SlideShare uma empresa Scribd logo
1 de 18
Baixar para ler offline
PROJECT REPORT
ON
Analysis of a self-sustained vibration of
mass-spring oscillator on moving belt
Course: ME 5000
Submitted by
Varun Jadhav
Gk0862
Problem Statement:
The differential equation of motion of a mass-spring oscillator interacting with a moving belt is
represented in the form
where V is a constant velocity of the belt of the belt, μ is a friction coefficient, which is a
function of the relative velocity between the mass and the belt, and g is the gravitational
acceleration.
Now
1) Apply the Taylor’s expansion to the friction coefficient μ (V- 𝑦̇) with respect to the
absolute velocity of the mass, 𝑦̇ ,up to the cubic term.
2) Assuming μ’’(V) show that the differential equation of motion takes the standard form of
Rayleigh’s equation
after the following substitutions:
3) Develop Mathematica code to solve equation (B) numerically under different values of
the parameter ε from the interval (0,5) and different initial conditions. Plot out the
corresponding time histories and phase plane diagrams illustrating transitions to limit
cycles.
4) Obtain approximate analytical solution of equation (B) by using the van der Pol’s first-
order averaging procedure.
5) By plotting both numerical and analytical solutions on the graphs compare the results at
different values of the parameter ε
NOTE: Assume ω = 1 in all cases.
SOLUTION:
1) Apply the Taylor’s expansion to the friction coefficient μ (V- 𝑦̇) with respect to the
absolute velocity of the mass, 𝑦̇ ,up to the cubic term.
From the given problem the differential equation of motion of a mass-spring oscillator
interacting with a moving belt is represented in the form as
𝑦̈ + 𝜔2
𝑦 = 𝑔𝜇(𝑉 − 𝑦̇)
𝜔2
=
𝑘
𝑚
Now,
Using Taylor’s expansion, the general form is given as:
𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)
(𝑥−𝑎)
1!
+ 𝑓′′(𝑎)
(𝑥−𝑎)2
2!
+ 𝑓′′′(𝑎)
(𝑥−𝑎)3
3!
+ ⋯
And, 𝑓(𝑥) = 𝜇(𝑉 − 𝑦̇)
∴ 𝜇(𝑉 − 𝑦̇) = 𝜇(𝑉) + 𝜇′(𝑉)
(𝑉 − 𝑦̇ − 𝑉)
1!
+ 𝜇′′(𝑉)
(𝑉 − 𝑦̇ − 𝑉)2
2!
+ 𝜇′′′(𝑉)
(𝑉 − 𝑦̇ − 𝑉)3
3!
+ ⋯
∴ 𝜇(𝑉 − 𝑦̇) = 𝜇(𝑉) − 𝜇′
(𝑉)𝑦̇ − 𝜇′′(𝑉)
(𝑦̇)2
2!
− 𝜇′′′(𝑉)
(𝑦̇)3
3!
2) Assuming μ’’(V) show that the differential equation of motion takes the standard form of
Rayleigh’s equation
𝑦̈ + 𝜔2
𝑦 = 𝑔 [𝜇(𝑉) − 𝜇̇( 𝑉)𝑦̇ − 𝜇⃛(𝑉)
(𝑦̇)3
3!
] ------------------(1)
𝑦 =
𝑔
𝜔2
𝜇(𝑉) + √
−2𝜇̇ (𝑉)
𝜇⃛(𝑉)
q[t] -------------------- (A)
𝜀 = −𝑔𝜇̇( 𝑉) ---------------------------- (B)
𝑦̇ = √
−2𝜇̇ (𝑉)
𝜇⃛(𝑉)
q̇[t] ---------------------------- (C)
𝑦̈ = √
−2𝜇̇ (𝑉)
𝜇⃛(𝑉)
q̈[t] ---------------------------- (D)
Now substituting the value of B, C, D in Equation (1) we get,
∴ √
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
