E.L. Pankratov
Nizhny Novgorod State University,
23 Gagarin avenue, Nizhny Novgorod, 603950, Russia
ABSTRACT
We consider an approach for increasing density of field-effect heterotransistors in a single-stage multi-path
operational amplifier. At the same time one can obtain decreasing of dimensions of the above transistors.
Dimensions of the elements could be decreased by manufacturing of these elements in a heterostructure
with specific structure. The manufacturing is doing by doping of required areas of the heterostructure by
diffusion or ion implantation with future optimization of annealing of dopant and/or radiation defects.
KEYWORDS
field-effect heterotransistors; single-stage multi-path operational amplifier; optimization of manufacturing.
1. INTRODUCTION
In the present time it is attracted an interest increasing of performance of elements integrated
circuits and increasing of their density. At the same time dimensions of these elements decreases
with decreasing of their density. Dimensions of elements of integrated circuit could be decreases
by manufacturing of them in thin-film heterostructures [1-4]. As an alternative approach for the
decreasing one can use laser and microwave types annealing [5-7]. Using these types of annealing
leads to generation inhomogeneous distribution of temperature. Temperature dependence of
dopant diffusion coefficient and other parameters of process leads to their inhomogeneity due to
inhomogeneity of temperature. The inhomogeneity could leads to decreasing of dimensions of
elements of integrated circuits. Properties of electronic materials could be also changes by using
radiation processing of these materials [8,9].
In this paper we consider a single-stage multi-path operational amplifier described in Ref. [10]
(see Fig.1). We assume, that element of the considered circuit has been manufactured in
heterostructure from Fig. 1. The heterostructure includes into itself a substrate and an epitaxial
layer. The epitaxial layer consist of a main material and several sections manufactured by using
another materials in the main material. The sections should be doped for generation into them
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
2
required type of conductivity (n or p). Most simple types of doping are diffusion or ion
implantation in the case. Main aim of the paper we analyzing of redistribution of dopant and
radiation defects during the doping to formulate conditions to decrease of dimensions of the
considered circuit.
Fig. 1a. Circuit of a pass transistor single-stage multi-path operational amplifier [10]
Fig. 1b. Heterostructure with substrate and epitaxial layer. The epitaxial layer in-cludes into itself several
sections
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
3
2. METHOD OF SOLUTION
We calculate distribution of concentration of dopant in space and time by solving the following
equation
( ) =
t
t
z
y
x
C
∂
∂ ,
,
,
( ) ( ) ( )






+






+






=
z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
C
C
C
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
(1)
Boundary and initial conditions for the equation could be written as
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
C
, (2)
( ) 0
,
,
,
=
∂
∂
= y
L
x
y
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= z
L
x
z
t
z
y
x
C
,
C (x,y,z,0)=f (x,y,z).
Function C(x,y,z,t) describes distribution of concentration of dopant in space and time; T is the
temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coefficient
could be varying with changing of materials, speed of heating and cooling of heterostructure.
Approximation of dopant diffusion coefficient could be written as [9,11,12]
( ) ( )
( )
( ) ( )
( ) 





+
+






+
= 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
D L
C ς
ς
ξ γ
γ
. (3)
Here DL (x,y,z,T) is the dependence of dopant diffusion coefficient on coordinate and temperature;
P (x,y,z,T) is the dependence of limit of solubility of dopant diffusion coefficient on coordinate
and temperature; parameter γ should be integer in the interval γ ∈[1,3] [9]; V (x,y,z,t) is the
dependence of distribution of concentration of radiation vacancies on coordinate and time with
the equilibrium distribution V*
. Dependence of dopant diffusion coefficient on dopant
concentration has been discussed in details in [9]. It should be noted, that using infusion of dopant
did not leads to generation radiation defects, i.e. ζ1= ζ2= 0. We determine distributions of
concentrations of point defects on space and time by solving the following system of equations
[11,12]
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
4
( ) ( ) ( ) ( ) ( ) +






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( )−
−






∂
∂
∂
∂
+ t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
V
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
( ) ( )
t
z
y
x
I
T
z
y
x
k I
I ,
,
,
,
,
, 2
,
− (4)
( ) ( ) ( ) ( ) ( ) +






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
V
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( )−
−






∂
∂
∂
∂
+ t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
V
I
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
( ) ( )
t
z
y
x
V
T
z
y
x
k V
V ,
,
,
,
,
, 2
,
−
Boundary and initial conditions for these equations could be written as
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= y
L
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= z
L
z
z
t
z
y
x
ρ
, ρ (x,y,z,0)=fρ (x,y,z). (5)
Here ρ =I,V; function I (x,y,z,t) describe distribution of concentration of radiation interstitials in
space and time; function Dρ(x,y,z,T) describe distribution of diffusion coefficients of radiation
interstitials and vacancies on coordinate and temperature; squared terms on concentration of
defects (i.e. V2
(x,y,z,t) and I2
(x,y,z,t)) describe dependences of parameter of generation of
divacancies and diinterstitials on coordinate and temperature, respectively; function kI,V(x,y,z,T)
describe distribution of the parameter of recombination of point radiation defects on coordinate
and temperature; function kρ,ρ(x,y,z,T) describe distribution of the parameters of generation of
simplest complexes of point radiation defects on coordinate and temperature.
We calculate dependences of concentrations of divacancies ΦV (x,y,z,t) and diinterstitials ΦI
(x,y,z,t) on coordinate and temperature by solving the following system of equations [11,12]
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
5
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
V
V
V
V
V
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
Boundary and initial conditions for these equations could be written as
( )
0
,
,
,
0
=
∂
Φ
∂
=
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= x
L
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= y
L
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
z
z
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= z
L
z
z
t
z
y
x
ρ
, (7)
ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z).
Functions DΦρ(x,y,z,T) describe dependences diffusion coefficients of complexes of radiation
defects on coordinate and temperature; functions kρ(x,y,z,T) describe dependences of parameters
of decay of complexes of radiation defects on coordinate and temperature.
We calculate distributions of concentrations of dopant and radiation defects in space and time by
using method of averaging of function corrections [13] with decreased quantity of iteration steps
[14]. First of all we used solutions of linear Eqs. (1), (4) and (6) and with averaged values of
diffusion coefficients D0L, D0I, D0V, D0ΦI, D0ΦV as initial-order approximations of the considered
concentrations. The solutions could be written as
( ) ( ) ( ) ( ) ( )
∑
+
=
∞
=1
0
1
2
,
,
,
n
nC
n
n
n
nC
z
y
x
z
y
x
C
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
F
t
z
y
x
C ,
( ) ( ) ( ) ( ) ( )
∑
+
=
∞
=1
0
1
2
,
,
,
n
nI
n
n
n
nI
z
y
x
z
y
x
I
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
F
t
z
y
x
I ,
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
6
( ) ( ) ( ) ( ) ( )
∑
+
=
∞
=1
0
1
2
,
,
,
n
nV
n
n
n
nC
z
y
x
z
y
x
C
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
F
t
z
y
x
V ,
( ) ( ) ( ) ( ) ( )
∑
+
=
Φ
∞
=
Φ
Φ
Φ
1
0
1
2
,
,
,
n
n
n
n
n
n
z
y
x
z
y
x
I t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
F
t
z
y
x I
I
I
,
( ) ( ) ( ) ( ) ( )
∑
+
=
Φ
∞
=
Φ
Φ
Φ
1
0
1
2
,
,
,
n
n
n
n
n
n
z
y
x
z
y
x
V t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
F
t
z
y
x V
V
V
.
Here ( )
















