SlideShare uma empresa Scribd logo
1 de 49
Baixar para ler offline
Pattern  formation  in  Crowd  dynamics  
Kohta  SUZUNO
MIMS,  Meiji  Univ.
1
2	
Contents
(1)	
  Introduc-on	
  to	
  crowd	
  dynamics	
  
(2)	
  Pa6ern	
  forma-on	
  in	
  crowd	
  dynamics	
  
(3)	
  Mathema-cal	
  modeling	
  of	
  crowd	
  dynamics	
  
Observa-on	
Par-cle	
  
simula-on	
Dynamical	
  	
  
system
3	
What  is  crowd  dynamics?
(C)NHK	
 (C)NHK
4	
  
Examples  of  crowd  dynamics
-­‐	
  Queuing	
  	
  
-­‐	
  One-­‐way	
  flow	
  
-­‐	
  Crossing	
  
-­‐	
  Counter	
  flow	
-­‐	
  Conges-on	
  
-­‐	
  Turbulent	
  
Crowd	
  =	
  Self-­‐driven	
  par-cles	
  
with	
  physical	
  and	
  social	
  interac-on
5	
The  importance  (1)
Crowd	
  flow	
  shows	
  collec-ve	
  pa6erns	
  
-­‐	
  Turbulent	
  pa6ern	
  
	
  
-­‐	
  Lane	
  forma-on	
  
	
  
-­‐	
  Freezing	
  transi-on	
  
-­‐	
  Dissipa-ve	
  structures	
  
-­‐	
  Universality	
  
-­‐	
  Fluid-­‐Par-cle	
  correspondence	
  
6	
The  importance  (2)
Crowd	
  dynamics	
  contributes	
  to	
  social	
  safety	
  
(dys)func-on	
  of	
  collec-ve	
  mo-on	
  	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  control	
  
	
  
-­‐	
  avoid	
  crowd	
  disasters	
  
-­‐	
  flow	
  op-miza-on	
  
-­‐	
  efficient	
  transporta-on	
  
7	
The  importance  (3)
-­‐	
  Crowd	
  mo-on	
  has	
  par-cle-­‐scale	
  instability.	
  
-­‐	
  Crowd	
  system	
  refuse	
  the	
  con-nuous	
  approxima-on.	
  
-­‐	
  Need	
  an	
  alterna-ve	
  descrip-on!	
  
	
  How	
  should	
  we	
  describe	
  and	
  understand	
  	
  
	
  	
  the	
  discrete	
  flow?	
  
	
  Fluid?	
  
	
  
Par-cle?	
  
8	
Application  (1)
cf.	
  Lexus	
  Interna-onal,	
  "Amazing	
  in	
  Mo-on	
  -­‐	
  SWARM"	
  (2013)	
  and	
  others.
9	
Application  (2)
cf.	
  worldwarzmovie.com	
  (2013).	
zombi	
wall
10	
Methods  of  crowd  dynamics  (1)
(1)	
  Real	
  crowds	
  
Observa-on	
   Experiments	
  
11	
Methods  of  crowd  dynamics  (2)
(2)	
  Biological	
  en--es	
  
[Soria	
  et	
  al.,	
  Safety	
  Science	
  50,	
  
1584	
  (2012)]	
  
[安倍北夫,	
  パニックの心理(1974)]	
  [Zuriguel	
  et	
  al.,	
  Scien-fic	
  Reports	
  4,	
  
Ar-cle	
  no.7324	
  (2014)]	
  
obst-­‐
acle	
sheep	
sheep	
sheep	
sheep	
sheep	
sheep	
sheep	
s-mula-on	
ant
(3)	
  Simula-ons	
  
	
  
	
  (i)	
  Rule-­‐based	
  
	
   	
  Baer,	
  report	
  -­‐	
  Carnegie-­‐Mellon	
  Univ.	
  (1974)	
	
   	
  Kirchner	
  et	
  al.,	
  PRE	
  67,	
  056122	
  (2003)]	
	
  
	
  (ii)	
  Physics-­‐based	
  
	
   	
  中村他, 人間工学10 (3), 93 (1974)	
	
   	
  Alonso-­‐Marroquin	
  et	
  al.,	
  arxiv.org	
  (2013)	
	
  
12	
Methods  of  crowd  dynamics  (3)
13	
Mathematical  description
Stochas-c	
  models	
  
Fluid	
  models	
  
Self-­‐driven	
  par-cles	
  
Phenomenological	
  
ODEs	
  
14	
simple	
 real	
macro	
micro	
CA	
 Mul-	
  
agent	
Fluid	
  
mode	
Par-cle	
  
simula-on	
Neteork	
  
model	
Dynamical	
  
system	
  model
15	
Lane  formation
16	
Lane  formation:  formulation
The	
  social	
  force	
  model	
  (Helbing2000)	
  
periodic	
the	
  self-­‐driven	
  force	
N=50	
m=80	
  kg,	
  tau=0.5	
  s,	
  
v0=1	
  m/s,	
  ri=0.3	
  m,	
  
A=2000	
  N,	
  B=0.08	
  m,	
  	
15	
  m	
5	
  m	
the	
  two-­‐body	
  interac-on	
The	
  B.	
  C.
17	
Lane  formation:  observation
18	
Lane  formation:  observation
19	
Lane  formation:  properties
	