q̈[t] + 𝜔2
[
𝑔
𝜔2
𝜇(𝑉) + √
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
q[t]]
= 𝑔 [ 𝜇(𝑉) − 𝜇̇( 𝑉)√
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
q̇[t] −
1
3!
𝜇⃛(𝑉) (√
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
q̇[t])
3
]
∴ √
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
q̈[t] + 𝑔𝜇(𝑉) + √
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
q[t]𝜔2
= 𝑔𝜇(𝑉) − 𝑔𝜇̇( 𝑉)√
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
q̇[t] −
1
3!
𝜇⃛(𝑉) [
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
√
−2𝜇̇( 𝑉)
𝜇⃛(𝑉)
𝑞3̇ [t]]
∴ √
−2𝜇̇ ( 𝑉)
𝜇⃛( 𝑉)
[q̈ [t]+𝜔2
q[t]] = √
−2𝜇̇ ( 𝑉)
𝜇⃛( 𝑉)
[−𝑔𝜇̇ ( 𝑉)q̇ [t] −
1
3!
[2𝜇̇ (𝑉)] 𝑞3̇ [t]]
∴ 𝑞̈(𝑡) + 𝜔2
𝑞(𝑡) − 𝜖𝑞̇(𝑡) −
1
3!
𝜀 𝑞3̇ [t] = 0
∴ 𝑞̈(𝑡) − 𝜖 [1 −
1
3
𝑞2̇ [t]] 𝑞̇(𝑡) + 𝜔2
𝑞(𝑡) = 0
3) Develop Mathematica code to solve equation (B) numerically under different values of
the parameter ε from the interval (0,5) and different initial conditions. Plot out the
corresponding time histories and phase plane diagrams illustrating transitions to limit
cycles.
A[t] -> The amplitude of Solution of Non-Linear
Harmonic Second Order Differential Equation
Here ω = 1 in all cases.
and ε = 0.1, 0.5, 0.086
4) Obtain approximate analytical solution of equation (B) by using the van der Pol’s first-
order averaging procedure.
Now we have obtained the following equation from problem 2 as the standard form of
Rayleigh’s Equation.
Hence,
𝑞̈ − 𝜖 [1 −
1
3
𝑞2̇ ] 𝑞̇ + 𝜔2
𝑞 = 0
𝑞̈ + 𝜔2
𝑞 = 𝜖 [1 −
1
3
𝑞2̇ ] 𝑞̇
𝑞̈ + 𝜔2
𝑞 = 𝜖 [ 𝑞̇ −
1
3
𝑞3̇ ]
Now,
Using the Van Der Pol’s First Order Averaging
{
𝑞 = 𝐴(𝑡)𝐶𝑜𝑠𝜑
𝑉 = −𝐴(𝑡)𝜔𝑆𝑖𝑛𝜑
{
𝑞̇ = 𝑉
𝑉̇ = −𝜔2
𝑞 + 𝜀𝑓(𝑞, 𝑞̇)
As Equation 1 is in the form 𝑞̈ + 𝜔2
𝑞 = 𝜖𝑓(𝑞, 𝑞̇) , Hence we can write
𝐴̇ = −
𝜀
𝜔
〈𝑓(𝑞, 𝑞̇) 𝑆𝑖𝑛𝜑〉
𝐴̇ = −
𝜀
𝜔
〈(𝑞̇ −
1
3
𝑞3̇ ) 𝑆𝑖𝑛𝜑〉
Substituting value of 𝑞̇ in the above equation,
𝐴̇ = −
𝜀
𝜔
〈(−𝐴𝜔𝑆𝑖𝑛𝜑 −
1
3
(−𝐴)3
𝜔3
𝑆𝑖𝑛3
𝜑) 𝑆𝑖𝑛𝜑〉
𝐴̇ = −
𝜀
𝜔
〈(−𝐴𝜔𝑆𝑖𝑛2
𝜑 +
1
3
𝐴3
𝜔3
𝑆𝑖𝑛4
𝜑) 〉
As per the given condition 𝜔 = 1 for all case
𝐴̇ = −𝜀 [〈−𝐴𝑆𝑖𝑛2
𝜑〉 + 〈
1
3
𝐴3
𝑆𝑖𝑛4
𝜑〉]
𝐴̇ = −𝜀 [−
𝐴
2
+
𝐴3
8
]
𝑁𝑜𝑡𝑒: 𝑆𝑖𝑛2
𝜑 =
1
2
𝑎𝑛𝑑 𝑆𝑖𝑛4
𝜑 =
3
8
𝐴̇ = −𝜀 [
𝐴3
8
−
𝐴
2
]
Now
Let’s assume
𝐴
2
= 𝑀 , ∴ 𝑑𝐴 = 2𝑑𝑀 𝑎𝑛𝑑
𝐴3
8
= 𝑀3
;
Now,
Substituting the value in () we get,
2𝑑𝑀
𝑑𝑡
= −𝜀[𝑀3
− 𝑀]
𝑑𝑀
𝑑𝑡
= −
𝜀
2
[𝑀(𝑀2
− 1)]
𝑑𝑀
𝑀(𝑀 + 1)(𝑀 − 1)
= −
𝜀
2
𝑑𝑡
Now
Let,
1
𝑀(𝑀 + 1)(𝑀 − 1)
=
𝐴
𝑀
+
𝐵
(𝑀 + 1)
+
𝐶
(𝑀 − 1)
∴ 𝐴(𝑀2
− 1) + 𝐵𝑀(𝑀 + 1) + 𝐶𝑀(𝑀 − 1) = 1
Now,
when
M=0 A= (-1)
M=1 C= (
1
2
)
M= (-1) B= (
1
2
)
Now,
Substituting the value of A, B, C in equation we get,
−𝑑𝑀
𝑀
+
1
2
𝑑𝑀
(𝑀 + 1)
+
1
2
𝑑𝑀
(𝑀 − 1)
= −
𝜀
2
𝑑𝑡
Now Integrating w.r.t Time we get,
∫
−𝑑𝑀
𝑀
+
1
2
∫
𝑑𝑀
(𝑀 + 1)
+
1
2
∫
𝑑𝑀
(𝑀 − 1)
= −
𝜀
2
𝑑𝑡
− ln 𝑀 +
1
2