+
+
−
= 2
2
2
0
2
2 1
1
1
exp
z
y
x
n
L
L
L
t
D
n
t
e ρ
ρ π ,
( ) ( ) ( ) ( )
∫ ∫ ∫
=
x y z
L L L
n
n
n
n u
d
v
d
w
d
w
v
u
f
v
c
v
c
u
c
F
0 0 0
,
,
ρ
ρ , cn(χ) = cos (π n χ/Lχ).
Approximations of the considered concentrations with higher orders (second, third, ...) have been
calculated framework standard iterative procedure [13,14]. To use the procedure we shall replace
the functions C(x,y,z,t), I(x,y,z,t), V(x,y,z,t), ΦI(x,y, z,t), ΦV(x,y,z,t) in the right sides of the Eqs.
(1), (4) and (6) on the following sums αnρ +ρ n-1(x,y,z,t). Equations for concentrations for
considered concentrations for the second-order could be written as
( ) ( ) ( )
( )
( )
[ ]
( )




×





 +
+








+
+
=
∗
∗
T
z
y
x
P
t
z
y
x
C
V
t
z
y
x
V
V
t
z
y
x
V
x
t
t
z
y
x
C C
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
, 1
2
2
2
2
1
2
γ
γ
α
ξ
ς
ς
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( )
( )




×






+
+
+




× ∗
∗ 2
2
2
1
1 ,
,
,
,
,
,
1
,
,
,
,
,
,
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
C
T
z
y
x
D L
L ς
ς
∂
∂
∂
∂
( )
[ ]
( )
( ) ( ) ( )




×
+









 +
+
×
z
t
z
y
x
C
T
z
y
x
D
z
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
L
C
∂
∂
∂
∂
∂
∂
α
ξ γ
γ
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1 1
1
1
2
( ) ( )
( )
( )
[ ]
( ) 








 +
+








+
+
× ∗
∗
T
z
y
x
P
t
z
y
x
C
V
t
z
y
x
V
V
t
z
y
x
V C
,
,
,
,
,
,
1
,
,
,
,
,
,
1 1
2
2
2
2
1 γ
γ
α
ξ
ς
ς (8)
( ) ( ) ( ) ( ) ( ) +






+






=
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 1
1
2
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
7
( ) ( ) ( )
[ ] ( )
[ ]×
+
+
−






+ t
z
y
x
V
t
z
y
x
I
z
t
z
y
x
I
T
z
y
x
D
z
V
I
I
,
,
,
,
,
,
,
,
,
,
,
, 1
2
1
2
1
α
α
∂
∂
∂
∂
( ) ( ) ( )
[ ]2
1
2
,
,
,
,
,
,
,
,
,
,
, t
z
y
x
I
T
z
y
x
k
T
z
y
x
k I
I
I
V
I
+
−
× α (9)
( ) ( ) ( ) ( ) ( ) +






+






=
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 1
1
2
( ) ( ) ( )
[ ] ( )
[ ]×
+
+
−






+ t
z
y
x
V
t
z
y
x
I
z
t
z
y
x
V
T
z
y
x
D
z
V
I
V
,
,
,
,
,
,
,
,
,
,
,
, 1
2
1
2
1
α
α
∂
∂
∂
∂
( ) ( ) ( )
[ ]2
1
2
,
,
,
,
,
,
,
,
,
,
, t
z
y
x
V
T
z
y
x
k
T
z
y
x
k V
V
V
V
I
+
−
× α
( ) ( ) ( ) ( )



×
+





 Φ
=
Φ
Φ
Φ
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
, 1
2
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( )×
+





 Φ
+



Φ
× Φ
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
y
t
z
y
x
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
1
1
∂
∂
∂
∂
∂
∂
( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I I
,
,
,
,
,
,
,
,
,
2
−
× (10)
( ) ( ) ( ) ( )



×
+





 Φ
=
Φ
Φ
Φ
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
,
,
,
,
,
,
,
,
,
,
,
, 1
2
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( )×
+





 Φ
+



Φ
× Φ
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
y
t
z
y
x
V
V
V
I
V
,
,
,
,
,
,
,
,
,
,
,
,
,
1
1
∂
∂
∂
∂
∂
∂
( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V V
,
,
,
,
,
,
,
,
,
2
−
× .
The second-order approximations of concentrations of dopant and radiation defects could be
obtained in the final form by integration of the left and right sides of Eqs.(8)-(10)
( ) ( ) ( )
( )
( )
[ ]
( )




∫ ×





 +
+








+
+
=
∗
∗
t
C
T
z
y
x
P
z
y
x
C
V
z
y
x
V
V
z
y
x
V
x
t
z
y
x
C
0
1
2
2
2
2
1
2
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
, γ
γ
τ
α
ξ
τ
ς
τ
ς
∂
∂
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
8
( ) ( ) ( ) ( )
( )




∫ ×








+
+
+




×
∗
∗
t
L
V
z
y
x
V
V
z
y
x
V
y
d
x
z
y
x
C
T
z
y
x
D
0
2
2
2
1
1 ,
,
,
,
,
,
1
,
,
,
,
,
,
τ
ς
τ
ς
∂
∂
τ
∂
τ
∂
( ) ( )
[ ]
( )
( ) ( )



∫ ×
+









 +
+
×
t
L
C
L T
z
y
x
D
z
d
y
z
y
x
C
T
z
y
x
P
z
y
x
C
T
z
y
x
D
0
1
1
2
,
,
,
,
,
,
,
,
,
,
,
,
1
,
,
,
∂
∂
τ
∂
τ
∂
τ
α
ξ γ
γ
( ) ( )
( )
( )
[ ]
( )
( ) +









 +
+








+
+
× ∗
∗
τ
∂
τ
∂
τ
α
ξ
τ
ς
τ
ς γ
γ
d
z
z
y
x
C
T
z
y
x
P
z
y
x
C
V
z
y
x
V
V
z
y
x
V C ,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
1 1
1
2
2
2
2
1
( )
z
y
x
fC ,
,
+ (8a)
( ) ( ) ( ) ( )



∫ ×
+






∫
=
t
I
t
I T
z
y
x
D
y
d
x
z
y
x
I
T
z
y
x
D
x
t
z
y
x
I
0
0
1
2 ,
,
,
,
,
,
,
,
,
,
,
,
∂
∂
τ
∂
τ
∂
∂
∂
( ) ( ) ( ) ( ) ×
∫
−






∫
+



×
t
I
I
t
I T
z
y
x
k
d
z
z
y
x
I
T
z
y
x
D
z
d
y
z
y
x
I
0
,
0
1
1
,
,
,
,
,
,
,
,
,
,
,
,
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
( )
[ ] ( ) ( ) ( )
[ ]×
∫ +
−
+
+
×
t
I
V
I
I
I z
y
x
I
T
z
y
x
k
z
y
x
f
d
z
y
x
I
0
1
2
,
2
1
2 ,
,
,
,
,
,
,
,
,
,
, τ
α
τ
τ
α
( )
[ ] τ
τ
α d
z
y
x
V
V ,
,
,
1
2 +
× (9a)
( ) ( ) ( ) ( )



∫ ×
+






∫
=
t
V
t
V T
z
y
x
D
y
d
x
z
y
x
V
T
z
y
x
D
x
t
z
y
x
V
0
0
1
2 ,
,
,
,
,
,
,
,
,
,
,
,
∂
∂
τ
∂
τ
∂
∂
∂
( ) ( ) ( ) ( ) ×
∫
−