  (1)	
  A	
  popular	
  collec-ve	
  phenomenon	
  
	
   	
   	
  -­‐	
  possibility	
  (1974)	
  
	
   	
   	
  -­‐	
  observa-on	
  and	
  simula-on	
  	
  (1992)	
  
	
  (2)	
  Counter	
  driving	
  force	
  +	
  Social	
  repulsive	
  force	
  
	
  (3)	
  "par-cle-­‐resolved	
  instability"	
  
	
  (4)	
  Universality	
  
	
  	
  
20	
Lane  formation:  similar  phenomena
Granular	
  	
  
stra-fica-on	
  
[新屋他,	
  JSSI	
  &	
  JSSE	
  Joint	
  
Conference	
  (2012)]	
  
[Dzubiella	
  et	
  al.,	
  PRE	
  65,	
  	
  
021402	
  (2002)]	
  
colloid	
  
[Makse	
  et	
  al.,	
  Nature	
  386,	
  27	
  (1997)]	
  
Granular	
  Rayreigh-­‐	
  
Taylor	
  instability	
  
Electric	
  field	
  
sand	
  
sand	
  
g	
  
g	
  
21	
Freezing-‐‑‒by-‐‑‒heating
small	
  noise	
large	
  noise	
noise-­‐induced	
  crystalliza-on	
  [Helbing(2000)]	
  	
no	
  noise
22	
Freezing-‐‑‒by-‐‑‒heating:  formulation
The	
  social	
  force	
  model	
  
periodic	
driving	
  force	
 noise	
The	
  B.	
  C.	
N=20	
m=80	
  kg,	
  	
  tau=	
  0.5	
  s,	
  	
  
v0=1	
  m/s,	
  ri	
  =	
  0.3	
  m,	
  	
  
A=2000	
  N,	
  B=0.08	
  m	
15	
  m	
2	
  m	
interac-on
23	
Freezing-‐‑‒by-‐‑‒heating:  results
Noise	
  induces	
  the	
  freezing	
  !?	
noise	
  intensity	
  
transi-on	
  probability	
  
*data	
  from	
  20	
  realiza-ons
24	
Freezing-‐‑‒by-‐‑‒heating:  time  series
almost	
  lanes	
The	
  -me	
  series	
  of	
  the	
  total	
  energy	
perfect	
  lanes	
  
-me	
  (s)	
  
total	
  kine-c	
  E	
  (J)	
  
25	
Freezing-‐‑‒by-‐‑‒heating:  scenario
kine-c	
  energy	
noise	
  intensity	
freezing	
laning	
small	
  noise	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  bistable	
  
intermediate	
  noise	
  -­‐-­‐-­‐	
  laning	
  is	
  prohibited	
  
large	
  noise	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  all	
  possible	
  states	
  break	
  up	
  
26	
Freezing-‐‑‒by-‐‑‒heating:  properties
(1)	
  Noise-­‐induced	
  order	
  
	
  Increasing	
  energy	
  leads	
  solid	
  state	
  	
  (not	
  gaseous!)	
  	
  
	
  
	
  
	
  
(2)	
  A	
  novel	
  type	
  of	
  phase	
  transi-on?	
  
	
  
(3)	
  Model?	
liquid	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  solid	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  gas
27	
Oscillatory  flow
the	
  periodic	
  change	
  of	
  the	
  flow	
  direc-on	
  
28	
Oscillatory  flow:  history
-­‐	
  numerically	
  found	
  
	
  Helbing	
  et	
  al.,	
  PRE	
  51,	
  4282	
  (1995)	
	
  
-­‐	
  experimentally	
  confirmed	
  
	
  Helbing	
  et	
  al.,	
  Transporta-on	
  sci.	
  39	
  1	
  (2005)	
  
	
  
-­‐	
  empirically	
  plausible 	
  
29	
Oscillatory  flow
-­‐	
  Numerically	
  iden-fied	
  as	
  	
  
	
  	
  	
  the	
  Hopf	
  bifurca-on	
  (Corradi2012)	
  
	
  
-­‐	
  The	
  physical	
  	
  mechanism	
  is	
  	
  	
  
	
  	
  	
  	
  s-ll	
  unknown	
  
	
  
-­‐	
  A	
  similar	
  phenomenon:	
  
	
  	
  	
  saltwater	
  oscillator	
  (Yoshikawa1991)	
  
bo6leneck	
  width	
center	
  of	
  mass	
water	
saltwater
30	
Simulation:  setup
Model:	
  the	
  SFM	
  