ln(𝑀 + 1) +
1
2
ln(𝑀 − 1) = −
𝜀
2
𝑡 + 𝐶
ln 𝑀−1
+ ln(𝑀 + 1)
1
2 + ln(𝑀 − 1)
1
2 = −
𝜀
2
𝑡 + 𝐶
ln (
√(𝑀 + 1)(𝑀 − 1)
𝑀
) = −
𝜀
2
𝑡 + 𝐶
log
√(𝑀2 − 1)
𝑀
= −
𝜀
2
𝑡 + 𝐶
√
𝑀2 − 1
𝑀2
= 𝑒
(−
𝜀
2
𝑡+𝐶)
1 −
1
𝑀2
= [𝑒
(−
𝜀
2
𝑡+𝐶)
]
2
Now, substituting the value of M, we get
1 −
4
𝐴2
= [𝑒
(−
𝜀
2
𝑡+𝐶)
]
2
1 − 𝑒−
2𝜀
2
𝑡+2𝐶
=
4
𝐴2
𝐴 = √
4
1 − 𝑒−𝜀𝑡+2𝐶
Now,
At, (t)=0 ; A=A0
𝐴0
2
=
4
1 − 𝑒−𝜀(0)+2𝐶
1 − 𝑒2𝐶
=
4
𝐴0
2
𝑒2𝐶
= 1 −
4
𝐴0
2
Now taking log on both side we get,
2𝐶 = ln (1 −
4
𝐴0
2)
𝐶 =
1
2
ln (1 −
4
𝐴0
2)
𝐶 = ln √(1 −
4
𝐴0
2)
Now substituting the value of ‘C’ in equation () we get,
𝐴 = √
4
1 − 𝑒−𝜀𝑡 𝑒2𝐶
𝐴 =
√
4
1 − 𝑒−𝜀𝑡 𝑒
2 ln √(1−
4
𝐴0
2)
𝐴 = √
4
1 − 𝑒−𝜀𝑡 𝑒
ln(1−
4
𝐴0
2)
𝐴 =
√
4
1 − 𝑒−𝜀𝑡 + 𝑒−𝜀𝑡 (
4
𝐴0
2)
𝐴 =
√
4
1 −
1
𝑒 𝜀𝑡 +
4
𝑒 𝜀𝑡 𝐴0
2
Now multiplying Numerator and Denominator with 𝑒 𝜀𝑡
we get,
𝐴 =
√
4𝑒 𝜀𝑡
𝑒 𝜀𝑡 − 1 +
4
𝐴0
2
𝐴 =
2𝑒
𝜀𝑡
2
√
4
𝐴0
2 + (−1 + 𝑒 𝜀𝑡)
Now for the phase angle ‘𝜑’
𝜑̇ = 𝜔 −
𝜀
𝐴𝜔
〈𝑓(𝑞, 𝑞̇) 𝐶𝑜𝑠𝜑〉
𝜑̇ = 𝜔 −
𝜀
𝐴𝜔
〈−𝐴𝜔𝑆𝑖𝑛𝜑𝐶𝑜𝑠𝜑 +
1
3
𝐴3
𝜔3
𝑆𝑖𝑛3
𝜑 𝐶𝑜𝑠𝜑〉
𝑁𝑜𝑡𝑒: (𝑆𝑖𝑛𝜑 𝐶𝑜𝑠𝜑) = 0 𝑎𝑛𝑑 (𝑆𝑖𝑛3
𝜑 𝐶𝑜𝑠𝜑) = 0
𝜑̇ = 𝜔 −
𝜀
𝐴𝜔
〈−𝐴𝜔(0) +
1
3
𝐴3
𝜔3
(0)〉
𝜑̇ = 𝜔
As 𝜔 = 1
∴ 𝜑̇ = 1
Now integrating on both side, we get,
𝜑 = 𝑡 + 𝐶
Now at (t)=0; 𝜑 = 𝜑0
∴ 𝐶 = 𝜑0
𝜑 = 𝑡 + 𝜑0
Now,
𝑞(𝑡) = 𝐴(𝑡)𝐶𝑜𝑠𝜑
𝑞(𝑡) =
2𝑒
𝜀𝑡
2
√
4
𝐴0
2 + (−1 + 𝑒 𝜀𝑡)
𝐶𝑜𝑠(𝑡 + 𝜑0)
Hence the Solution of Rayleigh’s Eqn
when using the Vanderpol’s method yields the equation for
the mathematics code
This gives us the solution graph for different case using different value of ε to compare the
numerical and analytical solution.
5) Following six cases are considered for the numerical and analytical comparison.
Case 1: A0= 0.1 and ε=0.1
Case 2: A0= 0.1 and ε=0.5
Case 3: A0= 0.1 and ε=0.086
Case 4: A0= 3 and ε=0.1
Case 5: A0= 3 and ε=0.5
Case 6: A0= 3 and ε=0.086
CONCLUSION
From the comparison of the graphs we can observe that the plot of analytical will follow
the plot of numerical solution when the value of ‘ε’ is very small.
When we keep the value of A0 and 𝜃 as constant and increase the value of ε we can
observe that the analytical solution becomes inaccurate which leads to the mismatch
(offset) of analytical and numerical solution.
From the comparison of phase of case 3 with case 6 we can observe that, when the value
of A0 is increased from 0.1 to 3 the curve diverges from steady solution to unsteady
solution.
From the comparison of case 1, 2 and 3 we can observe that the time required for the q[t]
to reach a constant amplitude depends upon the value of ε.
As we increase the value of ε, the time required to attain the constant amplitude is
lowered and when the value of ε is decreased the time required to attain the constant
amplitude is increased.