∫
+



×
t
V
V
t
V T
z
y
x
k
d
z
z
y
x
V
T
z
y
x
D
z
d
y
z
y
x
V
0
,
0
1
1
,
,
,
,
,
,
,
,
,
,
,
,
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
( )
[ ] ( ) ( ) ( )
[ ]×
∫ +
−
+
+
×
t
I
V
I
V
I z
y
x
I
T
z
y
x
k
z
y
x
f
d
z
y
x
V
0
1
2
,
2
1
2 ,
,
,
,
,
,
,
,
,
,
, τ
α
τ
τ
α
( )
[ ] τ
τ
α d
z
y
x
V
V ,
,
,
1
2 +
×
( ) ( ) ( ) ( )



∫ ×
+






∫
Φ
=
Φ Φ
Φ
t
t
I
I T
z
y
x
D
y
d
x
z
y
x
T
z
y
x
D
x
t
z
y
x I
I
0
0
1
2 ,
,
,
,
,
,
,
,
,
,
,
,
∂
∂
τ
∂
τ
∂
∂
∂
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
9
( ) ( ) ( ) ( ) ×
∫
+






∫
Φ
+



Φ
× Φ
t
I
I
t
I
I
T
z
y
x
k
d
z
z
y
x
T
z
y
x
D
z
d
y
z
y
x
I
0
,
0
1
1
,
,
,
,
,
,
,
,
,
,
,
,
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
( ) ( ) ( ) ( )
z
y
x
f
d
z
y
x
I
T
z
y
x
k
d
z
y
x
I I
t
I ,
,
,
,
,
,
,
,
,
,
,
0
2
Φ
+
∫
−
× τ
τ
τ
τ (10a)
( ) ( ) ( ) ( )



∫ ×
+






∫
Φ
=
Φ Φ
Φ
t
t
V
V T
z
y
x
D
y
d
x
z
y
x
T
z
y
x
D
x
t
z
y
x V
V
0
0
1
2 ,
,
,
,
,
,
,
,
,
,
,
,
∂
∂
τ
∂
τ
∂
∂
∂
( ) ( ) ( ) ( ) ×
∫
+






∫
Φ
+



Φ
× Φ
t
V
V
t
V
I
T
z
y
x
k
d
z
z
y
x
T
z
y
x
D
z
d
y
z
y
x
V
0
,
0
1
1
,
,
,
,
,
,
,
,
,
,
,
,
τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
( ) ( ) ( ) ( )
z
y
x
f
d
z
y
x
V
T
z
y
x
k
d
z
y
x
V V
t
V ,
,
,
,
,
,
,
,
,
,
,
0
2
Φ
+
∫
−
× τ
τ
τ
τ
We calculate average values of the second-orders approximations of concentrations of dopant and
radiation defects by using the following standard relations [13,14]
( ) ( )
[ ]
∫ ∫ ∫ ∫ −
Θ
=
Θ
0 0 0 0
1
2
2 ,
,
,
,
,
,
1 x y z
L L L
z
y
x
t
d
x
d
y
d
z
d
t
z
y
x
t
z
y
x
L
L
L
ρ
ρ
α ρ . (11)
Using the relation (11) with account relations (8a)-(10a) leads to the following average values
α2ρ
( )
∫ ∫ ∫
=
x y z
L L L
C
z
y
x
С x
d
y
d
z
d
z
y
x
f
L
L
L 0 0 0
2 ,
,
1
α , (12)
( ) [
{ −
+
−
−
+
+
+
= 11
20
10
2
00
2
00
2
10
01
00
2 4
1
2
1
IV
II
IV
V
II
IV
V
II
IV
II
I A
A
A
A
A
A
A
A
α
α
α
( )
00
00
2
10
01
2
1
0 0 0 2
1
,
,
1
II
IV
V
II
IV
L L L
I
z
y
x A
A
A
A
x
d
y
d
z
d
z
y
x
f
L
L
L
x y z α
+
+
+
−









∫ ∫ ∫
− (13a)
( )
4
3
1
3
4
2
3
4
2
4
4
4
2
1
B
A
B
A
B
y
B
y
B
A
B
B
V
+
−





 −
+
−
+
=
α . (13b)
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
10
Here
( ) ( ) ( ) ( )
∫ ∫ ∫ ∫
−
Θ
Θ
=
Θ
0 0 0 0
1
1
, ,
,
,
,
,
,
,
,
,
1 x y z
L L L
j
i
b
a
z
y
x
abij t
d
x
d
y
d
z
d
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
t
L
L
L
A ,
( )2
00
00
2
00
2
00
2
00
4 2 VV
II
IV
IV
IV A
A
A
A
A
B −
−
= ,
−
+
+
= 2
00
10
00
3
00
01
2
00
00
3 IV
II
IV
IV
IV
IV
IV A
A
A
A
A
A
A
B
( ) ( ) ( )
[ ]−
+
+
−
+
+
+
−
− 1
2
1
2
2
4 10
10
00
10
01
00
00
01
00
00
2
00 VV
IV
II
II
IV
IV
IV
IV
VV
II
IV A
A
A
A
A
A
A
A
A
A
A
2
00
01
00
2
00
00
10 2
4 IV
IV
IV
IV
II
IV A
A
A
A
A
A +
− ,
( )
{ ×
+
+
+
+
= 00
2
01
2
00
2
10
01
2
00
2 1 IV
IV
IV
II
IV
IV A
A
A
A
A
A
B
( )




×
−
−
−
−
+
+
×
z
y
x
II
IV
II
II
IV
II
IV
IV
IV
IV
IV
L
L
L
A
A
A
A
A
A
A
A
A
A
A
1
4
4
2 20
11
00
00
10
10
00
01
00
00
00
( ) ( ) (
[
{ +
+
−
+
+
+






∫ ∫ ∫
× 1
2
1
2
2
,
, 10
00
10
01
00
00
01
0 0 0
IV
II
II
IV
IV
IV
IV
L L L
I A
A
A
A
A
A
A
x
d
y
d
z
d
z
y
x
f
x y z
)] ( ) ( ) (




−
−
∫ ∫ ∫
+
+
+
+
+ 20
00
0 0 0
10
01
01
2
10 2
,
,
2
1
2 VV
II
L L L
V
z
y
x
II
IV
IV
VV A
A
x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
A
A
x y z
) ( )] ( ) (
[ +
+
−
+
+
+
+
+
+
− 1
2
2
1
2
1 10
00
00
01
10
01
00
10
01
01
11 IV
II
IV
IV
II
IV
IV
II
IV
IV
IV A
A
A
A
A
A
A
A
A
A
A
)]}
10
VV
A
+ ,
( ) ( )



×
∫ ∫ ∫
−
−
+
+
=
x y z
L L L
I
x
IV
II
IV
IV
IV x
d
y
d
z
d
z
y
x
f
L
A
A
A
A
A
B
0 0 0
11
2
10
01
01
00
1 ,
,
1
8
1
2
( )−
−
+
+
+
+




−
× 00
10
10
00
01
00
00
2
01
00
01
00
20 4
1
II
IV
II
IV
IV
IV
IV
IV
II
IV
IV
II
z
y
A
A
A
A
A
A
A
A
A
A
A
A
L
L
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
11
( ) ( ) ( )