B.C.	
  :	
  a	
  periodic	
  channel	
  
45 m	
5 m	
w	
4 m	
Parameters:	
   N=150,
m=80	
  kg,	
   𝜏=0.5	
  s,	
  v0=1.0m/s	
  
A=573	
  N,	
  B=0.08	
  m	
  
31	
Simulation:  results
The	
  -me	
  evolu-on	
  of	
  	
  
the	
  momentum	
  density	
  
	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
The	
  Fourier	
  amplitude	
  
	
  v.s.	
  bo6leneck	
  width	
  
-me[s]	
  
	
  	
  	
  	
  	
  momentum	
  
bo6leneck	
  width	
  [m]	
  
	
  	
  amplitude	
  
32	
Oscillatory  flow:  open  questions
-­‐	
  A	
  type	
  of	
  nonlinear	
  self-­‐excitable	
  oscillator?	
  
	
  
-­‐	
  Mathema-cal	
  model?	
  
	
  
-­‐	
  The	
  rela-on	
  to	
  the	
  fluid	
  oscillator?	
  
	
  
-­‐	
  Synchroniza-on?	
  
33	
The  faster-‐‑‒is-‐‑‒slower  effect
Faster	
  mo-on	
  results	
  in	
  slower	
  evacua-on	
  
[Helbing(2000)}	
  
driving	
  force	
  (m/s)	
evacua-on	
  -me	
  (s)
34	
  
the	
  microscopic	
  many-­‐par-cle	
  model	
  	
  
(the	
  social	
  force	
  model,	
  SFM)	
  
self-­‐driven	
  force	
repulsive	
  force	
elas-c	
  force	
fric-on	
wall	
exit	
The  faster-‐‑‒is-‐‑‒slower  effect:  detail
m
dvi (t)
dt
= fself + fij
j≠i
∑
35	
  
The  faster-‐‑‒is-‐‑‒slower  effect:  detail
mechanism?	
  
	
  
modeling!	
  
driving force	
driving force	
 driving force	
Suzuno	
  et	
  al.,	
  Phys.	
  Rev.	
  E	
  88,	
  052813	
  (2013).
36	
  
We	
  just	
  consider	
  the	
  par-cle	
  near	
  the	
  exit	
  
and	
  its	
  equa-on	
  of	
  mo-on.	
  
N
Analy-c	
  expression	
  	
  
of	
  the	
  flow	
  velocity	
  
The  outline  of  the  modeling
37	
  
-­‐	
  the	
  eq.	
  of	
  mo-on	
  
h
v0
kg(l)+Ae
κg(l)vr
-­‐	
  balance	
  of	
  force	
  
x	
g(x)	
We	
  focus	
  on	
  the	
  arch	
  forma-on	
  
of	
  the	
  par-cles.	
  
l
v0
Note:	
  dimensionless.	
  
a	
  means	
  the	
  collision	
  effect.	
  	
  
[ ]
The  model
Suzuno	
  et	
  al.,	
  Phys.	
  Rev.	
  E	
  88,	
  052813	
  (2013).
38	
  
(1)	
  The	
  discharge	
  property	
  is	
  determined	
  	
  
	
  	
  	
  	
  	
  	
  by	
  the	
  par-cles	
  in	
  the	
  vicinity	
  of	
  the	
  exit.	
  
	
  
(2)	
  The	
  flow	
  has	
  radial	
  symmetry.	
  
	
  
(3)	
  N	
  is	
  fixed.	
  
	
  
(4)	
  The	
  flow	
  rate	
  is	
  propor-onal	
  	
  
	
  	
  	
  	
  	
  	
  to	
  the	
  velocity	
  of	
  the	
  model	
  par-cle.	
  
	
  
(5)	
  The	
  parameters	
  sa-sfy	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  	
  	
  	
  	
  	
  (This	
  means	
  that	
  fric-on	
  is	
  appropriately	
  large.)	
  
N
The  model  assumptions
39	
  
Model	
  
Sta-onary	
  situa-on	
  
l
the	
  analy-cal	
  expression	
  of	
  the	
  velocity!	
  
[ ]
The  model  analysis
40	
  
Our	
  model	
  reproduces	
  the	
  simula-on	
  results.	
  
our	
  model	
   simula-on	
  
The  model  results
"faster"	
  is	
  "slower"	
Suzuno	
  et	
  al.,	
  Phys.	
  Rev.	
  E	
  88,	
  052813	
  (2013).
41	
  
1+g(v0) (contact	
  fric-on)	
  
v0	
  	
  	
  	
  	
  	
  (driving	
  force)	
  
coupling	
  const.	
  of	
  the	
  social	
  force	
linear	
  elas-city	
faster-­‐is-­‐slower	
ouulow	
   ~	
  
The	
  solu-on	
  has	
  the	
  form	
  
The  mechanism  of  the  phenomenon
Suzuno	
  et	
  al.,	
  Phys.	
  Rev.	
  E	
  88,	
  052813	
  (2013).
42	
  
If	
  our	
  model	
  is	
  correct,	
  the	
  original	
  system	
  shows:	
  
	
  
(a)	
  If	
  fric-on	
  is	
  linear,	
  then	
  no	
  "faster-­‐".	
  