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-II
 
Maths digital text
Maths digital textMaths digital text
Maths digital text
 
merged_document
merged_documentmerged_document
merged_document
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
Bender schmidt method
Bender schmidt methodBender schmidt method
Bender schmidt method
 
Gauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan methodGauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan method
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Vector analysis
Vector analysisVector analysis
Vector analysis
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
B.Tech-II_Unit-I
B.Tech-II_Unit-IB.Tech-II_Unit-I
B.Tech-II_Unit-I
 
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODINVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
 
A05330107
A05330107A05330107
A05330107
 
Summerp62016update3 slideshare sqd
Summerp62016update3 slideshare   sqdSummerp62016update3 slideshare   sqd
Summerp62016update3 slideshare sqd
 

Semelhante a Analysis of a self-sustained vibration of mass-spring oscillator on moving belt

Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
IJSRED
 
Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)
Eqah Ihah
 

Semelhante a Analysis of a self-sustained vibration of mass-spring oscillator on moving belt (20)

Numerical Analysis and Its application to Boundary Value Problems
Numerical Analysis and Its application to Boundary Value ProblemsNumerical Analysis and Its application to Boundary Value Problems
Numerical Analysis and Its application to Boundary Value Problems
 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typed
 
doc
docdoc
doc
 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
 
Simple Linear Regression
Simple Linear RegressionSimple Linear Regression
Simple Linear Regression
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
 
C0560913
C0560913C0560913
C0560913
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
lec19.ppt
lec19.pptlec19.ppt
lec19.ppt
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
Dynamics slideshare
Dynamics slideshareDynamics slideshare
Dynamics slideshare
 
Dynamics problems
Dynamics problemsDynamics problems
Dynamics problems
 
Calculas
CalculasCalculas
Calculas
 
Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)
 

Último

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Último (20)