+
−
−
+
+
+
∫ ∫ ∫
− 11
20
00
10
01
01
0 0 0
00
2
1
,
,
2
2 IV
VV
II
II
IV
IV
L L L
I
z
y
x
II
A
A
A
A
A
A
x
d
y
d
z
d
z
y
x
f
L
L
L
A x y z
( )] ( ) ( )
[ ]
00
01
00
10
10
10
01
00
10
01
01 2
1
2
1
2
1 IV
IV
II
VV
IV
II
IV
IV
II
IV
IV A
A
A
A
A
A
A
A
A
A
A +
+
+
−
+
+
+
+
+
,
( ) ( +
+
+








−
∫ ∫ ∫
+
= 10
01
2
01
11
0 0 0
20
2
01
00
0 ,
,
1
4 II
IV
IV
IV
L L L
I
z
y
x
II
IV
II A
A
A
A
x
d
y
d
z
d
z
y
x
f
L
L
L
A
A
A
B
x y z
) ( ) ( ) ( )




+
−
−
+
+
+
∫ ∫ ∫
−
+ 11
20
00
10
01
01
0 0 0
00
2
2
1
,
,
2
1 IV
VV
II
II
IV
IV
L L L
V
z
y
x
II
A
A
A
A
A
A
x
d
y
d
z
d
z
y
x
f
L
L
L
A x y z
( )]2
10
01
01 1 II
IV
IV A
A
A +
+
+ ,
6
2
3 3
2
3 3
2 B
q
p
q
q
p
q
y +
+
+
−
−
+
= ,
( )×
−
= 0
3
1 8
2 B
B
B
q
( )
8
4
216
48
2
1
2
3
2
0
3
2
2 B
B
B
B
B
B −
−
+
+
× , ( )
[ ] 72
2
8
2
3 2
2
0
3
1 B
B
B
B
p −
−
= ,
2
2
3 4
8 B
B
y
A −
+
= ,
( ) ( ) ( ) +
∫ ∫ ∫ ∫
−
Θ
Θ
−
=
Θ
Φ
0 0 0 0
20
2 ,
,
,
,
,
,
1 x y z
I
L L L
I
z
y
x
II t
d
x
d
y
d
z
d
t
z
y
x
I
T
z
y
x
k
t
L
L
L
A
α
( )
∫ ∫ ∫
+ Φ
x y z
L L L
I
z
y
x
x
d
y
d
z
d
z
y
x
f
L
L
L 0 0 0
,
,
1
(14)
( ) ( ) ( ) +
∫ ∫ ∫ ∫
−
Θ
Θ
−
=
Θ
Φ
0 0 0 0
20
2 ,
,
,
,
,
,
1 x y z
V
L L L
V
z
y
x
VV t
d
x
d
y
d
z
d
t
z
y
x
V
T
z
y
x
k
t
L
L
L
A
α
( )
∫ ∫ ∫
+ Φ
x y z
L L L
V
z
y
x
x
d
y
d
z
d
z
y
x
f
L
L
L 0 0 0
,
,
1
.
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
12
Now one can obtain equation for parameter α2C. Form of the equation depends on of parameter γ.
Analysis of distributions of concentrations of dopant and radiation defects in space and time has
been done by using the second-order approximations by using of modified method of averaging
of function corrections (with decreased quantity of iterative steps) of these concentrations. The
considered approximation is usually enough good approximation to analyze qualitatively the
considered concentration and obtain some quantitative results. The analytical calculation results
have been checked comparison of the analytical results with results of numerical simulation.
3. DISCUSSION
Main aim of the section is analysis of distribution of concentration of dopant in space and time in
the considered heterostructure during annealing. Figs. 2 shows distributions of concentrations of
dopants in space, which where infused or implanted in the considered epitaxial layer (see Fig. 2a
and Fig. 2b, respectively) at the same values of annealing time (the same framework each figure).
Larger numbers of curves corresponds to larger difference between dopant diffusion coefficients
in epitaxial layer and substrate. The figures show that inhomogeneity could leads to increasing of
absolute value of gradient of concentration of dopant (i.e. one can obtain increasing sharpness of
the end of doped structure). The increasing leads to decreasing dimensions of the considered
transistors and increasing of homogeneity of concentration of dopant in doped areas.
We choose optimal value annealing time as compromise between increasing of homogeneity of
dopant concentration in doped area and increasing of sharpness of the concentration in
neighborhood of interface between substrate and epitaxial layer (see Fig. 3a for diffusion doping
of materials and Fig. 3b for ion doping of materials) [15-20]. Framework the criteria one shall
approximate real distributions of concentration of dopant by ideal step-wise distribution ψ (x,y,z).
compromise value of annealing time by minimization of the following mean-squared error.
Fig.2a. Distributions of infused dopant concentration in the considered heterostructure. Larger numbers of
curves corresponds to larger difference between dopant diffusion coefficients in epitaxial layer and
substrate
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
13
Fig.2b. Distributions of implanted dopant concentration in the considered heterostructure. Larger numbers
of curves corresponds to larger difference between dopant diffusion coefficients in epitaxial layer and
substrate
Fig. 3a. Dependences of distributions of concentration of infused dopant on coordinate. Curve 1 is
idealized distribution of dopant. Curves 2-4 are real dependences of concentrations dopant on coordinate
for different values of annealing time. Increasing of number of curve corresponds to increasing of
annealing time
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
14
Fig.3b. Dependences of distributions of concentration of implanted dopant on coordinate. Curve 1 is
idealized distribution of dopant. Curves 2-4 are real dependences of concentrations dopant on coordinate
for different values of annealing time. Increasing of number of curve corresponds to increasing of
annealing time
Fig.4a. Dependences of dimensionless optimized annealing time of infused dopant on several parameters.
Curve 1 describes dependence of dimensionless optimized annealing time on the value a/L and ξ = γ = 0 for
equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the
dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0.
Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L =1/2
and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ
for a/L=1/2 and ε = ξ = 0
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
15
( ) ( )
[ ]
∫ ∫ ∫ −
Θ
=
x y z
L L L
z
y
x
x
d
y
d
z
d
z
y
x
z
y
x
C
L
L
L
U
0 0 0
,
,
,
,
,
1
ψ . (15)
Fig.4b. Dependences of dimensionless optimized annealing time of implanted dopant on several
parameters. Curve 1 describes dependence of dimensionless optimized annealing time on the value a/L and
ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure.Curve
2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ
= 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L
=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of
parameter γ for a/L=1/2 and ε = ξ = 0
We present optimized annealing time on Figs. 4 (Fig. 4a for diffusion type of doping and Fig. 4b
for ion type of doping). It is known, that radiation defects should be annealed after ion
implantation. The annealing leads to spreading of distribution of concentration of dopant. The
ideal spreading leads to achievement of nearest interfaces between materials of heterostructure. If
dopant has no time for the achievement during the annealing, it is attracted an interest additional
annealing of dopant. The situation leads to smaller value of optimal annealing time of implanted
dopant in comparison with diffusion one. At the same time it should be noted, that ion type of
doping leads to decreasing of mismatch-induced stress in heterostructure [21].
4. CONCLUSION
We consider an approach for increasing density of field-effect heterotransistors in a single-stage
multi-path operational amplifier. At the same time one can obtain decreasing of dimensions of the
above transistors. Dimensions of the elements could be decreased by manufacturing of these
elements in a heterostructure with specific structure. The manufacturing is doing by doping of
required areas of the heterostructure by diffusion or ion implantation with future optimization of
annealing of dopant and/or radiation defects.
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018
16
REFERENCES
[1] G. Volovich. Modern Electronics. Issue 2. P. 10-17 (2006).
[2] A. Kerentsev, V. Lanin, Power Electronics. Issue 1. P. 34 (2008).
[3] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M.
Litvin, V.V. Milenin, A.V. Sachenko. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[4] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S.
Yastrebov. Semiconductors. Vol. 35 (8). P. 1013-1017 (2001).
[5] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong, Appl. Phys. Lett. 89 (17),
172111-172114 (2006).
[6] H.T. Wang, L.S. Tan, E. F. Chor. J. Appl. Phys. 98 (9), 094901-094905 (2006).
[7] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.
Drozdov, V.D. Skupov. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
[8] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in
Russian).
[9] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[10] M. Yavari, T. Moosazadeh. Analog. Integr. Circ. Sig. Process. Vol. 79. P. 589-598 (2014).
[11] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[12] P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys. 1989. V. 61. № 2. P. 289-388.
[13] Yu.D. Sokolov. Applied Mechanics. Vol. 1 (1). P. 23-35 (1955).
[14] E.L. Pankratov. The European Physical Journal B. 2007. V. 57, №3. P. 251-256.
[15] E.L. Pankratov. Russian Microelectronics. 2007. V.36 (1). P. 33-39.
[16] E.L. Pankratov. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008).
[17] E.L. Pankratov. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[18] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
[19] E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[20] E.L. Pankratov, E.A. Bulaeva. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012).
[21] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).