(b)	
  If	
  no	
  fric-on,	
  then	
  no	
  "faster-­‐".	
  
Validation
linear	
  fric-on	
  	
  
no	
  fric-on	
  
correct	
  predic-ons!	
  
Suzuno	
  et	
  al.,	
  Phys.	
  Rev.	
  E	
  88,	
  052813	
  (2013).
43	
  
(1)	
  	
  We	
  proposed	
  a	
  simplified	
  model	
  for	
  	
  
	
  	
  	
  	
  	
   	
  the	
  "faster-­‐is-­‐slower"	
  effect.	
  
	
  
(2)	
  We	
  clarify	
  that	
  the	
  "faster-­‐"	
  comes	
  from	
  	
  
	
  the	
  compe--on	
  between	
  driving	
  force	
  	
  
	
  and	
  nonlinear	
  fric-on.	
  	
  
	
  
(3)	
  This	
  work	
  gives	
  an	
  example	
  of	
  	
  
	
  	
  	
  	
  	
  	
  the	
  study	
  of	
  collec-ve	
  discrete	
  flow	
  	
  
	
  	
  	
  	
  	
  	
  via	
  mathema-cal	
  modeling.	
  
Summary  of  "faster-‐‑‒is-‐‑‒slower"
44	
Summary  of  the  talk
Crowd	
  dynamics	
  offers:	
  	
  
	
  
	
  (i)	
  examples	
  of	
  spontaneous	
  pa6ern	
  forma-on	
  
	
  
	
  (ii)	
  insights	
  into	
  the	
  efficient	
  transporta-on	
  
	
  
	
  (iii)	
  mathema-cal	
  issues:	
  how	
  to	
  describe	
  	
  
	
   	
  the	
  mesoscale,	
  transient	
  and	
  discrete	
  flow?	
  
45	
Critical  discussion  (1)
cri-cism	
  1. 	
  	
  
	
  How	
  do	
  you	
  believe	
  you	
  can	
  describe	
  mathema-cally	
  
	
  the	
  crowd	
  mo-on,	
  which	
  is	
  related	
  to	
  the	
  free	
  will?	
  
	
  
cri-cism	
  2.	
  
	
  You	
  can	
  reproduce	
  any	
  results	
  from	
  simula-ons.	
  
	
  
cri-cism	
  3.	
  
	
  Is	
  crowd	
  mo-on	
  the	
  result	
  of	
  self-­‐organiza-on	
  truly?	
  
46	
Critical  discussion  (2)
Mathema-cal	
  (physical)	
  studies	
  of	
  crowd	
  dynamics	
  	
  
only	
  hold	
  for:	
  
	
  
	
  (i)	
  panic	
  situa-ons,	
  	
  
	
  (ii)	
  each	
  person	
  have	
  their	
  definite	
  des-na-ons	
  	
  
	
   	
  but	
  the	
  ways	
  to	
  reach	
  there	
  are	
  less	
  conscious,	
  	
  	
  
	
  (iii)	
  the	
  size	
  of	
  crowds	
  is	
  large,	
  
	
  
that	
  is,	
  the	
  absence	
  of	
  sophis-cated	
  intelligent	
  ac-on.	
  	
  
Many	
  types	
  of	
  model	
  is	
  available:	
  
	
  	
  
	
  
	
  
	
  
To	
  avoid	
  the	
  arbitrariness	
  of	
  results,	
  	
  	
  
we	
  should	
  take	
  the	
  following	
  steps:	
   	
  	
  
	
  (i)	
  assume	
  physically-­‐acceptable	
  mechanisms,	
  
	
  (ii)	
  reproduce	
  the	
  phenomenon	
  by	
  minimal	
  models,	
  and	
  
	
  (iii)	
  iden-fy	
  the	
  necessary	
  condi-on.	
  
47	
Critical  discussion  (3)
circle	
  	
  	
  ellip-c	
  	
  non-­‐spherical	
  	
  	
  
rather	
  social	
  
48	
Critical  discussion  (4)
The	
  concept	
  of	
  self-­‐organiza-on	
  is	
  	
  
NOT	
  omnipotent	
  
rather	
  physical	
  
-­‐	
  Crowd	
  mo-on	
  includes	
  social	
  factors.	
  
-­‐	
  We	
  have	
  to	
  no-ce	
  that	
  all	
  crowd	
  mo-on	
  	
  
	
  	
  should	
  not	
  be	
  reduced	
  to	
  Mathema-cal	
  models.	
  	