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 

Analysis of a self-sustained vibration of mass-spring oscillator on moving belt

  • 1. PROJECT REPORT ON Analysis of a self-sustained vibration of mass-spring oscillator on moving belt Course: ME 5000 Submitted by Varun Jadhav Gk0862
  • 2. Problem Statement: The differential equation of motion of a mass-spring oscillator interacting with a moving belt is represented in the form where V is a constant velocity of the belt of the belt, μ is a friction coefficient, which is a function of the relative velocity between the mass and the belt, and g is the gravitational acceleration. Now 1) Apply the Taylor’s expansion to the friction coefficient μ (V- 𝑦̇) with respect to the absolute velocity of the mass, 𝑦̇ ,up to the cubic term. 2) Assuming μ’’(V) show that the differential equation of motion takes the standard form of Rayleigh’s equation after the following substitutions:
  • 3. 3) Develop Mathematica code to solve equation (B) numerically under different values of the parameter ε from the interval (0,5) and different initial conditions. Plot out the corresponding time histories and phase plane diagrams illustrating transitions to limit cycles. 4) Obtain approximate analytical solution of equation (B) by using the van der Pol’s first- order averaging procedure. 5) By plotting both numerical and analytical solutions on the graphs compare the results at different values of the parameter ε NOTE: Assume ω = 1 in all cases.
  • 4. SOLUTION: 1) Apply the Taylor’s expansion to the friction coefficient μ (V- 𝑦̇) with respect to the absolute velocity of the mass, 𝑦̇ ,up to the cubic term. From the given problem the differential equation of motion of a mass-spring oscillator interacting with a moving belt is represented in the form as 𝑦̈ + 𝜔2 𝑦 = 𝑔𝜇(𝑉 − 𝑦̇) 𝜔2 = 𝑘 𝑚 Now, Using Taylor’s expansion, the general form is given as: 𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎) (𝑥−𝑎) 1! + 𝑓′′(𝑎) (𝑥−𝑎)2 2! + 𝑓′′′(𝑎) (𝑥−𝑎)3 3! + ⋯ And, 𝑓(𝑥) = 𝜇(𝑉 − 𝑦̇) ∴ 𝜇(𝑉 − 𝑦̇) = 𝜇(𝑉) + 𝜇′(𝑉) (𝑉 − 𝑦̇ − 𝑉) 1! + 𝜇′′(𝑉) (𝑉 − 𝑦̇ − 𝑉)2 2! + 𝜇′′′(𝑉) (𝑉 − 𝑦̇ − 𝑉)3 3! + ⋯ ∴ 𝜇(𝑉 − 𝑦̇) = 𝜇(𝑉) − 𝜇′ (𝑉)𝑦̇ − 𝜇′′(𝑉) (𝑦̇)2 2! − 𝜇′′′(𝑉) (𝑦̇)3 3! 