Mais conteúdo relacionado

Mais procurados

On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
BRNSS Publication Hub
 

Mais procurados (14)

ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
FDTD Presentation
FDTD PresentationFDTD Presentation
FDTD Presentation
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
Fdtd
FdtdFdtd
Fdtd
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
Analysis of coupled inset dielectric guide structure
Analysis of coupled inset dielectric guide structureAnalysis of coupled inset dielectric guide structure
Analysis of coupled inset dielectric guide structure
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 

Semelhante a On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work a Single-Stage Multi-path Operational Amplifier, To Increase their Density

On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
BRNSSPublicationHubI
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
BRNSSPublicationHubI
 

Semelhante a On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work a Single-Stage Multi-path Operational Amplifier, To Increase their Density (20)

05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 

Mais de antjjournal

A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
antjjournal
 
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
antjjournal
 
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
antjjournal
 
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
antjjournal
 
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
antjjournal
 

Mais de antjjournal (20)

A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
 
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
 
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
 
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
 
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...
 
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILM
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILMWORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILM
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILM
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 Advanced Nanoscience and Technology: An International Journal (ANTJ)  Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 
Micromachining of poly (methyl
Micromachining of poly (methylMicromachining of poly (methyl
Micromachining of poly (methyl
 
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERY
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERYENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERY
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERY
 
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 

Último

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 

Último (20)

Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 

On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work a Single-Stage Multi-path Operational Amplifier, To Increase their Density