  	
  
 	
  	
  	
  END	
Thank	
  you	
  	
  
for	
  your	
  a6en-on	
49

Mais conteúdo relacionado

Mais procurados

Accelerating Dynamic Time Warping Subsequence Search with GPU
Accelerating Dynamic Time Warping Subsequence Search with GPUAccelerating Dynamic Time Warping Subsequence Search with GPU
Accelerating Dynamic Time Warping Subsequence Search with GPU
Davide Nardone
 

Mais procurados (15)

Rates of change_updated
Rates of change_updatedRates of change_updated
Rates of change_updated
 
Accelerating Dynamic Time Warping Subsequence Search with GPU
Accelerating Dynamic Time Warping Subsequence Search with GPUAccelerating Dynamic Time Warping Subsequence Search with GPU
Accelerating Dynamic Time Warping Subsequence Search with GPU
 
Blind separation of complex-valued satellite-AIS data for marine surveillance...
Blind separation of complex-valued satellite-AIS data for marine surveillance...Blind separation of complex-valued satellite-AIS data for marine surveillance...
Blind separation of complex-valued satellite-AIS data for marine surveillance...
 
Multiscale methods for graphene based nanocomposites
Multiscale methods for graphene based nanocompositesMultiscale methods for graphene based nanocomposites
Multiscale methods for graphene based nanocomposites
 
Eh4 energy harvesting due to random excitations and optimal design
Eh4   energy harvesting due to random excitations and optimal designEh4   energy harvesting due to random excitations and optimal design
Eh4 energy harvesting due to random excitations and optimal design
 
FUNDAMENTALS of Fluid Mechanics (chapter 01)
FUNDAMENTALS of Fluid Mechanics (chapter 01)FUNDAMENTALS of Fluid Mechanics (chapter 01)
FUNDAMENTALS of Fluid Mechanics (chapter 01)
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
 
Voronoy Story
Voronoy StoryVoronoy Story
Voronoy Story
 
Ground Excited Systems
Ground Excited SystemsGround Excited Systems
Ground Excited Systems
 
Optimal Transport for a Computer Programmer's Point of View
Optimal Transport for a Computer Programmer's Point of ViewOptimal Transport for a Computer Programmer's Point of View
Optimal Transport for a Computer Programmer's Point of View
 
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
 
Automated seismic-to-well ties?
Automated seismic-to-well ties?Automated seismic-to-well ties?
Automated seismic-to-well ties?
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 

Destaque (11)

Hideitsu Hino
Hideitsu HinoHideitsu Hino
Hideitsu Hino
 
Tetsunao Matsuta
Tetsunao MatsutaTetsunao Matsuta
Tetsunao Matsuta
 
Shunsuke Horii
Shunsuke HoriiShunsuke Horii
Shunsuke Horii
 
Akitoshi Takayasu
Akitoshi TakayasuAkitoshi Takayasu
Akitoshi Takayasu
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
 
Naoya Tsuruta
Naoya TsurutaNaoya Tsuruta
Naoya Tsuruta
 
Tatsuya Yatagawa
Tatsuya YatagawaTatsuya Yatagawa
Tatsuya Yatagawa
 
Suurist Test Slide
Suurist Test SlideSuurist Test Slide
Suurist Test Slide
 
Tatsuhiro Kishi
Tatsuhiro KishiTatsuhiro Kishi
Tatsuhiro Kishi
 
Akiyasu Tomoeda
Akiyasu TomoedaAkiyasu Tomoeda
Akiyasu Tomoeda
 
SlideShare 101
SlideShare 101SlideShare 101
SlideShare 101
 

Semelhante a Kohta Suzuno

To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...
Kirtan Gohel
 
Compit 2013 - Torsional Vibrations under Ice Impact
Compit 2013 - Torsional Vibrations under Ice ImpactCompit 2013 - Torsional Vibrations under Ice Impact
Compit 2013 - Torsional Vibrations under Ice Impact
SimulationX
 
Supersonic_Ramji_Amit_10241445
Supersonic_Ramji_Amit_10241445Supersonic_Ramji_Amit_10241445
Supersonic_Ramji_Amit_10241445
Amit Ramji ✈
 
Dynamics and global stability of three-dimensional flows
Dynamics and global stability of three-dimensional flowsDynamics and global stability of three-dimensional flows
Dynamics and global stability of three-dimensional flows
Jean-Christophe Loiseau
 

Semelhante a Kohta Suzuno (20)

seminar_final
seminar_finalseminar_final
seminar_final
 
To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...
 