2) Assuming μ’’(V) show that the differential equation of motion takes the standard form of Rayleigh’s equation 𝑦̈ + 𝜔2 𝑦 = 𝑔 [𝜇(𝑉) − 𝜇̇( 𝑉)𝑦̇ − 𝜇⃛(𝑉) (𝑦̇)3 3! ] ------------------(1) 𝑦 = 𝑔 𝜔2 𝜇(𝑉) + √ −2𝜇̇ (𝑉) 𝜇⃛(𝑉) q[t] -------------------- (A) 𝜀 = −𝑔𝜇̇( 𝑉) ---------------------------- (B) 𝑦̇ = √ −2𝜇̇ (𝑉) 𝜇⃛(𝑉) q̇[t] ---------------------------- (C) 𝑦̈ = √ −2𝜇̇ (𝑉) 𝜇⃛(𝑉) q̈[t] ---------------------------- (D)
  • 5. Now substituting the value of B, C, D in Equation (1) we get, ∴ √ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) q̈[t] + 𝜔2 [ 𝑔 𝜔2 𝜇(𝑉) + √ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) q[t]] = 𝑔 [ 𝜇(𝑉) − 𝜇̇( 𝑉)√ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) q̇[t] − 1 3! 𝜇⃛(𝑉) (√ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) q̇[t]) 3 ] ∴ √ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) q̈[t] + 𝑔𝜇(𝑉) + √ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) q[t]𝜔2 = 𝑔𝜇(𝑉) − 𝑔𝜇̇( 𝑉)√ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) q̇[t] − 1 3! 𝜇⃛(𝑉) [ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) √ −2𝜇̇( 𝑉) 𝜇⃛(𝑉) 𝑞3̇ [t]] ∴ √ −2𝜇̇ ( 𝑉) 𝜇⃛( 𝑉) [q̈ [t]+𝜔2 q[t]] = √ −2𝜇̇ ( 𝑉) 𝜇⃛( 𝑉) [−𝑔𝜇̇ ( 𝑉)q̇ [t] − 1 3! [2𝜇̇ (𝑉)] 𝑞3̇ [t]] ∴ 𝑞̈(𝑡) + 𝜔2 𝑞(𝑡) − 𝜖𝑞̇(𝑡) − 1 3! 𝜀 𝑞3̇ [t] = 0 ∴ 𝑞̈(𝑡) − 𝜖 [1 − 1 3 𝑞2̇ [t]] 𝑞̇(𝑡) + 𝜔2 𝑞(𝑡) = 0
  • 6. 3) Develop Mathematica code to solve equation (B) numerically under different values of the parameter ε from the interval (0,5) and different initial conditions. Plot out the corresponding time histories and phase plane diagrams illustrating transitions to limit cycles. A[t] -> The amplitude of Solution of Non-Linear Harmonic Second Order Differential Equation Here ω = 1 in all cases. and ε = 0.1, 0.5, 0.086