  • 1. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 DOI: 10.5121/antj.2018.4201 1 ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK A SINGLE STAGE MULTIPATH OPERATIONAL AMPLIFIER, TO INCREASE THEIR DENSITY E.L. Pankratov Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia ABSTRACT We consider an approach for increasing density of field-effect heterotransistors in a single-stage multi-path operational amplifier. At the same time one can obtain decreasing of dimensions of the above transistors. Dimensions of the elements could be decreased by manufacturing of these elements in a heterostructure with specific structure. The manufacturing is doing by doping of required areas of the heterostructure by diffusion or ion implantation with future optimization of annealing of dopant and/or radiation defects. KEYWORDS field-effect heterotransistors; single-stage multi-path operational amplifier; optimization of manufacturing. 1. INTRODUCTION In the present time it is attracted an interest increasing of performance of elements integrated circuits and increasing of their density. At the same time dimensions of these elements decreases with decreasing of their density. Dimensions of elements of integrated circuit could be decreases by manufacturing of them in thin-film heterostructures [1-4]. As an alternative approach for the decreasing one can use laser and microwave types annealing [5-7]. Using these types of annealing leads to generation inhomogeneous distribution of temperature. Temperature dependence of dopant diffusion coefficient and other parameters of process leads to their inhomogeneity due to inhomogeneity of temperature. The inhomogeneity could leads to decreasing of dimensions of elements of integrated circuits. Properties of electronic materials could be also changes by using radiation processing of these materials [8,9]. In this paper we consider a single-stage multi-path operational amplifier described in Ref. [10] (see Fig.1). We assume, that element of the considered circuit has been manufactured in heterostructure from Fig. 1. The heterostructure includes into itself a substrate and an epitaxial layer. The epitaxial layer consist of a main material and several sections manufactured by using another materials in the main material. The sections should be doped for generation into them
  • 2. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 2 required type of conductivity (n or p). Most simple types of doping are diffusion or ion implantation in the case. Main aim of the paper we analyzing of redistribution of dopant and radiation defects during the doping to formulate conditions to decrease of dimensions of the considered circuit. Fig. 1a. Circuit of a pass transistor single-stage multi-path operational amplifier [10] Fig. 1b. Heterostructure with substrate and epitaxial layer. The epitaxial layer in-cludes into itself several sections
  • 3. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 3 2. METHOD OF SOLUTION We calculate distribution of concentration of dopant in space and time by solving the following equation ( ) = t t z y x C ∂ ∂ , , , ( ) ( ) ( )       +       +       = z t z y x C D z y t z y x C D y x t z y x C D x C C C ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , (1) Boundary and initial conditions for the equation could be written as ( ) 0 , , , 0 = ∂ ∂ = x x t z y x C , ( ) 0 , , , = ∂ ∂ = x L x x t z y x C , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x C , (2) ( ) 0 , , , = ∂ ∂ = y L x y t z y x C , ( ) 0 , , , 0 = ∂ ∂ = z z t z y x C , ( ) 0 , , , = ∂ ∂ = z L x z t z y x C , C (x,y,z,0)=f (x,y,z). Function C(x,y,z,t) describes distribution of concentration of dopant in space and time; T is the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coefficient could be varying with changing of materials, speed of heating and cooling of heterostructure. Approximation of dopant diffusion coefficient could be written as [9,11,12] ( ) ( ) ( ) ( ) ( ) ( )       + +       + = 2 * 2 2 * 1 , , , , , , 1 , , , , , , 1 , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D D L C ς ς ξ γ γ . (3) Here DL (x,y,z,T) is the dependence of dopant diffusion coefficient on coordinate and temperature; P (x,y,z,T) is the dependence of limit of solubility of dopant diffusion coefficient on coordinate and temperature; parameter γ should be integer in the interval γ ∈[1,3] [9]; V (x,y,z,t) is the dependence of distribution of concentration of radiation vacancies on coordinate and time with the equilibrium distribution V* . Dependence of dopant diffusion coefficient on dopant concentration has been discussed in details in [9]. It should be noted, that using infusion of dopant did not leads to generation radiation defects, i.e. ζ1= ζ2= 0. We determine distributions of concentrations of point defects on space and time by solving the following system of equations [11,12]
  • 4. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 4 ( ) ( ) ( ) ( ) ( ) +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I I I , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( )− −       ∂ ∂ ∂ ∂ + t z y x V t z y x I T z y x k z t z y x I T z y x D z V I I , , , , , , , , , , , , , , , , ( ) ( ) t z y x I T z y x k I I , , , , , , 2 , − (4) ( ) ( ) ( ) ( ) ( ) +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V V , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( )− −       ∂ ∂ ∂ ∂ + t z y x V t z y x I T z y x k z t z y x V T z y x D z V I V , , , , , , , , , , , , , , , , ( ) ( ) t z y x V T z y x k V V , , , , , , 2 , − Boundary and initial conditions for these equations could be written as ( ) 0 , , , 0 = ∂ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ ∂ = z L z z t z y x ρ , ρ (x,y,z,0)=fρ (x,y,z). (5) Here ρ =I,V; function I (x,y,z,t) describe distribution of concentration of radiation interstitials in space and time; function Dρ(x,y,z,T) describe distribution of diffusion coefficients of radiation interstitials and vacancies on coordinate and temperature; squared terms on concentration of defects (i.e. V2 (x,y,z,t) and I2 (x,y,z,t)) describe dependences of parameter of generation of divacancies and diinterstitials on coordinate and temperature, respectively; function kI,V(x,y,z,T) describe distribution of the parameter of recombination of point radiation defects on coordinate and temperature; function kρ,ρ(x,y,z,T) describe distribution of the parameters of generation of simplest complexes of point radiation defects on coordinate and temperature. We calculate dependences of concentrations of divacancies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z,t) on coordinate and temperature by solving the following system of equations [11,12]
  • 5. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 5 ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z I I I I I , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z V V V V V , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ Boundary and initial conditions for these equations could be written as ( ) 0 , , , 0 = ∂ Φ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = z L z z t z y x ρ , (7) ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). Functions DΦρ(x,y,z,T) describe dependences diffusion coefficients of complexes of radiation defects on coordinate and temperature; functions kρ(x,y,z,T) describe dependences of parameters of decay of complexes of radiation defects on coordinate and temperature. We calculate distributions of concentrations of dopant and radiation defects in space and time by using method of averaging of function corrections [13] with decreased quantity of iteration steps [14]. First of all we used solutions of linear Eqs. (1), (4) and (6) and with averaged values of diffusion coefficients D0L, D0I, D0V, D0ΦI, D0ΦV as initial-order approximations of the considered concentrations. The solutions could be written as ( ) ( ) ( ) ( ) ( ) ∑ + = ∞ =1 0 1 2 , , , n nC n n n nC z y x z y x C t e z c y c x c F L L L L L L F t z y x C , ( ) ( ) ( ) ( ) ( ) ∑ + = ∞ =1 0 1 2 , , , n nI n n n nI z y x z y x I t e z c y c x c F L L L L L L F t z y x I ,