Flood routing by kinematic wave model
Flood routing by kinematic wave modelFlood routing by kinematic wave model
Flood routing by kinematic wave model
 
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
 
bioexpo_poster
bioexpo_posterbioexpo_poster
bioexpo_poster
 
Poster presentation
Poster presentationPoster presentation
Poster presentation
 
First and second order semi-Markov chains for wind speed modeling
First and second order semi-Markov chains for wind speed modelingFirst and second order semi-Markov chains for wind speed modeling
First and second order semi-Markov chains for wind speed modeling
 
Compit 2013 - Torsional Vibrations under Ice Impact
Compit 2013 - Torsional Vibrations under Ice ImpactCompit 2013 - Torsional Vibrations under Ice Impact
Compit 2013 - Torsional Vibrations under Ice Impact
 
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
 
mox66
mox66mox66
mox66
 
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavitLattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
 
P367
P367P367
P367
 
Supersonic_Ramji_Amit_10241445
Supersonic_Ramji_Amit_10241445Supersonic_Ramji_Amit_10241445
Supersonic_Ramji_Amit_10241445
 
Physics Sample Paper Class 11 - Studymate
Physics Sample Paper Class 11 - StudymatePhysics Sample Paper Class 11 - Studymate
Physics Sample Paper Class 11 - Studymate
 
Ijmet 06 10_001
Ijmet 06 10_001Ijmet 06 10_001
Ijmet 06 10_001
 
Transition for regular to mach reflection hysteresis
Transition for regular to mach reflection hysteresisTransition for regular to mach reflection hysteresis
Transition for regular to mach reflection hysteresis
 
Lid driven cavity flow simulation using CFD & MATLAB
Lid driven cavity flow simulation using CFD & MATLABLid driven cavity flow simulation using CFD & MATLAB
Lid driven cavity flow simulation using CFD & MATLAB
 
Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling
 
Dynamics and global stability of three-dimensional flows
Dynamics and global stability of three-dimensional flowsDynamics and global stability of three-dimensional flows
Dynamics and global stability of three-dimensional flows
 
Literature survey modeling of microfluidics devices
Literature survey modeling of microfluidics devicesLiterature survey modeling of microfluidics devices
Literature survey modeling of microfluidics devices
 

Mais de Suurist (7)

Hiroki Shigemune
Hiroki  ShigemuneHiroki  Shigemune
Hiroki Shigemune
 
Hiroaki Shiokawa
Hiroaki ShiokawaHiroaki Shiokawa
Hiroaki Shiokawa
 
Hidetomo Nagai
Hidetomo NagaiHidetomo Nagai
Hidetomo Nagai
 
Kensuke Aihara
Kensuke AiharaKensuke Aihara
Kensuke Aihara
 
Yasunori Futamura
Yasunori FutamuraYasunori Futamura
Yasunori Futamura
 
Takuya Tsuchiya
Takuya TsuchiyaTakuya Tsuchiya
Takuya Tsuchiya
 
Akira Imakura
Akira ImakuraAkira Imakura
Akira Imakura
 

Último

dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 

Último (20)

Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 

Kohta Suzuno

  • 1. Pattern  formation  in  Crowd  dynamics   Kohta  SUZUNO MIMS,  Meiji  Univ. 1
  • 2. 2 Contents (1)  Introduc-on  to  crowd  dynamics   (2)  Pa6ern  forma-on  in  crowd  dynamics   (3)  Mathema-cal  modeling  of  crowd  dynamics   Observa-on Par-cle   simula-on Dynamical     system
  • 3. 3 What  is  crowd  dynamics? (C)NHK (C)NHK
  • 4. 4   Examples  of  crowd  dynamics -­‐  Queuing     -­‐  One-­‐way  flow   -­‐  Crossing   -­‐  Counter  flow -­‐  Conges-on   -­‐  Turbulent   Crowd  =  Self-­‐driven  par-cles   with  physical  and  social  interac-on
  • 5. 5 The  importance  (1) Crowd  flow  shows  collec-ve  pa6erns   -­‐  Turbulent  pa6ern     -­‐  Lane  forma-on     -­‐  Freezing  transi-on   -­‐  Dissipa-ve  structures   -­‐  Universality   -­‐  Fluid-­‐Par-cle  correspondence  
  • 6. 6 The  importance  (2) Crowd  dynamics  contributes  to  social  safety   (dys)func-on  of  collec-ve  mo-on                                  control     -­‐  avoid  crowd  disasters   -­‐  flow  op-miza-on   -­‐  efficient  transporta-on  
  • 7. 7 The  importance  (3) -­‐  Crowd  mo-on  has  par-cle-­‐scale  instability.   -­‐  Crowd  system  refuse  the  con-nuous  approxima-on.   -­‐  Need  an  alterna-ve  descrip-on!    How  should  we  describe  and  understand        the  discrete  flow?    Fluid?     Par-cle?  
  • 8. 8 Application  (1) cf.  Lexus  Interna-onal,  "Amazing  in  Mo-on  -­‐  SWARM"  (2013)  and  others.
  • 10. 10 Methods  of  crowd  dynamics  (1) (1)  Real  crowds   Observa-on   Experiments  
  • 11. 11 Methods  of  crowd  dynamics  (2) (2)  Biological  en--es   [Soria  et  al.,  Safety  Science  50,   1584  (2012)]   [安倍北夫,  パニックの心理(1974)]  [Zuriguel  et  al.,  Scien-fic  Reports  4,   Ar-cle  no.7324  (2014)]   obst-­‐ acle sheep sheep sheep sheep sheep sheep sheep s-mula-on ant
  • 12. (3)  Simula-ons      (i)  Rule-­‐based      Baer,  report  -­‐  Carnegie-­‐Mellon  Univ.  (1974)    Kirchner  et  al.,  PRE  67,  056122  (2003)]    (ii)  Physics-­‐based      中村他, 人間工学10 (3), 93 (1974)    Alonso-­‐Marroquin  et  al.,  arxiv.org  (2013)   12 Methods  of  crowd  dynamics  (3)
  • 13. 13 Mathematical  description Stochas-c  models   Fluid  models   Self-­‐driven  par-cles   Phenomenological   ODEs  
  • 14. 14 simple real macro micro CA Mul-   agent Fluid   mode Par-cle   simula-on Neteork   model Dynamical   system  model
  • 16. 16 Lane  formation:  formulation The  social  force  model  (Helbing2000)   periodic the  self-­‐driven  force N=50 m=80  kg,  tau=0.5  s,   v0=1  m/s,  ri=0.3  m,   A=2000  N,  B=0.08  m,   15  m 5  m the  two-­‐body  interac-on The  B.  C.
  • 19. 19 Lane  formation:  properties  (1)  A  popular  collec-ve  phenomenon        -­‐  possibility  (1974)        -­‐  observa-on  and  simula-on    (1992)    (2)  Counter  driving  force  +  Social  repulsive  force    (3)  "par-cle-­‐resolved  instability"    (4)  Universality      
  • 20. 20 Lane  formation:  similar  phenomena Granular     stra-fica-on   [新屋他,  JSSI  &  JSSE  Joint   Conference  (2012)]   [Dzubiella  et  al.,  PRE  65,     021402  (2002)]   colloid   [Makse  et  al.,  Nature  386,  27  (1997)]   Granular  Rayreigh-­‐   Taylor  instability   Electric  field   sand   sand   g   g  
  • 22. 22 Freezing-‐‑‒by-‐‑‒heating:  formulation The  social  force  model   periodic driving  force noise The  B.  C. N=20 m=80  kg,    tau=  0.5  s,     v0=1  m/s,  ri  =  0.3  m,     A=2000  N,  B=0.08  m 15  m 2  m interac-on
  • 23. 23 Freezing-‐‑‒by-‐‑‒heating:  results Noise  induces  the  freezing  !? noise  intensity   transi-on  probability   *data  from  20  realiza-ons
  • 24. 24 Freezing-‐‑‒by-‐‑‒heating:  time  series almost  lanes The  -me  series  of  the  total  energy perfect  lanes   -me  (s)   total  kine-c  E  (J)  
  • 25. 25 Freezing-‐‑‒by-‐‑‒heating:  scenario kine-c  energy noise  intensity freezing laning small  noise  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  bistable   intermediate  noise  -­‐-­‐-­‐  laning  is  prohibited   large  noise  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  all  possible  states  break  up  
  • 26. 26 Freezing-‐‑‒by-‐‑‒heating:  properties (1)  Noise-­‐induced  order    Increasing  energy  leads  solid  state    (not  gaseous!)           (2)  A  novel  type  of  phase  transi-on?     (3)  Model? liquid                                                          solid                                                          gas
  • 27. 27 Oscillatory  flow the  periodic  change  of  the  flow  direc-on  
  • 28. 28 Oscillatory  flow:  history -­‐  numerically  found    Helbing  et  al.,  PRE  51,  4282  (1995)   -­‐  experimentally  confirmed    Helbing  et  al.,  Transporta-on  sci.  39  1  (2005)     -­‐  empirically  plausible   
  • 29. 29 Oscillatory  flow -­‐  Numerically  iden-fied  as          the  Hopf  bifurca-on  (Corradi2012)     -­‐  The  physical    mechanism  is              s-ll  unknown     -­‐  A  similar  phenomenon:        saltwater  oscillator  (Yoshikawa1991)   bo6leneck  width center  of  mass water saltwater