  • 7. 4) Obtain approximate analytical solution of equation (B) by using the van der Pol’s first- order averaging procedure. Now we have obtained the following equation from problem 2 as the standard form of Rayleigh’s Equation. Hence, 𝑞̈ − 𝜖 [1 − 1 3 𝑞2̇ ] 𝑞̇ + 𝜔2 𝑞 = 0 𝑞̈ + 𝜔2 𝑞 = 𝜖 [1 − 1 3 𝑞2̇ ] 𝑞̇ 𝑞̈ + 𝜔2 𝑞 = 𝜖 [ 𝑞̇ − 1 3 𝑞3̇ ] Now, Using the Van Der Pol’s First Order Averaging { 𝑞 = 𝐴(𝑡)𝐶𝑜𝑠𝜑 𝑉 = −𝐴(𝑡)𝜔𝑆𝑖𝑛𝜑 { 𝑞̇ = 𝑉 𝑉̇ = −𝜔2 𝑞 + 𝜀𝑓(𝑞, 𝑞̇) As Equation 1 is in the form 𝑞̈ + 𝜔2 𝑞 = 𝜖𝑓(𝑞, 𝑞̇) , Hence we can write 𝐴̇ = − 𝜀 𝜔 〈𝑓(𝑞, 𝑞̇) 𝑆𝑖𝑛𝜑〉 𝐴̇ = − 𝜀 𝜔 〈(𝑞̇ − 1 3 𝑞3̇ ) 𝑆𝑖𝑛𝜑〉 Substituting value of 𝑞̇ in the above equation, 𝐴̇ = − 𝜀 𝜔 〈(−𝐴𝜔𝑆𝑖𝑛𝜑 − 1 3 (−𝐴)3 𝜔3 𝑆𝑖𝑛3 𝜑) 𝑆𝑖𝑛𝜑〉 𝐴̇ = − 𝜀 𝜔 〈(−𝐴𝜔𝑆𝑖𝑛2 𝜑 + 1 3 𝐴3 𝜔3 𝑆𝑖𝑛4 𝜑) 〉 As per the given condition 𝜔 = 1 for all case 𝐴̇ = −𝜀 [〈−𝐴𝑆𝑖𝑛2 𝜑〉 + 〈 1 3 𝐴3 𝑆𝑖𝑛4 𝜑〉] 𝐴̇ = −𝜀 [− 𝐴 2 + 𝐴3 8 ]
  • 8. 𝑁𝑜𝑡𝑒: 𝑆𝑖𝑛2 𝜑 = 1 2 𝑎𝑛𝑑 𝑆𝑖𝑛4 𝜑 = 3 8 𝐴̇ = −𝜀 [ 𝐴3 8 − 𝐴 2 ] Now Let’s assume 𝐴 2 = 𝑀 , ∴ 𝑑𝐴 = 2𝑑𝑀 𝑎𝑛𝑑 𝐴3 8 = 𝑀3 ; Now, Substituting the value in () we get, 2𝑑𝑀 𝑑𝑡 = −𝜀[𝑀3 − 𝑀] 𝑑𝑀 𝑑𝑡 = − 𝜀 2 [𝑀(𝑀2 − 1)] 𝑑𝑀 𝑀(𝑀 + 1)(𝑀 − 1) = − 𝜀 2 𝑑𝑡 Now Let, 1 𝑀(𝑀 + 1)(𝑀 − 1) = 𝐴 𝑀 + 𝐵 (𝑀 + 1) + 𝐶 (𝑀 − 1) ∴ 𝐴(𝑀2 − 1) + 𝐵𝑀(𝑀 + 1) + 𝐶𝑀(𝑀 − 1) = 1 Now, when M=0 A= (-1) M=1 C= ( 1 2 ) M= (-1) B= ( 1 2 ) Now, Substituting the value of A, B, C in equation we get, −𝑑𝑀 𝑀 + 1 2 𝑑𝑀 (𝑀 + 1) + 1 2 𝑑𝑀 (𝑀 − 1) = − 𝜀 2 𝑑𝑡
  • 9. Now Integrating w.r.t Time we get, ∫ −𝑑𝑀 𝑀 + 1 2 ∫ 𝑑𝑀 (𝑀 + 1) + 1 2 ∫ 𝑑𝑀 (𝑀 − 1) = − 𝜀 2 𝑑𝑡 − ln 𝑀 + 1 2 ln(𝑀 + 1) + 1 2 ln(𝑀 − 1) = − 𝜀 2 𝑡 + 𝐶 ln 𝑀−1 + ln(𝑀 + 1) 1 2 + ln(𝑀 − 1) 1 2 = − 𝜀 2 𝑡 + 𝐶 ln ( √(𝑀 + 1)(𝑀 − 1) 𝑀 ) = − 𝜀 2 𝑡 + 𝐶 log √(𝑀2 − 1) 𝑀 = − 𝜀 2 𝑡 + 𝐶 √ 𝑀2 − 1 𝑀2 = 𝑒 (− 𝜀 2 𝑡+𝐶) 1 − 1 𝑀2 = [𝑒 (− 𝜀 2 𝑡+𝐶) ] 2 Now, substituting the value of M, we get 1 − 4 𝐴2 = [𝑒 (− 𝜀 2 𝑡+𝐶) ] 2 1 − 𝑒− 2𝜀 2 𝑡+2𝐶 = 4 𝐴2 𝐴 = √ 4 1 − 𝑒−𝜀𝑡+2𝐶 Now, At, (t)=0 ; A=A0 𝐴0 2 = 4 1 − 𝑒−𝜀(0)+2𝐶 1 − 𝑒2𝐶 = 4 𝐴0 2 𝑒2𝐶 = 1 − 4 𝐴0 2
  • 10. Now taking log on both side we get, 2𝐶 = ln (1 − 4 𝐴0 2) 𝐶 = 1 2 ln (1 − 4 𝐴0 2) 𝐶 = ln √(1 − 4 𝐴0 2) Now substituting the value of ‘C’ in equation () we get, 𝐴 = √ 4 1 − 𝑒−𝜀𝑡 𝑒2𝐶 𝐴 = √ 4 1 − 𝑒−𝜀𝑡 𝑒 2 ln √(1− 4 𝐴0 2) 𝐴 = √ 4 1 − 𝑒−𝜀𝑡 𝑒 ln(1− 4 𝐴0 2) 𝐴 = √ 4 1 − 𝑒−𝜀𝑡 + 𝑒−𝜀𝑡 ( 4 𝐴0 2) 𝐴 = √ 4 1 − 1 𝑒 𝜀𝑡 + 4 𝑒 𝜀𝑡 𝐴0 2 Now multiplying Numerator and Denominator with 𝑒 𝜀𝑡 we get, 𝐴 = √ 4𝑒 𝜀𝑡 𝑒 𝜀𝑡 − 1 + 4 𝐴0 2 𝐴 = 2𝑒 𝜀𝑡 2 √ 4 𝐴0 2 + (−1 + 𝑒 𝜀𝑡)