  • 6. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 6 ( ) ( ) ( ) ( ) ( ) ∑ + = ∞ =1 0 1 2 , , , n nV n n n nC z y x z y x C t e z c y c x c F L L L L L L F t z y x V , ( ) ( ) ( ) ( ) ( ) ∑ + = Φ ∞ = Φ Φ Φ 1 0 1 2 , , , n n n n n n z y x z y x I t e z c y c x c F L L L L L L F t z y x I I I , ( ) ( ) ( ) ( ) ( ) ∑ + = Φ ∞ = Φ Φ Φ 1 0 1 2 , , , n n n n n n z y x z y x V t e z c y c x c F L L L L L L F t z y x V V V . Here ( )                 + + − = 2 2 2 0 2 2 1 1 1 exp z y x n L L L t D n t e ρ ρ π , ( ) ( ) ( ) ( ) ∫ ∫ ∫ = x y z L L L n n n n u d v d w d w v u f v c v c u c F 0 0 0 , , ρ ρ , cn(χ) = cos (π n χ/Lχ). Approximations of the considered concentrations with higher orders (second, third, ...) have been calculated framework standard iterative procedure [13,14]. To use the procedure we shall replace the functions C(x,y,z,t), I(x,y,z,t), V(x,y,z,t), ΦI(x,y, z,t), ΦV(x,y,z,t) in the right sides of the Eqs. (1), (4) and (6) on the following sums αnρ +ρ n-1(x,y,z,t). Equations for concentrations for considered concentrations for the second-order could be written as ( ) ( ) ( ) ( ) ( ) [ ] ( )     ×       + +         + + = ∗ ∗ T z y x P t z y x C V t z y x V V t z y x V x t t z y x C C , , , , , , 1 , , , , , , 1 , , , 1 2 2 2 2 1 2 γ γ α ξ ς ς ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( )     ×       + + +     × ∗ ∗ 2 2 2 1 1 , , , , , , 1 , , , , , , , , , V t z y x V V t z y x V T z y x D y x t z y x C T z y x D L L ς ς ∂ ∂ ∂ ∂ ( ) [ ] ( ) ( ) ( ) ( )     × +           + + × z t z y x C T z y x D z y t z y x C T z y x P t z y x C L C ∂ ∂ ∂ ∂ ∂ ∂ α ξ γ γ , , , , , , , , , , , , , , , 1 1 1 1 2 ( ) ( ) ( ) ( ) [ ] ( )           + +         + + × ∗ ∗ T z y x P t z y x C V t z y x V V t z y x V C , , , , , , 1 , , , , , , 1 1 2 2 2 2 1 γ γ α ξ ς ς (8) ( ) ( ) ( ) ( ) ( ) +       +       = y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , 1 1 2
  • 7. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 7 ( ) ( ) ( ) [ ] ( ) [ ]× + + −       + t z y x V t z y x I z t z y x I T z y x D z V I I , , , , , , , , , , , , 1 2 1 2 1 α α ∂ ∂ ∂ ∂ ( ) ( ) ( ) [ ]2 1 2 , , , , , , , , , , , t z y x I T z y x k T z y x k I I I V I + − × α (9) ( ) ( ) ( ) ( ) ( ) +       +       = y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , 1 1 2 ( ) ( ) ( ) [ ] ( ) [ ]× + + −       + t z y x V t z y x I z t z y x V T z y x D z V I V , , , , , , , , , , , , 1 2 1 2 1 α α ∂ ∂ ∂ ∂ ( ) ( ) ( ) [ ]2 1 2 , , , , , , , , , , , t z y x V T z y x k T z y x k V V V V I + − × α ( ) ( ) ( ) ( )    × +       Φ = Φ Φ Φ T z y x D y x t z y x T z y x D x t t z y x I I I I , , , , , , , , , , , , 1 2 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )× +       Φ +    Φ × Φ T z y x k z t z y x T z y x D z y t z y x I I I I I , , , , , , , , , , , , , 1 1 ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) t z y x I T z y x k t z y x I I , , , , , , , , , 2 − × (10) ( ) ( ) ( ) ( )    × +       Φ = Φ Φ Φ T z y x D y x t z y x T z y x D x t t z y x V V V V , , , , , , , , , , , , 1 2 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )× +       Φ +    Φ × Φ T z y x k z t z y x T z y x D z y t z y x V V V I V , , , , , , , , , , , , , 1 1 ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) t z y x V T z y x k t z y x V V , , , , , , , , , 2 − × . The second-order approximations of concentrations of dopant and radiation defects could be obtained in the final form by integration of the left and right sides of Eqs.(8)-(10) ( ) ( ) ( ) ( ) ( ) [ ] ( )     ∫ ×       + +         + + = ∗ ∗ t C T z y x P z y x C V z y x V V z y x V x t z y x C 0 1 2 2 2 2 1 2 , , , , , , 1 , , , , , , 1 , , , γ γ τ α ξ τ ς τ ς ∂ ∂
  • 8. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 8 ( ) ( ) ( ) ( ) ( )     ∫ ×         + + +     × ∗ ∗ t L V z y x V V z y x V y d x z y x C T z y x D 0 2 2 2 1 1 , , , , , , 1 , , , , , , τ ς τ ς ∂ ∂ τ ∂ τ ∂ ( ) ( ) [ ] ( ) ( ) ( )    ∫ × +           + + × t L C L T z y x D z d y z y x C T z y x P z y x C T z y x D 0 1 1 2 , , , , , , , , , , , , 1 , , , ∂ ∂ τ ∂ τ ∂ τ α ξ γ γ ( ) ( ) ( ) ( ) [ ] ( ) ( ) +           + +         + + × ∗ ∗ τ ∂ τ ∂ τ α ξ τ ς τ ς γ γ d z z y x C T z y x P z y x C V z y x V V z y x V C , , , , , , , , , 1 , , , , , , 1 1 1 2 2 2 2 1 ( ) z y x fC , , + (8a) ( ) ( ) ( ) ( )    ∫ × +       ∫ = t I t I T z y x D y d x z y x I T z y x D x t z y x I 0 0 1 2 , , , , , , , , , , , , ∂ ∂ τ ∂ τ ∂ ∂ ∂ ( ) ( ) ( ) ( ) × ∫ −       ∫ +    × t I I t I T z y x k d z z y x I T z y x D z d y z y x I 0 , 0 1 1 , , , , , , , , , , , , τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ( ) [ ] ( ) ( ) ( ) [ ]× ∫ + − + + × t I V I I I z y x I T z y x k z y x f d z y x I 0 1 2 , 2 1 2 , , , , , , , , , , , τ α τ τ α ( ) [ ] τ τ α d z y x V V , , , 1 2 + × (9a) ( ) ( ) ( ) ( )    ∫ × +       ∫ = t V t V T z y x D y d x z y x V T z y x D x t z y x V 0 0 1 2 , , , , , , , , , , , , ∂ ∂ τ ∂ τ ∂ ∂ ∂ ( ) ( ) ( ) ( ) × ∫ −       ∫ +    × t V V t V T z y x k d z z y x V T z y x D z d y z y x V 0 , 0 1 1 , , , , , , , , , , , , τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ( ) [ ] ( ) ( ) ( ) [ ]× ∫ + − + + × t I V I V I z y x I T z y x k z y x f d z y x V 0 1 2 , 2 1 2 , , , , , , , , , , , τ α τ τ α ( ) [ ] τ τ α d z y x V V , , , 1 2 + × ( ) ( ) ( ) ( )    ∫ × +       ∫ Φ = Φ Φ Φ t t I I T z y x D y d x z y x T z y x D x t z y x I I 0 0 1 2 , , , , , , , , , , , , ∂ ∂ τ ∂ τ ∂ ∂ ∂
  • 9. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 9 ( ) ( ) ( ) ( ) × ∫ +       ∫ Φ +    Φ × Φ t I I t I I T z y x k d z z y x T z y x D z d y z y x I 0 , 0 1 1 , , , , , , , , , , , , τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ( ) ( ) ( ) ( ) z y x f d z y x I T z y x k d z y x I I t I , , , , , , , , , , , 0 2 Φ + ∫ − × τ τ τ τ (10a) ( ) ( ) ( ) ( )    ∫ × +       ∫ Φ = Φ Φ Φ t t V V T z y x D y d x z y x T z y x D x t z y x V V 0 0 1 2 , , , , , , , , , , , , ∂ ∂ τ ∂ τ ∂ ∂ ∂ ( ) ( ) ( ) ( ) × ∫ +       ∫ Φ +    Φ × Φ t V V t V I T z y x k d z z y x T z y x D z d y z y x V 0 , 0 1 1 , , , , , , , , , , , , τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ( ) ( ) ( ) ( ) z y x f d z y x V T z y x k d z y x V V t V , , , , , , , , , , , 0 2 Φ + ∫ − × τ τ τ τ We calculate average values of the second-orders approximations of concentrations of dopant and radiation defects by using the following standard relations [13,14] ( ) ( ) [ ] ∫ ∫ ∫ ∫ − Θ = Θ 0 0 0 0 1 2 2 , , , , , , 1 x y z L L L z y x t d x d y d z d t z y x t z y x L L L ρ ρ α ρ . (11) Using the relation (11) with account relations (8a)-(10a) leads to the following average values α2ρ ( ) ∫ ∫ ∫ = x y z L L L C z y x С x d y d z d z y x f L L L 0 0 0 2 , , 1 α , (12) ( ) [ { − + − − + + + = 11 20 10 2 00 2 00 2 10 01 00 2 4 1 2 1 IV II IV V II IV V II IV II I A A A A A A A A α α α ( ) 00 00 2 10 01 2 1 0 0 0 2 1 , , 1 II IV V II IV L L L I z y x A A A A x d y d z d z y x f L L L x y z α + + + −          ∫ ∫ ∫ − (13a) ( ) 4 3 1 3 4 2 3 4 2 4 4 4 2 1 B A B A B y B y B A B B V + −       − + − + = α . (13b)
  • 10. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 10 Here ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ − Θ Θ = Θ 0 0 0 0 1 1 , , , , , , , , , , 1 x y z L L L j i b a z y x abij t d x d y d z d t z y x V t z y x I T z y x k t L L L A , ( )2 00 00 2 00 2 00 2 00 4 2 VV II IV IV IV A A A A A B − − = , − + + = 2 00 10 00 3 00 01 2 00 00 3 IV II IV IV IV IV IV A A A A A A A B ( ) ( ) ( ) [ ]− + + − + + + − − 1 2 1 2 2 4 10 10 00 10 01 00 00 01 00 00 2 00 VV IV II II IV IV IV IV VV II IV A A A A A A A A A A A 2 00 01 00 2 00 00 10 2 4 IV IV IV IV II IV A A A A A A + − , ( ) { × + + + + = 00 2 01 2 00 2 10 01 2 00 2 1 IV IV IV II IV IV A A A A A A B ( )     × − − − − + + × z y x II IV II II IV II IV IV IV IV IV L L L A A A A A A A A A A A 1 4 4 2 20 11 00 00 10 10 00 01 00 00 00 ( ) ( ) ( [ { + + − + + +       ∫ ∫ ∫ × 1 2 1 2 2 , , 10 00 10 01 00 00 01 0 0 0 IV II II IV IV IV IV L L L I A A A A A A A x d y d z d z y x f x y z )] ( ) ( ) (     − − ∫ ∫ ∫ + + + + + 20 00 0 0 0 10 01 01 2 10 2 , , 2 1 2 VV II L L L V z y x II IV IV VV A A x d y d z d z y x f L L L A A A A x y z ) ( )] ( ) ( [ + + − + + + + + + − 1 2 2 1 2 1 10 00 00 01 10 01 00 10 01 01 11 IV II IV IV II IV IV II IV IV IV A A A A A A A A A A A )]} 10 VV A + , ( ) ( )    × ∫ ∫ ∫ − − + + = x y z L L L I x IV II IV IV IV x d y d z d z y x f L A A A A A B 0 0 0 11 2 10 01 01 00 1 , , 1 8 1 2 ( )− − + + + +     − × 00 10 10 00 01 00 00 2 01 00 01 00 20 4 1 II IV II IV IV IV IV IV II IV IV II z y A A A A A A A A A A A A L L