  • 30. 30 Simulation:  setup Model:  the  SFM   B.C.  :  a  periodic  channel   45 m 5 m w 4 m Parameters:   N=150, m=80  kg,   𝜏=0.5  s,  v0=1.0m/s   A=573  N,  B=0.08  m  
  • 31. 31 Simulation:  results The  -me  evolu-on  of     the  momentum  density                     The  Fourier  amplitude    v.s.  bo6leneck  width   -me[s]            momentum   bo6leneck  width  [m]      amplitude  
  • 32. 32 Oscillatory  flow:  open  questions -­‐  A  type  of  nonlinear  self-­‐excitable  oscillator?     -­‐  Mathema-cal  model?     -­‐  The  rela-on  to  the  fluid  oscillator?     -­‐  Synchroniza-on?  
  • 33. 33 The  faster-‐‑‒is-‐‑‒slower  effect Faster  mo-on  results  in  slower  evacua-on   [Helbing(2000)}   driving  force  (m/s) evacua-on  -me  (s)
  • 34. 34   the  microscopic  many-­‐par-cle  model     (the  social  force  model,  SFM)   self-­‐driven  force repulsive  force elas-c  force fric-on wall exit The  faster-‐‑‒is-‐‑‒slower  effect:  detail m dvi (t) dt = fself + fij j≠i ∑
  • 35. 35   The  faster-‐‑‒is-‐‑‒slower  effect:  detail mechanism?     modeling!   driving force driving force driving force Suzuno  et  al.,  Phys.  Rev.  E  88,  052813  (2013).
  • 36. 36   We  just  consider  the  par-cle  near  the  exit   and  its  equa-on  of  mo-on.   N Analy-c  expression     of  the  flow  velocity   The  outline  of  the  modeling
  • 37. 37   -­‐  the  eq.  of  mo-on   h v0 kg(l)+Ae κg(l)vr -­‐  balance  of  force   x g(x) We  focus  on  the  arch  forma-on   of  the  par-cles.   l v0 Note:  dimensionless.   a  means  the  collision  effect.     [ ] The  model Suzuno  et  al.,  Phys.  Rev.  E  88,  052813  (2013).
  • 38. 38   (1)  The  discharge  property  is  determined                by  the  par-cles  in  the  vicinity  of  the  exit.     (2)  The  flow  has  radial  symmetry.     (3)  N  is  fixed.     (4)  The  flow  rate  is  propor-onal                to  the  velocity  of  the  model  par-cle.     (5)  The  parameters  sa-sfy                                                                .              (This  means  that  fric-on  is  appropriately  large.)   N The  model  assumptions
  • 39. 39   Model   Sta-onary  situa-on   l the  analy-cal  expression  of  the  velocity!   [ ] The  model  analysis
  • 40. 40   Our  model  reproduces  the  simula-on  results.   our  model   simula-on   The  model  results "faster"  is  "slower" Suzuno  et  al.,  Phys.  Rev.  E  88,  052813  (2013).
  • 41. 41   1+g(v0) (contact  fric-on)   v0            (driving  force)   coupling  const.  of  the  social  force linear  elas-city faster-­‐is-­‐slower ouulow   ~   The  solu-on  has  the  form   The  mechanism  of  the  phenomenon Suzuno  et  al.,  Phys.  Rev.  E  88,  052813  (2013).
  • 42. 42   If  our  model  is  correct,  the  original  system  shows:     (a)  If  fric-on  is  linear,  then  no  "faster-­‐".   (b)  If  no  fric-on,  then  no  "faster-­‐".   Validation linear  fric-on     no  fric-on   correct  predic-ons!   Suzuno  et  al.,  Phys.  Rev.  E  88,  052813  (2013).
  • 43. 43   (1)    We  proposed  a  simplified  model  for                the  "faster-­‐is-­‐slower"  effect.     (2)  We  clarify  that  the  "faster-­‐"  comes  from      the  compe--on  between  driving  force      and  nonlinear  fric-on.       (3)  This  work  gives  an  example  of                the  study  of  collec-ve  discrete  flow                via  mathema-cal  modeling.   Summary  of  "faster-‐‑‒is-‐‑‒slower"
  • 44. 44 Summary  of  the  talk Crowd  dynamics  offers:        (i)  examples  of  spontaneous  pa6ern  forma-on      (ii)  insights  into  the  efficient  transporta-on      (iii)  mathema-cal  issues:  how  to  describe        the  mesoscale,  transient  and  discrete  flow?  
  • 45. 45 Critical  discussion  (1) cri-cism  1.      How  do  you  believe  you  can  describe  mathema-cally    the  crowd  mo-on,  which  is  related  to  the  free  will?     cri-cism  2.    You  can  reproduce  any  results  from  simula-ons.     cri-cism  3.    Is  crowd  mo-on  the  result  of  self-­‐organiza-on  truly?  
  • 46. 46 Critical  discussion  (2) Mathema-cal  (physical)  studies  of  crowd  dynamics     only  hold  for:      (i)  panic  situa-ons,      (ii)  each  person  have  their  definite  des-na-ons        but  the  ways  to  reach  there  are  less  conscious,        (iii)  the  size  of  crowds  is  large,     that  is,  the  absence  of  sophis-cated  intelligent  ac-on.    
  • 47. Many  types  of  model  is  available:             To  avoid  the  arbitrariness  of  results,       we  should  take  the  following  steps:        (i)  assume  physically-­‐acceptable  mechanisms,    (ii)  reproduce  the  phenomenon  by  minimal  models,  and    (iii)  iden-fy  the  necessary  condi-on.   47 Critical  discussion  (3) circle      ellip-c    non-­‐spherical      
  • 48. rather  social   48 Critical  discussion  (4) The  concept  of  self-­‐organiza-on  is     NOT  omnipotent   rather  physical   -­‐  Crowd  mo-on  includes  social  factors.   -­‐  We  have  to  no-ce  that  all  crowd  mo-on        should  not  be  reduced  to  Mathema-cal  models.      
  • 49.        END Thank  you     for  your  a6en-on 49