  • 11. Now for the phase angle ‘𝜑’ 𝜑̇ = 𝜔 − 𝜀 𝐴𝜔 〈𝑓(𝑞, 𝑞̇) 𝐶𝑜𝑠𝜑〉 𝜑̇ = 𝜔 − 𝜀 𝐴𝜔 〈−𝐴𝜔𝑆𝑖𝑛𝜑𝐶𝑜𝑠𝜑 + 1 3 𝐴3 𝜔3 𝑆𝑖𝑛3 𝜑 𝐶𝑜𝑠𝜑〉 𝑁𝑜𝑡𝑒: (𝑆𝑖𝑛𝜑 𝐶𝑜𝑠𝜑) = 0 𝑎𝑛𝑑 (𝑆𝑖𝑛3 𝜑 𝐶𝑜𝑠𝜑) = 0 𝜑̇ = 𝜔 − 𝜀 𝐴𝜔 〈−𝐴𝜔(0) + 1 3 𝐴3 𝜔3 (0)〉 𝜑̇ = 𝜔 As 𝜔 = 1 ∴ 𝜑̇ = 1 Now integrating on both side, we get, 𝜑 = 𝑡 + 𝐶 Now at (t)=0; 𝜑 = 𝜑0 ∴ 𝐶 = 𝜑0 𝜑 = 𝑡 + 𝜑0 Now, 𝑞(𝑡) = 𝐴(𝑡)𝐶𝑜𝑠𝜑 𝑞(𝑡) = 2𝑒 𝜀𝑡 2 √ 4 𝐴0 2 + (−1 + 𝑒 𝜀𝑡) 𝐶𝑜𝑠(𝑡 + 𝜑0) Hence the Solution of Rayleigh’s Eqn when using the Vanderpol’s method yields the equation for the mathematics code This gives us the solution graph for different case using different value of ε to compare the numerical and analytical solution.
  • 12. 5) Following six cases are considered for the numerical and analytical comparison. Case 1: A0= 0.1 and ε=0.1
  • 13. Case 2: A0= 0.1 and ε=0.5
  • 14. Case 3: A0= 0.1 and ε=0.086
  • 15. Case 4: A0= 3 and ε=0.1
  • 16. Case 5: A0= 3 and ε=0.5
  • 17. Case 6: A0= 3 and ε=0.086
  • 18. CONCLUSION From the comparison of the graphs we can observe that the plot of analytical will follow the plot of numerical solution when the value of ‘ε’ is very small. When we keep the value of A0 and 𝜃 as constant and increase the value of ε we can observe that the analytical solution becomes inaccurate which leads to the mismatch (offset) of analytical and numerical solution. From the comparison of phase of case 3 with case 6 we can observe that, when the value of A0 is increased from 0.1 to 3 the curve diverges from steady solution to unsteady solution. From the comparison of case 1, 2 and 3 we can observe that the time required for the q[t] to reach a constant amplitude depends upon the value of ε. As we increase the value of ε, the time required to attain the constant amplitude is lowered and when the value of ε is decreased the time required to attain the constant amplitude is increased.