  • 11. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 11 ( ) ( ) ( )     + − − + + + ∫ ∫ ∫ − 11 20 00 10 01 01 0 0 0 00 2 1 , , 2 2 IV VV II II IV IV L L L I z y x II A A A A A A x d y d z d z y x f L L L A x y z ( )] ( ) ( ) [ ] 00 01 00 10 10 10 01 00 10 01 01 2 1 2 1 2 1 IV IV II VV IV II IV IV II IV IV A A A A A A A A A A A + + + − + + + + + , ( ) ( + + +         − ∫ ∫ ∫ + = 10 01 2 01 11 0 0 0 20 2 01 00 0 , , 1 4 II IV IV IV L L L I z y x II IV II A A A A x d y d z d z y x f L L L A A A B x y z ) ( ) ( ) ( )     + − − + + + ∫ ∫ ∫ − + 11 20 00 10 01 01 0 0 0 00 2 2 1 , , 2 1 IV VV II II IV IV L L L V z y x II A A A A A A x d y d z d z y x f L L L A x y z ( )]2 10 01 01 1 II IV IV A A A + + + , 6 2 3 3 2 3 3 2 B q p q q p q y + + + − − + = , ( )× − = 0 3 1 8 2 B B B q ( ) 8 4 216 48 2 1 2 3 2 0 3 2 2 B B B B B B − − + + × , ( ) [ ] 72 2 8 2 3 2 2 0 3 1 B B B B p − − = , 2 2 3 4 8 B B y A − + = , ( ) ( ) ( ) + ∫ ∫ ∫ ∫ − Θ Θ − = Θ Φ 0 0 0 0 20 2 , , , , , , 1 x y z I L L L I z y x II t d x d y d z d t z y x I T z y x k t L L L A α ( ) ∫ ∫ ∫ + Φ x y z L L L I z y x x d y d z d z y x f L L L 0 0 0 , , 1 (14) ( ) ( ) ( ) + ∫ ∫ ∫ ∫ − Θ Θ − = Θ Φ 0 0 0 0 20 2 , , , , , , 1 x y z V L L L V z y x VV t d x d y d z d t z y x V T z y x k t L L L A α ( ) ∫ ∫ ∫ + Φ x y z L L L V z y x x d y d z d z y x f L L L 0 0 0 , , 1 .
  • 12. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 12 Now one can obtain equation for parameter α2C. Form of the equation depends on of parameter γ. Analysis of distributions of concentrations of dopant and radiation defects in space and time has been done by using the second-order approximations by using of modified method of averaging of function corrections (with decreased quantity of iterative steps) of these concentrations. The considered approximation is usually enough good approximation to analyze qualitatively the considered concentration and obtain some quantitative results. The analytical calculation results have been checked comparison of the analytical results with results of numerical simulation. 3. DISCUSSION Main aim of the section is analysis of distribution of concentration of dopant in space and time in the considered heterostructure during annealing. Figs. 2 shows distributions of concentrations of dopants in space, which where infused or implanted in the considered epitaxial layer (see Fig. 2a and Fig. 2b, respectively) at the same values of annealing time (the same framework each figure). Larger numbers of curves corresponds to larger difference between dopant diffusion coefficients in epitaxial layer and substrate. The figures show that inhomogeneity could leads to increasing of absolute value of gradient of concentration of dopant (i.e. one can obtain increasing sharpness of the end of doped structure). The increasing leads to decreasing dimensions of the considered transistors and increasing of homogeneity of concentration of dopant in doped areas. We choose optimal value annealing time as compromise between increasing of homogeneity of dopant concentration in doped area and increasing of sharpness of the concentration in neighborhood of interface between substrate and epitaxial layer (see Fig. 3a for diffusion doping of materials and Fig. 3b for ion doping of materials) [15-20]. Framework the criteria one shall approximate real distributions of concentration of dopant by ideal step-wise distribution ψ (x,y,z). compromise value of annealing time by minimization of the following mean-squared error. Fig.2a. Distributions of infused dopant concentration in the considered heterostructure. Larger numbers of curves corresponds to larger difference between dopant diffusion coefficients in epitaxial layer and substrate
  • 13. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 13 Fig.2b. Distributions of implanted dopant concentration in the considered heterostructure. Larger numbers of curves corresponds to larger difference between dopant diffusion coefficients in epitaxial layer and substrate Fig. 3a. Dependences of distributions of concentration of infused dopant on coordinate. Curve 1 is idealized distribution of dopant. Curves 2-4 are real dependences of concentrations dopant on coordinate for different values of annealing time. Increasing of number of curve corresponds to increasing of annealing time
  • 14. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 14 Fig.3b. Dependences of distributions of concentration of implanted dopant on coordinate. Curve 1 is idealized distribution of dopant. Curves 2-4 are real dependences of concentrations dopant on coordinate for different values of annealing time. Increasing of number of curve corresponds to increasing of annealing time Fig.4a. Dependences of dimensionless optimized annealing time of infused dopant on several parameters. Curve 1 describes dependence of dimensionless optimized annealing time on the value a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L =1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
  • 15. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 15 ( ) ( ) [ ] ∫ ∫ ∫ − Θ = x y z L L L z y x x d y d z d z y x z y x C L L L U 0 0 0 , , , , , 1 ψ . (15) Fig.4b. Dependences of dimensionless optimized annealing time of implanted dopant on several parameters. Curve 1 describes dependence of dimensionless optimized annealing time on the value a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure.Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L =1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 We present optimized annealing time on Figs. 4 (Fig. 4a for diffusion type of doping and Fig. 4b for ion type of doping). It is known, that radiation defects should be annealed after ion implantation. The annealing leads to spreading of distribution of concentration of dopant. The ideal spreading leads to achievement of nearest interfaces between materials of heterostructure. If dopant has no time for the achievement during the annealing, it is attracted an interest additional annealing of dopant. The situation leads to smaller value of optimal annealing time of implanted dopant in comparison with diffusion one. At the same time it should be noted, that ion type of doping leads to decreasing of mismatch-induced stress in heterostructure [21]. 4. CONCLUSION We consider an approach for increasing density of field-effect heterotransistors in a single-stage multi-path operational amplifier. At the same time one can obtain decreasing of dimensions of the above transistors. Dimensions of the elements could be decreased by manufacturing of these elements in a heterostructure with specific structure. The manufacturing is doing by doping of required areas of the heterostructure by diffusion or ion implantation with future optimization of annealing of dopant and/or radiation defects.
  • 16. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 4, No.2, June 2018 16 REFERENCES [1] G. Volovich. Modern Electronics. Issue 2. P. 10-17 (2006). [2] A. Kerentsev, V. Lanin, Power Electronics. Issue 1. P. 34 (2008). [3] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Semiconductors. Vol. 43 (7). P. 897-903 (2009). [4] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S. Yastrebov. Semiconductors. Vol. 35 (8). P. 1013-1017 (2001). [5] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong, Appl. Phys. Lett. 89 (17), 172111-172114 (2006). [6] H.T. Wang, L.S. Tan, E. F. Chor. J. Appl. Phys. 98 (9), 094901-094905 (2006). [7] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003). [8] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian). [9] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [10] M. Yavari, T. Moosazadeh. Analog. Integr. Circ. Sig. Process. Vol. 79. P. 589-598 (2014). [11] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [12] P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys. 1989. V. 61. № 2. P. 289-388. [13] Yu.D. Sokolov. Applied Mechanics. Vol. 1 (1). P. 23-35 (1955). [14] E.L. Pankratov. The European Physical Journal B. 2007. V. 57, №3. P. 251-256. [15] E.L. Pankratov. Russian Microelectronics. 2007. V.36 (1). P. 33-39. [16] E.L. Pankratov. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008). [17] E.L. Pankratov. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [18] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). [19] E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [20] E.L. Pankratov, E.A. Bulaeva. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012). [21] E.L. Pankratov, E.A. Bulaeva. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).